aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/char/rtc.c
blob: 63fff7c1244a29941dba32b1047ad63a31644831 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
/*
 *	Real Time Clock interface for Linux	
 *
 *	Copyright (C) 1996 Paul Gortmaker
 *
 *	This driver allows use of the real time clock (built into
 *	nearly all computers) from user space. It exports the /dev/rtc
 *	interface supporting various ioctl() and also the
 *	/proc/driver/rtc pseudo-file for status information.
 *
 *	The ioctls can be used to set the interrupt behaviour and
 *	generation rate from the RTC via IRQ 8. Then the /dev/rtc
 *	interface can be used to make use of these timer interrupts,
 *	be they interval or alarm based.
 *
 *	The /dev/rtc interface will block on reads until an interrupt
 *	has been received. If a RTC interrupt has already happened,
 *	it will output an unsigned long and then block. The output value
 *	contains the interrupt status in the low byte and the number of
 *	interrupts since the last read in the remaining high bytes. The 
 *	/dev/rtc interface can also be used with the select(2) call.
 *
 *	This program is free software; you can redistribute it and/or
 *	modify it under the terms of the GNU General Public License
 *	as published by the Free Software Foundation; either version
 *	2 of the License, or (at your option) any later version.
 *
 *	Based on other minimal char device drivers, like Alan's
 *	watchdog, Ted's random, etc. etc.
 *
 *	1.07	Paul Gortmaker.
 *	1.08	Miquel van Smoorenburg: disallow certain things on the
 *		DEC Alpha as the CMOS clock is also used for other things.
 *	1.09	Nikita Schmidt: epoch support and some Alpha cleanup.
 *	1.09a	Pete Zaitcev: Sun SPARC
 *	1.09b	Jeff Garzik: Modularize, init cleanup
 *	1.09c	Jeff Garzik: SMP cleanup
 *	1.10    Paul Barton-Davis: add support for async I/O
 *	1.10a	Andrea Arcangeli: Alpha updates
 *	1.10b	Andrew Morton: SMP lock fix
 *	1.10c	Cesar Barros: SMP locking fixes and cleanup
 *	1.10d	Paul Gortmaker: delete paranoia check in rtc_exit
 *	1.10e	Maciej W. Rozycki: Handle DECstation's year weirdness.
 *      1.11    Takashi Iwai: Kernel access functions
 *			      rtc_register/rtc_unregister/rtc_control
 *      1.11a   Daniele Bellucci: Audit create_proc_read_entry in rtc_init
 *	1.12	Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
 *		CONFIG_HPET_EMULATE_RTC
 *
 */

#define RTC_VERSION		"1.12"

#define RTC_IO_EXTENT	0x8

/*
 *	Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
 *	interrupts disabled. Due to the index-port/data-port (0x70/0x71)
 *	design of the RTC, we don't want two different things trying to
 *	get to it at once. (e.g. the periodic 11 min sync from time.c vs.
 *	this driver.)
 */

#include <linux/config.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/miscdevice.h>
#include <linux/ioport.h>
#include <linux/fcntl.h>
#include <linux/mc146818rtc.h>
#include <linux/init.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/spinlock.h>
#include <linux/sysctl.h>
#include <linux/wait.h>
#include <linux/bcd.h>
#include <linux/delay.h>

#include <asm/current.h>
#include <asm/uaccess.h>
#include <asm/system.h>

#if defined(__i386__)
#include <asm/hpet.h>
#endif

#ifdef __sparc__
#include <linux/pci.h>
#include <asm/ebus.h>
#ifdef __sparc_v9__
#include <asm/isa.h>
#endif

static unsigned long rtc_port;
static int rtc_irq = PCI_IRQ_NONE;
#endif

#ifdef	CONFIG_HPET_RTC_IRQ
#undef	RTC_IRQ
#endif

#ifdef RTC_IRQ
static int rtc_has_irq = 1;
#endif

#ifndef CONFIG_HPET_EMULATE_RTC
#define is_hpet_enabled()			0
#define hpet_set_alarm_time(hrs, min, sec) 	0
#define hpet_set_periodic_freq(arg) 		0
#define hpet_mask_rtc_irq_bit(arg) 		0
#define hpet_set_rtc_irq_bit(arg) 		0
#define hpet_rtc_timer_init() 			do { } while (0)
#define hpet_rtc_dropped_irq() 			0
static inline irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) {return 0;}
#else
extern irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs);
#endif

/*
 *	We sponge a minor off of the misc major. No need slurping
 *	up another valuable major dev number for this. If you add
 *	an ioctl, make sure you don't conflict with SPARC's RTC
 *	ioctls.
 */

static struct fasync_struct *rtc_async_queue;

static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);

#ifdef RTC_IRQ
static struct timer_list rtc_irq_timer;
#endif

static ssize_t rtc_read(struct file *file, char __user *buf,
			size_t count, loff_t *ppos);

static int rtc_ioctl(struct inode *inode, struct file *file,
		     unsigned int cmd, unsigned long arg);

#ifdef RTC_IRQ
static unsigned int rtc_poll(struct file *file, poll_table *wait);
#endif

static void get_rtc_alm_time (struct rtc_time *alm_tm);
#ifdef RTC_IRQ
static void rtc_dropped_irq(unsigned long data);

static void set_rtc_irq_bit(unsigned char bit);
static void mask_rtc_irq_bit(unsigned char bit);
#endif

static int rtc_proc_open(struct inode *inode, struct file *file);

/*
 *	Bits in rtc_status. (6 bits of room for future expansion)
 */

#define RTC_IS_OPEN		0x01	/* means /dev/rtc is in use	*/
#define RTC_TIMER_ON		0x02	/* missed irq timer active	*/

/*
 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
 * protected by the big kernel lock. However, ioctl can still disable the timer
 * in rtc_status and then with del_timer after the interrupt has read
 * rtc_status but before mod_timer is called, which would then reenable the
 * timer (but you would need to have an awful timing before you'd trip on it)
 */
static unsigned long rtc_status = 0;	/* bitmapped status byte.	*/
static unsigned long rtc_freq = 0;	/* Current periodic IRQ rate	*/
static unsigned long rtc_irq_data = 0;	/* our output to the world	*/
static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */

#ifdef RTC_IRQ
/*
 * rtc_task_lock nests inside rtc_lock.
 */
static DEFINE_SPINLOCK(rtc_task_lock);
static rtc_task_t *rtc_callback = NULL;
#endif

/*
 *	If this driver ever becomes modularised, it will be really nice
 *	to make the epoch retain its value across module reload...
 */

static unsigned long epoch = 1900;	/* year corresponding to 0x00	*/

static const unsigned char days_in_mo[] = 
{0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

/*
 * Returns true if a clock update is in progress
 */
static inline unsigned char rtc_is_updating(void)
{
	unsigned char uip;

	spin_lock_irq(&rtc_lock);
	uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
	spin_unlock_irq(&rtc_lock);
	return uip;
}

#ifdef RTC_IRQ
/*
 *	A very tiny interrupt handler. It runs with SA_INTERRUPT set,
 *	but there is possibility of conflicting with the set_rtc_mmss()
 *	call (the rtc irq and the timer irq can easily run at the same
 *	time in two different CPUs). So we need to serialize
 *	accesses to the chip with the rtc_lock spinlock that each
 *	architecture should implement in the timer code.
 *	(See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
 */

irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
{
	/*
	 *	Can be an alarm interrupt, update complete interrupt,
	 *	or a periodic interrupt. We store the status in the
	 *	low byte and the number of interrupts received since
	 *	the last read in the remainder of rtc_irq_data.
	 */

	spin_lock (&rtc_lock);
	rtc_irq_data += 0x100;
	rtc_irq_data &= ~0xff;
	if (is_hpet_enabled()) {
		/*
		 * In this case it is HPET RTC interrupt handler
		 * calling us, with the interrupt information
		 * passed as arg1, instead of irq.
		 */
		rtc_irq_data |= (unsigned long)irq & 0xF0;
	} else {
		rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
	}

	if (rtc_status & RTC_TIMER_ON)
		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);

	spin_unlock (&rtc_lock);

	/* Now do the rest of the actions */
	spin_lock(&rtc_task_lock);
	if (rtc_callback)
		rtc_callback->func(rtc_callback->private_data);
	spin_unlock(&rtc_task_lock);
	wake_up_interruptible(&rtc_wait);	

	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);

	return IRQ_HANDLED;
}
#endif

/*
 * sysctl-tuning infrastructure.
 */
static ctl_table rtc_table[] = {
	{
		.ctl_name	= 1,
		.procname	= "max-user-freq",
		.data		= &rtc_max_user_freq,
		.maxlen		= sizeof(int),
		.mode		= 0644,
		.proc_handler	= &proc_dointvec,
	},
	{ .ctl_name = 0 }
};

static ctl_table rtc_root[] = {
	{
		.ctl_name	= 1,
		.procname	= "rtc",
		.maxlen		= 0,
		.mode		= 0555,
		.child		= rtc_table,
	},
	{ .ctl_name = 0 }
};

static ctl_table dev_root[] = {
	{
		.ctl_name	= CTL_DEV,
		.procname	= "dev",
		.maxlen		= 0,
		.mode		= 0555,
		.child		= rtc_root,
	},
	{ .ctl_name = 0 }
};

static struct ctl_table_header *sysctl_header;

static int __init init_sysctl(void)
{
    sysctl_header = register_sysctl_table(dev_root, 0);
    return 0;
}

static void __exit cleanup_sysctl(void)
{
    unregister_sysctl_table(sysctl_header);
}

/*
 *	Now all the various file operations that we export.
 */

static ssize_t rtc_read(struct file *file, char __user *buf,
			size_t count, loff_t *ppos)
{
#ifndef RTC_IRQ
	return -EIO;
#else
	DECLARE_WAITQUEUE(wait, current);
	unsigned long data;
	ssize_t retval;
	
	if (rtc_has_irq == 0)
		return -EIO;

	if (count < sizeof(unsigned))
		return -EINVAL;

	add_wait_queue(&rtc_wait, &wait);

	do {
		/* First make it right. Then make it fast. Putting this whole
		 * block within the parentheses of a while would be too
		 * confusing. And no, xchg() is not the answer. */

		__set_current_state(TASK_INTERRUPTIBLE);
		
		spin_lock_irq (&rtc_lock);
		data = rtc_irq_data;
		rtc_irq_data = 0;
		spin_unlock_irq (&rtc_lock);

		if (data != 0)
			break;

		if (file->f_flags & O_NONBLOCK) {
			retval = -EAGAIN;
			goto out;
		}
		if (signal_pending(current)) {
			retval = -ERESTARTSYS;
			goto out;
		}
		schedule();
	} while (1);

	if (count < sizeof(unsigned long))
		retval = put_user(data, (unsigned int __user *)buf) ?: sizeof(int); 
	else
		retval = put_user(data, (unsigned long __user *)buf) ?: sizeof(long);
 out:
	current->state = TASK_RUNNING;
	remove_wait_queue(&rtc_wait, &wait);

	return retval;
#endif
}

static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
{
	struct rtc_time wtime; 

#ifdef RTC_IRQ
	if (rtc_has_irq == 0) {
		switch (cmd) {
		case RTC_AIE_OFF:
		case RTC_AIE_ON:
		case RTC_PIE_OFF:
		case RTC_PIE_ON:
		case RTC_UIE_OFF:
		case RTC_UIE_ON:
		case RTC_IRQP_READ:
		case RTC_IRQP_SET:
			return -EINVAL;
		};
	}
#endif

	switch (cmd) {
#ifdef RTC_IRQ
	case RTC_AIE_OFF:	/* Mask alarm int. enab. bit	*/
	{
		mask_rtc_irq_bit(RTC_AIE);
		return 0;
	}
	case RTC_AIE_ON:	/* Allow alarm interrupts.	*/
	{
		set_rtc_irq_bit(RTC_AIE);
		return 0;
	}
	case RTC_PIE_OFF:	/* Mask periodic int. enab. bit	*/
	{
		mask_rtc_irq_bit(RTC_PIE);
		if (rtc_status & RTC_TIMER_ON) {
			spin_lock_irq (&rtc_lock);
			rtc_status &= ~RTC_TIMER_ON;
			del_timer(&rtc_irq_timer);
			spin_unlock_irq (&rtc_lock);
		}
		return 0;
	}
	case RTC_PIE_ON:	/* Allow periodic ints		*/
	{

		/*
		 * We don't really want Joe User enabling more
		 * than 64Hz of interrupts on a multi-user machine.
		 */
		if (!kernel && (rtc_freq > rtc_max_user_freq) &&
			(!capable(CAP_SYS_RESOURCE)))
			return -EACCES;

		if (!(rtc_status & RTC_TIMER_ON)) {
			spin_lock_irq (&rtc_lock);
			rtc_irq_timer.expires = jiffies + HZ/rtc_freq + 2*HZ/100;
			add_timer(&rtc_irq_timer);
			rtc_status |= RTC_TIMER_ON;
			spin_unlock_irq (&rtc_lock);
		}
		set_rtc_irq_bit(RTC_PIE);
		return 0;
	}
	case RTC_UIE_OFF:	/* Mask ints from RTC updates.	*/
	{
		mask_rtc_irq_bit(RTC_UIE);
		return 0;
	}
	case RTC_UIE_ON:	/* Allow ints for RTC updates.	*/
	{
		set_rtc_irq_bit(RTC_UIE);
		return 0;
	}
#endif
	case RTC_ALM_READ:	/* Read the present alarm time */
	{
		/*
		 * This returns a struct rtc_time. Reading >= 0xc0
		 * means "don't care" or "match all". Only the tm_hour,
		 * tm_min, and tm_sec values are filled in.
		 */
		memset(&wtime, 0, sizeof(struct rtc_time));
		get_rtc_alm_time(&wtime);
		break; 
	}
	case RTC_ALM_SET:	/* Store a time into the alarm */
	{
		/*
		 * This expects a struct rtc_time. Writing 0xff means
		 * "don't care" or "match all". Only the tm_hour,
		 * tm_min and tm_sec are used.
		 */
		unsigned char hrs, min, sec;
		struct rtc_time alm_tm;

		if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
				   sizeof(struct rtc_time)))
			return -EFAULT;

		hrs = alm_tm.tm_hour;
		min = alm_tm.tm_min;
		sec = alm_tm.tm_sec;

		spin_lock_irq(&rtc_lock);
		if (hpet_set_alarm_time(hrs, min, sec)) {
			/*
			 * Fallthru and set alarm time in CMOS too,
			 * so that we will get proper value in RTC_ALM_READ
			 */
		}
		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
		    RTC_ALWAYS_BCD)
		{
			if (sec < 60) BIN_TO_BCD(sec);
			else sec = 0xff;

			if (min < 60) BIN_TO_BCD(min);
			else min = 0xff;

			if (hrs < 24) BIN_TO_BCD(hrs);
			else hrs = 0xff;
		}
		CMOS_WRITE(hrs, RTC_HOURS_ALARM);
		CMOS_WRITE(min, RTC_MINUTES_ALARM);
		CMOS_WRITE(sec, RTC_SECONDS_ALARM);
		spin_unlock_irq(&rtc_lock);

		return 0;
	}
	case RTC_RD_TIME:	/* Read the time/date from RTC	*/
	{
		memset(&wtime, 0, sizeof(struct rtc_time));
		rtc_get_rtc_time(&wtime);
		break;
	}
	case RTC_SET_TIME:	/* Set the RTC */
	{
		struct rtc_time rtc_tm;
		unsigned char mon, day, hrs, min, sec, leap_yr;
		unsigned char save_control, save_freq_select;
		unsigned int yrs;
#ifdef CONFIG_MACH_DECSTATION
		unsigned int real_yrs;
#endif

		if (!capable(CAP_SYS_TIME))
			return -EACCES;

		if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
				   sizeof(struct rtc_time)))
			return -EFAULT;

		yrs = rtc_tm.tm_year + 1900;
		mon = rtc_tm.tm_mon + 1;   /* tm_mon starts at zero */
		day = rtc_tm.tm_mday;
		hrs = rtc_tm.tm_hour;
		min = rtc_tm.tm_min;
		sec = rtc_tm.tm_sec;

		if (yrs < 1970)
			return -EINVAL;

		leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));

		if ((mon > 12) || (day == 0))
			return -EINVAL;

		if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
			return -EINVAL;
			
		if ((hrs >= 24) || (min >= 60) || (sec >= 60))
			return -EINVAL;

		if ((yrs -= epoch) > 255)    /* They are unsigned */
			return -EINVAL;

		spin_lock_irq(&rtc_lock);
#ifdef CONFIG_MACH_DECSTATION
		real_yrs = yrs;
		yrs = 72;

		/*
		 * We want to keep the year set to 73 until March
		 * for non-leap years, so that Feb, 29th is handled
		 * correctly.
		 */
		if (!leap_yr && mon < 3) {
			real_yrs--;
			yrs = 73;
		}
#endif
		/* These limits and adjustments are independent of
		 * whether the chip is in binary mode or not.
		 */
		if (yrs > 169) {
			spin_unlock_irq(&rtc_lock);
			return -EINVAL;
		}
		if (yrs >= 100)
			yrs -= 100;

		if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
		    || RTC_ALWAYS_BCD) {
			BIN_TO_BCD(sec);
			BIN_TO_BCD(min);
			BIN_TO_BCD(hrs);
			BIN_TO_BCD(day);
			BIN_TO_BCD(mon);
			BIN_TO_BCD(yrs);
		}

		save_control = CMOS_READ(RTC_CONTROL);
		CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
		save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
		CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);

#ifdef CONFIG_MACH_DECSTATION
		CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
#endif
		CMOS_WRITE(yrs, RTC_YEAR);
		CMOS_WRITE(mon, RTC_MONTH);
		CMOS_WRITE(day, RTC_DAY_OF_MONTH);
		CMOS_WRITE(hrs, RTC_HOURS);
		CMOS_WRITE(min, RTC_MINUTES);
		CMOS_WRITE(sec, RTC_SECONDS);

		CMOS_WRITE(save_control, RTC_CONTROL);
		CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);

		spin_unlock_irq(&rtc_lock);
		return 0;
	}
#ifdef RTC_IRQ
	case RTC_IRQP_READ:	/* Read the periodic IRQ rate.	*/
	{
		return put_user(rtc_freq, (unsigned long __user *)arg);
	}
	case RTC_IRQP_SET:	/* Set periodic IRQ rate.	*/
	{
		int tmp = 0;
		unsigned char val;

		/* 
		 * The max we can do is 8192Hz.
		 */
		if ((arg < 2) || (arg > 8192))
			return -EINVAL;
		/*
		 * We don't really want Joe User generating more
		 * than 64Hz of interrupts on a multi-user machine.
		 */
		if (!kernel && (arg > rtc_max_user_freq) && (!capable(CAP_SYS_RESOURCE)))
			return -EACCES;

		while (arg > (1<<tmp))
			tmp++;

		/*
		 * Check that the input was really a power of 2.
		 */
		if (arg != (1<<tmp))
			return -EINVAL;

		spin_lock_irq(&rtc_lock);
		if (hpet_set_periodic_freq(arg)) {
			spin_unlock_irq(&rtc_lock);
			return 0;
		}
		rtc_freq = arg;

		val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
		val |= (16 - tmp);
		CMOS_WRITE(val, RTC_FREQ_SELECT);
		spin_unlock_irq(&rtc_lock);
		return 0;
	}
#endif
	case RTC_EPOCH_READ:	/* Read the epoch.	*/
	{
		return put_user (epoch, (unsigned long __user *)arg);
	}
	case RTC_EPOCH_SET:	/* Set the epoch.	*/
	{
		/* 
		 * There were no RTC clocks before 1900.
		 */
		if (arg < 1900)
			return -EINVAL;

		if (!capable(CAP_SYS_TIME))
			return -EACCES;

		epoch = arg;
		return 0;
	}
	default:
		return -ENOTTY;
	}
	return copy_to_user((void __user *)arg, &wtime, sizeof wtime) ? -EFAULT : 0;
}

static int rtc_ioctl(struct inode *inode, struct file *file, unsigned int cmd,
		     unsigned long arg)
{
	return rtc_do_ioctl(cmd, arg, 0);
}

/*
 *	We enforce only one user at a time here with the open/close.
 *	Also clear the previous interrupt data on an open, and clean
 *	up things on a close.
 */

/* We use rtc_lock to protect against concurrent opens. So the BKL is not
 * needed here. Or anywhere else in this driver. */
static int rtc_open(struct inode *inode, struct file *file)
{
	spin_lock_irq (&rtc_lock);

	if(rtc_status & RTC_IS_OPEN)
		goto out_busy;

	rtc_status |= RTC_IS_OPEN;

	rtc_irq_data = 0;
	spin_unlock_irq (&rtc_lock);
	return 0;

out_busy:
	spin_unlock_irq (&rtc_lock);
	return -EBUSY;
}

static int rtc_fasync (int fd, struct file *filp, int on)

{
	return fasync_helper (fd, filp, on, &rtc_async_queue);
}

static int rtc_release(struct inode *inode, struct file *file)
{
#ifdef RTC_IRQ
	unsigned char tmp;

	if (rtc_has_irq == 0)
		goto no_irq;

	/*
	 * Turn off all interrupts once the device is no longer
	 * in use, and clear the data.
	 */

	spin_lock_irq(&rtc_lock);
	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
		tmp = CMOS_READ(RTC_CONTROL);
		tmp &=  ~RTC_PIE;
		tmp &=  ~RTC_AIE;
		tmp &=  ~RTC_UIE;
		CMOS_WRITE(tmp, RTC_CONTROL);
		CMOS_READ(RTC_INTR_FLAGS);
	}
	if (rtc_status & RTC_TIMER_ON) {
		rtc_status &= ~RTC_TIMER_ON;
		del_timer(&rtc_irq_timer);
	}
	spin_unlock_irq(&rtc_lock);

	if (file->f_flags & FASYNC) {
		rtc_fasync (-1, file, 0);
	}
no_irq:
#endif

	spin_lock_irq (&rtc_lock);
	rtc_irq_data = 0;
	rtc_status &= ~RTC_IS_OPEN;
	spin_unlock_irq (&rtc_lock);
	return 0;
}

#ifdef RTC_IRQ
/* Called without the kernel lock - fine */
static unsigned int rtc_poll(struct file *file, poll_table *wait)
{
	unsigned long l;

	if (rtc_has_irq == 0)
		return 0;

	poll_wait(file, &rtc_wait, wait);

	spin_lock_irq (&rtc_lock);
	l = rtc_irq_data;
	spin_unlock_irq (&rtc_lock);

	if (l != 0)
		return POLLIN | POLLRDNORM;
	return 0;
}
#endif

/*
 * exported stuffs
 */

EXPORT_SYMBOL(rtc_register);
EXPORT_SYMBOL(rtc_unregister);
EXPORT_SYMBOL(rtc_control);

int rtc_register(rtc_task_t *task)
{
#ifndef RTC_IRQ
	return -EIO;
#else
	if (task == NULL || task->func == NULL)
		return -EINVAL;
	spin_lock_irq(&rtc_lock);
	if (rtc_status & RTC_IS_OPEN) {
		spin_unlock_irq(&rtc_lock);
		return -EBUSY;
	}
	spin_lock(&rtc_task_lock);
	if (rtc_callback) {
		spin_unlock(&rtc_task_lock);
		spin_unlock_irq(&rtc_lock);
		return -EBUSY;
	}
	rtc_status |= RTC_IS_OPEN;
	rtc_callback = task;
	spin_unlock(&rtc_task_lock);
	spin_unlock_irq(&rtc_lock);
	return 0;
#endif
}

int rtc_unregister(rtc_task_t *task)
{
#ifndef RTC_IRQ
	return -EIO;
#else
	unsigned char tmp;

	spin_lock_irq(&rtc_lock);
	spin_lock(&rtc_task_lock);
	if (rtc_callback != task) {
		spin_unlock(&rtc_task_lock);
		spin_unlock_irq(&rtc_lock);
		return -ENXIO;
	}
	rtc_callback = NULL;
	
	/* disable controls */
	if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
		tmp = CMOS_READ(RTC_CONTROL);
		tmp &= ~RTC_PIE;
		tmp &= ~RTC_AIE;
		tmp &= ~RTC_UIE;
		CMOS_WRITE(tmp, RTC_CONTROL);
		CMOS_READ(RTC_INTR_FLAGS);
	}
	if (rtc_status & RTC_TIMER_ON) {
		rtc_status &= ~RTC_TIMER_ON;
		del_timer(&rtc_irq_timer);
	}
	rtc_status &= ~RTC_IS_OPEN;
	spin_unlock(&rtc_task_lock);
	spin_unlock_irq(&rtc_lock);
	return 0;
#endif
}

int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
{
#ifndef RTC_IRQ
	return -EIO;
#else
	spin_lock_irq(&rtc_task_lock);
	if (rtc_callback != task) {
		spin_unlock_irq(&rtc_task_lock);
		return -ENXIO;
	}
	spin_unlock_irq(&rtc_task_lock);
	return rtc_do_ioctl(cmd, arg, 1);
#endif
}


/*
 *	The various file operations we support.
 */

static struct file_operations rtc_fops = {
	.owner		= THIS_MODULE,
	.llseek		= no_llseek,
	.read		= rtc_read,
#ifdef RTC_IRQ
	.poll		= rtc_poll,
#endif
	.ioctl		= rtc_ioctl,
	.open		= rtc_open,
	.release	= rtc_release,
	.fasync		= rtc_fasync,
};

static struct miscdevice rtc_dev = {
	.minor		= RTC_MINOR,
	.name		= "rtc",
	.fops		= &rtc_fops,
};

static struct file_operations rtc_proc_fops = {
	.owner = THIS_MODULE,
	.open = rtc_proc_open,
	.read  = seq_read,
	.llseek = seq_lseek,
	.release = single_release,
};

#if defined(RTC_IRQ) && !defined(__sparc__)
static irqreturn_t (*rtc_int_handler_ptr)(int irq, void *dev_id, struct pt_regs *regs);
#endif

static int __init rtc_init(void)
{
	struct proc_dir_entry *ent;
#if defined(__alpha__) || defined(__mips__)
	unsigned int year, ctrl;
	char *guess = NULL;
#endif
#ifdef __sparc__
	struct linux_ebus *ebus;
	struct linux_ebus_device *edev;
#ifdef __sparc_v9__
	struct sparc_isa_bridge *isa_br;
	struct sparc_isa_device *isa_dev;
#endif
#endif

#ifdef __sparc__
	for_each_ebus(ebus) {
		for_each_ebusdev(edev, ebus) {
			if(strcmp(edev->prom_name, "rtc") == 0) {
				rtc_port = edev->resource[0].start;
				rtc_irq = edev->irqs[0];
				goto found;
			}
		}
	}
#ifdef __sparc_v9__
	for_each_isa(isa_br) {
		for_each_isadev(isa_dev, isa_br) {
			if (strcmp(isa_dev->prom_name, "rtc") == 0) {
				rtc_port = isa_dev->resource.start;
				rtc_irq = isa_dev->irq;
				goto found;
			}
		}
	}
#endif
	printk(KERN_ERR "rtc_init: no PC rtc found\n");
	return -EIO;

found:
	if (rtc_irq == PCI_IRQ_NONE) {
		rtc_has_irq = 0;
		goto no_irq;
	}

	/*
	 * XXX Interrupt pin #7 in Espresso is shared between RTC and
	 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
	 */
	if (request_irq(rtc_irq, rtc_interrupt, SA_SHIRQ, "rtc", (void *)&rtc_port)) {
		/*
		 * Standard way for sparc to print irq's is to use
		 * __irq_itoa(). I think for EBus it's ok to use %d.
		 */
		printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
		return -EIO;
	}
no_irq:
#else
	if (!request_region(RTC_PORT(0), RTC_IO_EXTENT, "rtc")) {
		printk(KERN_ERR "rtc: I/O port %d is not free.\n", RTC_PORT (0));
		return -EIO;
	}

#ifdef RTC_IRQ
	if (is_hpet_enabled()) {
		rtc_int_handler_ptr = hpet_rtc_interrupt;
	} else {
		rtc_int_handler_ptr = rtc_interrupt;
	}

	if(request_irq(RTC_IRQ, rtc_int_handler_ptr, SA_INTERRUPT, "rtc", NULL)) {
		/* Yeah right, seeing as irq 8 doesn't even hit the bus. */
		printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
		release_region(RTC_PORT(0), RTC_IO_EXTENT);
		return -EIO;
	}
	hpet_rtc_timer_init();

#endif

#endif /* __sparc__ vs. others */

	if (misc_register(&rtc_dev)) {
#ifdef RTC_IRQ
		free_irq(RTC_IRQ, NULL);
#endif
		release_region(RTC_PORT(0), RTC_IO_EXTENT);
		return -ENODEV;
	}

	ent = create_proc_entry("driver/rtc", 0, NULL);
	if (!ent) {
#ifdef RTC_IRQ
		free_irq(RTC_IRQ, NULL);
#endif
		release_region(RTC_PORT(0), RTC_IO_EXTENT);
		misc_deregister(&rtc_dev);
		return -ENOMEM;
	}
	ent->proc_fops = &rtc_proc_fops;

#if defined(__alpha__) || defined(__mips__)
	rtc_freq = HZ;
	
	/* Each operating system on an Alpha uses its own epoch.
	   Let's try to guess which one we are using now. */
	
	if (rtc_is_updating() != 0)
		msleep(20);
	
	spin_lock_irq(&rtc_lock);
	year = CMOS_READ(RTC_YEAR);
	ctrl = CMOS_READ(RTC_CONTROL);
	spin_unlock_irq(&rtc_lock);
	
	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
		BCD_TO_BIN(year);       /* This should never happen... */
	
	if (year < 20) {
		epoch = 2000;
		guess = "SRM (post-2000)";
	} else if (year >= 20 && year < 48) {
		epoch = 1980;
		guess = "ARC console";
	} else if (year >= 48 && year < 72) {
		epoch = 1952;
		guess = "Digital UNIX";
#if defined(__mips__)
	} else if (year >= 72 && year < 74) {
		epoch = 2000;
		guess = "Digital DECstation";
#else
	} else if (year >= 70) {
		epoch = 1900;
		guess = "Standard PC (1900)";
#endif
	}
	if (guess)
		printk(KERN_INFO "rtc: %s epoch (%lu) detected\n", guess, epoch);
#endif
#ifdef RTC_IRQ
	if (rtc_has_irq == 0)
		goto no_irq2;

	init_timer(&rtc_irq_timer);
	rtc_irq_timer.function = rtc_dropped_irq;
	spin_lock_irq(&rtc_lock);
	rtc_freq = 1024;
	if (!hpet_set_periodic_freq(rtc_freq)) {
		/* Initialize periodic freq. to CMOS reset default, which is 1024Hz */
		CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06), RTC_FREQ_SELECT);
	}
	spin_unlock_irq(&rtc_lock);
no_irq2:
#endif

	(void) init_sysctl();

	printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");

	return 0;
}

static void __exit rtc_exit (void)
{
	cleanup_sysctl();
	remove_proc_entry ("driver/rtc", NULL);
	misc_deregister(&rtc_dev);

#ifdef __sparc__
	if (rtc_has_irq)
		free_irq (rtc_irq, &rtc_port);
#else
	release_region (RTC_PORT (0), RTC_IO_EXTENT);
#ifdef RTC_IRQ
	if (rtc_has_irq)
		free_irq (RTC_IRQ, NULL);
#endif
#endif /* __sparc__ */
}

module_init(rtc_init);
module_exit(rtc_exit);

#ifdef RTC_IRQ
/*
 * 	At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
 *	(usually during an IDE disk interrupt, with IRQ unmasking off)
 *	Since the interrupt handler doesn't get called, the IRQ status
 *	byte doesn't get read, and the RTC stops generating interrupts.
 *	A timer is set, and will call this function if/when that happens.
 *	To get it out of this stalled state, we just read the status.
 *	At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
 *	(You *really* shouldn't be trying to use a non-realtime system 
 *	for something that requires a steady > 1KHz signal anyways.)
 */

static void rtc_dropped_irq(unsigned long data)
{
	unsigned long freq;

	spin_lock_irq (&rtc_lock);

	if (hpet_rtc_dropped_irq()) {
		spin_unlock_irq(&rtc_lock);
		return;
	}

	/* Just in case someone disabled the timer from behind our back... */
	if (rtc_status & RTC_TIMER_ON)
		mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);

	rtc_irq_data += ((rtc_freq/HZ)<<8);
	rtc_irq_data &= ~0xff;
	rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);	/* restart */

	freq = rtc_freq;

	spin_unlock_irq(&rtc_lock);

	printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n", freq);

	/* Now we have new data */
	wake_up_interruptible(&rtc_wait);

	kill_fasync (&rtc_async_queue, SIGIO, POLL_IN);
}
#endif

/*
 *	Info exported via "/proc/driver/rtc".
 */

static int rtc_proc_show(struct seq_file *seq, void *v)
{
#define YN(bit) ((ctrl & bit) ? "yes" : "no")
#define NY(bit) ((ctrl & bit) ? "no" : "yes")
	struct rtc_time tm;
	unsigned char batt, ctrl;
	unsigned long freq;

	spin_lock_irq(&rtc_lock);
	batt = CMOS_READ(RTC_VALID) & RTC_VRT;
	ctrl = CMOS_READ(RTC_CONTROL);
	freq = rtc_freq;
	spin_unlock_irq(&rtc_lock);


	rtc_get_rtc_time(&tm);

	/*
	 * There is no way to tell if the luser has the RTC set for local
	 * time or for Universal Standard Time (GMT). Probably local though.
	 */
	seq_printf(seq,
		   "rtc_time\t: %02d:%02d:%02d\n"
		   "rtc_date\t: %04d-%02d-%02d\n"
		   "rtc_epoch\t: %04lu\n",
		   tm.tm_hour, tm.tm_min, tm.tm_sec,
		   tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);

	get_rtc_alm_time(&tm);

	/*
	 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
	 * match any value for that particular field. Values that are
	 * greater than a valid time, but less than 0xc0 shouldn't appear.
	 */
	seq_puts(seq, "alarm\t\t: ");
	if (tm.tm_hour <= 24)
		seq_printf(seq, "%02d:", tm.tm_hour);
	else
		seq_puts(seq, "**:");

	if (tm.tm_min <= 59)
		seq_printf(seq, "%02d:", tm.tm_min);
	else
		seq_puts(seq, "**:");

	if (tm.tm_sec <= 59)
		seq_printf(seq, "%02d\n", tm.tm_sec);
	else
		seq_puts(seq, "**\n");

	seq_printf(seq,
		   "DST_enable\t: %s\n"
		   "BCD\t\t: %s\n"
		   "24hr\t\t: %s\n"
		   "square_wave\t: %s\n"
		   "alarm_IRQ\t: %s\n"
		   "update_IRQ\t: %s\n"
		   "periodic_IRQ\t: %s\n"
		   "periodic_freq\t: %ld\n"
		   "batt_status\t: %s\n",
		   YN(RTC_DST_EN),
		   NY(RTC_DM_BINARY),
		   YN(RTC_24H),
		   YN(RTC_SQWE),
		   YN(RTC_AIE),
		   YN(RTC_UIE),
		   YN(RTC_PIE),
		   freq,
		   batt ? "okay" : "dead");

	return  0;
#undef YN
#undef NY
}

static int rtc_proc_open(struct inode *inode, struct file *file)
{
	return single_open(file, rtc_proc_show, NULL);
}

void rtc_get_rtc_time(struct rtc_time *rtc_tm)
{
	unsigned long uip_watchdog = jiffies;
	unsigned char ctrl;
#ifdef CONFIG_MACH_DECSTATION
	unsigned int real_year;
#endif

	/*
	 * read RTC once any update in progress is done. The update
	 * can take just over 2ms. We wait 20ms. There is no need to
	 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
	 * If you need to know *exactly* when a second has started, enable
	 * periodic update complete interrupts, (via ioctl) and then 
	 * immediately read /dev/rtc which will block until you get the IRQ.
	 * Once the read clears, read the RTC time (again via ioctl). Easy.
	 */

	while (rtc_is_updating() != 0 && jiffies - uip_watchdog < 2*HZ/100) {
		barrier();
		cpu_relax();
	}

	/*
	 * Only the values that we read from the RTC are set. We leave
	 * tm_wday, tm_yday and tm_isdst untouched. Even though the
	 * RTC has RTC_DAY_OF_WEEK, we ignore it, as it is only updated
	 * by the RTC when initially set to a non-zero value.
	 */
	spin_lock_irq(&rtc_lock);
	rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
	rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
	rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
	rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
	rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
	rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
#ifdef CONFIG_MACH_DECSTATION
	real_year = CMOS_READ(RTC_DEC_YEAR);
#endif
	ctrl = CMOS_READ(RTC_CONTROL);
	spin_unlock_irq(&rtc_lock);

	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
	{
		BCD_TO_BIN(rtc_tm->tm_sec);
		BCD_TO_BIN(rtc_tm->tm_min);
		BCD_TO_BIN(rtc_tm->tm_hour);
		BCD_TO_BIN(rtc_tm->tm_mday);
		BCD_TO_BIN(rtc_tm->tm_mon);
		BCD_TO_BIN(rtc_tm->tm_year);
	}

#ifdef CONFIG_MACH_DECSTATION
	rtc_tm->tm_year += real_year - 72;
#endif

	/*
	 * Account for differences between how the RTC uses the values
	 * and how they are defined in a struct rtc_time;
	 */
	if ((rtc_tm->tm_year += (epoch - 1900)) <= 69)
		rtc_tm->tm_year += 100;

	rtc_tm->tm_mon--;
}

static void get_rtc_alm_time(struct rtc_time *alm_tm)
{
	unsigned char ctrl;

	/*
	 * Only the values that we read from the RTC are set. That
	 * means only tm_hour, tm_min, and tm_sec.
	 */
	spin_lock_irq(&rtc_lock);
	alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
	alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
	alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
	ctrl = CMOS_READ(RTC_CONTROL);
	spin_unlock_irq(&rtc_lock);

	if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
	{
		BCD_TO_BIN(alm_tm->tm_sec);
		BCD_TO_BIN(alm_tm->tm_min);
		BCD_TO_BIN(alm_tm->tm_hour);
	}
}

#ifdef RTC_IRQ
/*
 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
 * Rumour has it that if you frob the interrupt enable/disable
 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
 * ensure you actually start getting interrupts. Probably for
 * compatibility with older/broken chipset RTC implementations.
 * We also clear out any old irq data after an ioctl() that
 * meddles with the interrupt enable/disable bits.
 */

static void mask_rtc_irq_bit(unsigned char bit)
{
	unsigned char val;

	spin_lock_irq(&rtc_lock);
	if (hpet_mask_rtc_irq_bit(bit)) {
		spin_unlock_irq(&rtc_lock);
		return;
	}
	val = CMOS_READ(RTC_CONTROL);
	val &=  ~bit;
	CMOS_WRITE(val, RTC_CONTROL);
	CMOS_READ(RTC_INTR_FLAGS);

	rtc_irq_data = 0;
	spin_unlock_irq(&rtc_lock);
}

static void set_rtc_irq_bit(unsigned char bit)
{
	unsigned char val;

	spin_lock_irq(&rtc_lock);
	if (hpet_set_rtc_irq_bit(bit)) {
		spin_unlock_irq(&rtc_lock);
		return;
	}
	val = CMOS_READ(RTC_CONTROL);
	val |= bit;
	CMOS_WRITE(val, RTC_CONTROL);
	CMOS_READ(RTC_INTR_FLAGS);

	rtc_irq_data = 0;
	spin_unlock_irq(&rtc_lock);
}
#endif

MODULE_AUTHOR("Paul Gortmaker");
MODULE_LICENSE("GPL");
MODULE_ALIAS_MISCDEV(RTC_MINOR);