summaryrefslogtreecommitdiffstats
path: root/binutils-2.25/bfd/elf32-hppa.c
diff options
context:
space:
mode:
Diffstat (limited to 'binutils-2.25/bfd/elf32-hppa.c')
-rw-r--r--binutils-2.25/bfd/elf32-hppa.c4686
1 files changed, 4686 insertions, 0 deletions
diff --git a/binutils-2.25/bfd/elf32-hppa.c b/binutils-2.25/bfd/elf32-hppa.c
new file mode 100644
index 00000000..dfffbcba
--- /dev/null
+++ b/binutils-2.25/bfd/elf32-hppa.c
@@ -0,0 +1,4686 @@
+/* BFD back-end for HP PA-RISC ELF files.
+ Copyright 1990-2013 Free Software Foundation, Inc.
+
+ Original code by
+ Center for Software Science
+ Department of Computer Science
+ University of Utah
+ Largely rewritten by Alan Modra <alan@linuxcare.com.au>
+ Naming cleanup by Carlos O'Donell <carlos@systemhalted.org>
+ TLS support written by Randolph Chung <tausq@debian.org>
+
+ This file is part of BFD, the Binary File Descriptor library.
+
+ This program is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ GNU General Public License for more details.
+
+ You should have received a copy of the GNU General Public License
+ along with this program; if not, write to the Free Software
+ Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
+ MA 02110-1301, USA. */
+
+#include "sysdep.h"
+#include "bfd.h"
+#include "libbfd.h"
+#include "elf-bfd.h"
+#include "elf/hppa.h"
+#include "libhppa.h"
+#include "elf32-hppa.h"
+#define ARCH_SIZE 32
+#include "elf32-hppa.h"
+#include "elf-hppa.h"
+
+/* In order to gain some understanding of code in this file without
+ knowing all the intricate details of the linker, note the
+ following:
+
+ Functions named elf32_hppa_* are called by external routines, other
+ functions are only called locally. elf32_hppa_* functions appear
+ in this file more or less in the order in which they are called
+ from external routines. eg. elf32_hppa_check_relocs is called
+ early in the link process, elf32_hppa_finish_dynamic_sections is
+ one of the last functions. */
+
+/* We use two hash tables to hold information for linking PA ELF objects.
+
+ The first is the elf32_hppa_link_hash_table which is derived
+ from the standard ELF linker hash table. We use this as a place to
+ attach other hash tables and static information.
+
+ The second is the stub hash table which is derived from the
+ base BFD hash table. The stub hash table holds the information
+ necessary to build the linker stubs during a link.
+
+ There are a number of different stubs generated by the linker.
+
+ Long branch stub:
+ : ldil LR'X,%r1
+ : be,n RR'X(%sr4,%r1)
+
+ PIC long branch stub:
+ : b,l .+8,%r1
+ : addil LR'X - ($PIC_pcrel$0 - 4),%r1
+ : be,n RR'X - ($PIC_pcrel$0 - 8)(%sr4,%r1)
+
+ Import stub to call shared library routine from normal object file
+ (single sub-space version)
+ : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
+ : ldw RR'lt_ptr+ltoff(%r1),%r21
+ : bv %r0(%r21)
+ : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
+
+ Import stub to call shared library routine from shared library
+ (single sub-space version)
+ : addil LR'ltoff,%r19 ; get procedure entry point
+ : ldw RR'ltoff(%r1),%r21
+ : bv %r0(%r21)
+ : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
+
+ Import stub to call shared library routine from normal object file
+ (multiple sub-space support)
+ : addil LR'lt_ptr+ltoff,%dp ; get procedure entry point
+ : ldw RR'lt_ptr+ltoff(%r1),%r21
+ : ldw RR'lt_ptr+ltoff+4(%r1),%r19 ; get new dlt value.
+ : ldsid (%r21),%r1
+ : mtsp %r1,%sr0
+ : be 0(%sr0,%r21) ; branch to target
+ : stw %rp,-24(%sp) ; save rp
+
+ Import stub to call shared library routine from shared library
+ (multiple sub-space support)
+ : addil LR'ltoff,%r19 ; get procedure entry point
+ : ldw RR'ltoff(%r1),%r21
+ : ldw RR'ltoff+4(%r1),%r19 ; get new dlt value.
+ : ldsid (%r21),%r1
+ : mtsp %r1,%sr0
+ : be 0(%sr0,%r21) ; branch to target
+ : stw %rp,-24(%sp) ; save rp
+
+ Export stub to return from shared lib routine (multiple sub-space support)
+ One of these is created for each exported procedure in a shared
+ library (and stored in the shared lib). Shared lib routines are
+ called via the first instruction in the export stub so that we can
+ do an inter-space return. Not required for single sub-space.
+ : bl,n X,%rp ; trap the return
+ : nop
+ : ldw -24(%sp),%rp ; restore the original rp
+ : ldsid (%rp),%r1
+ : mtsp %r1,%sr0
+ : be,n 0(%sr0,%rp) ; inter-space return. */
+
+
+/* Variable names follow a coding style.
+ Please follow this (Apps Hungarian) style:
+
+ Structure/Variable Prefix
+ elf_link_hash_table "etab"
+ elf_link_hash_entry "eh"
+
+ elf32_hppa_link_hash_table "htab"
+ elf32_hppa_link_hash_entry "hh"
+
+ bfd_hash_table "btab"
+ bfd_hash_entry "bh"
+
+ bfd_hash_table containing stubs "bstab"
+ elf32_hppa_stub_hash_entry "hsh"
+
+ elf32_hppa_dyn_reloc_entry "hdh"
+
+ Always remember to use GNU Coding Style. */
+
+#define PLT_ENTRY_SIZE 8
+#define GOT_ENTRY_SIZE 4
+#define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1"
+
+static const bfd_byte plt_stub[] =
+{
+ 0x0e, 0x80, 0x10, 0x96, /* 1: ldw 0(%r20),%r22 */
+ 0xea, 0xc0, 0xc0, 0x00, /* bv %r0(%r22) */
+ 0x0e, 0x88, 0x10, 0x95, /* ldw 4(%r20),%r21 */
+#define PLT_STUB_ENTRY (3*4)
+ 0xea, 0x9f, 0x1f, 0xdd, /* b,l 1b,%r20 */
+ 0xd6, 0x80, 0x1c, 0x1e, /* depi 0,31,2,%r20 */
+ 0x00, 0xc0, 0xff, 0xee, /* 9: .word fixup_func */
+ 0xde, 0xad, 0xbe, 0xef /* .word fixup_ltp */
+};
+
+/* Section name for stubs is the associated section name plus this
+ string. */
+#define STUB_SUFFIX ".stub"
+
+/* We don't need to copy certain PC- or GP-relative dynamic relocs
+ into a shared object's dynamic section. All the relocs of the
+ limited class we are interested in, are absolute. */
+#ifndef RELATIVE_DYNRELOCS
+#define RELATIVE_DYNRELOCS 0
+#define IS_ABSOLUTE_RELOC(r_type) 1
+#endif
+
+/* If ELIMINATE_COPY_RELOCS is non-zero, the linker will try to avoid
+ copying dynamic variables from a shared lib into an app's dynbss
+ section, and instead use a dynamic relocation to point into the
+ shared lib. */
+#define ELIMINATE_COPY_RELOCS 1
+
+enum elf32_hppa_stub_type
+{
+ hppa_stub_long_branch,
+ hppa_stub_long_branch_shared,
+ hppa_stub_import,
+ hppa_stub_import_shared,
+ hppa_stub_export,
+ hppa_stub_none
+};
+
+struct elf32_hppa_stub_hash_entry
+{
+ /* Base hash table entry structure. */
+ struct bfd_hash_entry bh_root;
+
+ /* The stub section. */
+ asection *stub_sec;
+
+ /* Offset within stub_sec of the beginning of this stub. */
+ bfd_vma stub_offset;
+
+ /* Given the symbol's value and its section we can determine its final
+ value when building the stubs (so the stub knows where to jump. */
+ bfd_vma target_value;
+ asection *target_section;
+
+ enum elf32_hppa_stub_type stub_type;
+
+ /* The symbol table entry, if any, that this was derived from. */
+ struct elf32_hppa_link_hash_entry *hh;
+
+ /* Where this stub is being called from, or, in the case of combined
+ stub sections, the first input section in the group. */
+ asection *id_sec;
+};
+
+struct elf32_hppa_link_hash_entry
+{
+ struct elf_link_hash_entry eh;
+
+ /* A pointer to the most recently used stub hash entry against this
+ symbol. */
+ struct elf32_hppa_stub_hash_entry *hsh_cache;
+
+ /* Used to count relocations for delayed sizing of relocation
+ sections. */
+ struct elf32_hppa_dyn_reloc_entry
+ {
+ /* Next relocation in the chain. */
+ struct elf32_hppa_dyn_reloc_entry *hdh_next;
+
+ /* The input section of the reloc. */
+ asection *sec;
+
+ /* Number of relocs copied in this section. */
+ bfd_size_type count;
+
+#if RELATIVE_DYNRELOCS
+ /* Number of relative relocs copied for the input section. */
+ bfd_size_type relative_count;
+#endif
+ } *dyn_relocs;
+
+ enum
+ {
+ GOT_UNKNOWN = 0, GOT_NORMAL = 1, GOT_TLS_GD = 2, GOT_TLS_LDM = 4, GOT_TLS_IE = 8
+ } tls_type;
+
+ /* Set if this symbol is used by a plabel reloc. */
+ unsigned int plabel:1;
+};
+
+struct elf32_hppa_link_hash_table
+{
+ /* The main hash table. */
+ struct elf_link_hash_table etab;
+
+ /* The stub hash table. */
+ struct bfd_hash_table bstab;
+
+ /* Linker stub bfd. */
+ bfd *stub_bfd;
+
+ /* Linker call-backs. */
+ asection * (*add_stub_section) (const char *, asection *);
+ void (*layout_sections_again) (void);
+
+ /* Array to keep track of which stub sections have been created, and
+ information on stub grouping. */
+ struct map_stub
+ {
+ /* This is the section to which stubs in the group will be
+ attached. */
+ asection *link_sec;
+ /* The stub section. */
+ asection *stub_sec;
+ } *stub_group;
+
+ /* Assorted information used by elf32_hppa_size_stubs. */
+ unsigned int bfd_count;
+ int top_index;
+ asection **input_list;
+ Elf_Internal_Sym **all_local_syms;
+
+ /* Short-cuts to get to dynamic linker sections. */
+ asection *sgot;
+ asection *srelgot;
+ asection *splt;
+ asection *srelplt;
+ asection *sdynbss;
+ asection *srelbss;
+
+ /* Used during a final link to store the base of the text and data
+ segments so that we can perform SEGREL relocations. */
+ bfd_vma text_segment_base;
+ bfd_vma data_segment_base;
+
+ /* Whether we support multiple sub-spaces for shared libs. */
+ unsigned int multi_subspace:1;
+
+ /* Flags set when various size branches are detected. Used to
+ select suitable defaults for the stub group size. */
+ unsigned int has_12bit_branch:1;
+ unsigned int has_17bit_branch:1;
+ unsigned int has_22bit_branch:1;
+
+ /* Set if we need a .plt stub to support lazy dynamic linking. */
+ unsigned int need_plt_stub:1;
+
+ /* Small local sym cache. */
+ struct sym_cache sym_cache;
+
+ /* Data for LDM relocations. */
+ union
+ {
+ bfd_signed_vma refcount;
+ bfd_vma offset;
+ } tls_ldm_got;
+};
+
+/* Various hash macros and functions. */
+#define hppa_link_hash_table(p) \
+ (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
+ == HPPA32_ELF_DATA ? ((struct elf32_hppa_link_hash_table *) ((p)->hash)) : NULL)
+
+#define hppa_elf_hash_entry(ent) \
+ ((struct elf32_hppa_link_hash_entry *)(ent))
+
+#define hppa_stub_hash_entry(ent) \
+ ((struct elf32_hppa_stub_hash_entry *)(ent))
+
+#define hppa_stub_hash_lookup(table, string, create, copy) \
+ ((struct elf32_hppa_stub_hash_entry *) \
+ bfd_hash_lookup ((table), (string), (create), (copy)))
+
+#define hppa_elf_local_got_tls_type(abfd) \
+ ((char *)(elf_local_got_offsets (abfd) + (elf_tdata (abfd)->symtab_hdr.sh_info * 2)))
+
+#define hh_name(hh) \
+ (hh ? hh->eh.root.root.string : "<undef>")
+
+#define eh_name(eh) \
+ (eh ? eh->root.root.string : "<undef>")
+
+/* Assorted hash table functions. */
+
+/* Initialize an entry in the stub hash table. */
+
+static struct bfd_hash_entry *
+stub_hash_newfunc (struct bfd_hash_entry *entry,
+ struct bfd_hash_table *table,
+ const char *string)
+{
+ /* Allocate the structure if it has not already been allocated by a
+ subclass. */
+ if (entry == NULL)
+ {
+ entry = bfd_hash_allocate (table,
+ sizeof (struct elf32_hppa_stub_hash_entry));
+ if (entry == NULL)
+ return entry;
+ }
+
+ /* Call the allocation method of the superclass. */
+ entry = bfd_hash_newfunc (entry, table, string);
+ if (entry != NULL)
+ {
+ struct elf32_hppa_stub_hash_entry *hsh;
+
+ /* Initialize the local fields. */
+ hsh = hppa_stub_hash_entry (entry);
+ hsh->stub_sec = NULL;
+ hsh->stub_offset = 0;
+ hsh->target_value = 0;
+ hsh->target_section = NULL;
+ hsh->stub_type = hppa_stub_long_branch;
+ hsh->hh = NULL;
+ hsh->id_sec = NULL;
+ }
+
+ return entry;
+}
+
+/* Initialize an entry in the link hash table. */
+
+static struct bfd_hash_entry *
+hppa_link_hash_newfunc (struct bfd_hash_entry *entry,
+ struct bfd_hash_table *table,
+ const char *string)
+{
+ /* Allocate the structure if it has not already been allocated by a
+ subclass. */
+ if (entry == NULL)
+ {
+ entry = bfd_hash_allocate (table,
+ sizeof (struct elf32_hppa_link_hash_entry));
+ if (entry == NULL)
+ return entry;
+ }
+
+ /* Call the allocation method of the superclass. */
+ entry = _bfd_elf_link_hash_newfunc (entry, table, string);
+ if (entry != NULL)
+ {
+ struct elf32_hppa_link_hash_entry *hh;
+
+ /* Initialize the local fields. */
+ hh = hppa_elf_hash_entry (entry);
+ hh->hsh_cache = NULL;
+ hh->dyn_relocs = NULL;
+ hh->plabel = 0;
+ hh->tls_type = GOT_UNKNOWN;
+ }
+
+ return entry;
+}
+
+/* Create the derived linker hash table. The PA ELF port uses the derived
+ hash table to keep information specific to the PA ELF linker (without
+ using static variables). */
+
+static struct bfd_link_hash_table *
+elf32_hppa_link_hash_table_create (bfd *abfd)
+{
+ struct elf32_hppa_link_hash_table *htab;
+ bfd_size_type amt = sizeof (*htab);
+
+ htab = bfd_zmalloc (amt);
+ if (htab == NULL)
+ return NULL;
+
+ if (!_bfd_elf_link_hash_table_init (&htab->etab, abfd, hppa_link_hash_newfunc,
+ sizeof (struct elf32_hppa_link_hash_entry),
+ HPPA32_ELF_DATA))
+ {
+ free (htab);
+ return NULL;
+ }
+
+ /* Init the stub hash table too. */
+ if (!bfd_hash_table_init (&htab->bstab, stub_hash_newfunc,
+ sizeof (struct elf32_hppa_stub_hash_entry)))
+ return NULL;
+
+ htab->text_segment_base = (bfd_vma) -1;
+ htab->data_segment_base = (bfd_vma) -1;
+ return &htab->etab.root;
+}
+
+/* Free the derived linker hash table. */
+
+static void
+elf32_hppa_link_hash_table_free (struct bfd_link_hash_table *btab)
+{
+ struct elf32_hppa_link_hash_table *htab
+ = (struct elf32_hppa_link_hash_table *) btab;
+
+ bfd_hash_table_free (&htab->bstab);
+ _bfd_elf_link_hash_table_free (btab);
+}
+
+/* Build a name for an entry in the stub hash table. */
+
+static char *
+hppa_stub_name (const asection *input_section,
+ const asection *sym_sec,
+ const struct elf32_hppa_link_hash_entry *hh,
+ const Elf_Internal_Rela *rela)
+{
+ char *stub_name;
+ bfd_size_type len;
+
+ if (hh)
+ {
+ len = 8 + 1 + strlen (hh_name (hh)) + 1 + 8 + 1;
+ stub_name = bfd_malloc (len);
+ if (stub_name != NULL)
+ sprintf (stub_name, "%08x_%s+%x",
+ input_section->id & 0xffffffff,
+ hh_name (hh),
+ (int) rela->r_addend & 0xffffffff);
+ }
+ else
+ {
+ len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
+ stub_name = bfd_malloc (len);
+ if (stub_name != NULL)
+ sprintf (stub_name, "%08x_%x:%x+%x",
+ input_section->id & 0xffffffff,
+ sym_sec->id & 0xffffffff,
+ (int) ELF32_R_SYM (rela->r_info) & 0xffffffff,
+ (int) rela->r_addend & 0xffffffff);
+ }
+ return stub_name;
+}
+
+/* Look up an entry in the stub hash. Stub entries are cached because
+ creating the stub name takes a bit of time. */
+
+static struct elf32_hppa_stub_hash_entry *
+hppa_get_stub_entry (const asection *input_section,
+ const asection *sym_sec,
+ struct elf32_hppa_link_hash_entry *hh,
+ const Elf_Internal_Rela *rela,
+ struct elf32_hppa_link_hash_table *htab)
+{
+ struct elf32_hppa_stub_hash_entry *hsh_entry;
+ const asection *id_sec;
+
+ /* If this input section is part of a group of sections sharing one
+ stub section, then use the id of the first section in the group.
+ Stub names need to include a section id, as there may well be
+ more than one stub used to reach say, printf, and we need to
+ distinguish between them. */
+ id_sec = htab->stub_group[input_section->id].link_sec;
+
+ if (hh != NULL && hh->hsh_cache != NULL
+ && hh->hsh_cache->hh == hh
+ && hh->hsh_cache->id_sec == id_sec)
+ {
+ hsh_entry = hh->hsh_cache;
+ }
+ else
+ {
+ char *stub_name;
+
+ stub_name = hppa_stub_name (id_sec, sym_sec, hh, rela);
+ if (stub_name == NULL)
+ return NULL;
+
+ hsh_entry = hppa_stub_hash_lookup (&htab->bstab,
+ stub_name, FALSE, FALSE);
+ if (hh != NULL)
+ hh->hsh_cache = hsh_entry;
+
+ free (stub_name);
+ }
+
+ return hsh_entry;
+}
+
+/* Add a new stub entry to the stub hash. Not all fields of the new
+ stub entry are initialised. */
+
+static struct elf32_hppa_stub_hash_entry *
+hppa_add_stub (const char *stub_name,
+ asection *section,
+ struct elf32_hppa_link_hash_table *htab)
+{
+ asection *link_sec;
+ asection *stub_sec;
+ struct elf32_hppa_stub_hash_entry *hsh;
+
+ link_sec = htab->stub_group[section->id].link_sec;
+ stub_sec = htab->stub_group[section->id].stub_sec;
+ if (stub_sec == NULL)
+ {
+ stub_sec = htab->stub_group[link_sec->id].stub_sec;
+ if (stub_sec == NULL)
+ {
+ size_t namelen;
+ bfd_size_type len;
+ char *s_name;
+
+ namelen = strlen (link_sec->name);
+ len = namelen + sizeof (STUB_SUFFIX);
+ s_name = bfd_alloc (htab->stub_bfd, len);
+ if (s_name == NULL)
+ return NULL;
+
+ memcpy (s_name, link_sec->name, namelen);
+ memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
+ stub_sec = (*htab->add_stub_section) (s_name, link_sec);
+ if (stub_sec == NULL)
+ return NULL;
+ htab->stub_group[link_sec->id].stub_sec = stub_sec;
+ }
+ htab->stub_group[section->id].stub_sec = stub_sec;
+ }
+
+ /* Enter this entry into the linker stub hash table. */
+ hsh = hppa_stub_hash_lookup (&htab->bstab, stub_name,
+ TRUE, FALSE);
+ if (hsh == NULL)
+ {
+ (*_bfd_error_handler) (_("%B: cannot create stub entry %s"),
+ section->owner,
+ stub_name);
+ return NULL;
+ }
+
+ hsh->stub_sec = stub_sec;
+ hsh->stub_offset = 0;
+ hsh->id_sec = link_sec;
+ return hsh;
+}
+
+/* Determine the type of stub needed, if any, for a call. */
+
+static enum elf32_hppa_stub_type
+hppa_type_of_stub (asection *input_sec,
+ const Elf_Internal_Rela *rela,
+ struct elf32_hppa_link_hash_entry *hh,
+ bfd_vma destination,
+ struct bfd_link_info *info)
+{
+ bfd_vma location;
+ bfd_vma branch_offset;
+ bfd_vma max_branch_offset;
+ unsigned int r_type;
+
+ if (hh != NULL
+ && hh->eh.plt.offset != (bfd_vma) -1
+ && hh->eh.dynindx != -1
+ && !hh->plabel
+ && (info->shared
+ || !hh->eh.def_regular
+ || hh->eh.root.type == bfd_link_hash_defweak))
+ {
+ /* We need an import stub. Decide between hppa_stub_import
+ and hppa_stub_import_shared later. */
+ return hppa_stub_import;
+ }
+
+ /* Determine where the call point is. */
+ location = (input_sec->output_offset
+ + input_sec->output_section->vma
+ + rela->r_offset);
+
+ branch_offset = destination - location - 8;
+ r_type = ELF32_R_TYPE (rela->r_info);
+
+ /* Determine if a long branch stub is needed. parisc branch offsets
+ are relative to the second instruction past the branch, ie. +8
+ bytes on from the branch instruction location. The offset is
+ signed and counts in units of 4 bytes. */
+ if (r_type == (unsigned int) R_PARISC_PCREL17F)
+ max_branch_offset = (1 << (17 - 1)) << 2;
+
+ else if (r_type == (unsigned int) R_PARISC_PCREL12F)
+ max_branch_offset = (1 << (12 - 1)) << 2;
+
+ else /* R_PARISC_PCREL22F. */
+ max_branch_offset = (1 << (22 - 1)) << 2;
+
+ if (branch_offset + max_branch_offset >= 2*max_branch_offset)
+ return hppa_stub_long_branch;
+
+ return hppa_stub_none;
+}
+
+/* Build one linker stub as defined by the stub hash table entry GEN_ENTRY.
+ IN_ARG contains the link info pointer. */
+
+#define LDIL_R1 0x20200000 /* ldil LR'XXX,%r1 */
+#define BE_SR4_R1 0xe0202002 /* be,n RR'XXX(%sr4,%r1) */
+
+#define BL_R1 0xe8200000 /* b,l .+8,%r1 */
+#define ADDIL_R1 0x28200000 /* addil LR'XXX,%r1,%r1 */
+#define DEPI_R1 0xd4201c1e /* depi 0,31,2,%r1 */
+
+#define ADDIL_DP 0x2b600000 /* addil LR'XXX,%dp,%r1 */
+#define LDW_R1_R21 0x48350000 /* ldw RR'XXX(%sr0,%r1),%r21 */
+#define BV_R0_R21 0xeaa0c000 /* bv %r0(%r21) */
+#define LDW_R1_R19 0x48330000 /* ldw RR'XXX(%sr0,%r1),%r19 */
+
+#define ADDIL_R19 0x2a600000 /* addil LR'XXX,%r19,%r1 */
+#define LDW_R1_DP 0x483b0000 /* ldw RR'XXX(%sr0,%r1),%dp */
+
+#define LDSID_R21_R1 0x02a010a1 /* ldsid (%sr0,%r21),%r1 */
+#define MTSP_R1 0x00011820 /* mtsp %r1,%sr0 */
+#define BE_SR0_R21 0xe2a00000 /* be 0(%sr0,%r21) */
+#define STW_RP 0x6bc23fd1 /* stw %rp,-24(%sr0,%sp) */
+
+#define BL22_RP 0xe800a002 /* b,l,n XXX,%rp */
+#define BL_RP 0xe8400002 /* b,l,n XXX,%rp */
+#define NOP 0x08000240 /* nop */
+#define LDW_RP 0x4bc23fd1 /* ldw -24(%sr0,%sp),%rp */
+#define LDSID_RP_R1 0x004010a1 /* ldsid (%sr0,%rp),%r1 */
+#define BE_SR0_RP 0xe0400002 /* be,n 0(%sr0,%rp) */
+
+#ifndef R19_STUBS
+#define R19_STUBS 1
+#endif
+
+#if R19_STUBS
+#define LDW_R1_DLT LDW_R1_R19
+#else
+#define LDW_R1_DLT LDW_R1_DP
+#endif
+
+static bfd_boolean
+hppa_build_one_stub (struct bfd_hash_entry *bh, void *in_arg)
+{
+ struct elf32_hppa_stub_hash_entry *hsh;
+ struct bfd_link_info *info;
+ struct elf32_hppa_link_hash_table *htab;
+ asection *stub_sec;
+ bfd *stub_bfd;
+ bfd_byte *loc;
+ bfd_vma sym_value;
+ bfd_vma insn;
+ bfd_vma off;
+ int val;
+ int size;
+
+ /* Massage our args to the form they really have. */
+ hsh = hppa_stub_hash_entry (bh);
+ info = (struct bfd_link_info *)in_arg;
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ stub_sec = hsh->stub_sec;
+
+ /* Make a note of the offset within the stubs for this entry. */
+ hsh->stub_offset = stub_sec->size;
+ loc = stub_sec->contents + hsh->stub_offset;
+
+ stub_bfd = stub_sec->owner;
+
+ switch (hsh->stub_type)
+ {
+ case hppa_stub_long_branch:
+ /* Create the long branch. A long branch is formed with "ldil"
+ loading the upper bits of the target address into a register,
+ then branching with "be" which adds in the lower bits.
+ The "be" has its delay slot nullified. */
+ sym_value = (hsh->target_value
+ + hsh->target_section->output_offset
+ + hsh->target_section->output_section->vma);
+
+ val = hppa_field_adjust (sym_value, 0, e_lrsel);
+ insn = hppa_rebuild_insn ((int) LDIL_R1, val, 21);
+ bfd_put_32 (stub_bfd, insn, loc);
+
+ val = hppa_field_adjust (sym_value, 0, e_rrsel) >> 2;
+ insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
+ bfd_put_32 (stub_bfd, insn, loc + 4);
+
+ size = 8;
+ break;
+
+ case hppa_stub_long_branch_shared:
+ /* Branches are relative. This is where we are going to. */
+ sym_value = (hsh->target_value
+ + hsh->target_section->output_offset
+ + hsh->target_section->output_section->vma);
+
+ /* And this is where we are coming from, more or less. */
+ sym_value -= (hsh->stub_offset
+ + stub_sec->output_offset
+ + stub_sec->output_section->vma);
+
+ bfd_put_32 (stub_bfd, (bfd_vma) BL_R1, loc);
+ val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_lrsel);
+ insn = hppa_rebuild_insn ((int) ADDIL_R1, val, 21);
+ bfd_put_32 (stub_bfd, insn, loc + 4);
+
+ val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_rrsel) >> 2;
+ insn = hppa_rebuild_insn ((int) BE_SR4_R1, val, 17);
+ bfd_put_32 (stub_bfd, insn, loc + 8);
+ size = 12;
+ break;
+
+ case hppa_stub_import:
+ case hppa_stub_import_shared:
+ off = hsh->hh->eh.plt.offset;
+ if (off >= (bfd_vma) -2)
+ abort ();
+
+ off &= ~ (bfd_vma) 1;
+ sym_value = (off
+ + htab->splt->output_offset
+ + htab->splt->output_section->vma
+ - elf_gp (htab->splt->output_section->owner));
+
+ insn = ADDIL_DP;
+#if R19_STUBS
+ if (hsh->stub_type == hppa_stub_import_shared)
+ insn = ADDIL_R19;
+#endif
+ val = hppa_field_adjust (sym_value, 0, e_lrsel),
+ insn = hppa_rebuild_insn ((int) insn, val, 21);
+ bfd_put_32 (stub_bfd, insn, loc);
+
+ /* It is critical to use lrsel/rrsel here because we are using
+ two different offsets (+0 and +4) from sym_value. If we use
+ lsel/rsel then with unfortunate sym_values we will round
+ sym_value+4 up to the next 2k block leading to a mis-match
+ between the lsel and rsel value. */
+ val = hppa_field_adjust (sym_value, 0, e_rrsel);
+ insn = hppa_rebuild_insn ((int) LDW_R1_R21, val, 14);
+ bfd_put_32 (stub_bfd, insn, loc + 4);
+
+ if (htab->multi_subspace)
+ {
+ val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
+ insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
+ bfd_put_32 (stub_bfd, insn, loc + 8);
+
+ bfd_put_32 (stub_bfd, (bfd_vma) LDSID_R21_R1, loc + 12);
+ bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
+ bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_R21, loc + 20);
+ bfd_put_32 (stub_bfd, (bfd_vma) STW_RP, loc + 24);
+
+ size = 28;
+ }
+ else
+ {
+ bfd_put_32 (stub_bfd, (bfd_vma) BV_R0_R21, loc + 8);
+ val = hppa_field_adjust (sym_value, (bfd_signed_vma) 4, e_rrsel);
+ insn = hppa_rebuild_insn ((int) LDW_R1_DLT, val, 14);
+ bfd_put_32 (stub_bfd, insn, loc + 12);
+
+ size = 16;
+ }
+
+ break;
+
+ case hppa_stub_export:
+ /* Branches are relative. This is where we are going to. */
+ sym_value = (hsh->target_value
+ + hsh->target_section->output_offset
+ + hsh->target_section->output_section->vma);
+
+ /* And this is where we are coming from. */
+ sym_value -= (hsh->stub_offset
+ + stub_sec->output_offset
+ + stub_sec->output_section->vma);
+
+ if (sym_value - 8 + (1 << (17 + 1)) >= (1 << (17 + 2))
+ && (!htab->has_22bit_branch
+ || sym_value - 8 + (1 << (22 + 1)) >= (1 << (22 + 2))))
+ {
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
+ hsh->target_section->owner,
+ stub_sec,
+ (long) hsh->stub_offset,
+ hsh->bh_root.string);
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+
+ val = hppa_field_adjust (sym_value, (bfd_signed_vma) -8, e_fsel) >> 2;
+ if (!htab->has_22bit_branch)
+ insn = hppa_rebuild_insn ((int) BL_RP, val, 17);
+ else
+ insn = hppa_rebuild_insn ((int) BL22_RP, val, 22);
+ bfd_put_32 (stub_bfd, insn, loc);
+
+ bfd_put_32 (stub_bfd, (bfd_vma) NOP, loc + 4);
+ bfd_put_32 (stub_bfd, (bfd_vma) LDW_RP, loc + 8);
+ bfd_put_32 (stub_bfd, (bfd_vma) LDSID_RP_R1, loc + 12);
+ bfd_put_32 (stub_bfd, (bfd_vma) MTSP_R1, loc + 16);
+ bfd_put_32 (stub_bfd, (bfd_vma) BE_SR0_RP, loc + 20);
+
+ /* Point the function symbol at the stub. */
+ hsh->hh->eh.root.u.def.section = stub_sec;
+ hsh->hh->eh.root.u.def.value = stub_sec->size;
+
+ size = 24;
+ break;
+
+ default:
+ BFD_FAIL ();
+ return FALSE;
+ }
+
+ stub_sec->size += size;
+ return TRUE;
+}
+
+#undef LDIL_R1
+#undef BE_SR4_R1
+#undef BL_R1
+#undef ADDIL_R1
+#undef DEPI_R1
+#undef LDW_R1_R21
+#undef LDW_R1_DLT
+#undef LDW_R1_R19
+#undef ADDIL_R19
+#undef LDW_R1_DP
+#undef LDSID_R21_R1
+#undef MTSP_R1
+#undef BE_SR0_R21
+#undef STW_RP
+#undef BV_R0_R21
+#undef BL_RP
+#undef NOP
+#undef LDW_RP
+#undef LDSID_RP_R1
+#undef BE_SR0_RP
+
+/* As above, but don't actually build the stub. Just bump offset so
+ we know stub section sizes. */
+
+static bfd_boolean
+hppa_size_one_stub (struct bfd_hash_entry *bh, void *in_arg)
+{
+ struct elf32_hppa_stub_hash_entry *hsh;
+ struct elf32_hppa_link_hash_table *htab;
+ int size;
+
+ /* Massage our args to the form they really have. */
+ hsh = hppa_stub_hash_entry (bh);
+ htab = in_arg;
+
+ if (hsh->stub_type == hppa_stub_long_branch)
+ size = 8;
+ else if (hsh->stub_type == hppa_stub_long_branch_shared)
+ size = 12;
+ else if (hsh->stub_type == hppa_stub_export)
+ size = 24;
+ else /* hppa_stub_import or hppa_stub_import_shared. */
+ {
+ if (htab->multi_subspace)
+ size = 28;
+ else
+ size = 16;
+ }
+
+ hsh->stub_sec->size += size;
+ return TRUE;
+}
+
+/* Return nonzero if ABFD represents an HPPA ELF32 file.
+ Additionally we set the default architecture and machine. */
+
+static bfd_boolean
+elf32_hppa_object_p (bfd *abfd)
+{
+ Elf_Internal_Ehdr * i_ehdrp;
+ unsigned int flags;
+
+ i_ehdrp = elf_elfheader (abfd);
+ if (strcmp (bfd_get_target (abfd), "elf32-hppa-linux") == 0)
+ {
+ /* GCC on hppa-linux produces binaries with OSABI=GNU,
+ but the kernel produces corefiles with OSABI=SysV. */
+ if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU &&
+ i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
+ return FALSE;
+ }
+ else if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0)
+ {
+ /* GCC on hppa-netbsd produces binaries with OSABI=NetBSD,
+ but the kernel produces corefiles with OSABI=SysV. */
+ if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NETBSD &&
+ i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
+ return FALSE;
+ }
+ else
+ {
+ if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX)
+ return FALSE;
+ }
+
+ flags = i_ehdrp->e_flags;
+ switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
+ {
+ case EFA_PARISC_1_0:
+ return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
+ case EFA_PARISC_1_1:
+ return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
+ case EFA_PARISC_2_0:
+ return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
+ case EFA_PARISC_2_0 | EF_PARISC_WIDE:
+ return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
+ }
+ return TRUE;
+}
+
+/* Create the .plt and .got sections, and set up our hash table
+ short-cuts to various dynamic sections. */
+
+static bfd_boolean
+elf32_hppa_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
+{
+ struct elf32_hppa_link_hash_table *htab;
+ struct elf_link_hash_entry *eh;
+
+ /* Don't try to create the .plt and .got twice. */
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+ if (htab->splt != NULL)
+ return TRUE;
+
+ /* Call the generic code to do most of the work. */
+ if (! _bfd_elf_create_dynamic_sections (abfd, info))
+ return FALSE;
+
+ htab->splt = bfd_get_linker_section (abfd, ".plt");
+ htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
+
+ htab->sgot = bfd_get_linker_section (abfd, ".got");
+ htab->srelgot = bfd_get_linker_section (abfd, ".rela.got");
+
+ htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
+ htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
+
+ /* hppa-linux needs _GLOBAL_OFFSET_TABLE_ to be visible from the main
+ application, because __canonicalize_funcptr_for_compare needs it. */
+ eh = elf_hash_table (info)->hgot;
+ eh->forced_local = 0;
+ eh->other = STV_DEFAULT;
+ return bfd_elf_link_record_dynamic_symbol (info, eh);
+}
+
+/* Copy the extra info we tack onto an elf_link_hash_entry. */
+
+static void
+elf32_hppa_copy_indirect_symbol (struct bfd_link_info *info,
+ struct elf_link_hash_entry *eh_dir,
+ struct elf_link_hash_entry *eh_ind)
+{
+ struct elf32_hppa_link_hash_entry *hh_dir, *hh_ind;
+
+ hh_dir = hppa_elf_hash_entry (eh_dir);
+ hh_ind = hppa_elf_hash_entry (eh_ind);
+
+ if (hh_ind->dyn_relocs != NULL)
+ {
+ if (hh_dir->dyn_relocs != NULL)
+ {
+ struct elf32_hppa_dyn_reloc_entry **hdh_pp;
+ struct elf32_hppa_dyn_reloc_entry *hdh_p;
+
+ /* Add reloc counts against the indirect sym to the direct sym
+ list. Merge any entries against the same section. */
+ for (hdh_pp = &hh_ind->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
+ {
+ struct elf32_hppa_dyn_reloc_entry *hdh_q;
+
+ for (hdh_q = hh_dir->dyn_relocs;
+ hdh_q != NULL;
+ hdh_q = hdh_q->hdh_next)
+ if (hdh_q->sec == hdh_p->sec)
+ {
+#if RELATIVE_DYNRELOCS
+ hdh_q->relative_count += hdh_p->relative_count;
+#endif
+ hdh_q->count += hdh_p->count;
+ *hdh_pp = hdh_p->hdh_next;
+ break;
+ }
+ if (hdh_q == NULL)
+ hdh_pp = &hdh_p->hdh_next;
+ }
+ *hdh_pp = hh_dir->dyn_relocs;
+ }
+
+ hh_dir->dyn_relocs = hh_ind->dyn_relocs;
+ hh_ind->dyn_relocs = NULL;
+ }
+
+ if (ELIMINATE_COPY_RELOCS
+ && eh_ind->root.type != bfd_link_hash_indirect
+ && eh_dir->dynamic_adjusted)
+ {
+ /* If called to transfer flags for a weakdef during processing
+ of elf_adjust_dynamic_symbol, don't copy non_got_ref.
+ We clear it ourselves for ELIMINATE_COPY_RELOCS. */
+ eh_dir->ref_dynamic |= eh_ind->ref_dynamic;
+ eh_dir->ref_regular |= eh_ind->ref_regular;
+ eh_dir->ref_regular_nonweak |= eh_ind->ref_regular_nonweak;
+ eh_dir->needs_plt |= eh_ind->needs_plt;
+ }
+ else
+ {
+ if (eh_ind->root.type == bfd_link_hash_indirect
+ && eh_dir->got.refcount <= 0)
+ {
+ hh_dir->tls_type = hh_ind->tls_type;
+ hh_ind->tls_type = GOT_UNKNOWN;
+ }
+
+ _bfd_elf_link_hash_copy_indirect (info, eh_dir, eh_ind);
+ }
+}
+
+static int
+elf32_hppa_optimized_tls_reloc (struct bfd_link_info *info ATTRIBUTE_UNUSED,
+ int r_type, int is_local ATTRIBUTE_UNUSED)
+{
+ /* For now we don't support linker optimizations. */
+ return r_type;
+}
+
+/* Return a pointer to the local GOT, PLT and TLS reference counts
+ for ABFD. Returns NULL if the storage allocation fails. */
+
+static bfd_signed_vma *
+hppa32_elf_local_refcounts (bfd *abfd)
+{
+ Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ bfd_signed_vma *local_refcounts;
+
+ local_refcounts = elf_local_got_refcounts (abfd);
+ if (local_refcounts == NULL)
+ {
+ bfd_size_type size;
+
+ /* Allocate space for local GOT and PLT reference
+ counts. Done this way to save polluting elf_obj_tdata
+ with another target specific pointer. */
+ size = symtab_hdr->sh_info;
+ size *= 2 * sizeof (bfd_signed_vma);
+ /* Add in space to store the local GOT TLS types. */
+ size += symtab_hdr->sh_info;
+ local_refcounts = bfd_zalloc (abfd, size);
+ if (local_refcounts == NULL)
+ return NULL;
+ elf_local_got_refcounts (abfd) = local_refcounts;
+ memset (hppa_elf_local_got_tls_type (abfd), GOT_UNKNOWN,
+ symtab_hdr->sh_info);
+ }
+ return local_refcounts;
+}
+
+
+/* Look through the relocs for a section during the first phase, and
+ calculate needed space in the global offset table, procedure linkage
+ table, and dynamic reloc sections. At this point we haven't
+ necessarily read all the input files. */
+
+static bfd_boolean
+elf32_hppa_check_relocs (bfd *abfd,
+ struct bfd_link_info *info,
+ asection *sec,
+ const Elf_Internal_Rela *relocs)
+{
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_link_hash_entry **eh_syms;
+ const Elf_Internal_Rela *rela;
+ const Elf_Internal_Rela *rela_end;
+ struct elf32_hppa_link_hash_table *htab;
+ asection *sreloc;
+ int tls_type = GOT_UNKNOWN, old_tls_type = GOT_UNKNOWN;
+
+ if (info->relocatable)
+ return TRUE;
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ eh_syms = elf_sym_hashes (abfd);
+ sreloc = NULL;
+
+ rela_end = relocs + sec->reloc_count;
+ for (rela = relocs; rela < rela_end; rela++)
+ {
+ enum {
+ NEED_GOT = 1,
+ NEED_PLT = 2,
+ NEED_DYNREL = 4,
+ PLT_PLABEL = 8
+ };
+
+ unsigned int r_symndx, r_type;
+ struct elf32_hppa_link_hash_entry *hh;
+ int need_entry = 0;
+
+ r_symndx = ELF32_R_SYM (rela->r_info);
+
+ if (r_symndx < symtab_hdr->sh_info)
+ hh = NULL;
+ else
+ {
+ hh = hppa_elf_hash_entry (eh_syms[r_symndx - symtab_hdr->sh_info]);
+ while (hh->eh.root.type == bfd_link_hash_indirect
+ || hh->eh.root.type == bfd_link_hash_warning)
+ hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
+
+ /* PR15323, ref flags aren't set for references in the same
+ object. */
+ hh->eh.root.non_ir_ref = 1;
+ }
+
+ r_type = ELF32_R_TYPE (rela->r_info);
+ r_type = elf32_hppa_optimized_tls_reloc (info, r_type, hh == NULL);
+
+ switch (r_type)
+ {
+ case R_PARISC_DLTIND14F:
+ case R_PARISC_DLTIND14R:
+ case R_PARISC_DLTIND21L:
+ /* This symbol requires a global offset table entry. */
+ need_entry = NEED_GOT;
+ break;
+
+ case R_PARISC_PLABEL14R: /* "Official" procedure labels. */
+ case R_PARISC_PLABEL21L:
+ case R_PARISC_PLABEL32:
+ /* If the addend is non-zero, we break badly. */
+ if (rela->r_addend != 0)
+ abort ();
+
+ /* If we are creating a shared library, then we need to
+ create a PLT entry for all PLABELs, because PLABELs with
+ local symbols may be passed via a pointer to another
+ object. Additionally, output a dynamic relocation
+ pointing to the PLT entry.
+
+ For executables, the original 32-bit ABI allowed two
+ different styles of PLABELs (function pointers): For
+ global functions, the PLABEL word points into the .plt
+ two bytes past a (function address, gp) pair, and for
+ local functions the PLABEL points directly at the
+ function. The magic +2 for the first type allows us to
+ differentiate between the two. As you can imagine, this
+ is a real pain when it comes to generating code to call
+ functions indirectly or to compare function pointers.
+ We avoid the mess by always pointing a PLABEL into the
+ .plt, even for local functions. */
+ need_entry = PLT_PLABEL | NEED_PLT | NEED_DYNREL;
+ break;
+
+ case R_PARISC_PCREL12F:
+ htab->has_12bit_branch = 1;
+ goto branch_common;
+
+ case R_PARISC_PCREL17C:
+ case R_PARISC_PCREL17F:
+ htab->has_17bit_branch = 1;
+ goto branch_common;
+
+ case R_PARISC_PCREL22F:
+ htab->has_22bit_branch = 1;
+ branch_common:
+ /* Function calls might need to go through the .plt, and
+ might require long branch stubs. */
+ if (hh == NULL)
+ {
+ /* We know local syms won't need a .plt entry, and if
+ they need a long branch stub we can't guarantee that
+ we can reach the stub. So just flag an error later
+ if we're doing a shared link and find we need a long
+ branch stub. */
+ continue;
+ }
+ else
+ {
+ /* Global symbols will need a .plt entry if they remain
+ global, and in most cases won't need a long branch
+ stub. Unfortunately, we have to cater for the case
+ where a symbol is forced local by versioning, or due
+ to symbolic linking, and we lose the .plt entry. */
+ need_entry = NEED_PLT;
+ if (hh->eh.type == STT_PARISC_MILLI)
+ need_entry = 0;
+ }
+ break;
+
+ case R_PARISC_SEGBASE: /* Used to set segment base. */
+ case R_PARISC_SEGREL32: /* Relative reloc, used for unwind. */
+ case R_PARISC_PCREL14F: /* PC relative load/store. */
+ case R_PARISC_PCREL14R:
+ case R_PARISC_PCREL17R: /* External branches. */
+ case R_PARISC_PCREL21L: /* As above, and for load/store too. */
+ case R_PARISC_PCREL32:
+ /* We don't need to propagate the relocation if linking a
+ shared object since these are section relative. */
+ continue;
+
+ case R_PARISC_DPREL14F: /* Used for gp rel data load/store. */
+ case R_PARISC_DPREL14R:
+ case R_PARISC_DPREL21L:
+ if (info->shared)
+ {
+ (*_bfd_error_handler)
+ (_("%B: relocation %s can not be used when making a shared object; recompile with -fPIC"),
+ abfd,
+ elf_hppa_howto_table[r_type].name);
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ /* Fall through. */
+
+ case R_PARISC_DIR17F: /* Used for external branches. */
+ case R_PARISC_DIR17R:
+ case R_PARISC_DIR14F: /* Used for load/store from absolute locn. */
+ case R_PARISC_DIR14R:
+ case R_PARISC_DIR21L: /* As above, and for ext branches too. */
+ case R_PARISC_DIR32: /* .word relocs. */
+ /* We may want to output a dynamic relocation later. */
+ need_entry = NEED_DYNREL;
+ break;
+
+ /* This relocation describes the C++ object vtable hierarchy.
+ Reconstruct it for later use during GC. */
+ case R_PARISC_GNU_VTINHERIT:
+ if (!bfd_elf_gc_record_vtinherit (abfd, sec, &hh->eh, rela->r_offset))
+ return FALSE;
+ continue;
+
+ /* This relocation describes which C++ vtable entries are actually
+ used. Record for later use during GC. */
+ case R_PARISC_GNU_VTENTRY:
+ BFD_ASSERT (hh != NULL);
+ if (hh != NULL
+ && !bfd_elf_gc_record_vtentry (abfd, sec, &hh->eh, rela->r_addend))
+ return FALSE;
+ continue;
+
+ case R_PARISC_TLS_GD21L:
+ case R_PARISC_TLS_GD14R:
+ case R_PARISC_TLS_LDM21L:
+ case R_PARISC_TLS_LDM14R:
+ need_entry = NEED_GOT;
+ break;
+
+ case R_PARISC_TLS_IE21L:
+ case R_PARISC_TLS_IE14R:
+ if (info->shared)
+ info->flags |= DF_STATIC_TLS;
+ need_entry = NEED_GOT;
+ break;
+
+ default:
+ continue;
+ }
+
+ /* Now carry out our orders. */
+ if (need_entry & NEED_GOT)
+ {
+ switch (r_type)
+ {
+ default:
+ tls_type = GOT_NORMAL;
+ break;
+ case R_PARISC_TLS_GD21L:
+ case R_PARISC_TLS_GD14R:
+ tls_type |= GOT_TLS_GD;
+ break;
+ case R_PARISC_TLS_LDM21L:
+ case R_PARISC_TLS_LDM14R:
+ tls_type |= GOT_TLS_LDM;
+ break;
+ case R_PARISC_TLS_IE21L:
+ case R_PARISC_TLS_IE14R:
+ tls_type |= GOT_TLS_IE;
+ break;
+ }
+
+ /* Allocate space for a GOT entry, as well as a dynamic
+ relocation for this entry. */
+ if (htab->sgot == NULL)
+ {
+ if (htab->etab.dynobj == NULL)
+ htab->etab.dynobj = abfd;
+ if (!elf32_hppa_create_dynamic_sections (htab->etab.dynobj, info))
+ return FALSE;
+ }
+
+ if (r_type == R_PARISC_TLS_LDM21L
+ || r_type == R_PARISC_TLS_LDM14R)
+ htab->tls_ldm_got.refcount += 1;
+ else
+ {
+ if (hh != NULL)
+ {
+ hh->eh.got.refcount += 1;
+ old_tls_type = hh->tls_type;
+ }
+ else
+ {
+ bfd_signed_vma *local_got_refcounts;
+
+ /* This is a global offset table entry for a local symbol. */
+ local_got_refcounts = hppa32_elf_local_refcounts (abfd);
+ if (local_got_refcounts == NULL)
+ return FALSE;
+ local_got_refcounts[r_symndx] += 1;
+
+ old_tls_type = hppa_elf_local_got_tls_type (abfd) [r_symndx];
+ }
+
+ tls_type |= old_tls_type;
+
+ if (old_tls_type != tls_type)
+ {
+ if (hh != NULL)
+ hh->tls_type = tls_type;
+ else
+ hppa_elf_local_got_tls_type (abfd) [r_symndx] = tls_type;
+ }
+
+ }
+ }
+
+ if (need_entry & NEED_PLT)
+ {
+ /* If we are creating a shared library, and this is a reloc
+ against a weak symbol or a global symbol in a dynamic
+ object, then we will be creating an import stub and a
+ .plt entry for the symbol. Similarly, on a normal link
+ to symbols defined in a dynamic object we'll need the
+ import stub and a .plt entry. We don't know yet whether
+ the symbol is defined or not, so make an entry anyway and
+ clean up later in adjust_dynamic_symbol. */
+ if ((sec->flags & SEC_ALLOC) != 0)
+ {
+ if (hh != NULL)
+ {
+ hh->eh.needs_plt = 1;
+ hh->eh.plt.refcount += 1;
+
+ /* If this .plt entry is for a plabel, mark it so
+ that adjust_dynamic_symbol will keep the entry
+ even if it appears to be local. */
+ if (need_entry & PLT_PLABEL)
+ hh->plabel = 1;
+ }
+ else if (need_entry & PLT_PLABEL)
+ {
+ bfd_signed_vma *local_got_refcounts;
+ bfd_signed_vma *local_plt_refcounts;
+
+ local_got_refcounts = hppa32_elf_local_refcounts (abfd);
+ if (local_got_refcounts == NULL)
+ return FALSE;
+ local_plt_refcounts = (local_got_refcounts
+ + symtab_hdr->sh_info);
+ local_plt_refcounts[r_symndx] += 1;
+ }
+ }
+ }
+
+ if (need_entry & NEED_DYNREL)
+ {
+ /* Flag this symbol as having a non-got, non-plt reference
+ so that we generate copy relocs if it turns out to be
+ dynamic. */
+ if (hh != NULL && !info->shared)
+ hh->eh.non_got_ref = 1;
+
+ /* If we are creating a shared library then we need to copy
+ the reloc into the shared library. However, if we are
+ linking with -Bsymbolic, we need only copy absolute
+ relocs or relocs against symbols that are not defined in
+ an object we are including in the link. PC- or DP- or
+ DLT-relative relocs against any local sym or global sym
+ with DEF_REGULAR set, can be discarded. At this point we
+ have not seen all the input files, so it is possible that
+ DEF_REGULAR is not set now but will be set later (it is
+ never cleared). We account for that possibility below by
+ storing information in the dyn_relocs field of the
+ hash table entry.
+
+ A similar situation to the -Bsymbolic case occurs when
+ creating shared libraries and symbol visibility changes
+ render the symbol local.
+
+ As it turns out, all the relocs we will be creating here
+ are absolute, so we cannot remove them on -Bsymbolic
+ links or visibility changes anyway. A STUB_REL reloc
+ is absolute too, as in that case it is the reloc in the
+ stub we will be creating, rather than copying the PCREL
+ reloc in the branch.
+
+ If on the other hand, we are creating an executable, we
+ may need to keep relocations for symbols satisfied by a
+ dynamic library if we manage to avoid copy relocs for the
+ symbol. */
+ if ((info->shared
+ && (sec->flags & SEC_ALLOC) != 0
+ && (IS_ABSOLUTE_RELOC (r_type)
+ || (hh != NULL
+ && (!info->symbolic
+ || hh->eh.root.type == bfd_link_hash_defweak
+ || !hh->eh.def_regular))))
+ || (ELIMINATE_COPY_RELOCS
+ && !info->shared
+ && (sec->flags & SEC_ALLOC) != 0
+ && hh != NULL
+ && (hh->eh.root.type == bfd_link_hash_defweak
+ || !hh->eh.def_regular)))
+ {
+ struct elf32_hppa_dyn_reloc_entry *hdh_p;
+ struct elf32_hppa_dyn_reloc_entry **hdh_head;
+
+ /* Create a reloc section in dynobj and make room for
+ this reloc. */
+ if (sreloc == NULL)
+ {
+ if (htab->etab.dynobj == NULL)
+ htab->etab.dynobj = abfd;
+
+ sreloc = _bfd_elf_make_dynamic_reloc_section
+ (sec, htab->etab.dynobj, 2, abfd, /*rela?*/ TRUE);
+
+ if (sreloc == NULL)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ }
+
+ /* If this is a global symbol, we count the number of
+ relocations we need for this symbol. */
+ if (hh != NULL)
+ {
+ hdh_head = &hh->dyn_relocs;
+ }
+ else
+ {
+ /* Track dynamic relocs needed for local syms too.
+ We really need local syms available to do this
+ easily. Oh well. */
+ asection *sr;
+ void *vpp;
+ Elf_Internal_Sym *isym;
+
+ isym = bfd_sym_from_r_symndx (&htab->sym_cache,
+ abfd, r_symndx);
+ if (isym == NULL)
+ return FALSE;
+
+ sr = bfd_section_from_elf_index (abfd, isym->st_shndx);
+ if (sr == NULL)
+ sr = sec;
+
+ vpp = &elf_section_data (sr)->local_dynrel;
+ hdh_head = (struct elf32_hppa_dyn_reloc_entry **) vpp;
+ }
+
+ hdh_p = *hdh_head;
+ if (hdh_p == NULL || hdh_p->sec != sec)
+ {
+ hdh_p = bfd_alloc (htab->etab.dynobj, sizeof *hdh_p);
+ if (hdh_p == NULL)
+ return FALSE;
+ hdh_p->hdh_next = *hdh_head;
+ *hdh_head = hdh_p;
+ hdh_p->sec = sec;
+ hdh_p->count = 0;
+#if RELATIVE_DYNRELOCS
+ hdh_p->relative_count = 0;
+#endif
+ }
+
+ hdh_p->count += 1;
+#if RELATIVE_DYNRELOCS
+ if (!IS_ABSOLUTE_RELOC (rtype))
+ hdh_p->relative_count += 1;
+#endif
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+/* Return the section that should be marked against garbage collection
+ for a given relocation. */
+
+static asection *
+elf32_hppa_gc_mark_hook (asection *sec,
+ struct bfd_link_info *info,
+ Elf_Internal_Rela *rela,
+ struct elf_link_hash_entry *hh,
+ Elf_Internal_Sym *sym)
+{
+ if (hh != NULL)
+ switch ((unsigned int) ELF32_R_TYPE (rela->r_info))
+ {
+ case R_PARISC_GNU_VTINHERIT:
+ case R_PARISC_GNU_VTENTRY:
+ return NULL;
+ }
+
+ return _bfd_elf_gc_mark_hook (sec, info, rela, hh, sym);
+}
+
+/* Update the got and plt entry reference counts for the section being
+ removed. */
+
+static bfd_boolean
+elf32_hppa_gc_sweep_hook (bfd *abfd,
+ struct bfd_link_info *info ATTRIBUTE_UNUSED,
+ asection *sec,
+ const Elf_Internal_Rela *relocs)
+{
+ Elf_Internal_Shdr *symtab_hdr;
+ struct elf_link_hash_entry **eh_syms;
+ bfd_signed_vma *local_got_refcounts;
+ bfd_signed_vma *local_plt_refcounts;
+ const Elf_Internal_Rela *rela, *relend;
+ struct elf32_hppa_link_hash_table *htab;
+
+ if (info->relocatable)
+ return TRUE;
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ elf_section_data (sec)->local_dynrel = NULL;
+
+ symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
+ eh_syms = elf_sym_hashes (abfd);
+ local_got_refcounts = elf_local_got_refcounts (abfd);
+ local_plt_refcounts = local_got_refcounts;
+ if (local_plt_refcounts != NULL)
+ local_plt_refcounts += symtab_hdr->sh_info;
+
+ relend = relocs + sec->reloc_count;
+ for (rela = relocs; rela < relend; rela++)
+ {
+ unsigned long r_symndx;
+ unsigned int r_type;
+ struct elf_link_hash_entry *eh = NULL;
+
+ r_symndx = ELF32_R_SYM (rela->r_info);
+ if (r_symndx >= symtab_hdr->sh_info)
+ {
+ struct elf32_hppa_link_hash_entry *hh;
+ struct elf32_hppa_dyn_reloc_entry **hdh_pp;
+ struct elf32_hppa_dyn_reloc_entry *hdh_p;
+
+ eh = eh_syms[r_symndx - symtab_hdr->sh_info];
+ while (eh->root.type == bfd_link_hash_indirect
+ || eh->root.type == bfd_link_hash_warning)
+ eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
+ hh = hppa_elf_hash_entry (eh);
+
+ for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; hdh_pp = &hdh_p->hdh_next)
+ if (hdh_p->sec == sec)
+ {
+ /* Everything must go for SEC. */
+ *hdh_pp = hdh_p->hdh_next;
+ break;
+ }
+ }
+
+ r_type = ELF32_R_TYPE (rela->r_info);
+ r_type = elf32_hppa_optimized_tls_reloc (info, r_type, eh != NULL);
+
+ switch (r_type)
+ {
+ case R_PARISC_DLTIND14F:
+ case R_PARISC_DLTIND14R:
+ case R_PARISC_DLTIND21L:
+ case R_PARISC_TLS_GD21L:
+ case R_PARISC_TLS_GD14R:
+ case R_PARISC_TLS_IE21L:
+ case R_PARISC_TLS_IE14R:
+ if (eh != NULL)
+ {
+ if (eh->got.refcount > 0)
+ eh->got.refcount -= 1;
+ }
+ else if (local_got_refcounts != NULL)
+ {
+ if (local_got_refcounts[r_symndx] > 0)
+ local_got_refcounts[r_symndx] -= 1;
+ }
+ break;
+
+ case R_PARISC_TLS_LDM21L:
+ case R_PARISC_TLS_LDM14R:
+ htab->tls_ldm_got.refcount -= 1;
+ break;
+
+ case R_PARISC_PCREL12F:
+ case R_PARISC_PCREL17C:
+ case R_PARISC_PCREL17F:
+ case R_PARISC_PCREL22F:
+ if (eh != NULL)
+ {
+ if (eh->plt.refcount > 0)
+ eh->plt.refcount -= 1;
+ }
+ break;
+
+ case R_PARISC_PLABEL14R:
+ case R_PARISC_PLABEL21L:
+ case R_PARISC_PLABEL32:
+ if (eh != NULL)
+ {
+ if (eh->plt.refcount > 0)
+ eh->plt.refcount -= 1;
+ }
+ else if (local_plt_refcounts != NULL)
+ {
+ if (local_plt_refcounts[r_symndx] > 0)
+ local_plt_refcounts[r_symndx] -= 1;
+ }
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ return TRUE;
+}
+
+/* Support for core dump NOTE sections. */
+
+static bfd_boolean
+elf32_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
+{
+ int offset;
+ size_t size;
+
+ switch (note->descsz)
+ {
+ default:
+ return FALSE;
+
+ case 396: /* Linux/hppa */
+ /* pr_cursig */
+ elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
+
+ /* pr_pid */
+ elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
+
+ /* pr_reg */
+ offset = 72;
+ size = 320;
+
+ break;
+ }
+
+ /* Make a ".reg/999" section. */
+ return _bfd_elfcore_make_pseudosection (abfd, ".reg",
+ size, note->descpos + offset);
+}
+
+static bfd_boolean
+elf32_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
+{
+ switch (note->descsz)
+ {
+ default:
+ return FALSE;
+
+ case 124: /* Linux/hppa elf_prpsinfo. */
+ elf_tdata (abfd)->core->program
+ = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
+ elf_tdata (abfd)->core->command
+ = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
+ }
+
+ /* Note that for some reason, a spurious space is tacked
+ onto the end of the args in some (at least one anyway)
+ implementations, so strip it off if it exists. */
+ {
+ char *command = elf_tdata (abfd)->core->command;
+ int n = strlen (command);
+
+ if (0 < n && command[n - 1] == ' ')
+ command[n - 1] = '\0';
+ }
+
+ return TRUE;
+}
+
+/* Our own version of hide_symbol, so that we can keep plt entries for
+ plabels. */
+
+static void
+elf32_hppa_hide_symbol (struct bfd_link_info *info,
+ struct elf_link_hash_entry *eh,
+ bfd_boolean force_local)
+{
+ if (force_local)
+ {
+ eh->forced_local = 1;
+ if (eh->dynindx != -1)
+ {
+ eh->dynindx = -1;
+ _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
+ eh->dynstr_index);
+ }
+ }
+
+ /* STT_GNU_IFUNC symbol must go through PLT. */
+ if (! hppa_elf_hash_entry (eh)->plabel
+ && eh->type != STT_GNU_IFUNC)
+ {
+ eh->needs_plt = 0;
+ eh->plt = elf_hash_table (info)->init_plt_offset;
+ }
+}
+
+/* Adjust a symbol defined by a dynamic object and referenced by a
+ regular object. The current definition is in some section of the
+ dynamic object, but we're not including those sections. We have to
+ change the definition to something the rest of the link can
+ understand. */
+
+static bfd_boolean
+elf32_hppa_adjust_dynamic_symbol (struct bfd_link_info *info,
+ struct elf_link_hash_entry *eh)
+{
+ struct elf32_hppa_link_hash_table *htab;
+ asection *sec;
+
+ /* If this is a function, put it in the procedure linkage table. We
+ will fill in the contents of the procedure linkage table later. */
+ if (eh->type == STT_FUNC
+ || eh->needs_plt)
+ {
+ /* If the symbol is used by a plabel, we must allocate a PLT slot.
+ The refcounts are not reliable when it has been hidden since
+ hide_symbol can be called before the plabel flag is set. */
+ if (hppa_elf_hash_entry (eh)->plabel
+ && eh->plt.refcount <= 0)
+ eh->plt.refcount = 1;
+
+ if (eh->plt.refcount <= 0
+ || (eh->def_regular
+ && eh->root.type != bfd_link_hash_defweak
+ && ! hppa_elf_hash_entry (eh)->plabel
+ && (!info->shared || info->symbolic)))
+ {
+ /* The .plt entry is not needed when:
+ a) Garbage collection has removed all references to the
+ symbol, or
+ b) We know for certain the symbol is defined in this
+ object, and it's not a weak definition, nor is the symbol
+ used by a plabel relocation. Either this object is the
+ application or we are doing a shared symbolic link. */
+
+ eh->plt.offset = (bfd_vma) -1;
+ eh->needs_plt = 0;
+ }
+
+ return TRUE;
+ }
+ else
+ eh->plt.offset = (bfd_vma) -1;
+
+ /* If this is a weak symbol, and there is a real definition, the
+ processor independent code will have arranged for us to see the
+ real definition first, and we can just use the same value. */
+ if (eh->u.weakdef != NULL)
+ {
+ if (eh->u.weakdef->root.type != bfd_link_hash_defined
+ && eh->u.weakdef->root.type != bfd_link_hash_defweak)
+ abort ();
+ eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
+ eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
+ if (ELIMINATE_COPY_RELOCS)
+ eh->non_got_ref = eh->u.weakdef->non_got_ref;
+ return TRUE;
+ }
+
+ /* This is a reference to a symbol defined by a dynamic object which
+ is not a function. */
+
+ /* If we are creating a shared library, we must presume that the
+ only references to the symbol are via the global offset table.
+ For such cases we need not do anything here; the relocations will
+ be handled correctly by relocate_section. */
+ if (info->shared)
+ return TRUE;
+
+ /* If there are no references to this symbol that do not use the
+ GOT, we don't need to generate a copy reloc. */
+ if (!eh->non_got_ref)
+ return TRUE;
+
+ if (ELIMINATE_COPY_RELOCS)
+ {
+ struct elf32_hppa_link_hash_entry *hh;
+ struct elf32_hppa_dyn_reloc_entry *hdh_p;
+
+ hh = hppa_elf_hash_entry (eh);
+ for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
+ {
+ sec = hdh_p->sec->output_section;
+ if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
+ break;
+ }
+
+ /* If we didn't find any dynamic relocs in read-only sections, then
+ we'll be keeping the dynamic relocs and avoiding the copy reloc. */
+ if (hdh_p == NULL)
+ {
+ eh->non_got_ref = 0;
+ return TRUE;
+ }
+ }
+
+ /* We must allocate the symbol in our .dynbss section, which will
+ become part of the .bss section of the executable. There will be
+ an entry for this symbol in the .dynsym section. The dynamic
+ object will contain position independent code, so all references
+ from the dynamic object to this symbol will go through the global
+ offset table. The dynamic linker will use the .dynsym entry to
+ determine the address it must put in the global offset table, so
+ both the dynamic object and the regular object will refer to the
+ same memory location for the variable. */
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ /* We must generate a COPY reloc to tell the dynamic linker to
+ copy the initial value out of the dynamic object and into the
+ runtime process image. */
+ if ((eh->root.u.def.section->flags & SEC_ALLOC) != 0 && eh->size != 0)
+ {
+ htab->srelbss->size += sizeof (Elf32_External_Rela);
+ eh->needs_copy = 1;
+ }
+
+ sec = htab->sdynbss;
+
+ return _bfd_elf_adjust_dynamic_copy (eh, sec);
+}
+
+/* Allocate space in the .plt for entries that won't have relocations.
+ ie. plabel entries. */
+
+static bfd_boolean
+allocate_plt_static (struct elf_link_hash_entry *eh, void *inf)
+{
+ struct bfd_link_info *info;
+ struct elf32_hppa_link_hash_table *htab;
+ struct elf32_hppa_link_hash_entry *hh;
+ asection *sec;
+
+ if (eh->root.type == bfd_link_hash_indirect)
+ return TRUE;
+
+ info = (struct bfd_link_info *) inf;
+ hh = hppa_elf_hash_entry (eh);
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ if (htab->etab.dynamic_sections_created
+ && eh->plt.refcount > 0)
+ {
+ /* Make sure this symbol is output as a dynamic symbol.
+ Undefined weak syms won't yet be marked as dynamic. */
+ if (eh->dynindx == -1
+ && !eh->forced_local
+ && eh->type != STT_PARISC_MILLI)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, eh))
+ return FALSE;
+ }
+
+ if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared, eh))
+ {
+ /* Allocate these later. From this point on, h->plabel
+ means that the plt entry is only used by a plabel.
+ We'll be using a normal plt entry for this symbol, so
+ clear the plabel indicator. */
+
+ hh->plabel = 0;
+ }
+ else if (hh->plabel)
+ {
+ /* Make an entry in the .plt section for plabel references
+ that won't have a .plt entry for other reasons. */
+ sec = htab->splt;
+ eh->plt.offset = sec->size;
+ sec->size += PLT_ENTRY_SIZE;
+ }
+ else
+ {
+ /* No .plt entry needed. */
+ eh->plt.offset = (bfd_vma) -1;
+ eh->needs_plt = 0;
+ }
+ }
+ else
+ {
+ eh->plt.offset = (bfd_vma) -1;
+ eh->needs_plt = 0;
+ }
+
+ return TRUE;
+}
+
+/* Allocate space in .plt, .got and associated reloc sections for
+ global syms. */
+
+static bfd_boolean
+allocate_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
+{
+ struct bfd_link_info *info;
+ struct elf32_hppa_link_hash_table *htab;
+ asection *sec;
+ struct elf32_hppa_link_hash_entry *hh;
+ struct elf32_hppa_dyn_reloc_entry *hdh_p;
+
+ if (eh->root.type == bfd_link_hash_indirect)
+ return TRUE;
+
+ info = inf;
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ hh = hppa_elf_hash_entry (eh);
+
+ if (htab->etab.dynamic_sections_created
+ && eh->plt.offset != (bfd_vma) -1
+ && !hh->plabel
+ && eh->plt.refcount > 0)
+ {
+ /* Make an entry in the .plt section. */
+ sec = htab->splt;
+ eh->plt.offset = sec->size;
+ sec->size += PLT_ENTRY_SIZE;
+
+ /* We also need to make an entry in the .rela.plt section. */
+ htab->srelplt->size += sizeof (Elf32_External_Rela);
+ htab->need_plt_stub = 1;
+ }
+
+ if (eh->got.refcount > 0)
+ {
+ /* Make sure this symbol is output as a dynamic symbol.
+ Undefined weak syms won't yet be marked as dynamic. */
+ if (eh->dynindx == -1
+ && !eh->forced_local
+ && eh->type != STT_PARISC_MILLI)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, eh))
+ return FALSE;
+ }
+
+ sec = htab->sgot;
+ eh->got.offset = sec->size;
+ sec->size += GOT_ENTRY_SIZE;
+ /* R_PARISC_TLS_GD* needs two GOT entries */
+ if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
+ sec->size += GOT_ENTRY_SIZE * 2;
+ else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
+ sec->size += GOT_ENTRY_SIZE;
+ if (htab->etab.dynamic_sections_created
+ && (info->shared
+ || (eh->dynindx != -1
+ && !eh->forced_local)))
+ {
+ htab->srelgot->size += sizeof (Elf32_External_Rela);
+ if ((hh->tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
+ htab->srelgot->size += 2 * sizeof (Elf32_External_Rela);
+ else if ((hh->tls_type & GOT_TLS_GD) == GOT_TLS_GD)
+ htab->srelgot->size += sizeof (Elf32_External_Rela);
+ }
+ }
+ else
+ eh->got.offset = (bfd_vma) -1;
+
+ if (hh->dyn_relocs == NULL)
+ return TRUE;
+
+ /* If this is a -Bsymbolic shared link, then we need to discard all
+ space allocated for dynamic pc-relative relocs against symbols
+ defined in a regular object. For the normal shared case, discard
+ space for relocs that have become local due to symbol visibility
+ changes. */
+ if (info->shared)
+ {
+#if RELATIVE_DYNRELOCS
+ if (SYMBOL_CALLS_LOCAL (info, eh))
+ {
+ struct elf32_hppa_dyn_reloc_entry **hdh_pp;
+
+ for (hdh_pp = &hh->dyn_relocs; (hdh_p = *hdh_pp) != NULL; )
+ {
+ hdh_p->count -= hdh_p->relative_count;
+ hdh_p->relative_count = 0;
+ if (hdh_p->count == 0)
+ *hdh_pp = hdh_p->hdh_next;
+ else
+ hdh_pp = &hdh_p->hdh_next;
+ }
+ }
+#endif
+
+ /* Also discard relocs on undefined weak syms with non-default
+ visibility. */
+ if (hh->dyn_relocs != NULL
+ && eh->root.type == bfd_link_hash_undefweak)
+ {
+ if (ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT)
+ hh->dyn_relocs = NULL;
+
+ /* Make sure undefined weak symbols are output as a dynamic
+ symbol in PIEs. */
+ else if (eh->dynindx == -1
+ && !eh->forced_local)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, eh))
+ return FALSE;
+ }
+ }
+ }
+ else
+ {
+ /* For the non-shared case, discard space for relocs against
+ symbols which turn out to need copy relocs or are not
+ dynamic. */
+
+ if (!eh->non_got_ref
+ && ((ELIMINATE_COPY_RELOCS
+ && eh->def_dynamic
+ && !eh->def_regular)
+ || (htab->etab.dynamic_sections_created
+ && (eh->root.type == bfd_link_hash_undefweak
+ || eh->root.type == bfd_link_hash_undefined))))
+ {
+ /* Make sure this symbol is output as a dynamic symbol.
+ Undefined weak syms won't yet be marked as dynamic. */
+ if (eh->dynindx == -1
+ && !eh->forced_local
+ && eh->type != STT_PARISC_MILLI)
+ {
+ if (! bfd_elf_link_record_dynamic_symbol (info, eh))
+ return FALSE;
+ }
+
+ /* If that succeeded, we know we'll be keeping all the
+ relocs. */
+ if (eh->dynindx != -1)
+ goto keep;
+ }
+
+ hh->dyn_relocs = NULL;
+ return TRUE;
+
+ keep: ;
+ }
+
+ /* Finally, allocate space. */
+ for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
+ {
+ asection *sreloc = elf_section_data (hdh_p->sec)->sreloc;
+ sreloc->size += hdh_p->count * sizeof (Elf32_External_Rela);
+ }
+
+ return TRUE;
+}
+
+/* This function is called via elf_link_hash_traverse to force
+ millicode symbols local so they do not end up as globals in the
+ dynamic symbol table. We ought to be able to do this in
+ adjust_dynamic_symbol, but our adjust_dynamic_symbol is not called
+ for all dynamic symbols. Arguably, this is a bug in
+ elf_adjust_dynamic_symbol. */
+
+static bfd_boolean
+clobber_millicode_symbols (struct elf_link_hash_entry *eh,
+ struct bfd_link_info *info)
+{
+ if (eh->type == STT_PARISC_MILLI
+ && !eh->forced_local)
+ {
+ elf32_hppa_hide_symbol (info, eh, TRUE);
+ }
+ return TRUE;
+}
+
+/* Find any dynamic relocs that apply to read-only sections. */
+
+static bfd_boolean
+readonly_dynrelocs (struct elf_link_hash_entry *eh, void *inf)
+{
+ struct elf32_hppa_link_hash_entry *hh;
+ struct elf32_hppa_dyn_reloc_entry *hdh_p;
+
+ hh = hppa_elf_hash_entry (eh);
+ for (hdh_p = hh->dyn_relocs; hdh_p != NULL; hdh_p = hdh_p->hdh_next)
+ {
+ asection *sec = hdh_p->sec->output_section;
+
+ if (sec != NULL && (sec->flags & SEC_READONLY) != 0)
+ {
+ struct bfd_link_info *info = inf;
+
+ info->flags |= DF_TEXTREL;
+
+ /* Not an error, just cut short the traversal. */
+ return FALSE;
+ }
+ }
+ return TRUE;
+}
+
+/* Set the sizes of the dynamic sections. */
+
+static bfd_boolean
+elf32_hppa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
+ struct bfd_link_info *info)
+{
+ struct elf32_hppa_link_hash_table *htab;
+ bfd *dynobj;
+ bfd *ibfd;
+ asection *sec;
+ bfd_boolean relocs;
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ dynobj = htab->etab.dynobj;
+ if (dynobj == NULL)
+ abort ();
+
+ if (htab->etab.dynamic_sections_created)
+ {
+ /* Set the contents of the .interp section to the interpreter. */
+ if (info->executable)
+ {
+ sec = bfd_get_linker_section (dynobj, ".interp");
+ if (sec == NULL)
+ abort ();
+ sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
+ sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
+ }
+
+ /* Force millicode symbols local. */
+ elf_link_hash_traverse (&htab->etab,
+ clobber_millicode_symbols,
+ info);
+ }
+
+ /* Set up .got and .plt offsets for local syms, and space for local
+ dynamic relocs. */
+ for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
+ {
+ bfd_signed_vma *local_got;
+ bfd_signed_vma *end_local_got;
+ bfd_signed_vma *local_plt;
+ bfd_signed_vma *end_local_plt;
+ bfd_size_type locsymcount;
+ Elf_Internal_Shdr *symtab_hdr;
+ asection *srel;
+ char *local_tls_type;
+
+ if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
+ continue;
+
+ for (sec = ibfd->sections; sec != NULL; sec = sec->next)
+ {
+ struct elf32_hppa_dyn_reloc_entry *hdh_p;
+
+ for (hdh_p = ((struct elf32_hppa_dyn_reloc_entry *)
+ elf_section_data (sec)->local_dynrel);
+ hdh_p != NULL;
+ hdh_p = hdh_p->hdh_next)
+ {
+ if (!bfd_is_abs_section (hdh_p->sec)
+ && bfd_is_abs_section (hdh_p->sec->output_section))
+ {
+ /* Input section has been discarded, either because
+ it is a copy of a linkonce section or due to
+ linker script /DISCARD/, so we'll be discarding
+ the relocs too. */
+ }
+ else if (hdh_p->count != 0)
+ {
+ srel = elf_section_data (hdh_p->sec)->sreloc;
+ srel->size += hdh_p->count * sizeof (Elf32_External_Rela);
+ if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
+ info->flags |= DF_TEXTREL;
+ }
+ }
+ }
+
+ local_got = elf_local_got_refcounts (ibfd);
+ if (!local_got)
+ continue;
+
+ symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
+ locsymcount = symtab_hdr->sh_info;
+ end_local_got = local_got + locsymcount;
+ local_tls_type = hppa_elf_local_got_tls_type (ibfd);
+ sec = htab->sgot;
+ srel = htab->srelgot;
+ for (; local_got < end_local_got; ++local_got)
+ {
+ if (*local_got > 0)
+ {
+ *local_got = sec->size;
+ sec->size += GOT_ENTRY_SIZE;
+ if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
+ sec->size += 2 * GOT_ENTRY_SIZE;
+ else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
+ sec->size += GOT_ENTRY_SIZE;
+ if (info->shared)
+ {
+ srel->size += sizeof (Elf32_External_Rela);
+ if ((*local_tls_type & (GOT_TLS_GD | GOT_TLS_IE)) == (GOT_TLS_GD | GOT_TLS_IE))
+ srel->size += 2 * sizeof (Elf32_External_Rela);
+ else if ((*local_tls_type & GOT_TLS_GD) == GOT_TLS_GD)
+ srel->size += sizeof (Elf32_External_Rela);
+ }
+ }
+ else
+ *local_got = (bfd_vma) -1;
+
+ ++local_tls_type;
+ }
+
+ local_plt = end_local_got;
+ end_local_plt = local_plt + locsymcount;
+ if (! htab->etab.dynamic_sections_created)
+ {
+ /* Won't be used, but be safe. */
+ for (; local_plt < end_local_plt; ++local_plt)
+ *local_plt = (bfd_vma) -1;
+ }
+ else
+ {
+ sec = htab->splt;
+ srel = htab->srelplt;
+ for (; local_plt < end_local_plt; ++local_plt)
+ {
+ if (*local_plt > 0)
+ {
+ *local_plt = sec->size;
+ sec->size += PLT_ENTRY_SIZE;
+ if (info->shared)
+ srel->size += sizeof (Elf32_External_Rela);
+ }
+ else
+ *local_plt = (bfd_vma) -1;
+ }
+ }
+ }
+
+ if (htab->tls_ldm_got.refcount > 0)
+ {
+ /* Allocate 2 got entries and 1 dynamic reloc for
+ R_PARISC_TLS_DTPMOD32 relocs. */
+ htab->tls_ldm_got.offset = htab->sgot->size;
+ htab->sgot->size += (GOT_ENTRY_SIZE * 2);
+ htab->srelgot->size += sizeof (Elf32_External_Rela);
+ }
+ else
+ htab->tls_ldm_got.offset = -1;
+
+ /* Do all the .plt entries without relocs first. The dynamic linker
+ uses the last .plt reloc to find the end of the .plt (and hence
+ the start of the .got) for lazy linking. */
+ elf_link_hash_traverse (&htab->etab, allocate_plt_static, info);
+
+ /* Allocate global sym .plt and .got entries, and space for global
+ sym dynamic relocs. */
+ elf_link_hash_traverse (&htab->etab, allocate_dynrelocs, info);
+
+ /* The check_relocs and adjust_dynamic_symbol entry points have
+ determined the sizes of the various dynamic sections. Allocate
+ memory for them. */
+ relocs = FALSE;
+ for (sec = dynobj->sections; sec != NULL; sec = sec->next)
+ {
+ if ((sec->flags & SEC_LINKER_CREATED) == 0)
+ continue;
+
+ if (sec == htab->splt)
+ {
+ if (htab->need_plt_stub)
+ {
+ /* Make space for the plt stub at the end of the .plt
+ section. We want this stub right at the end, up
+ against the .got section. */
+ int gotalign = bfd_section_alignment (dynobj, htab->sgot);
+ int pltalign = bfd_section_alignment (dynobj, sec);
+ bfd_size_type mask;
+
+ if (gotalign > pltalign)
+ (void) bfd_set_section_alignment (dynobj, sec, gotalign);
+ mask = ((bfd_size_type) 1 << gotalign) - 1;
+ sec->size = (sec->size + sizeof (plt_stub) + mask) & ~mask;
+ }
+ }
+ else if (sec == htab->sgot
+ || sec == htab->sdynbss)
+ ;
+ else if (CONST_STRNEQ (bfd_get_section_name (dynobj, sec), ".rela"))
+ {
+ if (sec->size != 0)
+ {
+ /* Remember whether there are any reloc sections other
+ than .rela.plt. */
+ if (sec != htab->srelplt)
+ relocs = TRUE;
+
+ /* We use the reloc_count field as a counter if we need
+ to copy relocs into the output file. */
+ sec->reloc_count = 0;
+ }
+ }
+ else
+ {
+ /* It's not one of our sections, so don't allocate space. */
+ continue;
+ }
+
+ if (sec->size == 0)
+ {
+ /* If we don't need this section, strip it from the
+ output file. This is mostly to handle .rela.bss and
+ .rela.plt. We must create both sections in
+ create_dynamic_sections, because they must be created
+ before the linker maps input sections to output
+ sections. The linker does that before
+ adjust_dynamic_symbol is called, and it is that
+ function which decides whether anything needs to go
+ into these sections. */
+ sec->flags |= SEC_EXCLUDE;
+ continue;
+ }
+
+ if ((sec->flags & SEC_HAS_CONTENTS) == 0)
+ continue;
+
+ /* Allocate memory for the section contents. Zero it, because
+ we may not fill in all the reloc sections. */
+ sec->contents = bfd_zalloc (dynobj, sec->size);
+ if (sec->contents == NULL)
+ return FALSE;
+ }
+
+ if (htab->etab.dynamic_sections_created)
+ {
+ /* Like IA-64 and HPPA64, always create a DT_PLTGOT. It
+ actually has nothing to do with the PLT, it is how we
+ communicate the LTP value of a load module to the dynamic
+ linker. */
+#define add_dynamic_entry(TAG, VAL) \
+ _bfd_elf_add_dynamic_entry (info, TAG, VAL)
+
+ if (!add_dynamic_entry (DT_PLTGOT, 0))
+ return FALSE;
+
+ /* Add some entries to the .dynamic section. We fill in the
+ values later, in elf32_hppa_finish_dynamic_sections, but we
+ must add the entries now so that we get the correct size for
+ the .dynamic section. The DT_DEBUG entry is filled in by the
+ dynamic linker and used by the debugger. */
+ if (info->executable)
+ {
+ if (!add_dynamic_entry (DT_DEBUG, 0))
+ return FALSE;
+ }
+
+ if (htab->srelplt->size != 0)
+ {
+ if (!add_dynamic_entry (DT_PLTRELSZ, 0)
+ || !add_dynamic_entry (DT_PLTREL, DT_RELA)
+ || !add_dynamic_entry (DT_JMPREL, 0))
+ return FALSE;
+ }
+
+ if (relocs)
+ {
+ if (!add_dynamic_entry (DT_RELA, 0)
+ || !add_dynamic_entry (DT_RELASZ, 0)
+ || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
+ return FALSE;
+
+ /* If any dynamic relocs apply to a read-only section,
+ then we need a DT_TEXTREL entry. */
+ if ((info->flags & DF_TEXTREL) == 0)
+ elf_link_hash_traverse (&htab->etab, readonly_dynrelocs, info);
+
+ if ((info->flags & DF_TEXTREL) != 0)
+ {
+ if (!add_dynamic_entry (DT_TEXTREL, 0))
+ return FALSE;
+ }
+ }
+ }
+#undef add_dynamic_entry
+
+ return TRUE;
+}
+
+/* External entry points for sizing and building linker stubs. */
+
+/* Set up various things so that we can make a list of input sections
+ for each output section included in the link. Returns -1 on error,
+ 0 when no stubs will be needed, and 1 on success. */
+
+int
+elf32_hppa_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info)
+{
+ bfd *input_bfd;
+ unsigned int bfd_count;
+ int top_id, top_index;
+ asection *section;
+ asection **input_list, **list;
+ bfd_size_type amt;
+ struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
+
+ if (htab == NULL)
+ return -1;
+
+ /* Count the number of input BFDs and find the top input section id. */
+ for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
+ input_bfd != NULL;
+ input_bfd = input_bfd->link_next)
+ {
+ bfd_count += 1;
+ for (section = input_bfd->sections;
+ section != NULL;
+ section = section->next)
+ {
+ if (top_id < section->id)
+ top_id = section->id;
+ }
+ }
+ htab->bfd_count = bfd_count;
+
+ amt = sizeof (struct map_stub) * (top_id + 1);
+ htab->stub_group = bfd_zmalloc (amt);
+ if (htab->stub_group == NULL)
+ return -1;
+
+ /* We can't use output_bfd->section_count here to find the top output
+ section index as some sections may have been removed, and
+ strip_excluded_output_sections doesn't renumber the indices. */
+ for (section = output_bfd->sections, top_index = 0;
+ section != NULL;
+ section = section->next)
+ {
+ if (top_index < section->index)
+ top_index = section->index;
+ }
+
+ htab->top_index = top_index;
+ amt = sizeof (asection *) * (top_index + 1);
+ input_list = bfd_malloc (amt);
+ htab->input_list = input_list;
+ if (input_list == NULL)
+ return -1;
+
+ /* For sections we aren't interested in, mark their entries with a
+ value we can check later. */
+ list = input_list + top_index;
+ do
+ *list = bfd_abs_section_ptr;
+ while (list-- != input_list);
+
+ for (section = output_bfd->sections;
+ section != NULL;
+ section = section->next)
+ {
+ if ((section->flags & SEC_CODE) != 0)
+ input_list[section->index] = NULL;
+ }
+
+ return 1;
+}
+
+/* The linker repeatedly calls this function for each input section,
+ in the order that input sections are linked into output sections.
+ Build lists of input sections to determine groupings between which
+ we may insert linker stubs. */
+
+void
+elf32_hppa_next_input_section (struct bfd_link_info *info, asection *isec)
+{
+ struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
+
+ if (htab == NULL)
+ return;
+
+ if (isec->output_section->index <= htab->top_index)
+ {
+ asection **list = htab->input_list + isec->output_section->index;
+ if (*list != bfd_abs_section_ptr)
+ {
+ /* Steal the link_sec pointer for our list. */
+#define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
+ /* This happens to make the list in reverse order,
+ which is what we want. */
+ PREV_SEC (isec) = *list;
+ *list = isec;
+ }
+ }
+}
+
+/* See whether we can group stub sections together. Grouping stub
+ sections may result in fewer stubs. More importantly, we need to
+ put all .init* and .fini* stubs at the beginning of the .init or
+ .fini output sections respectively, because glibc splits the
+ _init and _fini functions into multiple parts. Putting a stub in
+ the middle of a function is not a good idea. */
+
+static void
+group_sections (struct elf32_hppa_link_hash_table *htab,
+ bfd_size_type stub_group_size,
+ bfd_boolean stubs_always_before_branch)
+{
+ asection **list = htab->input_list + htab->top_index;
+ do
+ {
+ asection *tail = *list;
+ if (tail == bfd_abs_section_ptr)
+ continue;
+ while (tail != NULL)
+ {
+ asection *curr;
+ asection *prev;
+ bfd_size_type total;
+ bfd_boolean big_sec;
+
+ curr = tail;
+ total = tail->size;
+ big_sec = total >= stub_group_size;
+
+ while ((prev = PREV_SEC (curr)) != NULL
+ && ((total += curr->output_offset - prev->output_offset)
+ < stub_group_size))
+ curr = prev;
+
+ /* OK, the size from the start of CURR to the end is less
+ than 240000 bytes and thus can be handled by one stub
+ section. (or the tail section is itself larger than
+ 240000 bytes, in which case we may be toast.)
+ We should really be keeping track of the total size of
+ stubs added here, as stubs contribute to the final output
+ section size. That's a little tricky, and this way will
+ only break if stubs added total more than 22144 bytes, or
+ 2768 long branch stubs. It seems unlikely for more than
+ 2768 different functions to be called, especially from
+ code only 240000 bytes long. This limit used to be
+ 250000, but c++ code tends to generate lots of little
+ functions, and sometimes violated the assumption. */
+ do
+ {
+ prev = PREV_SEC (tail);
+ /* Set up this stub group. */
+ htab->stub_group[tail->id].link_sec = curr;
+ }
+ while (tail != curr && (tail = prev) != NULL);
+
+ /* But wait, there's more! Input sections up to 240000
+ bytes before the stub section can be handled by it too.
+ Don't do this if we have a really large section after the
+ stubs, as adding more stubs increases the chance that
+ branches may not reach into the stub section. */
+ if (!stubs_always_before_branch && !big_sec)
+ {
+ total = 0;
+ while (prev != NULL
+ && ((total += tail->output_offset - prev->output_offset)
+ < stub_group_size))
+ {
+ tail = prev;
+ prev = PREV_SEC (tail);
+ htab->stub_group[tail->id].link_sec = curr;
+ }
+ }
+ tail = prev;
+ }
+ }
+ while (list-- != htab->input_list);
+ free (htab->input_list);
+#undef PREV_SEC
+}
+
+/* Read in all local syms for all input bfds, and create hash entries
+ for export stubs if we are building a multi-subspace shared lib.
+ Returns -1 on error, 1 if export stubs created, 0 otherwise. */
+
+static int
+get_local_syms (bfd *output_bfd, bfd *input_bfd, struct bfd_link_info *info)
+{
+ unsigned int bfd_indx;
+ Elf_Internal_Sym *local_syms, **all_local_syms;
+ int stub_changed = 0;
+ struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
+
+ if (htab == NULL)
+ return -1;
+
+ /* We want to read in symbol extension records only once. To do this
+ we need to read in the local symbols in parallel and save them for
+ later use; so hold pointers to the local symbols in an array. */
+ bfd_size_type amt = sizeof (Elf_Internal_Sym *) * htab->bfd_count;
+ all_local_syms = bfd_zmalloc (amt);
+ htab->all_local_syms = all_local_syms;
+ if (all_local_syms == NULL)
+ return -1;
+
+ /* Walk over all the input BFDs, swapping in local symbols.
+ If we are creating a shared library, create hash entries for the
+ export stubs. */
+ for (bfd_indx = 0;
+ input_bfd != NULL;
+ input_bfd = input_bfd->link_next, bfd_indx++)
+ {
+ Elf_Internal_Shdr *symtab_hdr;
+
+ /* We'll need the symbol table in a second. */
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ if (symtab_hdr->sh_info == 0)
+ continue;
+
+ /* We need an array of the local symbols attached to the input bfd. */
+ local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
+ if (local_syms == NULL)
+ {
+ local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
+ symtab_hdr->sh_info, 0,
+ NULL, NULL, NULL);
+ /* Cache them for elf_link_input_bfd. */
+ symtab_hdr->contents = (unsigned char *) local_syms;
+ }
+ if (local_syms == NULL)
+ return -1;
+
+ all_local_syms[bfd_indx] = local_syms;
+
+ if (info->shared && htab->multi_subspace)
+ {
+ struct elf_link_hash_entry **eh_syms;
+ struct elf_link_hash_entry **eh_symend;
+ unsigned int symcount;
+
+ symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
+ - symtab_hdr->sh_info);
+ eh_syms = (struct elf_link_hash_entry **) elf_sym_hashes (input_bfd);
+ eh_symend = (struct elf_link_hash_entry **) (eh_syms + symcount);
+
+ /* Look through the global syms for functions; We need to
+ build export stubs for all globally visible functions. */
+ for (; eh_syms < eh_symend; eh_syms++)
+ {
+ struct elf32_hppa_link_hash_entry *hh;
+
+ hh = hppa_elf_hash_entry (*eh_syms);
+
+ while (hh->eh.root.type == bfd_link_hash_indirect
+ || hh->eh.root.type == bfd_link_hash_warning)
+ hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
+
+ /* At this point in the link, undefined syms have been
+ resolved, so we need to check that the symbol was
+ defined in this BFD. */
+ if ((hh->eh.root.type == bfd_link_hash_defined
+ || hh->eh.root.type == bfd_link_hash_defweak)
+ && hh->eh.type == STT_FUNC
+ && hh->eh.root.u.def.section->output_section != NULL
+ && (hh->eh.root.u.def.section->output_section->owner
+ == output_bfd)
+ && hh->eh.root.u.def.section->owner == input_bfd
+ && hh->eh.def_regular
+ && !hh->eh.forced_local
+ && ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT)
+ {
+ asection *sec;
+ const char *stub_name;
+ struct elf32_hppa_stub_hash_entry *hsh;
+
+ sec = hh->eh.root.u.def.section;
+ stub_name = hh_name (hh);
+ hsh = hppa_stub_hash_lookup (&htab->bstab,
+ stub_name,
+ FALSE, FALSE);
+ if (hsh == NULL)
+ {
+ hsh = hppa_add_stub (stub_name, sec, htab);
+ if (!hsh)
+ return -1;
+
+ hsh->target_value = hh->eh.root.u.def.value;
+ hsh->target_section = hh->eh.root.u.def.section;
+ hsh->stub_type = hppa_stub_export;
+ hsh->hh = hh;
+ stub_changed = 1;
+ }
+ else
+ {
+ (*_bfd_error_handler) (_("%B: duplicate export stub %s"),
+ input_bfd,
+ stub_name);
+ }
+ }
+ }
+ }
+ }
+
+ return stub_changed;
+}
+
+/* Determine and set the size of the stub section for a final link.
+
+ The basic idea here is to examine all the relocations looking for
+ PC-relative calls to a target that is unreachable with a "bl"
+ instruction. */
+
+bfd_boolean
+elf32_hppa_size_stubs
+ (bfd *output_bfd, bfd *stub_bfd, struct bfd_link_info *info,
+ bfd_boolean multi_subspace, bfd_signed_vma group_size,
+ asection * (*add_stub_section) (const char *, asection *),
+ void (*layout_sections_again) (void))
+{
+ bfd_size_type stub_group_size;
+ bfd_boolean stubs_always_before_branch;
+ bfd_boolean stub_changed;
+ struct elf32_hppa_link_hash_table *htab = hppa_link_hash_table (info);
+
+ if (htab == NULL)
+ return FALSE;
+
+ /* Stash our params away. */
+ htab->stub_bfd = stub_bfd;
+ htab->multi_subspace = multi_subspace;
+ htab->add_stub_section = add_stub_section;
+ htab->layout_sections_again = layout_sections_again;
+ stubs_always_before_branch = group_size < 0;
+ if (group_size < 0)
+ stub_group_size = -group_size;
+ else
+ stub_group_size = group_size;
+ if (stub_group_size == 1)
+ {
+ /* Default values. */
+ if (stubs_always_before_branch)
+ {
+ stub_group_size = 7680000;
+ if (htab->has_17bit_branch || htab->multi_subspace)
+ stub_group_size = 240000;
+ if (htab->has_12bit_branch)
+ stub_group_size = 7500;
+ }
+ else
+ {
+ stub_group_size = 6971392;
+ if (htab->has_17bit_branch || htab->multi_subspace)
+ stub_group_size = 217856;
+ if (htab->has_12bit_branch)
+ stub_group_size = 6808;
+ }
+ }
+
+ group_sections (htab, stub_group_size, stubs_always_before_branch);
+
+ switch (get_local_syms (output_bfd, info->input_bfds, info))
+ {
+ default:
+ if (htab->all_local_syms)
+ goto error_ret_free_local;
+ return FALSE;
+
+ case 0:
+ stub_changed = FALSE;
+ break;
+
+ case 1:
+ stub_changed = TRUE;
+ break;
+ }
+
+ while (1)
+ {
+ bfd *input_bfd;
+ unsigned int bfd_indx;
+ asection *stub_sec;
+
+ for (input_bfd = info->input_bfds, bfd_indx = 0;
+ input_bfd != NULL;
+ input_bfd = input_bfd->link_next, bfd_indx++)
+ {
+ Elf_Internal_Shdr *symtab_hdr;
+ asection *section;
+ Elf_Internal_Sym *local_syms;
+
+ /* We'll need the symbol table in a second. */
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+ if (symtab_hdr->sh_info == 0)
+ continue;
+
+ local_syms = htab->all_local_syms[bfd_indx];
+
+ /* Walk over each section attached to the input bfd. */
+ for (section = input_bfd->sections;
+ section != NULL;
+ section = section->next)
+ {
+ Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
+
+ /* If there aren't any relocs, then there's nothing more
+ to do. */
+ if ((section->flags & SEC_RELOC) == 0
+ || section->reloc_count == 0)
+ continue;
+
+ /* If this section is a link-once section that will be
+ discarded, then don't create any stubs. */
+ if (section->output_section == NULL
+ || section->output_section->owner != output_bfd)
+ continue;
+
+ /* Get the relocs. */
+ internal_relocs
+ = _bfd_elf_link_read_relocs (input_bfd, section, NULL, NULL,
+ info->keep_memory);
+ if (internal_relocs == NULL)
+ goto error_ret_free_local;
+
+ /* Now examine each relocation. */
+ irela = internal_relocs;
+ irelaend = irela + section->reloc_count;
+ for (; irela < irelaend; irela++)
+ {
+ unsigned int r_type, r_indx;
+ enum elf32_hppa_stub_type stub_type;
+ struct elf32_hppa_stub_hash_entry *hsh;
+ asection *sym_sec;
+ bfd_vma sym_value;
+ bfd_vma destination;
+ struct elf32_hppa_link_hash_entry *hh;
+ char *stub_name;
+ const asection *id_sec;
+
+ r_type = ELF32_R_TYPE (irela->r_info);
+ r_indx = ELF32_R_SYM (irela->r_info);
+
+ if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ error_ret_free_internal:
+ if (elf_section_data (section)->relocs == NULL)
+ free (internal_relocs);
+ goto error_ret_free_local;
+ }
+
+ /* Only look for stubs on call instructions. */
+ if (r_type != (unsigned int) R_PARISC_PCREL12F
+ && r_type != (unsigned int) R_PARISC_PCREL17F
+ && r_type != (unsigned int) R_PARISC_PCREL22F)
+ continue;
+
+ /* Now determine the call target, its name, value,
+ section. */
+ sym_sec = NULL;
+ sym_value = 0;
+ destination = 0;
+ hh = NULL;
+ if (r_indx < symtab_hdr->sh_info)
+ {
+ /* It's a local symbol. */
+ Elf_Internal_Sym *sym;
+ Elf_Internal_Shdr *hdr;
+ unsigned int shndx;
+
+ sym = local_syms + r_indx;
+ if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
+ sym_value = sym->st_value;
+ shndx = sym->st_shndx;
+ if (shndx < elf_numsections (input_bfd))
+ {
+ hdr = elf_elfsections (input_bfd)[shndx];
+ sym_sec = hdr->bfd_section;
+ destination = (sym_value + irela->r_addend
+ + sym_sec->output_offset
+ + sym_sec->output_section->vma);
+ }
+ }
+ else
+ {
+ /* It's an external symbol. */
+ int e_indx;
+
+ e_indx = r_indx - symtab_hdr->sh_info;
+ hh = hppa_elf_hash_entry (elf_sym_hashes (input_bfd)[e_indx]);
+
+ while (hh->eh.root.type == bfd_link_hash_indirect
+ || hh->eh.root.type == bfd_link_hash_warning)
+ hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
+
+ if (hh->eh.root.type == bfd_link_hash_defined
+ || hh->eh.root.type == bfd_link_hash_defweak)
+ {
+ sym_sec = hh->eh.root.u.def.section;
+ sym_value = hh->eh.root.u.def.value;
+ if (sym_sec->output_section != NULL)
+ destination = (sym_value + irela->r_addend
+ + sym_sec->output_offset
+ + sym_sec->output_section->vma);
+ }
+ else if (hh->eh.root.type == bfd_link_hash_undefweak)
+ {
+ if (! info->shared)
+ continue;
+ }
+ else if (hh->eh.root.type == bfd_link_hash_undefined)
+ {
+ if (! (info->unresolved_syms_in_objects == RM_IGNORE
+ && (ELF_ST_VISIBILITY (hh->eh.other)
+ == STV_DEFAULT)
+ && hh->eh.type != STT_PARISC_MILLI))
+ continue;
+ }
+ else
+ {
+ bfd_set_error (bfd_error_bad_value);
+ goto error_ret_free_internal;
+ }
+ }
+
+ /* Determine what (if any) linker stub is needed. */
+ stub_type = hppa_type_of_stub (section, irela, hh,
+ destination, info);
+ if (stub_type == hppa_stub_none)
+ continue;
+
+ /* Support for grouping stub sections. */
+ id_sec = htab->stub_group[section->id].link_sec;
+
+ /* Get the name of this stub. */
+ stub_name = hppa_stub_name (id_sec, sym_sec, hh, irela);
+ if (!stub_name)
+ goto error_ret_free_internal;
+
+ hsh = hppa_stub_hash_lookup (&htab->bstab,
+ stub_name,
+ FALSE, FALSE);
+ if (hsh != NULL)
+ {
+ /* The proper stub has already been created. */
+ free (stub_name);
+ continue;
+ }
+
+ hsh = hppa_add_stub (stub_name, section, htab);
+ if (hsh == NULL)
+ {
+ free (stub_name);
+ goto error_ret_free_internal;
+ }
+
+ hsh->target_value = sym_value;
+ hsh->target_section = sym_sec;
+ hsh->stub_type = stub_type;
+ if (info->shared)
+ {
+ if (stub_type == hppa_stub_import)
+ hsh->stub_type = hppa_stub_import_shared;
+ else if (stub_type == hppa_stub_long_branch)
+ hsh->stub_type = hppa_stub_long_branch_shared;
+ }
+ hsh->hh = hh;
+ stub_changed = TRUE;
+ }
+
+ /* We're done with the internal relocs, free them. */
+ if (elf_section_data (section)->relocs == NULL)
+ free (internal_relocs);
+ }
+ }
+
+ if (!stub_changed)
+ break;
+
+ /* OK, we've added some stubs. Find out the new size of the
+ stub sections. */
+ for (stub_sec = htab->stub_bfd->sections;
+ stub_sec != NULL;
+ stub_sec = stub_sec->next)
+ stub_sec->size = 0;
+
+ bfd_hash_traverse (&htab->bstab, hppa_size_one_stub, htab);
+
+ /* Ask the linker to do its stuff. */
+ (*htab->layout_sections_again) ();
+ stub_changed = FALSE;
+ }
+
+ free (htab->all_local_syms);
+ return TRUE;
+
+ error_ret_free_local:
+ free (htab->all_local_syms);
+ return FALSE;
+}
+
+/* For a final link, this function is called after we have sized the
+ stubs to provide a value for __gp. */
+
+bfd_boolean
+elf32_hppa_set_gp (bfd *abfd, struct bfd_link_info *info)
+{
+ struct bfd_link_hash_entry *h;
+ asection *sec = NULL;
+ bfd_vma gp_val = 0;
+ struct elf32_hppa_link_hash_table *htab;
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ h = bfd_link_hash_lookup (&htab->etab.root, "$global$", FALSE, FALSE, FALSE);
+
+ if (h != NULL
+ && (h->type == bfd_link_hash_defined
+ || h->type == bfd_link_hash_defweak))
+ {
+ gp_val = h->u.def.value;
+ sec = h->u.def.section;
+ }
+ else
+ {
+ asection *splt = bfd_get_section_by_name (abfd, ".plt");
+ asection *sgot = bfd_get_section_by_name (abfd, ".got");
+
+ /* Choose to point our LTP at, in this order, one of .plt, .got,
+ or .data, if these sections exist. In the case of choosing
+ .plt try to make the LTP ideal for addressing anywhere in the
+ .plt or .got with a 14 bit signed offset. Typically, the end
+ of the .plt is the start of the .got, so choose .plt + 0x2000
+ if either the .plt or .got is larger than 0x2000. If both
+ the .plt and .got are smaller than 0x2000, choose the end of
+ the .plt section. */
+ sec = strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") == 0
+ ? NULL : splt;
+ if (sec != NULL)
+ {
+ gp_val = sec->size;
+ if (gp_val > 0x2000 || (sgot && sgot->size > 0x2000))
+ {
+ gp_val = 0x2000;
+ }
+ }
+ else
+ {
+ sec = sgot;
+ if (sec != NULL)
+ {
+ if (strcmp (bfd_get_target (abfd), "elf32-hppa-netbsd") != 0)
+ {
+ /* We know we don't have a .plt. If .got is large,
+ offset our LTP. */
+ if (sec->size > 0x2000)
+ gp_val = 0x2000;
+ }
+ }
+ else
+ {
+ /* No .plt or .got. Who cares what the LTP is? */
+ sec = bfd_get_section_by_name (abfd, ".data");
+ }
+ }
+
+ if (h != NULL)
+ {
+ h->type = bfd_link_hash_defined;
+ h->u.def.value = gp_val;
+ if (sec != NULL)
+ h->u.def.section = sec;
+ else
+ h->u.def.section = bfd_abs_section_ptr;
+ }
+ }
+
+ if (sec != NULL && sec->output_section != NULL)
+ gp_val += sec->output_section->vma + sec->output_offset;
+
+ elf_gp (abfd) = gp_val;
+ return TRUE;
+}
+
+/* Build all the stubs associated with the current output file. The
+ stubs are kept in a hash table attached to the main linker hash
+ table. We also set up the .plt entries for statically linked PIC
+ functions here. This function is called via hppaelf_finish in the
+ linker. */
+
+bfd_boolean
+elf32_hppa_build_stubs (struct bfd_link_info *info)
+{
+ asection *stub_sec;
+ struct bfd_hash_table *table;
+ struct elf32_hppa_link_hash_table *htab;
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ for (stub_sec = htab->stub_bfd->sections;
+ stub_sec != NULL;
+ stub_sec = stub_sec->next)
+ {
+ bfd_size_type size;
+
+ /* Allocate memory to hold the linker stubs. */
+ size = stub_sec->size;
+ stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
+ if (stub_sec->contents == NULL && size != 0)
+ return FALSE;
+ stub_sec->size = 0;
+ }
+
+ /* Build the stubs as directed by the stub hash table. */
+ table = &htab->bstab;
+ bfd_hash_traverse (table, hppa_build_one_stub, info);
+
+ return TRUE;
+}
+
+/* Return the base vma address which should be subtracted from the real
+ address when resolving a dtpoff relocation.
+ This is PT_TLS segment p_vaddr. */
+
+static bfd_vma
+dtpoff_base (struct bfd_link_info *info)
+{
+ /* If tls_sec is NULL, we should have signalled an error already. */
+ if (elf_hash_table (info)->tls_sec == NULL)
+ return 0;
+ return elf_hash_table (info)->tls_sec->vma;
+}
+
+/* Return the relocation value for R_PARISC_TLS_TPOFF*.. */
+
+static bfd_vma
+tpoff (struct bfd_link_info *info, bfd_vma address)
+{
+ struct elf_link_hash_table *htab = elf_hash_table (info);
+
+ /* If tls_sec is NULL, we should have signalled an error already. */
+ if (htab->tls_sec == NULL)
+ return 0;
+ /* hppa TLS ABI is variant I and static TLS block start just after
+ tcbhead structure which has 2 pointer fields. */
+ return (address - htab->tls_sec->vma
+ + align_power ((bfd_vma) 8, htab->tls_sec->alignment_power));
+}
+
+/* Perform a final link. */
+
+static bfd_boolean
+elf32_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
+{
+ /* Invoke the regular ELF linker to do all the work. */
+ if (!bfd_elf_final_link (abfd, info))
+ return FALSE;
+
+ /* If we're producing a final executable, sort the contents of the
+ unwind section. */
+ if (info->relocatable)
+ return TRUE;
+
+ return elf_hppa_sort_unwind (abfd);
+}
+
+/* Record the lowest address for the data and text segments. */
+
+static void
+hppa_record_segment_addr (bfd *abfd, asection *section, void *data)
+{
+ struct elf32_hppa_link_hash_table *htab;
+
+ htab = (struct elf32_hppa_link_hash_table*) data;
+ if (htab == NULL)
+ return;
+
+ if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
+ {
+ bfd_vma value;
+ Elf_Internal_Phdr *p;
+
+ p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
+ BFD_ASSERT (p != NULL);
+ value = p->p_vaddr;
+
+ if ((section->flags & SEC_READONLY) != 0)
+ {
+ if (value < htab->text_segment_base)
+ htab->text_segment_base = value;
+ }
+ else
+ {
+ if (value < htab->data_segment_base)
+ htab->data_segment_base = value;
+ }
+ }
+}
+
+/* Perform a relocation as part of a final link. */
+
+static bfd_reloc_status_type
+final_link_relocate (asection *input_section,
+ bfd_byte *contents,
+ const Elf_Internal_Rela *rela,
+ bfd_vma value,
+ struct elf32_hppa_link_hash_table *htab,
+ asection *sym_sec,
+ struct elf32_hppa_link_hash_entry *hh,
+ struct bfd_link_info *info)
+{
+ int insn;
+ unsigned int r_type = ELF32_R_TYPE (rela->r_info);
+ unsigned int orig_r_type = r_type;
+ reloc_howto_type *howto = elf_hppa_howto_table + r_type;
+ int r_format = howto->bitsize;
+ enum hppa_reloc_field_selector_type_alt r_field;
+ bfd *input_bfd = input_section->owner;
+ bfd_vma offset = rela->r_offset;
+ bfd_vma max_branch_offset = 0;
+ bfd_byte *hit_data = contents + offset;
+ bfd_signed_vma addend = rela->r_addend;
+ bfd_vma location;
+ struct elf32_hppa_stub_hash_entry *hsh = NULL;
+ int val;
+
+ if (r_type == R_PARISC_NONE)
+ return bfd_reloc_ok;
+
+ insn = bfd_get_32 (input_bfd, hit_data);
+
+ /* Find out where we are and where we're going. */
+ location = (offset +
+ input_section->output_offset +
+ input_section->output_section->vma);
+
+ /* If we are not building a shared library, convert DLTIND relocs to
+ DPREL relocs. */
+ if (!info->shared)
+ {
+ switch (r_type)
+ {
+ case R_PARISC_DLTIND21L:
+ case R_PARISC_TLS_GD21L:
+ case R_PARISC_TLS_LDM21L:
+ case R_PARISC_TLS_IE21L:
+ r_type = R_PARISC_DPREL21L;
+ break;
+
+ case R_PARISC_DLTIND14R:
+ case R_PARISC_TLS_GD14R:
+ case R_PARISC_TLS_LDM14R:
+ case R_PARISC_TLS_IE14R:
+ r_type = R_PARISC_DPREL14R;
+ break;
+
+ case R_PARISC_DLTIND14F:
+ r_type = R_PARISC_DPREL14F;
+ break;
+ }
+ }
+
+ switch (r_type)
+ {
+ case R_PARISC_PCREL12F:
+ case R_PARISC_PCREL17F:
+ case R_PARISC_PCREL22F:
+ /* If this call should go via the plt, find the import stub in
+ the stub hash. */
+ if (sym_sec == NULL
+ || sym_sec->output_section == NULL
+ || (hh != NULL
+ && hh->eh.plt.offset != (bfd_vma) -1
+ && hh->eh.dynindx != -1
+ && !hh->plabel
+ && (info->shared
+ || !hh->eh.def_regular
+ || hh->eh.root.type == bfd_link_hash_defweak)))
+ {
+ hsh = hppa_get_stub_entry (input_section, sym_sec,
+ hh, rela, htab);
+ if (hsh != NULL)
+ {
+ value = (hsh->stub_offset
+ + hsh->stub_sec->output_offset
+ + hsh->stub_sec->output_section->vma);
+ addend = 0;
+ }
+ else if (sym_sec == NULL && hh != NULL
+ && hh->eh.root.type == bfd_link_hash_undefweak)
+ {
+ /* It's OK if undefined weak. Calls to undefined weak
+ symbols behave as if the "called" function
+ immediately returns. We can thus call to a weak
+ function without first checking whether the function
+ is defined. */
+ value = location;
+ addend = 8;
+ }
+ else
+ return bfd_reloc_undefined;
+ }
+ /* Fall thru. */
+
+ case R_PARISC_PCREL21L:
+ case R_PARISC_PCREL17C:
+ case R_PARISC_PCREL17R:
+ case R_PARISC_PCREL14R:
+ case R_PARISC_PCREL14F:
+ case R_PARISC_PCREL32:
+ /* Make it a pc relative offset. */
+ value -= location;
+ addend -= 8;
+ break;
+
+ case R_PARISC_DPREL21L:
+ case R_PARISC_DPREL14R:
+ case R_PARISC_DPREL14F:
+ /* Convert instructions that use the linkage table pointer (r19) to
+ instructions that use the global data pointer (dp). This is the
+ most efficient way of using PIC code in an incomplete executable,
+ but the user must follow the standard runtime conventions for
+ accessing data for this to work. */
+ if (orig_r_type != r_type)
+ {
+ if (r_type == R_PARISC_DPREL21L)
+ {
+ /* GCC sometimes uses a register other than r19 for the
+ operation, so we must convert any addil instruction
+ that uses this relocation. */
+ if ((insn & 0xfc000000) == ((int) OP_ADDIL << 26))
+ insn = ADDIL_DP;
+ else
+ /* We must have a ldil instruction. It's too hard to find
+ and convert the associated add instruction, so issue an
+ error. */
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): %s fixup for insn 0x%x is not supported in a non-shared link"),
+ input_bfd,
+ input_section,
+ (long) offset,
+ howto->name,
+ insn);
+ }
+ else if (r_type == R_PARISC_DPREL14F)
+ {
+ /* This must be a format 1 load/store. Change the base
+ register to dp. */
+ insn = (insn & 0xfc1ffff) | (27 << 21);
+ }
+ }
+
+ /* For all the DP relative relocations, we need to examine the symbol's
+ section. If it has no section or if it's a code section, then
+ "data pointer relative" makes no sense. In that case we don't
+ adjust the "value", and for 21 bit addil instructions, we change the
+ source addend register from %dp to %r0. This situation commonly
+ arises for undefined weak symbols and when a variable's "constness"
+ is declared differently from the way the variable is defined. For
+ instance: "extern int foo" with foo defined as "const int foo". */
+ if (sym_sec == NULL || (sym_sec->flags & SEC_CODE) != 0)
+ {
+ if ((insn & ((0x3f << 26) | (0x1f << 21)))
+ == (((int) OP_ADDIL << 26) | (27 << 21)))
+ {
+ insn &= ~ (0x1f << 21);
+ }
+ /* Now try to make things easy for the dynamic linker. */
+
+ break;
+ }
+ /* Fall thru. */
+
+ case R_PARISC_DLTIND21L:
+ case R_PARISC_DLTIND14R:
+ case R_PARISC_DLTIND14F:
+ case R_PARISC_TLS_GD21L:
+ case R_PARISC_TLS_LDM21L:
+ case R_PARISC_TLS_IE21L:
+ case R_PARISC_TLS_GD14R:
+ case R_PARISC_TLS_LDM14R:
+ case R_PARISC_TLS_IE14R:
+ value -= elf_gp (input_section->output_section->owner);
+ break;
+
+ case R_PARISC_SEGREL32:
+ if ((sym_sec->flags & SEC_CODE) != 0)
+ value -= htab->text_segment_base;
+ else
+ value -= htab->data_segment_base;
+ break;
+
+ default:
+ break;
+ }
+
+ switch (r_type)
+ {
+ case R_PARISC_DIR32:
+ case R_PARISC_DIR14F:
+ case R_PARISC_DIR17F:
+ case R_PARISC_PCREL17C:
+ case R_PARISC_PCREL14F:
+ case R_PARISC_PCREL32:
+ case R_PARISC_DPREL14F:
+ case R_PARISC_PLABEL32:
+ case R_PARISC_DLTIND14F:
+ case R_PARISC_SEGBASE:
+ case R_PARISC_SEGREL32:
+ case R_PARISC_TLS_DTPMOD32:
+ case R_PARISC_TLS_DTPOFF32:
+ case R_PARISC_TLS_TPREL32:
+ r_field = e_fsel;
+ break;
+
+ case R_PARISC_DLTIND21L:
+ case R_PARISC_PCREL21L:
+ case R_PARISC_PLABEL21L:
+ r_field = e_lsel;
+ break;
+
+ case R_PARISC_DIR21L:
+ case R_PARISC_DPREL21L:
+ case R_PARISC_TLS_GD21L:
+ case R_PARISC_TLS_LDM21L:
+ case R_PARISC_TLS_LDO21L:
+ case R_PARISC_TLS_IE21L:
+ case R_PARISC_TLS_LE21L:
+ r_field = e_lrsel;
+ break;
+
+ case R_PARISC_PCREL17R:
+ case R_PARISC_PCREL14R:
+ case R_PARISC_PLABEL14R:
+ case R_PARISC_DLTIND14R:
+ r_field = e_rsel;
+ break;
+
+ case R_PARISC_DIR17R:
+ case R_PARISC_DIR14R:
+ case R_PARISC_DPREL14R:
+ case R_PARISC_TLS_GD14R:
+ case R_PARISC_TLS_LDM14R:
+ case R_PARISC_TLS_LDO14R:
+ case R_PARISC_TLS_IE14R:
+ case R_PARISC_TLS_LE14R:
+ r_field = e_rrsel;
+ break;
+
+ case R_PARISC_PCREL12F:
+ case R_PARISC_PCREL17F:
+ case R_PARISC_PCREL22F:
+ r_field = e_fsel;
+
+ if (r_type == (unsigned int) R_PARISC_PCREL17F)
+ {
+ max_branch_offset = (1 << (17-1)) << 2;
+ }
+ else if (r_type == (unsigned int) R_PARISC_PCREL12F)
+ {
+ max_branch_offset = (1 << (12-1)) << 2;
+ }
+ else
+ {
+ max_branch_offset = (1 << (22-1)) << 2;
+ }
+
+ /* sym_sec is NULL on undefined weak syms or when shared on
+ undefined syms. We've already checked for a stub for the
+ shared undefined case. */
+ if (sym_sec == NULL)
+ break;
+
+ /* If the branch is out of reach, then redirect the
+ call to the local stub for this function. */
+ if (value + addend + max_branch_offset >= 2*max_branch_offset)
+ {
+ hsh = hppa_get_stub_entry (input_section, sym_sec,
+ hh, rela, htab);
+ if (hsh == NULL)
+ return bfd_reloc_undefined;
+
+ /* Munge up the value and addend so that we call the stub
+ rather than the procedure directly. */
+ value = (hsh->stub_offset
+ + hsh->stub_sec->output_offset
+ + hsh->stub_sec->output_section->vma
+ - location);
+ addend = -8;
+ }
+ break;
+
+ /* Something we don't know how to handle. */
+ default:
+ return bfd_reloc_notsupported;
+ }
+
+ /* Make sure we can reach the stub. */
+ if (max_branch_offset != 0
+ && value + addend + max_branch_offset >= 2*max_branch_offset)
+ {
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): cannot reach %s, recompile with -ffunction-sections"),
+ input_bfd,
+ input_section,
+ (long) offset,
+ hsh->bh_root.string);
+ bfd_set_error (bfd_error_bad_value);
+ return bfd_reloc_notsupported;
+ }
+
+ val = hppa_field_adjust (value, addend, r_field);
+
+ switch (r_type)
+ {
+ case R_PARISC_PCREL12F:
+ case R_PARISC_PCREL17C:
+ case R_PARISC_PCREL17F:
+ case R_PARISC_PCREL17R:
+ case R_PARISC_PCREL22F:
+ case R_PARISC_DIR17F:
+ case R_PARISC_DIR17R:
+ /* This is a branch. Divide the offset by four.
+ Note that we need to decide whether it's a branch or
+ otherwise by inspecting the reloc. Inspecting insn won't
+ work as insn might be from a .word directive. */
+ val >>= 2;
+ break;
+
+ default:
+ break;
+ }
+
+ insn = hppa_rebuild_insn (insn, val, r_format);
+
+ /* Update the instruction word. */
+ bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
+ return bfd_reloc_ok;
+}
+
+/* Relocate an HPPA ELF section. */
+
+static bfd_boolean
+elf32_hppa_relocate_section (bfd *output_bfd,
+ struct bfd_link_info *info,
+ bfd *input_bfd,
+ asection *input_section,
+ bfd_byte *contents,
+ Elf_Internal_Rela *relocs,
+ Elf_Internal_Sym *local_syms,
+ asection **local_sections)
+{
+ bfd_vma *local_got_offsets;
+ struct elf32_hppa_link_hash_table *htab;
+ Elf_Internal_Shdr *symtab_hdr;
+ Elf_Internal_Rela *rela;
+ Elf_Internal_Rela *relend;
+
+ symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ local_got_offsets = elf_local_got_offsets (input_bfd);
+
+ rela = relocs;
+ relend = relocs + input_section->reloc_count;
+ for (; rela < relend; rela++)
+ {
+ unsigned int r_type;
+ reloc_howto_type *howto;
+ unsigned int r_symndx;
+ struct elf32_hppa_link_hash_entry *hh;
+ Elf_Internal_Sym *sym;
+ asection *sym_sec;
+ bfd_vma relocation;
+ bfd_reloc_status_type rstatus;
+ const char *sym_name;
+ bfd_boolean plabel;
+ bfd_boolean warned_undef;
+
+ r_type = ELF32_R_TYPE (rela->r_info);
+ if (r_type >= (unsigned int) R_PARISC_UNIMPLEMENTED)
+ {
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
+ || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
+ continue;
+
+ r_symndx = ELF32_R_SYM (rela->r_info);
+ hh = NULL;
+ sym = NULL;
+ sym_sec = NULL;
+ warned_undef = FALSE;
+ if (r_symndx < symtab_hdr->sh_info)
+ {
+ /* This is a local symbol, h defaults to NULL. */
+ sym = local_syms + r_symndx;
+ sym_sec = local_sections[r_symndx];
+ relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rela);
+ }
+ else
+ {
+ struct elf_link_hash_entry *eh;
+ bfd_boolean unresolved_reloc;
+ struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
+
+ RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rela,
+ r_symndx, symtab_hdr, sym_hashes,
+ eh, sym_sec, relocation,
+ unresolved_reloc, warned_undef);
+
+ if (!info->relocatable
+ && relocation == 0
+ && eh->root.type != bfd_link_hash_defined
+ && eh->root.type != bfd_link_hash_defweak
+ && eh->root.type != bfd_link_hash_undefweak)
+ {
+ if (info->unresolved_syms_in_objects == RM_IGNORE
+ && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
+ && eh->type == STT_PARISC_MILLI)
+ {
+ if (! info->callbacks->undefined_symbol
+ (info, eh_name (eh), input_bfd,
+ input_section, rela->r_offset, FALSE))
+ return FALSE;
+ warned_undef = TRUE;
+ }
+ }
+ hh = hppa_elf_hash_entry (eh);
+ }
+
+ if (sym_sec != NULL && discarded_section (sym_sec))
+ RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
+ rela, 1, relend,
+ elf_hppa_howto_table + r_type, 0,
+ contents);
+
+ if (info->relocatable)
+ continue;
+
+ /* Do any required modifications to the relocation value, and
+ determine what types of dynamic info we need to output, if
+ any. */
+ plabel = 0;
+ switch (r_type)
+ {
+ case R_PARISC_DLTIND14F:
+ case R_PARISC_DLTIND14R:
+ case R_PARISC_DLTIND21L:
+ {
+ bfd_vma off;
+ bfd_boolean do_got = 0;
+
+ /* Relocation is to the entry for this symbol in the
+ global offset table. */
+ if (hh != NULL)
+ {
+ bfd_boolean dyn;
+
+ off = hh->eh.got.offset;
+ dyn = htab->etab.dynamic_sections_created;
+ if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared,
+ &hh->eh))
+ {
+ /* If we aren't going to call finish_dynamic_symbol,
+ then we need to handle initialisation of the .got
+ entry and create needed relocs here. Since the
+ offset must always be a multiple of 4, we use the
+ least significant bit to record whether we have
+ initialised it already. */
+ if ((off & 1) != 0)
+ off &= ~1;
+ else
+ {
+ hh->eh.got.offset |= 1;
+ do_got = 1;
+ }
+ }
+ }
+ else
+ {
+ /* Local symbol case. */
+ if (local_got_offsets == NULL)
+ abort ();
+
+ off = local_got_offsets[r_symndx];
+
+ /* The offset must always be a multiple of 4. We use
+ the least significant bit to record whether we have
+ already generated the necessary reloc. */
+ if ((off & 1) != 0)
+ off &= ~1;
+ else
+ {
+ local_got_offsets[r_symndx] |= 1;
+ do_got = 1;
+ }
+ }
+
+ if (do_got)
+ {
+ if (info->shared)
+ {
+ /* Output a dynamic relocation for this GOT entry.
+ In this case it is relative to the base of the
+ object because the symbol index is zero. */
+ Elf_Internal_Rela outrel;
+ bfd_byte *loc;
+ asection *sec = htab->srelgot;
+
+ outrel.r_offset = (off
+ + htab->sgot->output_offset
+ + htab->sgot->output_section->vma);
+ outrel.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
+ outrel.r_addend = relocation;
+ loc = sec->contents;
+ loc += sec->reloc_count++ * sizeof (Elf32_External_Rela);
+ bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
+ }
+ else
+ bfd_put_32 (output_bfd, relocation,
+ htab->sgot->contents + off);
+ }
+
+ if (off >= (bfd_vma) -2)
+ abort ();
+
+ /* Add the base of the GOT to the relocation value. */
+ relocation = (off
+ + htab->sgot->output_offset
+ + htab->sgot->output_section->vma);
+ }
+ break;
+
+ case R_PARISC_SEGREL32:
+ /* If this is the first SEGREL relocation, then initialize
+ the segment base values. */
+ if (htab->text_segment_base == (bfd_vma) -1)
+ bfd_map_over_sections (output_bfd, hppa_record_segment_addr, htab);
+ break;
+
+ case R_PARISC_PLABEL14R:
+ case R_PARISC_PLABEL21L:
+ case R_PARISC_PLABEL32:
+ if (htab->etab.dynamic_sections_created)
+ {
+ bfd_vma off;
+ bfd_boolean do_plt = 0;
+ /* If we have a global symbol with a PLT slot, then
+ redirect this relocation to it. */
+ if (hh != NULL)
+ {
+ off = hh->eh.plt.offset;
+ if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, info->shared,
+ &hh->eh))
+ {
+ /* In a non-shared link, adjust_dynamic_symbols
+ isn't called for symbols forced local. We
+ need to write out the plt entry here. */
+ if ((off & 1) != 0)
+ off &= ~1;
+ else
+ {
+ hh->eh.plt.offset |= 1;
+ do_plt = 1;
+ }
+ }
+ }
+ else
+ {
+ bfd_vma *local_plt_offsets;
+
+ if (local_got_offsets == NULL)
+ abort ();
+
+ local_plt_offsets = local_got_offsets + symtab_hdr->sh_info;
+ off = local_plt_offsets[r_symndx];
+
+ /* As for the local .got entry case, we use the last
+ bit to record whether we've already initialised
+ this local .plt entry. */
+ if ((off & 1) != 0)
+ off &= ~1;
+ else
+ {
+ local_plt_offsets[r_symndx] |= 1;
+ do_plt = 1;
+ }
+ }
+
+ if (do_plt)
+ {
+ if (info->shared)
+ {
+ /* Output a dynamic IPLT relocation for this
+ PLT entry. */
+ Elf_Internal_Rela outrel;
+ bfd_byte *loc;
+ asection *s = htab->srelplt;
+
+ outrel.r_offset = (off
+ + htab->splt->output_offset
+ + htab->splt->output_section->vma);
+ outrel.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
+ outrel.r_addend = relocation;
+ loc = s->contents;
+ loc += s->reloc_count++ * sizeof (Elf32_External_Rela);
+ bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
+ }
+ else
+ {
+ bfd_put_32 (output_bfd,
+ relocation,
+ htab->splt->contents + off);
+ bfd_put_32 (output_bfd,
+ elf_gp (htab->splt->output_section->owner),
+ htab->splt->contents + off + 4);
+ }
+ }
+
+ if (off >= (bfd_vma) -2)
+ abort ();
+
+ /* PLABELs contain function pointers. Relocation is to
+ the entry for the function in the .plt. The magic +2
+ offset signals to $$dyncall that the function pointer
+ is in the .plt and thus has a gp pointer too.
+ Exception: Undefined PLABELs should have a value of
+ zero. */
+ if (hh == NULL
+ || (hh->eh.root.type != bfd_link_hash_undefweak
+ && hh->eh.root.type != bfd_link_hash_undefined))
+ {
+ relocation = (off
+ + htab->splt->output_offset
+ + htab->splt->output_section->vma
+ + 2);
+ }
+ plabel = 1;
+ }
+ /* Fall through and possibly emit a dynamic relocation. */
+
+ case R_PARISC_DIR17F:
+ case R_PARISC_DIR17R:
+ case R_PARISC_DIR14F:
+ case R_PARISC_DIR14R:
+ case R_PARISC_DIR21L:
+ case R_PARISC_DPREL14F:
+ case R_PARISC_DPREL14R:
+ case R_PARISC_DPREL21L:
+ case R_PARISC_DIR32:
+ if ((input_section->flags & SEC_ALLOC) == 0)
+ break;
+
+ /* The reloc types handled here and this conditional
+ expression must match the code in ..check_relocs and
+ allocate_dynrelocs. ie. We need exactly the same condition
+ as in ..check_relocs, with some extra conditions (dynindx
+ test in this case) to cater for relocs removed by
+ allocate_dynrelocs. If you squint, the non-shared test
+ here does indeed match the one in ..check_relocs, the
+ difference being that here we test DEF_DYNAMIC as well as
+ !DEF_REGULAR. All common syms end up with !DEF_REGULAR,
+ which is why we can't use just that test here.
+ Conversely, DEF_DYNAMIC can't be used in check_relocs as
+ there all files have not been loaded. */
+ if ((info->shared
+ && (hh == NULL
+ || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
+ || hh->eh.root.type != bfd_link_hash_undefweak)
+ && (IS_ABSOLUTE_RELOC (r_type)
+ || !SYMBOL_CALLS_LOCAL (info, &hh->eh)))
+ || (!info->shared
+ && hh != NULL
+ && hh->eh.dynindx != -1
+ && !hh->eh.non_got_ref
+ && ((ELIMINATE_COPY_RELOCS
+ && hh->eh.def_dynamic
+ && !hh->eh.def_regular)
+ || hh->eh.root.type == bfd_link_hash_undefweak
+ || hh->eh.root.type == bfd_link_hash_undefined)))
+ {
+ Elf_Internal_Rela outrel;
+ bfd_boolean skip;
+ asection *sreloc;
+ bfd_byte *loc;
+
+ /* When generating a shared object, these relocations
+ are copied into the output file to be resolved at run
+ time. */
+
+ outrel.r_addend = rela->r_addend;
+ outrel.r_offset =
+ _bfd_elf_section_offset (output_bfd, info, input_section,
+ rela->r_offset);
+ skip = (outrel.r_offset == (bfd_vma) -1
+ || outrel.r_offset == (bfd_vma) -2);
+ outrel.r_offset += (input_section->output_offset
+ + input_section->output_section->vma);
+
+ if (skip)
+ {
+ memset (&outrel, 0, sizeof (outrel));
+ }
+ else if (hh != NULL
+ && hh->eh.dynindx != -1
+ && (plabel
+ || !IS_ABSOLUTE_RELOC (r_type)
+ || !info->shared
+ || !info->symbolic
+ || !hh->eh.def_regular))
+ {
+ outrel.r_info = ELF32_R_INFO (hh->eh.dynindx, r_type);
+ }
+ else /* It's a local symbol, or one marked to become local. */
+ {
+ int indx = 0;
+
+ /* Add the absolute offset of the symbol. */
+ outrel.r_addend += relocation;
+
+ /* Global plabels need to be processed by the
+ dynamic linker so that functions have at most one
+ fptr. For this reason, we need to differentiate
+ between global and local plabels, which we do by
+ providing the function symbol for a global plabel
+ reloc, and no symbol for local plabels. */
+ if (! plabel
+ && sym_sec != NULL
+ && sym_sec->output_section != NULL
+ && ! bfd_is_abs_section (sym_sec))
+ {
+ asection *osec;
+
+ osec = sym_sec->output_section;
+ indx = elf_section_data (osec)->dynindx;
+ if (indx == 0)
+ {
+ osec = htab->etab.text_index_section;
+ indx = elf_section_data (osec)->dynindx;
+ }
+ BFD_ASSERT (indx != 0);
+
+ /* We are turning this relocation into one
+ against a section symbol, so subtract out the
+ output section's address but not the offset
+ of the input section in the output section. */
+ outrel.r_addend -= osec->vma;
+ }
+
+ outrel.r_info = ELF32_R_INFO (indx, r_type);
+ }
+ sreloc = elf_section_data (input_section)->sreloc;
+ if (sreloc == NULL)
+ abort ();
+
+ loc = sreloc->contents;
+ loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
+ bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
+ }
+ break;
+
+ case R_PARISC_TLS_LDM21L:
+ case R_PARISC_TLS_LDM14R:
+ {
+ bfd_vma off;
+
+ off = htab->tls_ldm_got.offset;
+ if (off & 1)
+ off &= ~1;
+ else
+ {
+ Elf_Internal_Rela outrel;
+ bfd_byte *loc;
+
+ outrel.r_offset = (off
+ + htab->sgot->output_section->vma
+ + htab->sgot->output_offset);
+ outrel.r_addend = 0;
+ outrel.r_info = ELF32_R_INFO (0, R_PARISC_TLS_DTPMOD32);
+ loc = htab->srelgot->contents;
+ loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
+
+ bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
+ htab->tls_ldm_got.offset |= 1;
+ }
+
+ /* Add the base of the GOT to the relocation value. */
+ relocation = (off
+ + htab->sgot->output_offset
+ + htab->sgot->output_section->vma);
+
+ break;
+ }
+
+ case R_PARISC_TLS_LDO21L:
+ case R_PARISC_TLS_LDO14R:
+ relocation -= dtpoff_base (info);
+ break;
+
+ case R_PARISC_TLS_GD21L:
+ case R_PARISC_TLS_GD14R:
+ case R_PARISC_TLS_IE21L:
+ case R_PARISC_TLS_IE14R:
+ {
+ bfd_vma off;
+ int indx;
+ char tls_type;
+
+ indx = 0;
+ if (hh != NULL)
+ {
+ bfd_boolean dyn;
+ dyn = htab->etab.dynamic_sections_created;
+
+ if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &hh->eh)
+ && (!info->shared
+ || !SYMBOL_REFERENCES_LOCAL (info, &hh->eh)))
+ {
+ indx = hh->eh.dynindx;
+ }
+ off = hh->eh.got.offset;
+ tls_type = hh->tls_type;
+ }
+ else
+ {
+ off = local_got_offsets[r_symndx];
+ tls_type = hppa_elf_local_got_tls_type (input_bfd)[r_symndx];
+ }
+
+ if (tls_type == GOT_UNKNOWN)
+ abort ();
+
+ if ((off & 1) != 0)
+ off &= ~1;
+ else
+ {
+ bfd_boolean need_relocs = FALSE;
+ Elf_Internal_Rela outrel;
+ bfd_byte *loc = NULL;
+ int cur_off = off;
+
+ /* The GOT entries have not been initialized yet. Do it
+ now, and emit any relocations. If both an IE GOT and a
+ GD GOT are necessary, we emit the GD first. */
+
+ if ((info->shared || indx != 0)
+ && (hh == NULL
+ || ELF_ST_VISIBILITY (hh->eh.other) == STV_DEFAULT
+ || hh->eh.root.type != bfd_link_hash_undefweak))
+ {
+ need_relocs = TRUE;
+ loc = htab->srelgot->contents;
+ /* FIXME (CAO): Should this be reloc_count++ ? */
+ loc += htab->srelgot->reloc_count * sizeof (Elf32_External_Rela);
+ }
+
+ if (tls_type & GOT_TLS_GD)
+ {
+ if (need_relocs)
+ {
+ outrel.r_offset = (cur_off
+ + htab->sgot->output_section->vma
+ + htab->sgot->output_offset);
+ outrel.r_info = ELF32_R_INFO (indx,R_PARISC_TLS_DTPMOD32);
+ outrel.r_addend = 0;
+ bfd_put_32 (output_bfd, 0, htab->sgot->contents + cur_off);
+ bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
+ htab->srelgot->reloc_count++;
+ loc += sizeof (Elf32_External_Rela);
+
+ if (indx == 0)
+ bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
+ htab->sgot->contents + cur_off + 4);
+ else
+ {
+ bfd_put_32 (output_bfd, 0,
+ htab->sgot->contents + cur_off + 4);
+ outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_DTPOFF32);
+ outrel.r_offset += 4;
+ bfd_elf32_swap_reloca_out (output_bfd, &outrel,loc);
+ htab->srelgot->reloc_count++;
+ loc += sizeof (Elf32_External_Rela);
+ }
+ }
+ else
+ {
+ /* If we are not emitting relocations for a
+ general dynamic reference, then we must be in a
+ static link or an executable link with the
+ symbol binding locally. Mark it as belonging
+ to module 1, the executable. */
+ bfd_put_32 (output_bfd, 1,
+ htab->sgot->contents + cur_off);
+ bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
+ htab->sgot->contents + cur_off + 4);
+ }
+
+
+ cur_off += 8;
+ }
+
+ if (tls_type & GOT_TLS_IE)
+ {
+ if (need_relocs)
+ {
+ outrel.r_offset = (cur_off
+ + htab->sgot->output_section->vma
+ + htab->sgot->output_offset);
+ outrel.r_info = ELF32_R_INFO (indx, R_PARISC_TLS_TPREL32);
+
+ if (indx == 0)
+ outrel.r_addend = relocation - dtpoff_base (info);
+ else
+ outrel.r_addend = 0;
+
+ bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
+ htab->srelgot->reloc_count++;
+ loc += sizeof (Elf32_External_Rela);
+ }
+ else
+ bfd_put_32 (output_bfd, tpoff (info, relocation),
+ htab->sgot->contents + cur_off);
+
+ cur_off += 4;
+ }
+
+ if (hh != NULL)
+ hh->eh.got.offset |= 1;
+ else
+ local_got_offsets[r_symndx] |= 1;
+ }
+
+ if ((tls_type & GOT_TLS_GD)
+ && r_type != R_PARISC_TLS_GD21L
+ && r_type != R_PARISC_TLS_GD14R)
+ off += 2 * GOT_ENTRY_SIZE;
+
+ /* Add the base of the GOT to the relocation value. */
+ relocation = (off
+ + htab->sgot->output_offset
+ + htab->sgot->output_section->vma);
+
+ break;
+ }
+
+ case R_PARISC_TLS_LE21L:
+ case R_PARISC_TLS_LE14R:
+ {
+ relocation = tpoff (info, relocation);
+ break;
+ }
+ break;
+
+ default:
+ break;
+ }
+
+ rstatus = final_link_relocate (input_section, contents, rela, relocation,
+ htab, sym_sec, hh, info);
+
+ if (rstatus == bfd_reloc_ok)
+ continue;
+
+ if (hh != NULL)
+ sym_name = hh_name (hh);
+ else
+ {
+ sym_name = bfd_elf_string_from_elf_section (input_bfd,
+ symtab_hdr->sh_link,
+ sym->st_name);
+ if (sym_name == NULL)
+ return FALSE;
+ if (*sym_name == '\0')
+ sym_name = bfd_section_name (input_bfd, sym_sec);
+ }
+
+ howto = elf_hppa_howto_table + r_type;
+
+ if (rstatus == bfd_reloc_undefined || rstatus == bfd_reloc_notsupported)
+ {
+ if (rstatus == bfd_reloc_notsupported || !warned_undef)
+ {
+ (*_bfd_error_handler)
+ (_("%B(%A+0x%lx): cannot handle %s for %s"),
+ input_bfd,
+ input_section,
+ (long) rela->r_offset,
+ howto->name,
+ sym_name);
+ bfd_set_error (bfd_error_bad_value);
+ return FALSE;
+ }
+ }
+ else
+ {
+ if (!((*info->callbacks->reloc_overflow)
+ (info, (hh ? &hh->eh.root : NULL), sym_name, howto->name,
+ (bfd_vma) 0, input_bfd, input_section, rela->r_offset)))
+ return FALSE;
+ }
+ }
+
+ return TRUE;
+}
+
+/* Finish up dynamic symbol handling. We set the contents of various
+ dynamic sections here. */
+
+static bfd_boolean
+elf32_hppa_finish_dynamic_symbol (bfd *output_bfd,
+ struct bfd_link_info *info,
+ struct elf_link_hash_entry *eh,
+ Elf_Internal_Sym *sym)
+{
+ struct elf32_hppa_link_hash_table *htab;
+ Elf_Internal_Rela rela;
+ bfd_byte *loc;
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ if (eh->plt.offset != (bfd_vma) -1)
+ {
+ bfd_vma value;
+
+ if (eh->plt.offset & 1)
+ abort ();
+
+ /* This symbol has an entry in the procedure linkage table. Set
+ it up.
+
+ The format of a plt entry is
+ <funcaddr>
+ <__gp>
+ */
+ value = 0;
+ if (eh->root.type == bfd_link_hash_defined
+ || eh->root.type == bfd_link_hash_defweak)
+ {
+ value = eh->root.u.def.value;
+ if (eh->root.u.def.section->output_section != NULL)
+ value += (eh->root.u.def.section->output_offset
+ + eh->root.u.def.section->output_section->vma);
+ }
+
+ /* Create a dynamic IPLT relocation for this entry. */
+ rela.r_offset = (eh->plt.offset
+ + htab->splt->output_offset
+ + htab->splt->output_section->vma);
+ if (eh->dynindx != -1)
+ {
+ rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_IPLT);
+ rela.r_addend = 0;
+ }
+ else
+ {
+ /* This symbol has been marked to become local, and is
+ used by a plabel so must be kept in the .plt. */
+ rela.r_info = ELF32_R_INFO (0, R_PARISC_IPLT);
+ rela.r_addend = value;
+ }
+
+ loc = htab->srelplt->contents;
+ loc += htab->srelplt->reloc_count++ * sizeof (Elf32_External_Rela);
+ bfd_elf32_swap_reloca_out (htab->splt->output_section->owner, &rela, loc);
+
+ if (!eh->def_regular)
+ {
+ /* Mark the symbol as undefined, rather than as defined in
+ the .plt section. Leave the value alone. */
+ sym->st_shndx = SHN_UNDEF;
+ }
+ }
+
+ if (eh->got.offset != (bfd_vma) -1
+ && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_GD) == 0
+ && (hppa_elf_hash_entry (eh)->tls_type & GOT_TLS_IE) == 0)
+ {
+ /* This symbol has an entry in the global offset table. Set it
+ up. */
+
+ rela.r_offset = ((eh->got.offset &~ (bfd_vma) 1)
+ + htab->sgot->output_offset
+ + htab->sgot->output_section->vma);
+
+ /* If this is a -Bsymbolic link and the symbol is defined
+ locally or was forced to be local because of a version file,
+ we just want to emit a RELATIVE reloc. The entry in the
+ global offset table will already have been initialized in the
+ relocate_section function. */
+ if (info->shared
+ && (info->symbolic || eh->dynindx == -1)
+ && eh->def_regular)
+ {
+ rela.r_info = ELF32_R_INFO (0, R_PARISC_DIR32);
+ rela.r_addend = (eh->root.u.def.value
+ + eh->root.u.def.section->output_offset
+ + eh->root.u.def.section->output_section->vma);
+ }
+ else
+ {
+ if ((eh->got.offset & 1) != 0)
+ abort ();
+
+ bfd_put_32 (output_bfd, 0, htab->sgot->contents + (eh->got.offset & ~1));
+ rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_DIR32);
+ rela.r_addend = 0;
+ }
+
+ loc = htab->srelgot->contents;
+ loc += htab->srelgot->reloc_count++ * sizeof (Elf32_External_Rela);
+ bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
+ }
+
+ if (eh->needs_copy)
+ {
+ asection *sec;
+
+ /* This symbol needs a copy reloc. Set it up. */
+
+ if (! (eh->dynindx != -1
+ && (eh->root.type == bfd_link_hash_defined
+ || eh->root.type == bfd_link_hash_defweak)))
+ abort ();
+
+ sec = htab->srelbss;
+
+ rela.r_offset = (eh->root.u.def.value
+ + eh->root.u.def.section->output_offset
+ + eh->root.u.def.section->output_section->vma);
+ rela.r_addend = 0;
+ rela.r_info = ELF32_R_INFO (eh->dynindx, R_PARISC_COPY);
+ loc = sec->contents + sec->reloc_count++ * sizeof (Elf32_External_Rela);
+ bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
+ }
+
+ /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
+ if (eh == htab->etab.hdynamic || eh == htab->etab.hgot)
+ {
+ sym->st_shndx = SHN_ABS;
+ }
+
+ return TRUE;
+}
+
+/* Used to decide how to sort relocs in an optimal manner for the
+ dynamic linker, before writing them out. */
+
+static enum elf_reloc_type_class
+elf32_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
+ const asection *rel_sec ATTRIBUTE_UNUSED,
+ const Elf_Internal_Rela *rela)
+{
+ /* Handle TLS relocs first; we don't want them to be marked
+ relative by the "if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)"
+ check below. */
+ switch ((int) ELF32_R_TYPE (rela->r_info))
+ {
+ case R_PARISC_TLS_DTPMOD32:
+ case R_PARISC_TLS_DTPOFF32:
+ case R_PARISC_TLS_TPREL32:
+ return reloc_class_normal;
+ }
+
+ if (ELF32_R_SYM (rela->r_info) == STN_UNDEF)
+ return reloc_class_relative;
+
+ switch ((int) ELF32_R_TYPE (rela->r_info))
+ {
+ case R_PARISC_IPLT:
+ return reloc_class_plt;
+ case R_PARISC_COPY:
+ return reloc_class_copy;
+ default:
+ return reloc_class_normal;
+ }
+}
+
+/* Finish up the dynamic sections. */
+
+static bfd_boolean
+elf32_hppa_finish_dynamic_sections (bfd *output_bfd,
+ struct bfd_link_info *info)
+{
+ bfd *dynobj;
+ struct elf32_hppa_link_hash_table *htab;
+ asection *sdyn;
+ asection * sgot;
+
+ htab = hppa_link_hash_table (info);
+ if (htab == NULL)
+ return FALSE;
+
+ dynobj = htab->etab.dynobj;
+
+ sgot = htab->sgot;
+ /* A broken linker script might have discarded the dynamic sections.
+ Catch this here so that we do not seg-fault later on. */
+ if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
+ return FALSE;
+
+ sdyn = bfd_get_linker_section (dynobj, ".dynamic");
+
+ if (htab->etab.dynamic_sections_created)
+ {
+ Elf32_External_Dyn *dyncon, *dynconend;
+
+ if (sdyn == NULL)
+ abort ();
+
+ dyncon = (Elf32_External_Dyn *) sdyn->contents;
+ dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
+ for (; dyncon < dynconend; dyncon++)
+ {
+ Elf_Internal_Dyn dyn;
+ asection *s;
+
+ bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
+
+ switch (dyn.d_tag)
+ {
+ default:
+ continue;
+
+ case DT_PLTGOT:
+ /* Use PLTGOT to set the GOT register. */
+ dyn.d_un.d_ptr = elf_gp (output_bfd);
+ break;
+
+ case DT_JMPREL:
+ s = htab->srelplt;
+ dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
+ break;
+
+ case DT_PLTRELSZ:
+ s = htab->srelplt;
+ dyn.d_un.d_val = s->size;
+ break;
+
+ case DT_RELASZ:
+ /* Don't count procedure linkage table relocs in the
+ overall reloc count. */
+ s = htab->srelplt;
+ if (s == NULL)
+ continue;
+ dyn.d_un.d_val -= s->size;
+ break;
+
+ case DT_RELA:
+ /* We may not be using the standard ELF linker script.
+ If .rela.plt is the first .rela section, we adjust
+ DT_RELA to not include it. */
+ s = htab->srelplt;
+ if (s == NULL)
+ continue;
+ if (dyn.d_un.d_ptr != s->output_section->vma + s->output_offset)
+ continue;
+ dyn.d_un.d_ptr += s->size;
+ break;
+ }
+
+ bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
+ }
+ }
+
+ if (sgot != NULL && sgot->size != 0)
+ {
+ /* Fill in the first entry in the global offset table.
+ We use it to point to our dynamic section, if we have one. */
+ bfd_put_32 (output_bfd,
+ sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0,
+ sgot->contents);
+
+ /* The second entry is reserved for use by the dynamic linker. */
+ memset (sgot->contents + GOT_ENTRY_SIZE, 0, GOT_ENTRY_SIZE);
+
+ /* Set .got entry size. */
+ elf_section_data (sgot->output_section)
+ ->this_hdr.sh_entsize = GOT_ENTRY_SIZE;
+ }
+
+ if (htab->splt != NULL && htab->splt->size != 0)
+ {
+ /* Set plt entry size. */
+ elf_section_data (htab->splt->output_section)
+ ->this_hdr.sh_entsize = PLT_ENTRY_SIZE;
+
+ if (htab->need_plt_stub)
+ {
+ /* Set up the .plt stub. */
+ memcpy (htab->splt->contents
+ + htab->splt->size - sizeof (plt_stub),
+ plt_stub, sizeof (plt_stub));
+
+ if ((htab->splt->output_offset
+ + htab->splt->output_section->vma
+ + htab->splt->size)
+ != (sgot->output_offset
+ + sgot->output_section->vma))
+ {
+ (*_bfd_error_handler)
+ (_(".got section not immediately after .plt section"));
+ return FALSE;
+ }
+ }
+ }
+
+ return TRUE;
+}
+
+/* Called when writing out an object file to decide the type of a
+ symbol. */
+static int
+elf32_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
+{
+ if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
+ return STT_PARISC_MILLI;
+ else
+ return type;
+}
+
+/* Misc BFD support code. */
+#define bfd_elf32_bfd_is_local_label_name elf_hppa_is_local_label_name
+#define bfd_elf32_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
+#define bfd_elf32_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
+#define elf_info_to_howto elf_hppa_info_to_howto
+#define elf_info_to_howto_rel elf_hppa_info_to_howto_rel
+
+/* Stuff for the BFD linker. */
+#define bfd_elf32_bfd_final_link elf32_hppa_final_link
+#define bfd_elf32_bfd_link_hash_table_create elf32_hppa_link_hash_table_create
+#define bfd_elf32_bfd_link_hash_table_free elf32_hppa_link_hash_table_free
+#define elf_backend_adjust_dynamic_symbol elf32_hppa_adjust_dynamic_symbol
+#define elf_backend_copy_indirect_symbol elf32_hppa_copy_indirect_symbol
+#define elf_backend_check_relocs elf32_hppa_check_relocs
+#define elf_backend_create_dynamic_sections elf32_hppa_create_dynamic_sections
+#define elf_backend_fake_sections elf_hppa_fake_sections
+#define elf_backend_relocate_section elf32_hppa_relocate_section
+#define elf_backend_hide_symbol elf32_hppa_hide_symbol
+#define elf_backend_finish_dynamic_symbol elf32_hppa_finish_dynamic_symbol
+#define elf_backend_finish_dynamic_sections elf32_hppa_finish_dynamic_sections
+#define elf_backend_size_dynamic_sections elf32_hppa_size_dynamic_sections
+#define elf_backend_init_index_section _bfd_elf_init_1_index_section
+#define elf_backend_gc_mark_hook elf32_hppa_gc_mark_hook
+#define elf_backend_gc_sweep_hook elf32_hppa_gc_sweep_hook
+#define elf_backend_grok_prstatus elf32_hppa_grok_prstatus
+#define elf_backend_grok_psinfo elf32_hppa_grok_psinfo
+#define elf_backend_object_p elf32_hppa_object_p
+#define elf_backend_final_write_processing elf_hppa_final_write_processing
+#define elf_backend_post_process_headers _bfd_elf_set_osabi
+#define elf_backend_get_symbol_type elf32_hppa_elf_get_symbol_type
+#define elf_backend_reloc_type_class elf32_hppa_reloc_type_class
+#define elf_backend_action_discarded elf_hppa_action_discarded
+
+#define elf_backend_can_gc_sections 1
+#define elf_backend_can_refcount 1
+#define elf_backend_plt_alignment 2
+#define elf_backend_want_got_plt 0
+#define elf_backend_plt_readonly 0
+#define elf_backend_want_plt_sym 0
+#define elf_backend_got_header_size 8
+#define elf_backend_rela_normal 1
+
+#define TARGET_BIG_SYM bfd_elf32_hppa_vec
+#define TARGET_BIG_NAME "elf32-hppa"
+#define ELF_ARCH bfd_arch_hppa
+#define ELF_TARGET_ID HPPA32_ELF_DATA
+#define ELF_MACHINE_CODE EM_PARISC
+#define ELF_MAXPAGESIZE 0x1000
+#define ELF_OSABI ELFOSABI_HPUX
+#define elf32_bed elf32_hppa_hpux_bed
+
+#include "elf32-target.h"
+
+#undef TARGET_BIG_SYM
+#define TARGET_BIG_SYM bfd_elf32_hppa_linux_vec
+#undef TARGET_BIG_NAME
+#define TARGET_BIG_NAME "elf32-hppa-linux"
+#undef ELF_OSABI
+#define ELF_OSABI ELFOSABI_GNU
+#undef elf32_bed
+#define elf32_bed elf32_hppa_linux_bed
+
+#include "elf32-target.h"
+
+#undef TARGET_BIG_SYM
+#define TARGET_BIG_SYM bfd_elf32_hppa_nbsd_vec
+#undef TARGET_BIG_NAME
+#define TARGET_BIG_NAME "elf32-hppa-netbsd"
+#undef ELF_OSABI
+#define ELF_OSABI ELFOSABI_NETBSD
+#undef elf32_bed
+#define elf32_bed elf32_hppa_netbsd_bed
+
+#include "elf32-target.h"