aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/char/exynos_mem.c
blob: 85c7a299ada5fc279f9bf5cedcbba7eb322c4c94 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
/* linux/drivers/char/exynos_mem.c
 *
 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
 *		http://www.samsung.com/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/errno.h>	/* error codes */
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/memblock.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/uaccess.h>
#include <linux/highmem.h>
#include <linux/dma-mapping.h>
#include <asm/cacheflush.h>

#include <plat/cpu.h>

#include <linux/exynos_mem.h>

#define L2_FLUSH_ALL	SZ_1M
#define L1_FLUSH_ALL	SZ_64K

struct exynos_mem {
	bool cacheable;
	unsigned int  phybase;
};

int exynos_mem_open(struct inode *inode, struct file *filp)
{
	struct exynos_mem *prv_data;

	prv_data = kzalloc(sizeof(struct exynos_mem), GFP_KERNEL);
	if (!prv_data) {
		pr_err("%s: not enough memory\n", __func__);
		return -ENOMEM;
	}

	prv_data->cacheable = true;	/* Default: cacheable */

	filp->private_data = prv_data;

	printk(KERN_DEBUG "[%s:%d] private_data(0x%08x)\n",
		__func__, __LINE__, (u32)prv_data);

	return 0;
}

int exynos_mem_release(struct inode *inode, struct file *filp)
{
	printk(KERN_DEBUG "[%s:%d] private_data(0x%08x)\n",
		__func__, __LINE__, (u32)filp->private_data);

	kfree(filp->private_data);

	return 0;
}

enum cacheop { EM_CLEAN, EM_INV, EM_FLUSH };

static void cache_maint_inner(void *vaddr, size_t size, enum cacheop op)
{
	switch (op) {
		case EM_CLEAN:
			dmac_map_area(vaddr, size, DMA_TO_DEVICE);
			break;
		case EM_INV:
			dmac_unmap_area(vaddr, size, DMA_TO_DEVICE);
			break;
		case EM_FLUSH:
			dmac_flush_range(vaddr, vaddr + size);
	}
}

static void cache_maint_phys(phys_addr_t start, size_t length, enum cacheop op)
{
	size_t left = length;
	phys_addr_t begin = start;

	if (!soc_is_exynos5250() && !soc_is_exynos5210()) {
		if (length > (size_t) L1_FLUSH_ALL) {
			flush_cache_all();
			smp_call_function(
					(smp_call_func_t)__cpuc_flush_kern_all,
					NULL, 1);

			goto outer_cache_ops;
		}
	}

#ifdef CONFIG_HIGHMEM
	do {
		size_t len;
		struct page *page;
		void *vaddr;
		off_t offset;

		page = phys_to_page(start);
		offset = offset_in_page(start);
		len = PAGE_SIZE - offset;

		if (left < len)
			len = left;

		if (PageHighMem(page)) {
			vaddr = kmap(page);
			cache_maint_inner(vaddr + offset, len, op);
			kunmap(page);
		} else {
			vaddr = page_address(page) + offset;
			cache_maint_inner(vaddr, len, op);
		}
		left -= len;
		start += len;
	} while (left);
#else
	cache_maint_inner(phys_to_virt(begin), left, op);
#endif

outer_cache_ops:
	switch (op) {
	case EM_CLEAN:
		outer_clean_range(begin, begin + length);
		break;
	case EM_INV:
		if (length <= L2_FLUSH_ALL) {
			outer_inv_range(begin, begin + length);
			break;
		}
		/* else FALL THROUGH */
	case EM_FLUSH:
		outer_flush_range(begin, begin + length);
		break;
	}
}

static void exynos_mem_paddr_cache_clean(dma_addr_t start, size_t length)
{
	if (length > (size_t) L2_FLUSH_ALL) {
		flush_cache_all();		/* L1 */
		smp_call_function((smp_call_func_t)__cpuc_flush_kern_all, NULL, 1);
		outer_clean_all();		/* L2 */
	} else if (length > (size_t) L1_FLUSH_ALL) {
		dma_addr_t end = start + length - 1;

		flush_cache_all();		/* L1 */
		smp_call_function((smp_call_func_t)__cpuc_flush_kern_all, NULL, 1);
		outer_clean_range(start, end);  /* L2 */
	} else {
		dma_addr_t end = start + length - 1;

		dmac_flush_range(phys_to_virt(start), phys_to_virt(end));
		outer_clean_range(start, end);	/* L2 */
	}
}

long exynos_mem_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
{
	switch (cmd) {
	case EXYNOS_MEM_SET_CACHEABLE:
	{
		struct exynos_mem *mem = filp->private_data;
		int cacheable;
		if (get_user(cacheable, (u32 __user *)arg)) {
			pr_err("[%s:%d] err: EXYNOS_MEM_SET_CACHEABLE\n",
				__func__, __LINE__);
			return -EFAULT;
		}
		mem->cacheable = cacheable;
		break;
	}

	case EXYNOS_MEM_PADDR_CACHE_FLUSH:
	{
		struct exynos_mem_flush_range range;
		if (copy_from_user(&range,
				   (struct exynos_mem_flush_range __user *)arg,
				   sizeof(range))) {
			pr_err("[%s:%d] err: EXYNOS_MEM_PADDR_CACHE_FLUSH\n",
				__func__, __LINE__);
			return -EFAULT;
		}

		cache_maint_phys(range.start, range.length, EM_FLUSH);
		break;
	}
	case EXYNOS_MEM_PADDR_CACHE_CLEAN:
	{
		struct exynos_mem_flush_range range;
		if (copy_from_user(&range,
				   (struct exynos_mem_flush_range __user *)arg,
				   sizeof(range))) {
			pr_err("[%s:%d] err: EXYNOS_MEM_PADDR_CACHE_FLUSH\n",
				__func__, __LINE__);
			return -EFAULT;
		}

		cache_maint_phys(range.start, range.length, EM_CLEAN);
		break;
	}
	case EXYNOS_MEM_SET_PHYADDR:
	{
		struct exynos_mem *mem = filp->private_data;
		int phyaddr;
		if (get_user(phyaddr, (u32 __user *)arg)) {
			pr_err("[%s:%d] err: EXYNOS_MEM_SET_PHYADDR\n",
				__func__, __LINE__);
			return -EFAULT;
		}
		mem->phybase = phyaddr >> PAGE_SHIFT;

		break;
	}

	default:
		pr_err("[%s:%d] error command\n", __func__, __LINE__);
		return -EINVAL;
	}

	return 0;
}

static void exynos_mem_mmap_open(struct vm_area_struct *vma)
{
	printk(KERN_DEBUG "[%s] addr(0x%08x)\n", __func__, (u32)vma->vm_start);
}

static void exynos_mem_mmap_close(struct vm_area_struct *vma)
{
	printk(KERN_DEBUG "[%s] addr(0x%08x)\n", __func__, (u32)vma->vm_start);
}

static struct vm_operations_struct exynos_mem_ops = {
	.open	= exynos_mem_mmap_open,
	.close	= exynos_mem_mmap_close,
};

int exynos_mem_mmap(struct file *filp, struct vm_area_struct *vma)
{
	struct exynos_mem *mem = (struct exynos_mem *)filp->private_data;
	bool cacheable = mem->cacheable;
	dma_addr_t start = 0;
	u32 pfn = 0;
	u32 size = vma->vm_end - vma->vm_start;

	if (vma->vm_pgoff) {
		start = vma->vm_pgoff << PAGE_SHIFT;
		pfn = vma->vm_pgoff;
	} else {
		start = mem->phybase << PAGE_SHIFT;
		pfn = mem->phybase;
	}

	/* TODO: currently lowmem is only avaiable */
	if ((phys_to_virt(start) < (void *)PAGE_OFFSET) ||
	    (phys_to_virt(start) >= high_memory)) {
		pr_err("[%s] invalid paddr(0x%08x)\n", __func__, start);
		return -EINVAL;
	}

	if (!cacheable)
		vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);

	vma->vm_flags |= VM_RESERVED;
	vma->vm_ops = &exynos_mem_ops;

	if ((vma->vm_flags & VM_WRITE) && !(vma->vm_flags & VM_SHARED)) {
		pr_err("writable mapping must be shared\n");
		return -EINVAL;
	}

	if (remap_pfn_range(vma, vma->vm_start, pfn, size, vma->vm_page_prot)) {
		pr_err("mmap fail\n");
		return -EINVAL;
	}

	vma->vm_ops->open(vma);

	return 0;
}