aboutsummaryrefslogtreecommitdiffstats
path: root/arch/mips/kernel/time.c
blob: 8aa544f73a5ea27fd85eb007ac9ec59938e0ff35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*
 * Copyright 2001 MontaVista Software Inc.
 * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net
 * Copyright (c) 2003, 2004  Maciej W. Rozycki
 *
 * Common time service routines for MIPS machines. See
 * Documentation/mips/time.README.
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
 * option) any later version.
 */
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/sched.h>
#include <linux/param.h>
#include <linux/time.h>
#include <linux/timex.h>
#include <linux/smp.h>
#include <linux/kernel_stat.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/module.h>

#include <asm/bootinfo.h>
#include <asm/cache.h>
#include <asm/compiler.h>
#include <asm/cpu.h>
#include <asm/cpu-features.h>
#include <asm/div64.h>
#include <asm/sections.h>
#include <asm/time.h>

/*
 * The integer part of the number of usecs per jiffy is taken from tick,
 * but the fractional part is not recorded, so we calculate it using the
 * initial value of HZ.  This aids systems where tick isn't really an
 * integer (e.g. for HZ = 128).
 */
#define USECS_PER_JIFFY		TICK_SIZE
#define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ))

#define TICK_SIZE	(tick_nsec / 1000)

/*
 * forward reference
 */
DEFINE_SPINLOCK(rtc_lock);

/*
 * By default we provide the null RTC ops
 */
static unsigned long null_rtc_get_time(void)
{
	return mktime(2000, 1, 1, 0, 0, 0);
}

static int null_rtc_set_time(unsigned long sec)
{
	return 0;
}

unsigned long (*rtc_mips_get_time)(void) = null_rtc_get_time;
int (*rtc_mips_set_time)(unsigned long) = null_rtc_set_time;
int (*rtc_mips_set_mmss)(unsigned long);


/* how many counter cycles in a jiffy */
static unsigned long cycles_per_jiffy __read_mostly;

/* expirelo is the count value for next CPU timer interrupt */
static unsigned int expirelo;


/*
 * Null timer ack for systems not needing one (e.g. i8254).
 */
static void null_timer_ack(void) { /* nothing */ }

/*
 * Null high precision timer functions for systems lacking one.
 */
static cycle_t null_hpt_read(void)
{
	return 0;
}

/*
 * Timer ack for an R4k-compatible timer of a known frequency.
 */
static void c0_timer_ack(void)
{
	unsigned int count;

	/* Ack this timer interrupt and set the next one.  */
	expirelo += cycles_per_jiffy;
	write_c0_compare(expirelo);

	/* Check to see if we have missed any timer interrupts.  */
	while (((count = read_c0_count()) - expirelo) < 0x7fffffff) {
		/* missed_timer_count++; */
		expirelo = count + cycles_per_jiffy;
		write_c0_compare(expirelo);
	}
}

/*
 * High precision timer functions for a R4k-compatible timer.
 */
static cycle_t c0_hpt_read(void)
{
	return read_c0_count();
}

/* For use both as a high precision timer and an interrupt source.  */
static void __init c0_hpt_timer_init(void)
{
	expirelo = read_c0_count() + cycles_per_jiffy;
	write_c0_compare(expirelo);
}

int (*mips_timer_state)(void);
void (*mips_timer_ack)(void);

/* last time when xtime and rtc are sync'ed up */
static long last_rtc_update;

/*
 * local_timer_interrupt() does profiling and process accounting
 * on a per-CPU basis.
 *
 * In UP mode, it is invoked from the (global) timer_interrupt.
 *
 * In SMP mode, it might invoked by per-CPU timer interrupt, or
 * a broadcasted inter-processor interrupt which itself is triggered
 * by the global timer interrupt.
 */
void local_timer_interrupt(int irq, void *dev_id)
{
	profile_tick(CPU_PROFILING);
	update_process_times(user_mode(get_irq_regs()));
}

/*
 * High-level timer interrupt service routines.  This function
 * is set as irqaction->handler and is invoked through do_IRQ.
 */
irqreturn_t timer_interrupt(int irq, void *dev_id)
{
	write_seqlock(&xtime_lock);

	mips_timer_ack();

	/*
	 * call the generic timer interrupt handling
	 */
	do_timer(1);

	/*
	 * If we have an externally synchronized Linux clock, then update
	 * CMOS clock accordingly every ~11 minutes. rtc_mips_set_time() has to be
	 * called as close as possible to 500 ms before the new second starts.
	 */
	if (ntp_synced() &&
	    xtime.tv_sec > last_rtc_update + 660 &&
	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 &&
	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) {
		if (rtc_mips_set_mmss(xtime.tv_sec) == 0) {
			last_rtc_update = xtime.tv_sec;
		} else {
			/* do it again in 60 s */
			last_rtc_update = xtime.tv_sec - 600;
		}
	}

	write_sequnlock(&xtime_lock);

	/*
	 * In UP mode, we call local_timer_interrupt() to do profiling
	 * and process accouting.
	 *
	 * In SMP mode, local_timer_interrupt() is invoked by appropriate
	 * low-level local timer interrupt handler.
	 */
	local_timer_interrupt(irq, dev_id);

	return IRQ_HANDLED;
}

int null_perf_irq(void)
{
	return 0;
}

int (*perf_irq)(void) = null_perf_irq;

EXPORT_SYMBOL(null_perf_irq);
EXPORT_SYMBOL(perf_irq);

asmlinkage void ll_timer_interrupt(int irq)
{
	int r2 = cpu_has_mips_r2;

	irq_enter();
	kstat_this_cpu.irqs[irq]++;

	/*
	 * Suckage alert:
	 * Before R2 of the architecture there was no way to see if a
	 * performance counter interrupt was pending, so we have to run the
	 * performance counter interrupt handler anyway.
	 */
	if (!r2 || (read_c0_cause() & (1 << 26)))
		if (perf_irq())
			goto out;

	/* we keep interrupt disabled all the time */
	if (!r2 || (read_c0_cause() & (1 << 30)))
		timer_interrupt(irq, NULL);

out:
	irq_exit();
}

asmlinkage void ll_local_timer_interrupt(int irq)
{
	irq_enter();
	if (smp_processor_id() != 0)
		kstat_this_cpu.irqs[irq]++;

	/* we keep interrupt disabled all the time */
	local_timer_interrupt(irq, NULL);

	irq_exit();
}

/*
 * time_init() - it does the following things.
 *
 * 1) board_time_init() -
 * 	a) (optional) set up RTC routines,
 *      b) (optional) calibrate and set the mips_hpt_frequency
 *	    (only needed if you intended to use cpu counter as timer interrupt
 *	     source)
 * 2) setup xtime based on rtc_mips_get_time().
 * 3) calculate a couple of cached variables for later usage
 * 4) plat_timer_setup() -
 *	a) (optional) over-write any choices made above by time_init().
 *	b) machine specific code should setup the timer irqaction.
 *	c) enable the timer interrupt
 */

void (*board_time_init)(void);

unsigned int mips_hpt_frequency;

static struct irqaction timer_irqaction = {
	.handler = timer_interrupt,
	.flags = IRQF_DISABLED,
	.name = "timer",
};

static unsigned int __init calibrate_hpt(void)
{
	cycle_t frequency, hpt_start, hpt_end, hpt_count, hz;

	const int loops = HZ / 10;
	int log_2_loops = 0;
	int i;

	/*
	 * We want to calibrate for 0.1s, but to avoid a 64-bit
	 * division we round the number of loops up to the nearest
	 * power of 2.
	 */
	while (loops > 1 << log_2_loops)
		log_2_loops++;
	i = 1 << log_2_loops;

	/*
	 * Wait for a rising edge of the timer interrupt.
	 */
	while (mips_timer_state());
	while (!mips_timer_state());

	/*
	 * Now see how many high precision timer ticks happen
	 * during the calculated number of periods between timer
	 * interrupts.
	 */
	hpt_start = clocksource_mips.read();
	do {
		while (mips_timer_state());
		while (!mips_timer_state());
	} while (--i);
	hpt_end = clocksource_mips.read();

	hpt_count = (hpt_end - hpt_start) & clocksource_mips.mask;
	hz = HZ;
	frequency = hpt_count * hz;

	return frequency >> log_2_loops;
}

struct clocksource clocksource_mips = {
	.name		= "MIPS",
	.mask		= 0xffffffff,
	.is_continuous	= 1,
};

static void __init init_mips_clocksource(void)
{
	u64 temp;
	u32 shift;

	if (!mips_hpt_frequency || clocksource_mips.read == null_hpt_read)
		return;

	/* Calclate a somewhat reasonable rating value */
	clocksource_mips.rating = 200 + mips_hpt_frequency / 10000000;
	/* Find a shift value */
	for (shift = 32; shift > 0; shift--) {
		temp = (u64) NSEC_PER_SEC << shift;
		do_div(temp, mips_hpt_frequency);
		if ((temp >> 32) == 0)
			break;
	}
	clocksource_mips.shift = shift;
	clocksource_mips.mult = (u32)temp;

	clocksource_register(&clocksource_mips);
}

void __init time_init(void)
{
	if (board_time_init)
		board_time_init();

	if (!rtc_mips_set_mmss)
		rtc_mips_set_mmss = rtc_mips_set_time;

	xtime.tv_sec = rtc_mips_get_time();
	xtime.tv_nsec = 0;

	set_normalized_timespec(&wall_to_monotonic,
	                        -xtime.tv_sec, -xtime.tv_nsec);

	/* Choose appropriate high precision timer routines.  */
	if (!cpu_has_counter && !clocksource_mips.read)
		/* No high precision timer -- sorry.  */
		clocksource_mips.read = null_hpt_read;
	else if (!mips_hpt_frequency && !mips_timer_state) {
		/* A high precision timer of unknown frequency.  */
		if (!clocksource_mips.read)
			/* No external high precision timer -- use R4k.  */
			clocksource_mips.read = c0_hpt_read;
	} else {
		/* We know counter frequency.  Or we can get it.  */
		if (!clocksource_mips.read) {
			/* No external high precision timer -- use R4k.  */
			clocksource_mips.read = c0_hpt_read;

			if (!mips_timer_state) {
				/* No external timer interrupt -- use R4k.  */
				mips_timer_ack = c0_timer_ack;
				/* Calculate cache parameters.  */
				cycles_per_jiffy =
					(mips_hpt_frequency + HZ / 2) / HZ;
				/*
				 * This sets up the high precision
				 * timer for the first interrupt.
				 */
				c0_hpt_timer_init();
			}
		}
		if (!mips_hpt_frequency)
			mips_hpt_frequency = calibrate_hpt();

		/* Report the high precision timer rate for a reference.  */
		printk("Using %u.%03u MHz high precision timer.\n",
		       ((mips_hpt_frequency + 500) / 1000) / 1000,
		       ((mips_hpt_frequency + 500) / 1000) % 1000);
	}

	if (!mips_timer_ack)
		/* No timer interrupt ack (e.g. i8254).  */
		mips_timer_ack = null_timer_ack;

	/*
	 * Call board specific timer interrupt setup.
	 *
	 * this pointer must be setup in machine setup routine.
	 *
	 * Even if a machine chooses to use a low-level timer interrupt,
	 * it still needs to setup the timer_irqaction.
	 * In that case, it might be better to set timer_irqaction.handler
	 * to be NULL function so that we are sure the high-level code
	 * is not invoked accidentally.
	 */
	plat_timer_setup(&timer_irqaction);

	init_mips_clocksource();
}

#define FEBRUARY		2
#define STARTOFTIME		1970
#define SECDAY			86400L
#define SECYR			(SECDAY * 365)
#define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400))
#define days_in_year(y)		(leapyear(y) ? 366 : 365)
#define days_in_month(m)	(month_days[(m) - 1])

static int month_days[12] = {
	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};

void to_tm(unsigned long tim, struct rtc_time *tm)
{
	long hms, day, gday;
	int i;

	gday = day = tim / SECDAY;
	hms = tim % SECDAY;

	/* Hours, minutes, seconds are easy */
	tm->tm_hour = hms / 3600;
	tm->tm_min = (hms % 3600) / 60;
	tm->tm_sec = (hms % 3600) % 60;

	/* Number of years in days */
	for (i = STARTOFTIME; day >= days_in_year(i); i++)
		day -= days_in_year(i);
	tm->tm_year = i;

	/* Number of months in days left */
	if (leapyear(tm->tm_year))
		days_in_month(FEBRUARY) = 29;
	for (i = 1; day >= days_in_month(i); i++)
		day -= days_in_month(i);
	days_in_month(FEBRUARY) = 28;
	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */

	/* Days are what is left over (+1) from all that. */
	tm->tm_mday = day + 1;

	/*
	 * Determine the day of week
	 */
	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */
}

EXPORT_SYMBOL(rtc_lock);
EXPORT_SYMBOL(to_tm);
EXPORT_SYMBOL(rtc_mips_set_time);
EXPORT_SYMBOL(rtc_mips_get_time);

unsigned long long sched_clock(void)
{
	return (unsigned long long)jiffies*(1000000000/HZ);
}