aboutsummaryrefslogtreecommitdiffstats
path: root/mm/cma-best-fit.c
blob: 24c27c89cae2ed0ea76fe733e0505ab051aa0944 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/*
 * Contiguous Memory Allocator framework: Best Fit allocator
 * Copyright (c) 2010 by Samsung Electronics.
 * Written by Michal Nazarewicz (m.nazarewicz@samsung.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of the
 * License or (at your optional) any later version of the license.
 */

#define pr_fmt(fmt) "cma: bf: " fmt

#ifdef CONFIG_CMA_DEBUG
#  define DEBUG
#endif

#include <linux/errno.h>       /* Error numbers */
#include <linux/slab.h>        /* kmalloc() */

#include <linux/cma.h>         /* CMA structures */


/************************* Data Types *************************/

struct cma_bf_item {
	struct cma_chunk ch;
	struct rb_node by_size;
};

struct cma_bf_private {
	struct rb_root by_start_root;
	struct rb_root by_size_root;
};


/************************* Prototypes *************************/

/*
 * Those are only for holes.  They must be called whenever hole's
 * properties change but also whenever chunk becomes a hole or hole
 * becames a chunk.
 */
static void __cma_bf_hole_insert_by_size(struct cma_bf_item *item);
static void __cma_bf_hole_erase_by_size(struct cma_bf_item *item);
static int  __must_check
__cma_bf_hole_insert_by_start(struct cma_bf_item *item);
static void __cma_bf_hole_erase_by_start(struct cma_bf_item *item);

/**
 * __cma_bf_hole_take - takes a chunk of memory out of a hole.
 * @hole:	hole to take chunk from
 * @size:	chunk's size
 * @alignment:	chunk's starting address alignment (must be power of two)
 *
 * Takes a @size bytes large chunk from hole @hole which must be able
 * to hold the chunk.  The "must be able" includes also alignment
 * constraint.
 *
 * Returns allocated item or NULL on error (if kmalloc() failed).
 */
static struct cma_bf_item *__must_check
__cma_bf_hole_take(struct cma_bf_item *hole, size_t size, dma_addr_t alignment);

/**
 * __cma_bf_hole_merge_maybe - tries to merge hole with neighbours.
 * @item: hole to try and merge
 *
 * Which items are preserved is undefined so you may not rely on it.
 */
static void __cma_bf_hole_merge_maybe(struct cma_bf_item *item);


/************************* Device API *************************/

int cma_bf_init(struct cma_region *reg)
{
	struct cma_bf_private *prv;
	struct cma_bf_item *item;

	prv = kzalloc(sizeof *prv, GFP_KERNEL);
	if (unlikely(!prv))
		return -ENOMEM;

	item = kzalloc(sizeof *item, GFP_KERNEL);
	if (unlikely(!item)) {
		kfree(prv);
		return -ENOMEM;
	}

	item->ch.start = reg->start;
	item->ch.size  = reg->size;
	item->ch.reg   = reg;

	rb_root_init(&prv->by_start_root, &item->ch.by_start);
	rb_root_init(&prv->by_size_root, &item->by_size);

	reg->private_data = prv;
	return 0;
}

void cma_bf_cleanup(struct cma_region *reg)
{
	struct cma_bf_private *prv = reg->private_data;
	struct cma_bf_item *item =
		rb_entry(prv->by_size_root.rb_node,
			 struct cma_bf_item, by_size);

	/* We can assume there is only a single hole in the tree. */
	WARN_ON(item->by_size.rb_left || item->by_size.rb_right ||
		item->ch.by_start.rb_left || item->ch.by_start.rb_right);

	kfree(item);
	kfree(prv);
}

struct cma_chunk *cma_bf_alloc(struct cma_region *reg,
			       size_t size, dma_addr_t alignment)
{
	struct cma_bf_private *prv = reg->private_data;
	struct rb_node *node = prv->by_size_root.rb_node;
	struct cma_bf_item *item = NULL;

	/* First find hole that is large enough */
	while (node) {
		struct cma_bf_item *i =
			rb_entry(node, struct cma_bf_item, by_size);

		if (i->ch.size < size) {
			node = node->rb_right;
		} else if (i->ch.size >= size) {
			node = node->rb_left;
			item = i;
		}
	}
	if (!item)
		return NULL;

	/* Now look for items which can satisfy alignment requirements */
	node = &item->by_size;
	for (;;) {
		dma_addr_t start = ALIGN(item->ch.start, alignment);
		dma_addr_t end   = item->ch.start + item->ch.size;
		if (start < end && end - start >= size) {
			item = __cma_bf_hole_take(item, size, alignment);
			return likely(item) ? &item->ch : NULL;
		}

		node = rb_next(node);
		if (!node)
			return NULL;

		item  = rb_entry(node, struct cma_bf_item, by_size);
	}
}

void cma_bf_free(struct cma_chunk *chunk)
{
	struct cma_bf_item *item = container_of(chunk, struct cma_bf_item, ch);

	/* Add new hole */
	if (unlikely(__cma_bf_hole_insert_by_start(item))) {
		/*
		 * We're screwed...  Just free the item and forget
		 * about it.  Things are broken beyond repair so no
		 * sense in trying to recover.
		 */
		kfree(item);
	} else {
		__cma_bf_hole_insert_by_size(item);

		/* Merge with prev and next sibling */
		__cma_bf_hole_merge_maybe(item);
	}
}


/************************* Basic Tree Manipulation *************************/

static void __cma_bf_hole_insert_by_size(struct cma_bf_item *item)
{
	struct cma_bf_private *prv = item->ch.reg->private_data;
	struct rb_node **link = &prv->by_size_root.rb_node, *parent = NULL;
	const typeof(item->ch.size) value = item->ch.size;

	while (*link) {
		struct cma_bf_item *i;
		parent = *link;
		i = rb_entry(parent, struct cma_bf_item, by_size);
		link = value <= i->ch.size
			? &parent->rb_left
			: &parent->rb_right;
	}

	rb_link_node(&item->by_size, parent, link);
	rb_insert_color(&item->by_size, &prv->by_size_root);
}

static void __cma_bf_hole_erase_by_size(struct cma_bf_item *item)
{
	struct cma_bf_private *prv = item->ch.reg->private_data;
	rb_erase(&item->by_size, &prv->by_size_root);
}

static int  __must_check
__cma_bf_hole_insert_by_start(struct cma_bf_item *item)
{
	struct cma_bf_private *prv = item->ch.reg->private_data;
	struct rb_node **link = &prv->by_start_root.rb_node, *parent = NULL;
	const typeof(item->ch.start) value = item->ch.start;

	while (*link) {
		struct cma_bf_item *i;
		parent = *link;
		i = rb_entry(parent, struct cma_bf_item, ch.by_start);

		if (WARN_ON(value == i->ch.start))
			/*
			 * This should *never* happen.  And I mean
			 * *never*.  We could even BUG on it but
			 * hopefully things are only a bit broken,
			 * ie. system can still run.  We produce
			 * a warning and return an error.
			 */
			return -EBUSY;

		link = value <= i->ch.start
			? &parent->rb_left
			: &parent->rb_right;
	}

	rb_link_node(&item->ch.by_start, parent, link);
	rb_insert_color(&item->ch.by_start, &prv->by_start_root);
	return 0;
}

static void __cma_bf_hole_erase_by_start(struct cma_bf_item *item)
{
	struct cma_bf_private *prv = item->ch.reg->private_data;
	rb_erase(&item->ch.by_start, &prv->by_start_root);
}


/************************* More Tree Manipulation *************************/

static struct cma_bf_item *__must_check
__cma_bf_hole_take(struct cma_bf_item *hole, size_t size, size_t alignment)
{
	struct cma_bf_item *item;

	/*
	 * There are three cases:
	 * 1. the chunk takes the whole hole,
	 * 2. the chunk is at the beginning or at the end of the hole, or
	 * 3. the chunk is in the middle of the hole.
	 */


	/* Case 1, the whole hole */
	if (size == hole->ch.size) {
		__cma_bf_hole_erase_by_size(hole);
		__cma_bf_hole_erase_by_start(hole);
		return hole;
	}


	/* Allocate */
	item = kmalloc(sizeof *item, GFP_KERNEL);
	if (unlikely(!item))
		return NULL;

	item->ch.start = ALIGN(hole->ch.start, alignment);
	item->ch.size  = size;

	/* Case 3, in the middle */
	if (item->ch.start != hole->ch.start
	 && item->ch.start + item->ch.size !=
	    hole->ch.start + hole->ch.size) {
		struct cma_bf_item *tail;

		/*
		 * Space between the end of the chunk and the end of
		 * the region, ie. space left after the end of the
		 * chunk.  If this is dividable by alignment we can
		 * move the chunk to the end of the hole.
		 */
		size_t left =
			hole->ch.start + hole->ch.size -
			(item->ch.start + item->ch.size);
		if (left % alignment == 0) {
			item->ch.start += left;
			goto case_2;
		}

		/*
		 * We are going to add a hole at the end.  This way,
		 * we will reduce the problem to case 2 -- the chunk
		 * will be at the end of the hole.
		 */
		tail = kmalloc(sizeof *tail, GFP_KERNEL);
		if (unlikely(!tail)) {
			kfree(item);
			return NULL;
		}

		tail->ch.start = item->ch.start + item->ch.size;
		tail->ch.size  =
			hole->ch.start + hole->ch.size - tail->ch.start;
		tail->ch.reg   = hole->ch.reg;

		if (unlikely(__cma_bf_hole_insert_by_start(tail))) {
			/*
			 * Things are broken beyond repair...  Abort
			 * inserting the hole but still continue with
			 * allocation (seems like the best we can do).
			 */

			hole->ch.size = tail->ch.start - hole->ch.start;
			kfree(tail);
		} else {
			__cma_bf_hole_insert_by_size(tail);
			/*
			 * It's important that we first insert the new
			 * hole in the tree sorted by size and later
			 * reduce the size of the old hole.  We will
			 * update the position of the old hole in the
			 * rb tree in code that handles case 2.
			 */
			hole->ch.size = tail->ch.start - hole->ch.start;
		}

		/* Go to case 2 */
	}


	/* Case 2, at the beginning or at the end */
case_2:
	/* No need to update the tree; order preserved. */
	if (item->ch.start == hole->ch.start)
		hole->ch.start += item->ch.size;

	/* Alter hole's size */
	hole->ch.size -= size;
	__cma_bf_hole_erase_by_size(hole);
	__cma_bf_hole_insert_by_size(hole);

	return item;
}


static void __cma_bf_hole_merge_maybe(struct cma_bf_item *item)
{
	struct cma_bf_item *prev;
	struct rb_node *node;
	int twice = 2;

	node = rb_prev(&item->ch.by_start);
	if (unlikely(!node))
		goto next;
	prev = rb_entry(node, struct cma_bf_item, ch.by_start);

	for (;;) {
		if (prev->ch.start + prev->ch.size == item->ch.start) {
			/* Remove previous hole from trees */
			__cma_bf_hole_erase_by_size(prev);
			__cma_bf_hole_erase_by_start(prev);

			/* Alter this hole */
			item->ch.size += prev->ch.size;
			item->ch.start = prev->ch.start;
			__cma_bf_hole_erase_by_size(item);
			__cma_bf_hole_insert_by_size(item);
			/*
			 * No need to update by start trees as we do
			 * not break sequence order
			 */

			/* Free prev hole */
			kfree(prev);
		}

next:
		if (!--twice)
			break;

		node = rb_next(&item->ch.by_start);
		if (unlikely(!node))
			break;
		prev = item;
		item = rb_entry(node, struct cma_bf_item, ch.by_start);
	}
}



/************************* Register *************************/
static int cma_bf_module_init(void)
{
	static struct cma_allocator alloc = {
		.name    = "bf",
		.init    = cma_bf_init,
		.cleanup = cma_bf_cleanup,
		.alloc   = cma_bf_alloc,
		.free    = cma_bf_free,
	};
	return cma_allocator_register(&alloc);
}
module_init(cma_bf_module_init);