diff options
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r-- | drivers/mtd/nand/Kconfig | 207 | ||||
-rw-r--r-- | drivers/mtd/nand/Makefile | 24 | ||||
-rw-r--r-- | drivers/mtd/nand/au1550nd.c | 477 | ||||
-rw-r--r-- | drivers/mtd/nand/autcpu12.c | 225 | ||||
-rw-r--r-- | drivers/mtd/nand/diskonchip.c | 1782 | ||||
-rw-r--r-- | drivers/mtd/nand/edb7312.c | 218 | ||||
-rw-r--r-- | drivers/mtd/nand/h1910.c | 208 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_base.c | 2563 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_bbt.c | 1056 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_ecc.c | 250 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_ids.c | 129 | ||||
-rw-r--r-- | drivers/mtd/nand/nandsim.c | 1613 | ||||
-rw-r--r-- | drivers/mtd/nand/ppchameleonevb.c | 420 | ||||
-rw-r--r-- | drivers/mtd/nand/rtc_from4.c | 559 | ||||
-rw-r--r-- | drivers/mtd/nand/s3c2410.c | 704 | ||||
-rwxr-xr-x | drivers/mtd/nand/sharpsl.c | 260 | ||||
-rw-r--r-- | drivers/mtd/nand/spia.c | 173 | ||||
-rw-r--r-- | drivers/mtd/nand/toto.c | 205 | ||||
-rw-r--r-- | drivers/mtd/nand/tx4925ndfmc.c | 416 | ||||
-rw-r--r-- | drivers/mtd/nand/tx4938ndfmc.c | 406 |
20 files changed, 11895 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig new file mode 100644 index 00000000000..f7801eb730c --- /dev/null +++ b/drivers/mtd/nand/Kconfig @@ -0,0 +1,207 @@ +# drivers/mtd/nand/Kconfig +# $Id: Kconfig,v 1.26 2005/01/05 12:42:24 dwmw2 Exp $ + +menu "NAND Flash Device Drivers" + depends on MTD!=n + +config MTD_NAND + tristate "NAND Device Support" + depends on MTD + select MTD_NAND_IDS + help + This enables support for accessing all type of NAND flash + devices. For further information see + <http://www.linux-mtd.infradead.org/tech/nand.html>. + +config MTD_NAND_VERIFY_WRITE + bool "Verify NAND page writes" + depends on MTD_NAND + help + This adds an extra check when data is written to the flash. The + NAND flash device internally checks only bits transitioning + from 1 to 0. There is a rare possibility that even though the + device thinks the write was successful, a bit could have been + flipped accidentaly due to device wear or something else. + +config MTD_NAND_AUTCPU12 + tristate "SmartMediaCard on autronix autcpu12 board" + depends on ARM && MTD_NAND && ARCH_AUTCPU12 + help + This enables the driver for the autronix autcpu12 board to + access the SmartMediaCard. + +config MTD_NAND_EDB7312 + tristate "Support for Cirrus Logic EBD7312 evaluation board" + depends on ARM && MTD_NAND && ARCH_EDB7312 + help + This enables the driver for the Cirrus Logic EBD7312 evaluation + board to access the onboard NAND Flash. + +config MTD_NAND_H1900 + tristate "iPAQ H1900 flash" + depends on ARM && MTD_NAND && ARCH_PXA && MTD_PARTITIONS + help + This enables the driver for the iPAQ h1900 flash. + +config MTD_NAND_SPIA + tristate "NAND Flash device on SPIA board" + depends on ARM && ARCH_P720T && MTD_NAND + help + If you had to ask, you don't have one. Say 'N'. + +config MTD_NAND_TOTO + tristate "NAND Flash device on TOTO board" + depends on ARM && ARCH_OMAP && MTD_NAND + help + Support for NAND flash on Texas Instruments Toto platform. + +config MTD_NAND_IDS + tristate + +config MTD_NAND_TX4925NDFMC + tristate "SmartMedia Card on Toshiba RBTX4925 reference board" + depends on TOSHIBA_RBTX4925 && MTD_NAND && TOSHIBA_RBTX4925_MPLEX_NAND + help + This enables the driver for the NAND flash device found on the + Toshiba RBTX4925 reference board, which is a SmartMediaCard. + +config MTD_NAND_TX4938NDFMC + tristate "NAND Flash device on Toshiba RBTX4938 reference board" + depends on TOSHIBA_RBTX4938 && MTD_NAND && TOSHIBA_RBTX4938_MPLEX_NAND + help + This enables the driver for the NAND flash device found on the + Toshiba RBTX4938 reference board. + +config MTD_NAND_AU1550 + tristate "Au1550 NAND support" + depends on SOC_AU1550 && MTD_NAND + help + This enables the driver for the NAND flash controller on the + AMD/Alchemy 1550 SOC. + +config MTD_NAND_RTC_FROM4 + tristate "Renesas Flash ROM 4-slot interface board (FROM_BOARD4)" + depends on MTD_NAND && SH_SOLUTION_ENGINE + select REED_SOLOMON + select REED_SOLOMON_DEC8 + help + This enables the driver for the Renesas Technology AG-AND + flash interface board (FROM_BOARD4) + +config MTD_NAND_PPCHAMELEONEVB + tristate "NAND Flash device on PPChameleonEVB board" + depends on PPCHAMELEONEVB && MTD_NAND + help + This enables the NAND flash driver on the PPChameleon EVB Board. + +config MTD_NAND_S3C2410 + tristate "NAND Flash support for S3C2410 SoC" + depends on ARCH_S3C2410 && MTD_NAND + help + This enables the NAND flash controller on the S3C2410. + + No board specfic support is done by this driver, each board + must advertise a platform_device for the driver to attach. + +config MTD_NAND_S3C2410_DEBUG + bool "S3C2410 NAND driver debug" + depends on MTD_NAND_S3C2410 + help + Enable debugging of the S3C2410 NAND driver + +config MTD_NAND_S3C2410_HWECC + bool "S3C2410 NAND Hardware ECC" + depends on MTD_NAND_S3C2410 + help + Enable the use of the S3C2410's internal ECC generator when + using NAND. Early versions of the chip have had problems with + incorrect ECC generation, and if using these, the default of + software ECC is preferable. + + If you lay down a device with the hardware ECC, then you will + currently not be able to switch to software, as there is no + implementation for ECC method used by the S3C2410 + +config MTD_NAND_DISKONCHIP + tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)" + depends on MTD_NAND && EXPERIMENTAL + select REED_SOLOMON + select REED_SOLOMON_DEC16 + help + This is a reimplementation of M-Systems DiskOnChip 2000, + Millennium and Millennium Plus as a standard NAND device driver, + as opposed to the earlier self-contained MTD device drivers. + This should enable, among other things, proper JFFS2 operation on + these devices. + +config MTD_NAND_DISKONCHIP_PROBE_ADVANCED + bool "Advanced detection options for DiskOnChip" + depends on MTD_NAND_DISKONCHIP + help + This option allows you to specify nonstandard address at which to + probe for a DiskOnChip, or to change the detection options. You + are unlikely to need any of this unless you are using LinuxBIOS. + Say 'N'. + +config MTD_NAND_DISKONCHIP_PROBE_ADDRESS + hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED + depends on MTD_NAND_DISKONCHIP + default "0" + ---help--- + By default, the probe for DiskOnChip devices will look for a + DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. + This option allows you to specify a single address at which to probe + for the device, which is useful if you have other devices in that + range which get upset when they are probed. + + (Note that on PowerPC, the normal probe will only check at + 0xE4000000.) + + Normally, you should leave this set to zero, to allow the probe at + the normal addresses. + +config MTD_NAND_DISKONCHIP_PROBE_HIGH + bool "Probe high addresses" + depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED + help + By default, the probe for DiskOnChip devices will look for a + DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000. + This option changes to make it probe between 0xFFFC8000 and + 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be + useful to you. Say 'N'. + +config MTD_NAND_DISKONCHIP_BBTWRITE + bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP" + depends on MTD_NAND_DISKONCHIP + help + On DiskOnChip devices shipped with the INFTL filesystem (Millennium + and 2000 TSOP/Alon), Linux reserves some space at the end of the + device for the Bad Block Table (BBT). If you have existing INFTL + data on your device (created by non-Linux tools such as M-Systems' + DOS drivers), your data might overlap the area Linux wants to use for + the BBT. If this is a concern for you, leave this option disabled and + Linux will not write BBT data into this area. + The downside of leaving this option disabled is that if bad blocks + are detected by Linux, they will not be recorded in the BBT, which + could cause future problems. + Once you enable this option, new filesystems (INFTL or others, created + in Linux or other operating systems) will not use the reserved area. + The only reason not to enable this option is to prevent damage to + preexisting filesystems. + Even if you leave this disabled, you can enable BBT writes at module + load time (assuming you build diskonchip as a module) with the module + parameter "inftl_bbt_write=1". + + config MTD_NAND_SHARPSL + bool "Support for NAND Flash on Sharp SL Series (C7xx + others)" + depends on MTD_NAND && ARCH_PXA + + config MTD_NAND_NANDSIM + bool "Support for NAND Flash Simulator" + depends on MTD_NAND && MTD_PARTITIONS + + help + The simulator may simulate verious NAND flash chips for the + MTD nand layer. + +endmenu diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile new file mode 100644 index 00000000000..d9dc8cc2da8 --- /dev/null +++ b/drivers/mtd/nand/Makefile @@ -0,0 +1,24 @@ +# +# linux/drivers/nand/Makefile +# +# $Id: Makefile.common,v 1.15 2004/11/26 12:28:22 dedekind Exp $ + +obj-$(CONFIG_MTD_NAND) += nand.o nand_ecc.o +obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o + +obj-$(CONFIG_MTD_NAND_SPIA) += spia.o +obj-$(CONFIG_MTD_NAND_TOTO) += toto.o +obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o +obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o +obj-$(CONFIG_MTD_NAND_TX4925NDFMC) += tx4925ndfmc.o +obj-$(CONFIG_MTD_NAND_TX4938NDFMC) += tx4938ndfmc.o +obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o +obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB) += ppchameleonevb.o +obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o +obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o +obj-$(CONFIG_MTD_NAND_H1900) += h1910.o +obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o +obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o +obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o + +nand-objs = nand_base.o nand_bbt.o diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/au1550nd.c new file mode 100644 index 00000000000..4c7719ce3f4 --- /dev/null +++ b/drivers/mtd/nand/au1550nd.c @@ -0,0 +1,477 @@ +/* + * drivers/mtd/nand/au1550nd.c + * + * Copyright (C) 2004 Embedded Edge, LLC + * + * $Id: au1550nd.c,v 1.11 2004/11/04 12:53:10 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> + +/* fixme: this is ugly */ +#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 0) +#include <asm/mach-au1x00/au1000.h> +#ifdef CONFIG_MIPS_PB1550 +#include <asm/mach-pb1x00/pb1550.h> +#endif +#ifdef CONFIG_MIPS_DB1550 +#include <asm/mach-db1x00/db1x00.h> +#endif +#else +#include <asm/au1000.h> +#ifdef CONFIG_MIPS_PB1550 +#include <asm/pb1550.h> +#endif +#ifdef CONFIG_MIPS_DB1550 +#include <asm/db1x00.h> +#endif +#endif + +/* + * MTD structure for NAND controller + */ +static struct mtd_info *au1550_mtd = NULL; +static void __iomem *p_nand; +static int nand_width = 1; /* default x8*/ + +#define NAND_CS 1 + +/* + * Define partitions for flash device + */ +const static struct mtd_partition partition_info[] = { +#ifdef CONFIG_MIPS_PB1550 +#define NUM_PARTITIONS 2 + { + .name = "Pb1550 NAND FS 0", + .offset = 0, + .size = 8*1024*1024 + }, + { + .name = "Pb1550 NAND FS 1", + .offset = MTDPART_OFS_APPEND, + .size = MTDPART_SIZ_FULL + } +#endif +#ifdef CONFIG_MIPS_DB1550 +#define NUM_PARTITIONS 2 + { + .name = "Db1550 NAND FS 0", + .offset = 0, + .size = 8*1024*1024 + }, + { + .name = "Db1550 NAND FS 1", + .offset = MTDPART_OFS_APPEND, + .size = MTDPART_SIZ_FULL + } +#endif +}; + + +/** + * au_read_byte - read one byte from the chip + * @mtd: MTD device structure + * + * read function for 8bit buswith + */ +static u_char au_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + u_char ret = readb(this->IO_ADDR_R); + au_sync(); + return ret; +} + +/** + * au_write_byte - write one byte to the chip + * @mtd: MTD device structure + * @byte: pointer to data byte to write + * + * write function for 8it buswith + */ +static void au_write_byte(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd->priv; + writeb(byte, this->IO_ADDR_W); + au_sync(); +} + +/** + * au_read_byte16 - read one byte endianess aware from the chip + * @mtd: MTD device structure + * + * read function for 16bit buswith with + * endianess conversion + */ +static u_char au_read_byte16(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R)); + au_sync(); + return ret; +} + +/** + * au_write_byte16 - write one byte endianess aware to the chip + * @mtd: MTD device structure + * @byte: pointer to data byte to write + * + * write function for 16bit buswith with + * endianess conversion + */ +static void au_write_byte16(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd->priv; + writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); + au_sync(); +} + +/** + * au_read_word - read one word from the chip + * @mtd: MTD device structure + * + * read function for 16bit buswith without + * endianess conversion + */ +static u16 au_read_word(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + u16 ret = readw(this->IO_ADDR_R); + au_sync(); + return ret; +} + +/** + * au_write_word - write one word to the chip + * @mtd: MTD device structure + * @word: data word to write + * + * write function for 16bit buswith without + * endianess conversion + */ +static void au_write_word(struct mtd_info *mtd, u16 word) +{ + struct nand_chip *this = mtd->priv; + writew(word, this->IO_ADDR_W); + au_sync(); +} + +/** + * au_write_buf - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * write function for 8bit buswith + */ +static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) { + writeb(buf[i], this->IO_ADDR_W); + au_sync(); + } +} + +/** + * au_read_buf - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * read function for 8bit buswith + */ +static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) { + buf[i] = readb(this->IO_ADDR_R); + au_sync(); + } +} + +/** + * au_verify_buf - Verify chip data against buffer + * @mtd: MTD device structure + * @buf: buffer containing the data to compare + * @len: number of bytes to compare + * + * verify function for 8bit buswith + */ +static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) { + if (buf[i] != readb(this->IO_ADDR_R)) + return -EFAULT; + au_sync(); + } + + return 0; +} + +/** + * au_write_buf16 - write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * write function for 16bit buswith + */ +static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i=0; i<len; i++) { + writew(p[i], this->IO_ADDR_W); + au_sync(); + } + +} + +/** + * au_read_buf16 - read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * read function for 16bit buswith + */ +static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i=0; i<len; i++) { + p[i] = readw(this->IO_ADDR_R); + au_sync(); + } +} + +/** + * au_verify_buf16 - Verify chip data against buffer + * @mtd: MTD device structure + * @buf: buffer containing the data to compare + * @len: number of bytes to compare + * + * verify function for 16bit buswith + */ +static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i=0; i<len; i++) { + if (p[i] != readw(this->IO_ADDR_R)) + return -EFAULT; + au_sync(); + } + return 0; +} + + +static void au1550_hwcontrol(struct mtd_info *mtd, int cmd) +{ + register struct nand_chip *this = mtd->priv; + + switch(cmd){ + + case NAND_CTL_SETCLE: this->IO_ADDR_W = p_nand + MEM_STNAND_CMD; break; + case NAND_CTL_CLRCLE: this->IO_ADDR_W = p_nand + MEM_STNAND_DATA; break; + + case NAND_CTL_SETALE: this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR; break; + case NAND_CTL_CLRALE: + this->IO_ADDR_W = p_nand + MEM_STNAND_DATA; + /* FIXME: Nobody knows why this is neccecary, + * but it works only that way */ + udelay(1); + break; + + case NAND_CTL_SETNCE: + /* assert (force assert) chip enable */ + au_writel((1<<(4+NAND_CS)) , MEM_STNDCTL); break; + break; + + case NAND_CTL_CLRNCE: + /* deassert chip enable */ + au_writel(0, MEM_STNDCTL); break; + break; + } + + this->IO_ADDR_R = this->IO_ADDR_W; + + /* Drain the writebuffer */ + au_sync(); +} + +int au1550_device_ready(struct mtd_info *mtd) +{ + int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0; + au_sync(); + return ret; +} + +/* + * Main initialization routine + */ +int __init au1550_init (void) +{ + struct nand_chip *this; + u16 boot_swapboot = 0; /* default value */ + int retval; + + /* Allocate memory for MTD device structure and private data */ + au1550_mtd = kmalloc (sizeof(struct mtd_info) + + sizeof (struct nand_chip), GFP_KERNEL); + if (!au1550_mtd) { + printk ("Unable to allocate NAND MTD dev structure.\n"); + return -ENOMEM; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&au1550_mtd[1]); + + /* Initialize structures */ + memset((char *) au1550_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + au1550_mtd->priv = this; + + + /* MEM_STNDCTL: disable ints, disable nand boot */ + au_writel(0, MEM_STNDCTL); + +#ifdef CONFIG_MIPS_PB1550 + /* set gpio206 high */ + au_writel(au_readl(GPIO2_DIR) & ~(1<<6), GPIO2_DIR); + + boot_swapboot = (au_readl(MEM_STSTAT) & (0x7<<1)) | + ((bcsr->status >> 6) & 0x1); + switch (boot_swapboot) { + case 0: + case 2: + case 8: + case 0xC: + case 0xD: + /* x16 NAND Flash */ + nand_width = 0; + break; + case 1: + case 9: + case 3: + case 0xE: + case 0xF: + /* x8 NAND Flash */ + nand_width = 1; + break; + default: + printk("Pb1550 NAND: bad boot:swap\n"); + retval = -EINVAL; + goto outmem; + } +#endif + + /* Configure RCE1 - should be done by YAMON */ + au_writel(0x5 | (nand_width << 22), 0xB4001010); /* MEM_STCFG1 */ + au_writel(NAND_TIMING, 0xB4001014); /* MEM_STTIME1 */ + au_sync(); + + /* setup and enable chip select, MEM_STADDR1 */ + /* we really need to decode offsets only up till 0x20 */ + au_writel((1<<28) | (NAND_PHYS_ADDR>>4) | + (((NAND_PHYS_ADDR + 0x1000)-1) & (0x3fff<<18)>>18), + MEM_STADDR1); + au_sync(); + + p_nand = ioremap(NAND_PHYS_ADDR, 0x1000); + + /* Set address of hardware control function */ + this->hwcontrol = au1550_hwcontrol; + this->dev_ready = au1550_device_ready; + /* 30 us command delay time */ + this->chip_delay = 30; + this->eccmode = NAND_ECC_SOFT; + + this->options = NAND_NO_AUTOINCR; + + if (!nand_width) + this->options |= NAND_BUSWIDTH_16; + + this->read_byte = (!nand_width) ? au_read_byte16 : au_read_byte; + this->write_byte = (!nand_width) ? au_write_byte16 : au_write_byte; + this->write_word = au_write_word; + this->read_word = au_read_word; + this->write_buf = (!nand_width) ? au_write_buf16 : au_write_buf; + this->read_buf = (!nand_width) ? au_read_buf16 : au_read_buf; + this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf; + + /* Scan to find existence of the device */ + if (nand_scan (au1550_mtd, 1)) { + retval = -ENXIO; + goto outio; + } + + /* Register the partitions */ + add_mtd_partitions(au1550_mtd, partition_info, NUM_PARTITIONS); + + return 0; + + outio: + iounmap ((void *)p_nand); + + outmem: + kfree (au1550_mtd); + return retval; +} + +module_init(au1550_init); + +/* + * Clean up routine + */ +#ifdef MODULE +static void __exit au1550_cleanup (void) +{ + struct nand_chip *this = (struct nand_chip *) &au1550_mtd[1]; + + /* Release resources, unregister device */ + nand_release (au1550_mtd); + + /* Free the MTD device structure */ + kfree (au1550_mtd); + + /* Unmap */ + iounmap ((void *)p_nand); +} +module_exit(au1550_cleanup); +#endif + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Embedded Edge, LLC"); +MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board"); diff --git a/drivers/mtd/nand/autcpu12.c b/drivers/mtd/nand/autcpu12.c new file mode 100644 index 00000000000..4afa8ced05a --- /dev/null +++ b/drivers/mtd/nand/autcpu12.c @@ -0,0 +1,225 @@ +/* + * drivers/mtd/autcpu12.c + * + * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de> + * + * Derived from drivers/mtd/spia.c + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * + * $Id: autcpu12.c,v 1.22 2004/11/04 12:53:10 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the NAND flash device found on the + * autronix autcpu12 board, which is a SmartMediaCard. It supports + * 16MiB, 32MiB and 64MiB cards. + * + * + * 02-12-2002 TG Cleanup of module params + * + * 02-20-2002 TG adjusted for different rd/wr adress support + * added support for read device ready/busy line + * added page_cache + * + * 10-06-2002 TG 128K card support added + */ + +#include <linux/version.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> +#include <asm/arch/hardware.h> +#include <asm/sizes.h> +#include <asm/arch/autcpu12.h> + +/* + * MTD structure for AUTCPU12 board + */ +static struct mtd_info *autcpu12_mtd = NULL; + +static int autcpu12_io_base = CS89712_VIRT_BASE; +static int autcpu12_fio_pbase = AUTCPU12_PHYS_SMC; +static int autcpu12_fio_ctrl = AUTCPU12_SMC_SELECT_OFFSET; +static int autcpu12_pedr = AUTCPU12_SMC_PORT_OFFSET; +static void __iomem * autcpu12_fio_base; + +/* + * Define partitions for flash devices + */ +static struct mtd_partition partition_info16k[] = { + { .name = "AUTCPU12 flash partition 1", + .offset = 0, + .size = 8 * SZ_1M }, + { .name = "AUTCPU12 flash partition 2", + .offset = 8 * SZ_1M, + .size = 8 * SZ_1M }, +}; + +static struct mtd_partition partition_info32k[] = { + { .name = "AUTCPU12 flash partition 1", + .offset = 0, + .size = 8 * SZ_1M }, + { .name = "AUTCPU12 flash partition 2", + .offset = 8 * SZ_1M, + .size = 24 * SZ_1M }, +}; + +static struct mtd_partition partition_info64k[] = { + { .name = "AUTCPU12 flash partition 1", + .offset = 0, + .size = 16 * SZ_1M }, + { .name = "AUTCPU12 flash partition 2", + .offset = 16 * SZ_1M, + .size = 48 * SZ_1M }, +}; + +static struct mtd_partition partition_info128k[] = { + { .name = "AUTCPU12 flash partition 1", + .offset = 0, + .size = 16 * SZ_1M }, + { .name = "AUTCPU12 flash partition 2", + .offset = 16 * SZ_1M, + .size = 112 * SZ_1M }, +}; + +#define NUM_PARTITIONS16K 2 +#define NUM_PARTITIONS32K 2 +#define NUM_PARTITIONS64K 2 +#define NUM_PARTITIONS128K 2 +/* + * hardware specific access to control-lines +*/ +static void autcpu12_hwcontrol(struct mtd_info *mtd, int cmd) +{ + + switch(cmd){ + + case NAND_CTL_SETCLE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) |= AUTCPU12_SMC_CLE; break; + case NAND_CTL_CLRCLE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) &= ~AUTCPU12_SMC_CLE; break; + + case NAND_CTL_SETALE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) |= AUTCPU12_SMC_ALE; break; + case NAND_CTL_CLRALE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) &= ~AUTCPU12_SMC_ALE; break; + + case NAND_CTL_SETNCE: (*(volatile unsigned char *) (autcpu12_fio_base + autcpu12_fio_ctrl)) = 0x01; break; + case NAND_CTL_CLRNCE: (*(volatile unsigned char *) (autcpu12_fio_base + autcpu12_fio_ctrl)) = 0x00; break; + } +} + +/* +* read device ready pin +*/ +int autcpu12_device_ready(struct mtd_info *mtd) +{ + + return ( (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) & AUTCPU12_SMC_RDY) ? 1 : 0; + +} + +/* + * Main initialization routine + */ +int __init autcpu12_init (void) +{ + struct nand_chip *this; + int err = 0; + + /* Allocate memory for MTD device structure and private data */ + autcpu12_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip), + GFP_KERNEL); + if (!autcpu12_mtd) { + printk ("Unable to allocate AUTCPU12 NAND MTD device structure.\n"); + err = -ENOMEM; + goto out; + } + + /* map physical adress */ + autcpu12_fio_base = ioremap(autcpu12_fio_pbase,SZ_1K); + if(!autcpu12_fio_base){ + printk("Ioremap autcpu12 SmartMedia Card failed\n"); + err = -EIO; + goto out_mtd; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&autcpu12_mtd[1]); + + /* Initialize structures */ + memset((char *) autcpu12_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + autcpu12_mtd->priv = this; + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = autcpu12_fio_base; + this->IO_ADDR_W = autcpu12_fio_base; + this->hwcontrol = autcpu12_hwcontrol; + this->dev_ready = autcpu12_device_ready; + /* 20 us command delay time */ + this->chip_delay = 20; + this->eccmode = NAND_ECC_SOFT; + + /* Enable the following for a flash based bad block table */ + /* + this->options = NAND_USE_FLASH_BBT; + */ + this->options = NAND_USE_FLASH_BBT; + + /* Scan to find existance of the device */ + if (nand_scan (autcpu12_mtd, 1)) { + err = -ENXIO; + goto out_ior; + } + + /* Register the partitions */ + switch(autcpu12_mtd->size){ + case SZ_16M: add_mtd_partitions(autcpu12_mtd, partition_info16k, NUM_PARTITIONS16K); break; + case SZ_32M: add_mtd_partitions(autcpu12_mtd, partition_info32k, NUM_PARTITIONS32K); break; + case SZ_64M: add_mtd_partitions(autcpu12_mtd, partition_info64k, NUM_PARTITIONS64K); break; + case SZ_128M: add_mtd_partitions(autcpu12_mtd, partition_info128k, NUM_PARTITIONS128K); break; + default: { + printk ("Unsupported SmartMedia device\n"); + err = -ENXIO; + goto out_ior; + } + } + goto out; + +out_ior: + iounmap((void *)autcpu12_fio_base); +out_mtd: + kfree (autcpu12_mtd); +out: + return err; +} + +module_init(autcpu12_init); + +/* + * Clean up routine + */ +#ifdef MODULE +static void __exit autcpu12_cleanup (void) +{ + /* Release resources, unregister device */ + nand_release (autcpu12_mtd); + + /* unmap physical adress */ + iounmap((void *)autcpu12_fio_base); + + /* Free the MTD device structure */ + kfree (autcpu12_mtd); +} +module_exit(autcpu12_cleanup); +#endif + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>"); +MODULE_DESCRIPTION("Glue layer for SmartMediaCard on autronix autcpu12"); diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c new file mode 100644 index 00000000000..02135c3ac29 --- /dev/null +++ b/drivers/mtd/nand/diskonchip.c @@ -0,0 +1,1782 @@ +/* + * drivers/mtd/nand/diskonchip.c + * + * (C) 2003 Red Hat, Inc. + * (C) 2004 Dan Brown <dan_brown@ieee.org> + * (C) 2004 Kalev Lember <kalev@smartlink.ee> + * + * Author: David Woodhouse <dwmw2@infradead.org> + * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> + * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> + * + * Error correction code lifted from the old docecc code + * Author: Fabrice Bellard (fabrice.bellard@netgem.com) + * Copyright (C) 2000 Netgem S.A. + * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> + * + * Interface to generic NAND code for M-Systems DiskOnChip devices + * + * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $ + */ + +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/sched.h> +#include <linux/delay.h> +#include <linux/rslib.h> +#include <linux/moduleparam.h> +#include <asm/io.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/doc2000.h> +#include <linux/mtd/compatmac.h> +#include <linux/mtd/partitions.h> +#include <linux/mtd/inftl.h> + +/* Where to look for the devices? */ +#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS +#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0 +#endif + +static unsigned long __initdata doc_locations[] = { +#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) +#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH + 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, + 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, + 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, + 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, + 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, +#else /* CONFIG_MTD_DOCPROBE_HIGH */ + 0xc8000, 0xca000, 0xcc000, 0xce000, + 0xd0000, 0xd2000, 0xd4000, 0xd6000, + 0xd8000, 0xda000, 0xdc000, 0xde000, + 0xe0000, 0xe2000, 0xe4000, 0xe6000, + 0xe8000, 0xea000, 0xec000, 0xee000, +#endif /* CONFIG_MTD_DOCPROBE_HIGH */ +#elif defined(__PPC__) + 0xe4000000, +#elif defined(CONFIG_MOMENCO_OCELOT) + 0x2f000000, + 0xff000000, +#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C) + 0xff000000, +##else +#warning Unknown architecture for DiskOnChip. No default probe locations defined +#endif + 0xffffffff }; + +static struct mtd_info *doclist = NULL; + +struct doc_priv { + void __iomem *virtadr; + unsigned long physadr; + u_char ChipID; + u_char CDSNControl; + int chips_per_floor; /* The number of chips detected on each floor */ + int curfloor; + int curchip; + int mh0_page; + int mh1_page; + struct mtd_info *nextdoc; +}; + +/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL + MediaHeader. The spec says to just keep going, I think, but that's just + silly. */ +#define MAX_MEDIAHEADER_SCAN 8 + +/* This is the syndrome computed by the HW ecc generator upon reading an empty + page, one with all 0xff for data and stored ecc code. */ +static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a }; +/* This is the ecc value computed by the HW ecc generator upon writing an empty + page, one with all 0xff for data. */ +static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; + +#define INFTL_BBT_RESERVED_BLOCKS 4 + +#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) +#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) +#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) + +static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd); +static void doc200x_select_chip(struct mtd_info *mtd, int chip); + +static int debug=0; +module_param(debug, int, 0); + +static int try_dword=1; +module_param(try_dword, int, 0); + +static int no_ecc_failures=0; +module_param(no_ecc_failures, int, 0); + +#ifdef CONFIG_MTD_PARTITIONS +static int no_autopart=0; +module_param(no_autopart, int, 0); +#endif + +#ifdef MTD_NAND_DISKONCHIP_BBTWRITE +static int inftl_bbt_write=1; +#else +static int inftl_bbt_write=0; +#endif +module_param(inftl_bbt_write, int, 0); + +static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS; +module_param(doc_config_location, ulong, 0); +MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); + + +/* Sector size for HW ECC */ +#define SECTOR_SIZE 512 +/* The sector bytes are packed into NB_DATA 10 bit words */ +#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) +/* Number of roots */ +#define NROOTS 4 +/* First consective root */ +#define FCR 510 +/* Number of symbols */ +#define NN 1023 + +/* the Reed Solomon control structure */ +static struct rs_control *rs_decoder; + +/* + * The HW decoder in the DoC ASIC's provides us a error syndrome, + * which we must convert to a standard syndrom usable by the generic + * Reed-Solomon library code. + * + * Fabrice Bellard figured this out in the old docecc code. I added + * some comments, improved a minor bit and converted it to make use + * of the generic Reed-Solomon libary. tglx + */ +static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc) +{ + int i, j, nerr, errpos[8]; + uint8_t parity; + uint16_t ds[4], s[5], tmp, errval[8], syn[4]; + + /* Convert the ecc bytes into words */ + ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); + ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); + ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); + ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); + parity = ecc[1]; + + /* Initialize the syndrom buffer */ + for (i = 0; i < NROOTS; i++) + s[i] = ds[0]; + /* + * Evaluate + * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] + * where x = alpha^(FCR + i) + */ + for(j = 1; j < NROOTS; j++) { + if(ds[j] == 0) + continue; + tmp = rs->index_of[ds[j]]; + for(i = 0; i < NROOTS; i++) + s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)]; + } + + /* Calc s[i] = s[i] / alpha^(v + i) */ + for (i = 0; i < NROOTS; i++) { + if (syn[i]) + syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i)); + } + /* Call the decoder library */ + nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); + + /* Incorrectable errors ? */ + if (nerr < 0) + return nerr; + + /* + * Correct the errors. The bitpositions are a bit of magic, + * but they are given by the design of the de/encoder circuit + * in the DoC ASIC's. + */ + for(i = 0;i < nerr; i++) { + int index, bitpos, pos = 1015 - errpos[i]; + uint8_t val; + if (pos >= NB_DATA && pos < 1019) + continue; + if (pos < NB_DATA) { + /* extract bit position (MSB first) */ + pos = 10 * (NB_DATA - 1 - pos) - 6; + /* now correct the following 10 bits. At most two bytes + can be modified since pos is even */ + index = (pos >> 3) ^ 1; + bitpos = pos & 7; + if ((index >= 0 && index < SECTOR_SIZE) || + index == (SECTOR_SIZE + 1)) { + val = (uint8_t) (errval[i] >> (2 + bitpos)); + parity ^= val; + if (index < SECTOR_SIZE) + data[index] ^= val; + } + index = ((pos >> 3) + 1) ^ 1; + bitpos = (bitpos + 10) & 7; + if (bitpos == 0) + bitpos = 8; + if ((index >= 0 && index < SECTOR_SIZE) || + index == (SECTOR_SIZE + 1)) { + val = (uint8_t)(errval[i] << (8 - bitpos)); + parity ^= val; + if (index < SECTOR_SIZE) + data[index] ^= val; + } + } + } + /* If the parity is wrong, no rescue possible */ + return parity ? -1 : nerr; +} + +static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) +{ + volatile char dummy; + int i; + + for (i = 0; i < cycles; i++) { + if (DoC_is_Millennium(doc)) + dummy = ReadDOC(doc->virtadr, NOP); + else if (DoC_is_MillenniumPlus(doc)) + dummy = ReadDOC(doc->virtadr, Mplus_NOP); + else + dummy = ReadDOC(doc->virtadr, DOCStatus); + } + +} + +#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) + +/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ +static int _DoC_WaitReady(struct doc_priv *doc) +{ + void __iomem *docptr = doc->virtadr; + unsigned long timeo = jiffies + (HZ * 10); + + if(debug) printk("_DoC_WaitReady...\n"); + /* Out-of-line routine to wait for chip response */ + if (DoC_is_MillenniumPlus(doc)) { + while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { + if (time_after(jiffies, timeo)) { + printk("_DoC_WaitReady timed out.\n"); + return -EIO; + } + udelay(1); + cond_resched(); + } + } else { + while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { + if (time_after(jiffies, timeo)) { + printk("_DoC_WaitReady timed out.\n"); + return -EIO; + } + udelay(1); + cond_resched(); + } + } + + return 0; +} + +static inline int DoC_WaitReady(struct doc_priv *doc) +{ + void __iomem *docptr = doc->virtadr; + int ret = 0; + + if (DoC_is_MillenniumPlus(doc)) { + DoC_Delay(doc, 4); + + if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) + /* Call the out-of-line routine to wait */ + ret = _DoC_WaitReady(doc); + } else { + DoC_Delay(doc, 4); + + if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) + /* Call the out-of-line routine to wait */ + ret = _DoC_WaitReady(doc); + DoC_Delay(doc, 2); + } + + if(debug) printk("DoC_WaitReady OK\n"); + return ret; +} + +static void doc2000_write_byte(struct mtd_info *mtd, u_char datum) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + + if(debug)printk("write_byte %02x\n", datum); + WriteDOC(datum, docptr, CDSNSlowIO); + WriteDOC(datum, docptr, 2k_CDSN_IO); +} + +static u_char doc2000_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + u_char ret; + + ReadDOC(docptr, CDSNSlowIO); + DoC_Delay(doc, 2); + ret = ReadDOC(docptr, 2k_CDSN_IO); + if (debug) printk("read_byte returns %02x\n", ret); + return ret; +} + +static void doc2000_writebuf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + if (debug)printk("writebuf of %d bytes: ", len); + for (i=0; i < len; i++) { + WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); + if (debug && i < 16) + printk("%02x ", buf[i]); + } + if (debug) printk("\n"); +} + +static void doc2000_readbuf(struct mtd_info *mtd, + u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + + if (debug)printk("readbuf of %d bytes: ", len); + + for (i=0; i < len; i++) { + buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); + } +} + +static void doc2000_readbuf_dword(struct mtd_info *mtd, + u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + + if (debug) printk("readbuf_dword of %d bytes: ", len); + + if (unlikely((((unsigned long)buf)|len) & 3)) { + for (i=0; i < len; i++) { + *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i); + } + } else { + for (i=0; i < len; i+=4) { + *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i); + } + } +} + +static int doc2000_verifybuf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + + for (i=0; i < len; i++) + if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO)) + return -EFAULT; + return 0; +} + +static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + uint16_t ret; + + doc200x_select_chip(mtd, nr); + doc200x_hwcontrol(mtd, NAND_CTL_SETCLE); + this->write_byte(mtd, NAND_CMD_READID); + doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE); + doc200x_hwcontrol(mtd, NAND_CTL_SETALE); + this->write_byte(mtd, 0); + doc200x_hwcontrol(mtd, NAND_CTL_CLRALE); + + ret = this->read_byte(mtd) << 8; + ret |= this->read_byte(mtd); + + if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { + /* First chip probe. See if we get same results by 32-bit access */ + union { + uint32_t dword; + uint8_t byte[4]; + } ident; + void __iomem *docptr = doc->virtadr; + + doc200x_hwcontrol(mtd, NAND_CTL_SETCLE); + doc2000_write_byte(mtd, NAND_CMD_READID); + doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE); + doc200x_hwcontrol(mtd, NAND_CTL_SETALE); + doc2000_write_byte(mtd, 0); + doc200x_hwcontrol(mtd, NAND_CTL_CLRALE); + + ident.dword = readl(docptr + DoC_2k_CDSN_IO); + if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { + printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n"); + this->read_buf = &doc2000_readbuf_dword; + } + } + + return ret; +} + +static void __init doc2000_count_chips(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + uint16_t mfrid; + int i; + + /* Max 4 chips per floor on DiskOnChip 2000 */ + doc->chips_per_floor = 4; + + /* Find out what the first chip is */ + mfrid = doc200x_ident_chip(mtd, 0); + + /* Find how many chips in each floor. */ + for (i = 1; i < 4; i++) { + if (doc200x_ident_chip(mtd, i) != mfrid) + break; + } + doc->chips_per_floor = i; + printk(KERN_DEBUG "Detected %d chips per floor.\n", i); +} + +static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state) +{ + struct doc_priv *doc = this->priv; + + int status; + + DoC_WaitReady(doc); + this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); + DoC_WaitReady(doc); + status = (int)this->read_byte(mtd); + + return status; +} + +static void doc2001_write_byte(struct mtd_info *mtd, u_char datum) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + + WriteDOC(datum, docptr, CDSNSlowIO); + WriteDOC(datum, docptr, Mil_CDSN_IO); + WriteDOC(datum, docptr, WritePipeTerm); +} + +static u_char doc2001_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + + //ReadDOC(docptr, CDSNSlowIO); + /* 11.4.5 -- delay twice to allow extended length cycle */ + DoC_Delay(doc, 2); + ReadDOC(docptr, ReadPipeInit); + //return ReadDOC(docptr, Mil_CDSN_IO); + return ReadDOC(docptr, LastDataRead); +} + +static void doc2001_writebuf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + + for (i=0; i < len; i++) + WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); + /* Terminate write pipeline */ + WriteDOC(0x00, docptr, WritePipeTerm); +} + +static void doc2001_readbuf(struct mtd_info *mtd, + u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + + /* Start read pipeline */ + ReadDOC(docptr, ReadPipeInit); + + for (i=0; i < len-1; i++) + buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); + + /* Terminate read pipeline */ + buf[i] = ReadDOC(docptr, LastDataRead); +} + +static int doc2001_verifybuf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + + /* Start read pipeline */ + ReadDOC(docptr, ReadPipeInit); + + for (i=0; i < len-1; i++) + if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { + ReadDOC(docptr, LastDataRead); + return i; + } + if (buf[i] != ReadDOC(docptr, LastDataRead)) + return i; + return 0; +} + +static u_char doc2001plus_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + u_char ret; + + ReadDOC(docptr, Mplus_ReadPipeInit); + ReadDOC(docptr, Mplus_ReadPipeInit); + ret = ReadDOC(docptr, Mplus_LastDataRead); + if (debug) printk("read_byte returns %02x\n", ret); + return ret; +} + +static void doc2001plus_writebuf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + + if (debug)printk("writebuf of %d bytes: ", len); + for (i=0; i < len; i++) { + WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); + if (debug && i < 16) + printk("%02x ", buf[i]); + } + if (debug) printk("\n"); +} + +static void doc2001plus_readbuf(struct mtd_info *mtd, + u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + + if (debug)printk("readbuf of %d bytes: ", len); + + /* Start read pipeline */ + ReadDOC(docptr, Mplus_ReadPipeInit); + ReadDOC(docptr, Mplus_ReadPipeInit); + + for (i=0; i < len-2; i++) { + buf[i] = ReadDOC(docptr, Mil_CDSN_IO); + if (debug && i < 16) + printk("%02x ", buf[i]); + } + + /* Terminate read pipeline */ + buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead); + if (debug && i < 16) + printk("%02x ", buf[len-2]); + buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead); + if (debug && i < 16) + printk("%02x ", buf[len-1]); + if (debug) printk("\n"); +} + +static int doc2001plus_verifybuf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + + if (debug)printk("verifybuf of %d bytes: ", len); + + /* Start read pipeline */ + ReadDOC(docptr, Mplus_ReadPipeInit); + ReadDOC(docptr, Mplus_ReadPipeInit); + + for (i=0; i < len-2; i++) + if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) { + ReadDOC(docptr, Mplus_LastDataRead); + ReadDOC(docptr, Mplus_LastDataRead); + return i; + } + if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead)) + return len-2; + if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead)) + return len-1; + return 0; +} + +static void doc2001plus_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int floor = 0; + + if(debug)printk("select chip (%d)\n", chip); + + if (chip == -1) { + /* Disable flash internally */ + WriteDOC(0, docptr, Mplus_FlashSelect); + return; + } + + floor = chip / doc->chips_per_floor; + chip -= (floor * doc->chips_per_floor); + + /* Assert ChipEnable and deassert WriteProtect */ + WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect); + this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + doc->curchip = chip; + doc->curfloor = floor; +} + +static void doc200x_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int floor = 0; + + if(debug)printk("select chip (%d)\n", chip); + + if (chip == -1) + return; + + floor = chip / doc->chips_per_floor; + chip -= (floor * doc->chips_per_floor); + + /* 11.4.4 -- deassert CE before changing chip */ + doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE); + + WriteDOC(floor, docptr, FloorSelect); + WriteDOC(chip, docptr, CDSNDeviceSelect); + + doc200x_hwcontrol(mtd, NAND_CTL_SETNCE); + + doc->curchip = chip; + doc->curfloor = floor; +} + +static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + + switch(cmd) { + case NAND_CTL_SETNCE: + doc->CDSNControl |= CDSN_CTRL_CE; + break; + case NAND_CTL_CLRNCE: + doc->CDSNControl &= ~CDSN_CTRL_CE; + break; + case NAND_CTL_SETCLE: + doc->CDSNControl |= CDSN_CTRL_CLE; + break; + case NAND_CTL_CLRCLE: + doc->CDSNControl &= ~CDSN_CTRL_CLE; + break; + case NAND_CTL_SETALE: + doc->CDSNControl |= CDSN_CTRL_ALE; + break; + case NAND_CTL_CLRALE: + doc->CDSNControl &= ~CDSN_CTRL_ALE; + break; + case NAND_CTL_SETWP: + doc->CDSNControl |= CDSN_CTRL_WP; + break; + case NAND_CTL_CLRWP: + doc->CDSNControl &= ~CDSN_CTRL_WP; + break; + } + if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl); + WriteDOC(doc->CDSNControl, docptr, CDSNControl); + /* 11.4.3 -- 4 NOPs after CSDNControl write */ + DoC_Delay(doc, 4); +} + +static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + + /* + * Must terminate write pipeline before sending any commands + * to the device. + */ + if (command == NAND_CMD_PAGEPROG) { + WriteDOC(0x00, docptr, Mplus_WritePipeTerm); + WriteDOC(0x00, docptr, Mplus_WritePipeTerm); + } + + /* + * Write out the command to the device. + */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->oobblock) { + /* OOB area */ + column -= mtd->oobblock; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + WriteDOC(readcmd, docptr, Mplus_FlashCmd); + } + WriteDOC(command, docptr, Mplus_FlashCmd); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + + if (column != -1 || page_addr != -1) { + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (this->options & NAND_BUSWIDTH_16) + column >>= 1; + WriteDOC(column, docptr, Mplus_FlashAddress); + } + if (page_addr != -1) { + WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress); + WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress); + /* One more address cycle for higher density devices */ + if (this->chipsize & 0x0c000000) { + WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress); + printk("high density\n"); + } + } + WriteDOC(0, docptr, Mplus_WritePipeTerm); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + /* deassert ALE */ + if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID) + WriteDOC(0, docptr, Mplus_FlashControl); + } + + /* + * program and erase have their own busy handlers + * status and sequential in needs no delay + */ + switch (command) { + + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + return; + + case NAND_CMD_RESET: + if (this->dev_ready) + break; + udelay(this->chip_delay); + WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + WriteDOC(0, docptr, Mplus_WritePipeTerm); + while ( !(this->read_byte(mtd) & 0x40)); + return; + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!this->dev_ready) { + udelay (this->chip_delay); + return; + } + } + + /* Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. */ + ndelay (100); + /* wait until command is processed */ + while (!this->dev_ready(mtd)); +} + +static int doc200x_dev_ready(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + + if (DoC_is_MillenniumPlus(doc)) { + /* 11.4.2 -- must NOP four times before checking FR/B# */ + DoC_Delay(doc, 4); + if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { + if(debug) + printk("not ready\n"); + return 0; + } + if (debug)printk("was ready\n"); + return 1; + } else { + /* 11.4.2 -- must NOP four times before checking FR/B# */ + DoC_Delay(doc, 4); + if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { + if(debug) + printk("not ready\n"); + return 0; + } + /* 11.4.2 -- Must NOP twice if it's ready */ + DoC_Delay(doc, 2); + if (debug)printk("was ready\n"); + return 1; + } +} + +static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ + /* This is our last resort if we couldn't find or create a BBT. Just + pretend all blocks are good. */ + return 0; +} + +static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + + /* Prime the ECC engine */ + switch(mode) { + case NAND_ECC_READ: + WriteDOC(DOC_ECC_RESET, docptr, ECCConf); + WriteDOC(DOC_ECC_EN, docptr, ECCConf); + break; + case NAND_ECC_WRITE: + WriteDOC(DOC_ECC_RESET, docptr, ECCConf); + WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); + break; + } +} + +static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + + /* Prime the ECC engine */ + switch(mode) { + case NAND_ECC_READ: + WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); + WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); + break; + case NAND_ECC_WRITE: + WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); + WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); + break; + } +} + +/* This code is only called on write */ +static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat, + unsigned char *ecc_code) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + int i; + int emptymatch = 1; + + /* flush the pipeline */ + if (DoC_is_2000(doc)) { + WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); + WriteDOC(0, docptr, 2k_CDSN_IO); + WriteDOC(0, docptr, 2k_CDSN_IO); + WriteDOC(0, docptr, 2k_CDSN_IO); + WriteDOC(doc->CDSNControl, docptr, CDSNControl); + } else if (DoC_is_MillenniumPlus(doc)) { + WriteDOC(0, docptr, Mplus_NOP); + WriteDOC(0, docptr, Mplus_NOP); + WriteDOC(0, docptr, Mplus_NOP); + } else { + WriteDOC(0, docptr, NOP); + WriteDOC(0, docptr, NOP); + WriteDOC(0, docptr, NOP); + } + + for (i = 0; i < 6; i++) { + if (DoC_is_MillenniumPlus(doc)) + ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); + else + ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); + if (ecc_code[i] != empty_write_ecc[i]) + emptymatch = 0; + } + if (DoC_is_MillenniumPlus(doc)) + WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); + else + WriteDOC(DOC_ECC_DIS, docptr, ECCConf); +#if 0 + /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ + if (emptymatch) { + /* Note: this somewhat expensive test should not be triggered + often. It could be optimized away by examining the data in + the writebuf routine, and remembering the result. */ + for (i = 0; i < 512; i++) { + if (dat[i] == 0xff) continue; + emptymatch = 0; + break; + } + } + /* If emptymatch still =1, we do have an all-0xff data buffer. + Return all-0xff ecc value instead of the computed one, so + it'll look just like a freshly-erased page. */ + if (emptymatch) memset(ecc_code, 0xff, 6); +#endif + return 0; +} + +static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) +{ + int i, ret = 0; + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + void __iomem *docptr = doc->virtadr; + volatile u_char dummy; + int emptymatch = 1; + + /* flush the pipeline */ + if (DoC_is_2000(doc)) { + dummy = ReadDOC(docptr, 2k_ECCStatus); + dummy = ReadDOC(docptr, 2k_ECCStatus); + dummy = ReadDOC(docptr, 2k_ECCStatus); + } else if (DoC_is_MillenniumPlus(doc)) { + dummy = ReadDOC(docptr, Mplus_ECCConf); + dummy = ReadDOC(docptr, Mplus_ECCConf); + dummy = ReadDOC(docptr, Mplus_ECCConf); + } else { + dummy = ReadDOC(docptr, ECCConf); + dummy = ReadDOC(docptr, ECCConf); + dummy = ReadDOC(docptr, ECCConf); + } + + /* Error occured ? */ + if (dummy & 0x80) { + for (i = 0; i < 6; i++) { + if (DoC_is_MillenniumPlus(doc)) + calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); + else + calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); + if (calc_ecc[i] != empty_read_syndrome[i]) + emptymatch = 0; + } + /* If emptymatch=1, the read syndrome is consistent with an + all-0xff data and stored ecc block. Check the stored ecc. */ + if (emptymatch) { + for (i = 0; i < 6; i++) { + if (read_ecc[i] == 0xff) continue; + emptymatch = 0; + break; + } + } + /* If emptymatch still =1, check the data block. */ + if (emptymatch) { + /* Note: this somewhat expensive test should not be triggered + often. It could be optimized away by examining the data in + the readbuf routine, and remembering the result. */ + for (i = 0; i < 512; i++) { + if (dat[i] == 0xff) continue; + emptymatch = 0; + break; + } + } + /* If emptymatch still =1, this is almost certainly a freshly- + erased block, in which case the ECC will not come out right. + We'll suppress the error and tell the caller everything's + OK. Because it is. */ + if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc); + if (ret > 0) + printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret); + } + if (DoC_is_MillenniumPlus(doc)) + WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); + else + WriteDOC(DOC_ECC_DIS, docptr, ECCConf); + if (no_ecc_failures && (ret == -1)) { + printk(KERN_ERR "suppressing ECC failure\n"); + ret = 0; + } + return ret; +} + +//u_char mydatabuf[528]; + +static struct nand_oobinfo doc200x_oobinfo = { + .useecc = MTD_NANDECC_AUTOPLACE, + .eccbytes = 6, + .eccpos = {0, 1, 2, 3, 4, 5}, + .oobfree = { {8, 8} } +}; + +/* Find the (I)NFTL Media Header, and optionally also the mirror media header. + On sucessful return, buf will contain a copy of the media header for + further processing. id is the string to scan for, and will presumably be + either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media + header. The page #s of the found media headers are placed in mh0_page and + mh1_page in the DOC private structure. */ +static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, + const char *id, int findmirror) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift); + int ret; + size_t retlen; + + end = min(end, mtd->size); // paranoia + for (offs = 0; offs < end; offs += mtd->erasesize) { + ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf); + if (retlen != mtd->oobblock) continue; + if (ret) { + printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n", + offs); + } + if (memcmp(buf, id, 6)) continue; + printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs); + if (doc->mh0_page == -1) { + doc->mh0_page = offs >> this->page_shift; + if (!findmirror) return 1; + continue; + } + doc->mh1_page = offs >> this->page_shift; + return 2; + } + if (doc->mh0_page == -1) { + printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id); + return 0; + } + /* Only one mediaheader was found. We want buf to contain a + mediaheader on return, so we'll have to re-read the one we found. */ + offs = doc->mh0_page << this->page_shift; + ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf); + if (retlen != mtd->oobblock) { + /* Insanity. Give up. */ + printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n"); + return 0; + } + return 1; +} + +static inline int __init nftl_partscan(struct mtd_info *mtd, + struct mtd_partition *parts) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + int ret = 0; + u_char *buf; + struct NFTLMediaHeader *mh; + const unsigned psize = 1 << this->page_shift; + unsigned blocks, maxblocks; + int offs, numheaders; + + buf = kmalloc(mtd->oobblock, GFP_KERNEL); + if (!buf) { + printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); + return 0; + } + if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out; + mh = (struct NFTLMediaHeader *) buf; + +//#ifdef CONFIG_MTD_DEBUG_VERBOSE +// if (CONFIG_MTD_DEBUG_VERBOSE >= 2) + printk(KERN_INFO " DataOrgID = %s\n" + " NumEraseUnits = %d\n" + " FirstPhysicalEUN = %d\n" + " FormattedSize = %d\n" + " UnitSizeFactor = %d\n", + mh->DataOrgID, mh->NumEraseUnits, + mh->FirstPhysicalEUN, mh->FormattedSize, + mh->UnitSizeFactor); +//#endif + + blocks = mtd->size >> this->phys_erase_shift; + maxblocks = min(32768U, mtd->erasesize - psize); + + if (mh->UnitSizeFactor == 0x00) { + /* Auto-determine UnitSizeFactor. The constraints are: + - There can be at most 32768 virtual blocks. + - There can be at most (virtual block size - page size) + virtual blocks (because MediaHeader+BBT must fit in 1). + */ + mh->UnitSizeFactor = 0xff; + while (blocks > maxblocks) { + blocks >>= 1; + maxblocks = min(32768U, (maxblocks << 1) + psize); + mh->UnitSizeFactor--; + } + printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); + } + + /* NOTE: The lines below modify internal variables of the NAND and MTD + layers; variables with have already been configured by nand_scan. + Unfortunately, we didn't know before this point what these values + should be. Thus, this code is somewhat dependant on the exact + implementation of the NAND layer. */ + if (mh->UnitSizeFactor != 0xff) { + this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); + mtd->erasesize <<= (0xff - mh->UnitSizeFactor); + printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize); + blocks = mtd->size >> this->bbt_erase_shift; + maxblocks = min(32768U, mtd->erasesize - psize); + } + + if (blocks > maxblocks) { + printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); + goto out; + } + + /* Skip past the media headers. */ + offs = max(doc->mh0_page, doc->mh1_page); + offs <<= this->page_shift; + offs += mtd->erasesize; + + //parts[0].name = " DiskOnChip Boot / Media Header partition"; + //parts[0].offset = 0; + //parts[0].size = offs; + + parts[0].name = " DiskOnChip BDTL partition"; + parts[0].offset = offs; + parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; + + offs += parts[0].size; + if (offs < mtd->size) { + parts[1].name = " DiskOnChip Remainder partition"; + parts[1].offset = offs; + parts[1].size = mtd->size - offs; + ret = 2; + goto out; + } + ret = 1; +out: + kfree(buf); + return ret; +} + +/* This is a stripped-down copy of the code in inftlmount.c */ +static inline int __init inftl_partscan(struct mtd_info *mtd, + struct mtd_partition *parts) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + int ret = 0; + u_char *buf; + struct INFTLMediaHeader *mh; + struct INFTLPartition *ip; + int numparts = 0; + int blocks; + int vshift, lastvunit = 0; + int i; + int end = mtd->size; + + if (inftl_bbt_write) + end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); + + buf = kmalloc(mtd->oobblock, GFP_KERNEL); + if (!buf) { + printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n"); + return 0; + } + + if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out; + doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); + mh = (struct INFTLMediaHeader *) buf; + + mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks); + mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions); + mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions); + mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits); + mh->FormatFlags = le32_to_cpu(mh->FormatFlags); + mh->PercentUsed = le32_to_cpu(mh->PercentUsed); + +//#ifdef CONFIG_MTD_DEBUG_VERBOSE +// if (CONFIG_MTD_DEBUG_VERBOSE >= 2) + printk(KERN_INFO " bootRecordID = %s\n" + " NoOfBootImageBlocks = %d\n" + " NoOfBinaryPartitions = %d\n" + " NoOfBDTLPartitions = %d\n" + " BlockMultiplerBits = %d\n" + " FormatFlgs = %d\n" + " OsakVersion = %d.%d.%d.%d\n" + " PercentUsed = %d\n", + mh->bootRecordID, mh->NoOfBootImageBlocks, + mh->NoOfBinaryPartitions, + mh->NoOfBDTLPartitions, + mh->BlockMultiplierBits, mh->FormatFlags, + ((unsigned char *) &mh->OsakVersion)[0] & 0xf, + ((unsigned char *) &mh->OsakVersion)[1] & 0xf, + ((unsigned char *) &mh->OsakVersion)[2] & 0xf, + ((unsigned char *) &mh->OsakVersion)[3] & 0xf, + mh->PercentUsed); +//#endif + + vshift = this->phys_erase_shift + mh->BlockMultiplierBits; + + blocks = mtd->size >> vshift; + if (blocks > 32768) { + printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); + goto out; + } + + blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); + if (inftl_bbt_write && (blocks > mtd->erasesize)) { + printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); + goto out; + } + + /* Scan the partitions */ + for (i = 0; (i < 4); i++) { + ip = &(mh->Partitions[i]); + ip->virtualUnits = le32_to_cpu(ip->virtualUnits); + ip->firstUnit = le32_to_cpu(ip->firstUnit); + ip->lastUnit = le32_to_cpu(ip->lastUnit); + ip->flags = le32_to_cpu(ip->flags); + ip->spareUnits = le32_to_cpu(ip->spareUnits); + ip->Reserved0 = le32_to_cpu(ip->Reserved0); + +//#ifdef CONFIG_MTD_DEBUG_VERBOSE +// if (CONFIG_MTD_DEBUG_VERBOSE >= 2) + printk(KERN_INFO " PARTITION[%d] ->\n" + " virtualUnits = %d\n" + " firstUnit = %d\n" + " lastUnit = %d\n" + " flags = 0x%x\n" + " spareUnits = %d\n", + i, ip->virtualUnits, ip->firstUnit, + ip->lastUnit, ip->flags, + ip->spareUnits); +//#endif + +/* + if ((i == 0) && (ip->firstUnit > 0)) { + parts[0].name = " DiskOnChip IPL / Media Header partition"; + parts[0].offset = 0; + parts[0].size = mtd->erasesize * ip->firstUnit; + numparts = 1; + } +*/ + + if (ip->flags & INFTL_BINARY) + parts[numparts].name = " DiskOnChip BDK partition"; + else + parts[numparts].name = " DiskOnChip BDTL partition"; + parts[numparts].offset = ip->firstUnit << vshift; + parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; + numparts++; + if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit; + if (ip->flags & INFTL_LAST) break; + } + lastvunit++; + if ((lastvunit << vshift) < end) { + parts[numparts].name = " DiskOnChip Remainder partition"; + parts[numparts].offset = lastvunit << vshift; + parts[numparts].size = end - parts[numparts].offset; + numparts++; + } + ret = numparts; +out: + kfree(buf); + return ret; +} + +static int __init nftl_scan_bbt(struct mtd_info *mtd) +{ + int ret, numparts; + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + struct mtd_partition parts[2]; + + memset((char *) parts, 0, sizeof(parts)); + /* On NFTL, we have to find the media headers before we can read the + BBTs, since they're stored in the media header eraseblocks. */ + numparts = nftl_partscan(mtd, parts); + if (!numparts) return -EIO; + this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | + NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | + NAND_BBT_VERSION; + this->bbt_td->veroffs = 7; + this->bbt_td->pages[0] = doc->mh0_page + 1; + if (doc->mh1_page != -1) { + this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | + NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | + NAND_BBT_VERSION; + this->bbt_md->veroffs = 7; + this->bbt_md->pages[0] = doc->mh1_page + 1; + } else { + this->bbt_md = NULL; + } + + /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. + At least as nand_bbt.c is currently written. */ + if ((ret = nand_scan_bbt(mtd, NULL))) + return ret; + add_mtd_device(mtd); +#ifdef CONFIG_MTD_PARTITIONS + if (!no_autopart) + add_mtd_partitions(mtd, parts, numparts); +#endif + return 0; +} + +static int __init inftl_scan_bbt(struct mtd_info *mtd) +{ + int ret, numparts; + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + struct mtd_partition parts[5]; + + if (this->numchips > doc->chips_per_floor) { + printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n"); + return -EIO; + } + + if (DoC_is_MillenniumPlus(doc)) { + this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; + if (inftl_bbt_write) + this->bbt_td->options |= NAND_BBT_WRITE; + this->bbt_td->pages[0] = 2; + this->bbt_md = NULL; + } else { + this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | + NAND_BBT_VERSION; + if (inftl_bbt_write) + this->bbt_td->options |= NAND_BBT_WRITE; + this->bbt_td->offs = 8; + this->bbt_td->len = 8; + this->bbt_td->veroffs = 7; + this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; + this->bbt_td->reserved_block_code = 0x01; + this->bbt_td->pattern = "MSYS_BBT"; + + this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | + NAND_BBT_VERSION; + if (inftl_bbt_write) + this->bbt_md->options |= NAND_BBT_WRITE; + this->bbt_md->offs = 8; + this->bbt_md->len = 8; + this->bbt_md->veroffs = 7; + this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; + this->bbt_md->reserved_block_code = 0x01; + this->bbt_md->pattern = "TBB_SYSM"; + } + + /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set. + At least as nand_bbt.c is currently written. */ + if ((ret = nand_scan_bbt(mtd, NULL))) + return ret; + memset((char *) parts, 0, sizeof(parts)); + numparts = inftl_partscan(mtd, parts); + /* At least for now, require the INFTL Media Header. We could probably + do without it for non-INFTL use, since all it gives us is + autopartitioning, but I want to give it more thought. */ + if (!numparts) return -EIO; + add_mtd_device(mtd); +#ifdef CONFIG_MTD_PARTITIONS + if (!no_autopart) + add_mtd_partitions(mtd, parts, numparts); +#endif + return 0; +} + +static inline int __init doc2000_init(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + + this->write_byte = doc2000_write_byte; + this->read_byte = doc2000_read_byte; + this->write_buf = doc2000_writebuf; + this->read_buf = doc2000_readbuf; + this->verify_buf = doc2000_verifybuf; + this->scan_bbt = nftl_scan_bbt; + + doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; + doc2000_count_chips(mtd); + mtd->name = "DiskOnChip 2000 (NFTL Model)"; + return (4 * doc->chips_per_floor); +} + +static inline int __init doc2001_init(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + + this->write_byte = doc2001_write_byte; + this->read_byte = doc2001_read_byte; + this->write_buf = doc2001_writebuf; + this->read_buf = doc2001_readbuf; + this->verify_buf = doc2001_verifybuf; + + ReadDOC(doc->virtadr, ChipID); + ReadDOC(doc->virtadr, ChipID); + ReadDOC(doc->virtadr, ChipID); + if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { + /* It's not a Millennium; it's one of the newer + DiskOnChip 2000 units with a similar ASIC. + Treat it like a Millennium, except that it + can have multiple chips. */ + doc2000_count_chips(mtd); + mtd->name = "DiskOnChip 2000 (INFTL Model)"; + this->scan_bbt = inftl_scan_bbt; + return (4 * doc->chips_per_floor); + } else { + /* Bog-standard Millennium */ + doc->chips_per_floor = 1; + mtd->name = "DiskOnChip Millennium"; + this->scan_bbt = nftl_scan_bbt; + return 1; + } +} + +static inline int __init doc2001plus_init(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + struct doc_priv *doc = this->priv; + + this->write_byte = NULL; + this->read_byte = doc2001plus_read_byte; + this->write_buf = doc2001plus_writebuf; + this->read_buf = doc2001plus_readbuf; + this->verify_buf = doc2001plus_verifybuf; + this->scan_bbt = inftl_scan_bbt; + this->hwcontrol = NULL; + this->select_chip = doc2001plus_select_chip; + this->cmdfunc = doc2001plus_command; + this->enable_hwecc = doc2001plus_enable_hwecc; + + doc->chips_per_floor = 1; + mtd->name = "DiskOnChip Millennium Plus"; + + return 1; +} + +static inline int __init doc_probe(unsigned long physadr) +{ + unsigned char ChipID; + struct mtd_info *mtd; + struct nand_chip *nand; + struct doc_priv *doc; + void __iomem *virtadr; + unsigned char save_control; + unsigned char tmp, tmpb, tmpc; + int reg, len, numchips; + int ret = 0; + + virtadr = ioremap(physadr, DOC_IOREMAP_LEN); + if (!virtadr) { + printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); + return -EIO; + } + + /* It's not possible to cleanly detect the DiskOnChip - the + * bootup procedure will put the device into reset mode, and + * it's not possible to talk to it without actually writing + * to the DOCControl register. So we store the current contents + * of the DOCControl register's location, in case we later decide + * that it's not a DiskOnChip, and want to put it back how we + * found it. + */ + save_control = ReadDOC(virtadr, DOCControl); + + /* Reset the DiskOnChip ASIC */ + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, + virtadr, DOCControl); + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, + virtadr, DOCControl); + + /* Enable the DiskOnChip ASIC */ + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, + virtadr, DOCControl); + WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, + virtadr, DOCControl); + + ChipID = ReadDOC(virtadr, ChipID); + + switch(ChipID) { + case DOC_ChipID_Doc2k: + reg = DoC_2k_ECCStatus; + break; + case DOC_ChipID_DocMil: + reg = DoC_ECCConf; + break; + case DOC_ChipID_DocMilPlus16: + case DOC_ChipID_DocMilPlus32: + case 0: + /* Possible Millennium Plus, need to do more checks */ + /* Possibly release from power down mode */ + for (tmp = 0; (tmp < 4); tmp++) + ReadDOC(virtadr, Mplus_Power); + + /* Reset the Millennium Plus ASIC */ + tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | + DOC_MODE_BDECT; + WriteDOC(tmp, virtadr, Mplus_DOCControl); + WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); + + mdelay(1); + /* Enable the Millennium Plus ASIC */ + tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | + DOC_MODE_BDECT; + WriteDOC(tmp, virtadr, Mplus_DOCControl); + WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); + mdelay(1); + + ChipID = ReadDOC(virtadr, ChipID); + + switch (ChipID) { + case DOC_ChipID_DocMilPlus16: + reg = DoC_Mplus_Toggle; + break; + case DOC_ChipID_DocMilPlus32: + printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); + default: + ret = -ENODEV; + goto notfound; + } + break; + + default: + ret = -ENODEV; + goto notfound; + } + /* Check the TOGGLE bit in the ECC register */ + tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; + tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; + tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; + if ((tmp == tmpb) || (tmp != tmpc)) { + printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); + ret = -ENODEV; + goto notfound; + } + + for (mtd = doclist; mtd; mtd = doc->nextdoc) { + unsigned char oldval; + unsigned char newval; + nand = mtd->priv; + doc = nand->priv; + /* Use the alias resolution register to determine if this is + in fact the same DOC aliased to a new address. If writes + to one chip's alias resolution register change the value on + the other chip, they're the same chip. */ + if (ChipID == DOC_ChipID_DocMilPlus16) { + oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); + newval = ReadDOC(virtadr, Mplus_AliasResolution); + } else { + oldval = ReadDOC(doc->virtadr, AliasResolution); + newval = ReadDOC(virtadr, AliasResolution); + } + if (oldval != newval) + continue; + if (ChipID == DOC_ChipID_DocMilPlus16) { + WriteDOC(~newval, virtadr, Mplus_AliasResolution); + oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); + WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it + } else { + WriteDOC(~newval, virtadr, AliasResolution); + oldval = ReadDOC(doc->virtadr, AliasResolution); + WriteDOC(newval, virtadr, AliasResolution); // restore it + } + newval = ~newval; + if (oldval == newval) { + printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); + goto notfound; + } + } + + printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr); + + len = sizeof(struct mtd_info) + + sizeof(struct nand_chip) + + sizeof(struct doc_priv) + + (2 * sizeof(struct nand_bbt_descr)); + mtd = kmalloc(len, GFP_KERNEL); + if (!mtd) { + printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len); + ret = -ENOMEM; + goto fail; + } + memset(mtd, 0, len); + + nand = (struct nand_chip *) (mtd + 1); + doc = (struct doc_priv *) (nand + 1); + nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); + nand->bbt_md = nand->bbt_td + 1; + + mtd->priv = nand; + mtd->owner = THIS_MODULE; + + nand->priv = doc; + nand->select_chip = doc200x_select_chip; + nand->hwcontrol = doc200x_hwcontrol; + nand->dev_ready = doc200x_dev_ready; + nand->waitfunc = doc200x_wait; + nand->block_bad = doc200x_block_bad; + nand->enable_hwecc = doc200x_enable_hwecc; + nand->calculate_ecc = doc200x_calculate_ecc; + nand->correct_data = doc200x_correct_data; + + nand->autooob = &doc200x_oobinfo; + nand->eccmode = NAND_ECC_HW6_512; + nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME; + + doc->physadr = physadr; + doc->virtadr = virtadr; + doc->ChipID = ChipID; + doc->curfloor = -1; + doc->curchip = -1; + doc->mh0_page = -1; + doc->mh1_page = -1; + doc->nextdoc = doclist; + + if (ChipID == DOC_ChipID_Doc2k) + numchips = doc2000_init(mtd); + else if (ChipID == DOC_ChipID_DocMilPlus16) + numchips = doc2001plus_init(mtd); + else + numchips = doc2001_init(mtd); + + if ((ret = nand_scan(mtd, numchips))) { + /* DBB note: i believe nand_release is necessary here, as + buffers may have been allocated in nand_base. Check with + Thomas. FIX ME! */ + /* nand_release will call del_mtd_device, but we haven't yet + added it. This is handled without incident by + del_mtd_device, as far as I can tell. */ + nand_release(mtd); + kfree(mtd); + goto fail; + } + + /* Success! */ + doclist = mtd; + return 0; + +notfound: + /* Put back the contents of the DOCControl register, in case it's not + actually a DiskOnChip. */ + WriteDOC(save_control, virtadr, DOCControl); +fail: + iounmap(virtadr); + return ret; +} + +static void release_nanddoc(void) +{ + struct mtd_info *mtd, *nextmtd; + struct nand_chip *nand; + struct doc_priv *doc; + + for (mtd = doclist; mtd; mtd = nextmtd) { + nand = mtd->priv; + doc = nand->priv; + + nextmtd = doc->nextdoc; + nand_release(mtd); + iounmap(doc->virtadr); + kfree(mtd); + } +} + +static int __init init_nanddoc(void) +{ + int i, ret = 0; + + /* We could create the decoder on demand, if memory is a concern. + * This way we have it handy, if an error happens + * + * Symbolsize is 10 (bits) + * Primitve polynomial is x^10+x^3+1 + * first consecutive root is 510 + * primitve element to generate roots = 1 + * generator polinomial degree = 4 + */ + rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); + if (!rs_decoder) { + printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n"); + return -ENOMEM; + } + + if (doc_config_location) { + printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); + ret = doc_probe(doc_config_location); + if (ret < 0) + goto outerr; + } else { + for (i=0; (doc_locations[i] != 0xffffffff); i++) { + doc_probe(doc_locations[i]); + } + } + /* No banner message any more. Print a message if no DiskOnChip + found, so the user knows we at least tried. */ + if (!doclist) { + printk(KERN_INFO "No valid DiskOnChip devices found\n"); + ret = -ENODEV; + goto outerr; + } + return 0; +outerr: + free_rs(rs_decoder); + return ret; +} + +static void __exit cleanup_nanddoc(void) +{ + /* Cleanup the nand/DoC resources */ + release_nanddoc(); + + /* Free the reed solomon resources */ + if (rs_decoder) { + free_rs(rs_decoder); + } +} + +module_init(init_nanddoc); +module_exit(cleanup_nanddoc); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); +MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n"); diff --git a/drivers/mtd/nand/edb7312.c b/drivers/mtd/nand/edb7312.c new file mode 100644 index 00000000000..5549681ccdc --- /dev/null +++ b/drivers/mtd/nand/edb7312.c @@ -0,0 +1,218 @@ +/* + * drivers/mtd/nand/edb7312.c + * + * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) + * + * Derived from drivers/mtd/nand/autcpu12.c + * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) + * + * $Id: edb7312.c,v 1.11 2004/11/04 12:53:10 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the NAND flash device found on the + * CLEP7312 board which utilizes the Toshiba TC58V64AFT part. This is + * a 64Mibit (8MiB x 8 bits) NAND flash device. + */ + +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/init.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> +#include <asm/arch/hardware.h> /* for CLPS7111_VIRT_BASE */ +#include <asm/sizes.h> +#include <asm/hardware/clps7111.h> + +/* + * MTD structure for EDB7312 board + */ +static struct mtd_info *ep7312_mtd = NULL; + +/* + * Values specific to the EDB7312 board (used with EP7312 processor) + */ +#define EP7312_FIO_PBASE 0x10000000 /* Phys address of flash */ +#define EP7312_PXDR 0x0001 /* + * IO offset to Port B data register + * where the CLE, ALE and NCE pins + * are wired to. + */ +#define EP7312_PXDDR 0x0041 /* + * IO offset to Port B data direction + * register so we can control the IO + * lines. + */ + +/* + * Module stuff + */ + +static unsigned long ep7312_fio_pbase = EP7312_FIO_PBASE; +static void __iomem * ep7312_pxdr = (void __iomem *) EP7312_PXDR; +static void __iomem * ep7312_pxddr = (void __iomem *) EP7312_PXDDR; + +#ifdef CONFIG_MTD_PARTITIONS +/* + * Define static partitions for flash device + */ +static struct mtd_partition partition_info[] = { + { .name = "EP7312 Nand Flash", + .offset = 0, + .size = 8*1024*1024 } +}; +#define NUM_PARTITIONS 1 + +#endif + + +/* + * hardware specific access to control-lines + */ +static void ep7312_hwcontrol(struct mtd_info *mtd, int cmd) +{ + switch(cmd) { + + case NAND_CTL_SETCLE: + clps_writeb(clps_readb(ep7312_pxdr) | 0x10, ep7312_pxdr); + break; + case NAND_CTL_CLRCLE: + clps_writeb(clps_readb(ep7312_pxdr) & ~0x10, ep7312_pxdr); + break; + + case NAND_CTL_SETALE: + clps_writeb(clps_readb(ep7312_pxdr) | 0x20, ep7312_pxdr); + break; + case NAND_CTL_CLRALE: + clps_writeb(clps_readb(ep7312_pxdr) & ~0x20, ep7312_pxdr); + break; + + case NAND_CTL_SETNCE: + clps_writeb((clps_readb(ep7312_pxdr) | 0x80) & ~0x40, ep7312_pxdr); + break; + case NAND_CTL_CLRNCE: + clps_writeb((clps_readb(ep7312_pxdr) | 0x80) | 0x40, ep7312_pxdr); + break; + } +} + +/* + * read device ready pin + */ +static int ep7312_device_ready(struct mtd_info *mtd) +{ + return 1; +} +#ifdef CONFIG_MTD_PARTITIONS +const char *part_probes[] = { "cmdlinepart", NULL }; +#endif + +/* + * Main initialization routine + */ +static int __init ep7312_init (void) +{ + struct nand_chip *this; + const char *part_type = 0; + int mtd_parts_nb = 0; + struct mtd_partition *mtd_parts = 0; + void __iomem * ep7312_fio_base; + + /* Allocate memory for MTD device structure and private data */ + ep7312_mtd = kmalloc(sizeof(struct mtd_info) + + sizeof(struct nand_chip), + GFP_KERNEL); + if (!ep7312_mtd) { + printk("Unable to allocate EDB7312 NAND MTD device structure.\n"); + return -ENOMEM; + } + + /* map physical adress */ + ep7312_fio_base = ioremap(ep7312_fio_pbase, SZ_1K); + if(!ep7312_fio_base) { + printk("ioremap EDB7312 NAND flash failed\n"); + kfree(ep7312_mtd); + return -EIO; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&ep7312_mtd[1]); + + /* Initialize structures */ + memset((char *) ep7312_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + ep7312_mtd->priv = this; + + /* + * Set GPIO Port B control register so that the pins are configured + * to be outputs for controlling the NAND flash. + */ + clps_writeb(0xf0, ep7312_pxddr); + + /* insert callbacks */ + this->IO_ADDR_R = ep7312_fio_base; + this->IO_ADDR_W = ep7312_fio_base; + this->hwcontrol = ep7312_hwcontrol; + this->dev_ready = ep7312_device_ready; + /* 15 us command delay time */ + this->chip_delay = 15; + + /* Scan to find existence of the device */ + if (nand_scan (ep7312_mtd, 1)) { + iounmap((void *)ep7312_fio_base); + kfree (ep7312_mtd); + return -ENXIO; + } + +#ifdef CONFIG_MTD_PARTITIONS + ep7312_mtd->name = "edb7312-nand"; + mtd_parts_nb = parse_mtd_partitions(ep7312_mtd, part_probes, + &mtd_parts, 0); + if (mtd_parts_nb > 0) + part_type = "command line"; + else + mtd_parts_nb = 0; +#endif + if (mtd_parts_nb == 0) { + mtd_parts = partition_info; + mtd_parts_nb = NUM_PARTITIONS; + part_type = "static"; + } + + /* Register the partitions */ + printk(KERN_NOTICE "Using %s partition definition\n", part_type); + add_mtd_partitions(ep7312_mtd, mtd_parts, mtd_parts_nb); + + /* Return happy */ + return 0; +} +module_init(ep7312_init); + +/* + * Clean up routine + */ +static void __exit ep7312_cleanup (void) +{ + struct nand_chip *this = (struct nand_chip *) &ep7312_mtd[1]; + + /* Release resources, unregister device */ + nand_release (ap7312_mtd); + + /* Free internal data buffer */ + kfree (this->data_buf); + + /* Free the MTD device structure */ + kfree (ep7312_mtd); +} +module_exit(ep7312_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>"); +MODULE_DESCRIPTION("MTD map driver for Cogent EDB7312 board"); diff --git a/drivers/mtd/nand/h1910.c b/drivers/mtd/nand/h1910.c new file mode 100644 index 00000000000..3825a7a0900 --- /dev/null +++ b/drivers/mtd/nand/h1910.c @@ -0,0 +1,208 @@ +/* + * drivers/mtd/nand/h1910.c + * + * Copyright (C) 2003 Joshua Wise (joshua@joshuawise.com) + * + * Derived from drivers/mtd/nand/edb7312.c + * Copyright (C) 2002 Marius Gröger (mag@sysgo.de) + * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) + * + * $Id: h1910.c,v 1.5 2004/11/04 12:53:10 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the NAND flash device found on the + * iPAQ h1910 board which utilizes the Samsung K9F2808 part. This is + * a 128Mibit (16MiB x 8 bits) NAND flash device. + */ + +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> +#include <asm/arch/hardware.h> /* for CLPS7111_VIRT_BASE */ +#include <asm/sizes.h> +#include <asm/arch/h1900-gpio.h> +#include <asm/arch/ipaq.h> + +/* + * MTD structure for EDB7312 board + */ +static struct mtd_info *h1910_nand_mtd = NULL; + +/* + * Module stuff + */ + +#ifdef CONFIG_MTD_PARTITIONS +/* + * Define static partitions for flash device + */ +static struct mtd_partition partition_info[] = { + { name: "h1910 NAND Flash", + offset: 0, + size: 16*1024*1024 } +}; +#define NUM_PARTITIONS 1 + +#endif + + +/* + * hardware specific access to control-lines + */ +static void h1910_hwcontrol(struct mtd_info *mtd, int cmd) +{ + struct nand_chip* this = (struct nand_chip *) (mtd->priv); + + switch(cmd) { + + case NAND_CTL_SETCLE: + this->IO_ADDR_R |= (1 << 2); + this->IO_ADDR_W |= (1 << 2); + break; + case NAND_CTL_CLRCLE: + this->IO_ADDR_R &= ~(1 << 2); + this->IO_ADDR_W &= ~(1 << 2); + break; + + case NAND_CTL_SETALE: + this->IO_ADDR_R |= (1 << 3); + this->IO_ADDR_W |= (1 << 3); + break; + case NAND_CTL_CLRALE: + this->IO_ADDR_R &= ~(1 << 3); + this->IO_ADDR_W &= ~(1 << 3); + break; + + case NAND_CTL_SETNCE: + break; + case NAND_CTL_CLRNCE: + break; + } +} + +/* + * read device ready pin + */ +#if 0 +static int h1910_device_ready(struct mtd_info *mtd) +{ + return (GPLR(55) & GPIO_bit(55)); +} +#endif + +/* + * Main initialization routine + */ +static int __init h1910_init (void) +{ + struct nand_chip *this; + const char *part_type = 0; + int mtd_parts_nb = 0; + struct mtd_partition *mtd_parts = 0; + void __iomem *nandaddr; + + if (!machine_is_h1900()) + return -ENODEV; + + nandaddr = __ioremap(0x08000000, 0x1000, 0, 1); + if (!nandaddr) { + printk("Failed to ioremap nand flash.\n"); + return -ENOMEM; + } + + /* Allocate memory for MTD device structure and private data */ + h1910_nand_mtd = kmalloc(sizeof(struct mtd_info) + + sizeof(struct nand_chip), + GFP_KERNEL); + if (!h1910_nand_mtd) { + printk("Unable to allocate h1910 NAND MTD device structure.\n"); + iounmap ((void *) nandaddr); + return -ENOMEM; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&h1910_nand_mtd[1]); + + /* Initialize structures */ + memset((char *) h1910_nand_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + h1910_nand_mtd->priv = this; + + /* + * Enable VPEN + */ + GPSR(37) = GPIO_bit(37); + + /* insert callbacks */ + this->IO_ADDR_R = nandaddr; + this->IO_ADDR_W = nandaddr; + this->hwcontrol = h1910_hwcontrol; + this->dev_ready = NULL; /* unknown whether that was correct or not so we will just do it like this */ + /* 15 us command delay time */ + this->chip_delay = 50; + this->eccmode = NAND_ECC_SOFT; + this->options = NAND_NO_AUTOINCR; + + /* Scan to find existence of the device */ + if (nand_scan (h1910_nand_mtd, 1)) { + printk(KERN_NOTICE "No NAND device - returning -ENXIO\n"); + kfree (h1910_nand_mtd); + iounmap ((void *) nandaddr); + return -ENXIO; + } + +#ifdef CONFIG_MTD_CMDLINE_PARTS + mtd_parts_nb = parse_cmdline_partitions(h1910_nand_mtd, &mtd_parts, + "h1910-nand"); + if (mtd_parts_nb > 0) + part_type = "command line"; + else + mtd_parts_nb = 0; +#endif + if (mtd_parts_nb == 0) + { + mtd_parts = partition_info; + mtd_parts_nb = NUM_PARTITIONS; + part_type = "static"; + } + + /* Register the partitions */ + printk(KERN_NOTICE "Using %s partition definition\n", part_type); + add_mtd_partitions(h1910_nand_mtd, mtd_parts, mtd_parts_nb); + + /* Return happy */ + return 0; +} +module_init(h1910_init); + +/* + * Clean up routine + */ +static void __exit h1910_cleanup (void) +{ + struct nand_chip *this = (struct nand_chip *) &h1910_nand_mtd[1]; + + /* Release resources, unregister device */ + nand_release (h1910_nand_mtd); + + /* Release io resource */ + iounmap ((void *) this->IO_ADDR_W); + + /* Free the MTD device structure */ + kfree (h1910_nand_mtd); +} +module_exit(h1910_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Joshua Wise <joshua at joshuawise dot com>"); +MODULE_DESCRIPTION("NAND flash driver for iPAQ h1910"); diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c new file mode 100644 index 00000000000..44d5b128911 --- /dev/null +++ b/drivers/mtd/nand/nand_base.c @@ -0,0 +1,2563 @@ +/* + * drivers/mtd/nand.c + * + * Overview: + * This is the generic MTD driver for NAND flash devices. It should be + * capable of working with almost all NAND chips currently available. + * Basic support for AG-AND chips is provided. + * + * Additional technical information is available on + * http://www.linux-mtd.infradead.org/tech/nand.html + * + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * 2002 Thomas Gleixner (tglx@linutronix.de) + * + * 02-08-2004 tglx: support for strange chips, which cannot auto increment + * pages on read / read_oob + * + * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes + * pointed this out, as he marked an auto increment capable chip + * as NOAUTOINCR in the board driver. + * Make reads over block boundaries work too + * + * 04-14-2004 tglx: first working version for 2k page size chips + * + * 05-19-2004 tglx: Basic support for Renesas AG-AND chips + * + * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared + * among multiple independend devices. Suggestions and initial patch + * from Ben Dooks <ben-mtd@fluff.org> + * + * Credits: + * David Woodhouse for adding multichip support + * + * Aleph One Ltd. and Toby Churchill Ltd. for supporting the + * rework for 2K page size chips + * + * TODO: + * Enable cached programming for 2k page size chips + * Check, if mtd->ecctype should be set to MTD_ECC_HW + * if we have HW ecc support. + * The AG-AND chips have nice features for speed improvement, + * which are not supported yet. Read / program 4 pages in one go. + * + * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <linux/delay.h> +#include <linux/errno.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/types.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/compatmac.h> +#include <linux/interrupt.h> +#include <linux/bitops.h> +#include <asm/io.h> + +#ifdef CONFIG_MTD_PARTITIONS +#include <linux/mtd/partitions.h> +#endif + +/* Define default oob placement schemes for large and small page devices */ +static struct nand_oobinfo nand_oob_8 = { + .useecc = MTD_NANDECC_AUTOPLACE, + .eccbytes = 3, + .eccpos = {0, 1, 2}, + .oobfree = { {3, 2}, {6, 2} } +}; + +static struct nand_oobinfo nand_oob_16 = { + .useecc = MTD_NANDECC_AUTOPLACE, + .eccbytes = 6, + .eccpos = {0, 1, 2, 3, 6, 7}, + .oobfree = { {8, 8} } +}; + +static struct nand_oobinfo nand_oob_64 = { + .useecc = MTD_NANDECC_AUTOPLACE, + .eccbytes = 24, + .eccpos = { + 40, 41, 42, 43, 44, 45, 46, 47, + 48, 49, 50, 51, 52, 53, 54, 55, + 56, 57, 58, 59, 60, 61, 62, 63}, + .oobfree = { {2, 38} } +}; + +/* This is used for padding purposes in nand_write_oob */ +static u_char ffchars[] = { + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, +}; + +/* + * NAND low-level MTD interface functions + */ +static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len); +static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len); +static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len); + +static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); +static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, + size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); +static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); +static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf); +static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, + size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); +static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf); +static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t * retlen); +static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, + unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel); +static int nand_erase (struct mtd_info *mtd, struct erase_info *instr); +static void nand_sync (struct mtd_info *mtd); + +/* Some internal functions */ +static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf, + struct nand_oobinfo *oobsel, int mode); +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, + u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode); +#else +#define nand_verify_pages(...) (0) +#endif + +static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state); + +/** + * nand_release_device - [GENERIC] release chip + * @mtd: MTD device structure + * + * Deselect, release chip lock and wake up anyone waiting on the device + */ +static void nand_release_device (struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + + /* De-select the NAND device */ + this->select_chip(mtd, -1); + /* Do we have a hardware controller ? */ + if (this->controller) { + spin_lock(&this->controller->lock); + this->controller->active = NULL; + spin_unlock(&this->controller->lock); + } + /* Release the chip */ + spin_lock (&this->chip_lock); + this->state = FL_READY; + wake_up (&this->wq); + spin_unlock (&this->chip_lock); +} + +/** + * nand_read_byte - [DEFAULT] read one byte from the chip + * @mtd: MTD device structure + * + * Default read function for 8bit buswith + */ +static u_char nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + return readb(this->IO_ADDR_R); +} + +/** + * nand_write_byte - [DEFAULT] write one byte to the chip + * @mtd: MTD device structure + * @byte: pointer to data byte to write + * + * Default write function for 8it buswith + */ +static void nand_write_byte(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd->priv; + writeb(byte, this->IO_ADDR_W); +} + +/** + * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip + * @mtd: MTD device structure + * + * Default read function for 16bit buswith with + * endianess conversion + */ +static u_char nand_read_byte16(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + return (u_char) cpu_to_le16(readw(this->IO_ADDR_R)); +} + +/** + * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip + * @mtd: MTD device structure + * @byte: pointer to data byte to write + * + * Default write function for 16bit buswith with + * endianess conversion + */ +static void nand_write_byte16(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd->priv; + writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); +} + +/** + * nand_read_word - [DEFAULT] read one word from the chip + * @mtd: MTD device structure + * + * Default read function for 16bit buswith without + * endianess conversion + */ +static u16 nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + return readw(this->IO_ADDR_R); +} + +/** + * nand_write_word - [DEFAULT] write one word to the chip + * @mtd: MTD device structure + * @word: data word to write + * + * Default write function for 16bit buswith without + * endianess conversion + */ +static void nand_write_word(struct mtd_info *mtd, u16 word) +{ + struct nand_chip *this = mtd->priv; + writew(word, this->IO_ADDR_W); +} + +/** + * nand_select_chip - [DEFAULT] control CE line + * @mtd: MTD device structure + * @chip: chipnumber to select, -1 for deselect + * + * Default select function for 1 chip devices. + */ +static void nand_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *this = mtd->priv; + switch(chip) { + case -1: + this->hwcontrol(mtd, NAND_CTL_CLRNCE); + break; + case 0: + this->hwcontrol(mtd, NAND_CTL_SETNCE); + break; + + default: + BUG(); + } +} + +/** + * nand_write_buf - [DEFAULT] write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * Default write function for 8bit buswith + */ +static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) + writeb(buf[i], this->IO_ADDR_W); +} + +/** + * nand_read_buf - [DEFAULT] read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * Default read function for 8bit buswith + */ +static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) + buf[i] = readb(this->IO_ADDR_R); +} + +/** + * nand_verify_buf - [DEFAULT] Verify chip data against buffer + * @mtd: MTD device structure + * @buf: buffer containing the data to compare + * @len: number of bytes to compare + * + * Default verify function for 8bit buswith + */ +static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) + if (buf[i] != readb(this->IO_ADDR_R)) + return -EFAULT; + + return 0; +} + +/** + * nand_write_buf16 - [DEFAULT] write buffer to chip + * @mtd: MTD device structure + * @buf: data buffer + * @len: number of bytes to write + * + * Default write function for 16bit buswith + */ +static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i=0; i<len; i++) + writew(p[i], this->IO_ADDR_W); + +} + +/** + * nand_read_buf16 - [DEFAULT] read chip data into buffer + * @mtd: MTD device structure + * @buf: buffer to store date + * @len: number of bytes to read + * + * Default read function for 16bit buswith + */ +static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i=0; i<len; i++) + p[i] = readw(this->IO_ADDR_R); +} + +/** + * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer + * @mtd: MTD device structure + * @buf: buffer containing the data to compare + * @len: number of bytes to compare + * + * Default verify function for 16bit buswith + */ +static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + u16 *p = (u16 *) buf; + len >>= 1; + + for (i=0; i<len; i++) + if (p[i] != readw(this->IO_ADDR_R)) + return -EFAULT; + + return 0; +} + +/** + * nand_block_bad - [DEFAULT] Read bad block marker from the chip + * @mtd: MTD device structure + * @ofs: offset from device start + * @getchip: 0, if the chip is already selected + * + * Check, if the block is bad. + */ +static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) +{ + int page, chipnr, res = 0; + struct nand_chip *this = mtd->priv; + u16 bad; + + if (getchip) { + page = (int)(ofs >> this->page_shift); + chipnr = (int)(ofs >> this->chip_shift); + + /* Grab the lock and see if the device is available */ + nand_get_device (this, mtd, FL_READING); + + /* Select the NAND device */ + this->select_chip(mtd, chipnr); + } else + page = (int) ofs; + + if (this->options & NAND_BUSWIDTH_16) { + this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask); + bad = cpu_to_le16(this->read_word(mtd)); + if (this->badblockpos & 0x1) + bad >>= 1; + if ((bad & 0xFF) != 0xff) + res = 1; + } else { + this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask); + if (this->read_byte(mtd) != 0xff) + res = 1; + } + + if (getchip) { + /* Deselect and wake up anyone waiting on the device */ + nand_release_device(mtd); + } + + return res; +} + +/** + * nand_default_block_markbad - [DEFAULT] mark a block bad + * @mtd: MTD device structure + * @ofs: offset from device start + * + * This is the default implementation, which can be overridden by + * a hardware specific driver. +*/ +static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *this = mtd->priv; + u_char buf[2] = {0, 0}; + size_t retlen; + int block; + + /* Get block number */ + block = ((int) ofs) >> this->bbt_erase_shift; + this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); + + /* Do we have a flash based bad block table ? */ + if (this->options & NAND_USE_FLASH_BBT) + return nand_update_bbt (mtd, ofs); + + /* We write two bytes, so we dont have to mess with 16 bit access */ + ofs += mtd->oobsize + (this->badblockpos & ~0x01); + return nand_write_oob (mtd, ofs , 2, &retlen, buf); +} + +/** + * nand_check_wp - [GENERIC] check if the chip is write protected + * @mtd: MTD device structure + * Check, if the device is write protected + * + * The function expects, that the device is already selected + */ +static int nand_check_wp (struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + /* Check the WP bit */ + this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); + return (this->read_byte(mtd) & 0x80) ? 0 : 1; +} + +/** + * nand_block_checkbad - [GENERIC] Check if a block is marked bad + * @mtd: MTD device structure + * @ofs: offset from device start + * @getchip: 0, if the chip is already selected + * @allowbbt: 1, if its allowed to access the bbt area + * + * Check, if the block is bad. Either by reading the bad block table or + * calling of the scan function. + */ +static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt) +{ + struct nand_chip *this = mtd->priv; + + if (!this->bbt) + return this->block_bad(mtd, ofs, getchip); + + /* Return info from the table */ + return nand_isbad_bbt (mtd, ofs, allowbbt); +} + +/** + * nand_command - [DEFAULT] Send command to NAND device + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none + * + * Send command to NAND device. This function is used for small page + * devices (256/512 Bytes per page) + */ +static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ + register struct nand_chip *this = mtd->priv; + + /* Begin command latch cycle */ + this->hwcontrol(mtd, NAND_CTL_SETCLE); + /* + * Write out the command to the device. + */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->oobblock) { + /* OOB area */ + column -= mtd->oobblock; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + this->write_byte(mtd, readcmd); + } + this->write_byte(mtd, command); + + /* Set ALE and clear CLE to start address cycle */ + this->hwcontrol(mtd, NAND_CTL_CLRCLE); + + if (column != -1 || page_addr != -1) { + this->hwcontrol(mtd, NAND_CTL_SETALE); + + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (this->options & NAND_BUSWIDTH_16) + column >>= 1; + this->write_byte(mtd, column); + } + if (page_addr != -1) { + this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); + this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); + /* One more address cycle for devices > 32MiB */ + if (this->chipsize > (32 << 20)) + this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f)); + } + /* Latch in address */ + this->hwcontrol(mtd, NAND_CTL_CLRALE); + } + + /* + * program and erase have their own busy handlers + * status and sequential in needs no delay + */ + switch (command) { + + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + return; + + case NAND_CMD_RESET: + if (this->dev_ready) + break; + udelay(this->chip_delay); + this->hwcontrol(mtd, NAND_CTL_SETCLE); + this->write_byte(mtd, NAND_CMD_STATUS); + this->hwcontrol(mtd, NAND_CTL_CLRCLE); + while ( !(this->read_byte(mtd) & 0x40)); + return; + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!this->dev_ready) { + udelay (this->chip_delay); + return; + } + } + + /* Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. */ + ndelay (100); + /* wait until command is processed */ + while (!this->dev_ready(mtd)); +} + +/** + * nand_command_lp - [DEFAULT] Send command to NAND large page device + * @mtd: MTD device structure + * @command: the command to be sent + * @column: the column address for this command, -1 if none + * @page_addr: the page address for this command, -1 if none + * + * Send command to NAND device. This is the version for the new large page devices + * We dont have the seperate regions as we have in the small page devices. + * We must emulate NAND_CMD_READOOB to keep the code compatible. + * + */ +static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ + register struct nand_chip *this = mtd->priv; + + /* Emulate NAND_CMD_READOOB */ + if (command == NAND_CMD_READOOB) { + column += mtd->oobblock; + command = NAND_CMD_READ0; + } + + + /* Begin command latch cycle */ + this->hwcontrol(mtd, NAND_CTL_SETCLE); + /* Write out the command to the device. */ + this->write_byte(mtd, command); + /* End command latch cycle */ + this->hwcontrol(mtd, NAND_CTL_CLRCLE); + + if (column != -1 || page_addr != -1) { + this->hwcontrol(mtd, NAND_CTL_SETALE); + + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (this->options & NAND_BUSWIDTH_16) + column >>= 1; + this->write_byte(mtd, column & 0xff); + this->write_byte(mtd, column >> 8); + } + if (page_addr != -1) { + this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); + this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); + /* One more address cycle for devices > 128MiB */ + if (this->chipsize > (128 << 20)) + this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff)); + } + /* Latch in address */ + this->hwcontrol(mtd, NAND_CTL_CLRALE); + } + + /* + * program and erase have their own busy handlers + * status and sequential in needs no delay + */ + switch (command) { + + case NAND_CMD_CACHEDPROG: + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + return; + + + case NAND_CMD_RESET: + if (this->dev_ready) + break; + udelay(this->chip_delay); + this->hwcontrol(mtd, NAND_CTL_SETCLE); + this->write_byte(mtd, NAND_CMD_STATUS); + this->hwcontrol(mtd, NAND_CTL_CLRCLE); + while ( !(this->read_byte(mtd) & 0x40)); + return; + + case NAND_CMD_READ0: + /* Begin command latch cycle */ + this->hwcontrol(mtd, NAND_CTL_SETCLE); + /* Write out the start read command */ + this->write_byte(mtd, NAND_CMD_READSTART); + /* End command latch cycle */ + this->hwcontrol(mtd, NAND_CTL_CLRCLE); + /* Fall through into ready check */ + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!this->dev_ready) { + udelay (this->chip_delay); + return; + } + } + + /* Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. */ + ndelay (100); + /* wait until command is processed */ + while (!this->dev_ready(mtd)); +} + +/** + * nand_get_device - [GENERIC] Get chip for selected access + * @this: the nand chip descriptor + * @mtd: MTD device structure + * @new_state: the state which is requested + * + * Get the device and lock it for exclusive access + */ +static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) +{ + struct nand_chip *active = this; + + DECLARE_WAITQUEUE (wait, current); + + /* + * Grab the lock and see if the device is available + */ +retry: + /* Hardware controller shared among independend devices */ + if (this->controller) { + spin_lock (&this->controller->lock); + if (this->controller->active) + active = this->controller->active; + else + this->controller->active = this; + spin_unlock (&this->controller->lock); + } + + if (active == this) { + spin_lock (&this->chip_lock); + if (this->state == FL_READY) { + this->state = new_state; + spin_unlock (&this->chip_lock); + return; + } + } + set_current_state (TASK_UNINTERRUPTIBLE); + add_wait_queue (&active->wq, &wait); + spin_unlock (&active->chip_lock); + schedule (); + remove_wait_queue (&active->wq, &wait); + goto retry; +} + +/** + * nand_wait - [DEFAULT] wait until the command is done + * @mtd: MTD device structure + * @this: NAND chip structure + * @state: state to select the max. timeout value + * + * Wait for command done. This applies to erase and program only + * Erase can take up to 400ms and program up to 20ms according to + * general NAND and SmartMedia specs + * +*/ +static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) +{ + + unsigned long timeo = jiffies; + int status; + + if (state == FL_ERASING) + timeo += (HZ * 400) / 1000; + else + timeo += (HZ * 20) / 1000; + + /* Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. */ + ndelay (100); + + if ((state == FL_ERASING) && (this->options & NAND_IS_AND)) + this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1); + else + this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); + + while (time_before(jiffies, timeo)) { + /* Check, if we were interrupted */ + if (this->state != state) + return 0; + + if (this->dev_ready) { + if (this->dev_ready(mtd)) + break; + } else { + if (this->read_byte(mtd) & NAND_STATUS_READY) + break; + } + yield (); + } + status = (int) this->read_byte(mtd); + return status; +} + +/** + * nand_write_page - [GENERIC] write one page + * @mtd: MTD device structure + * @this: NAND chip structure + * @page: startpage inside the chip, must be called with (page & this->pagemask) + * @oob_buf: out of band data buffer + * @oobsel: out of band selecttion structre + * @cached: 1 = enable cached programming if supported by chip + * + * Nand_page_program function is used for write and writev ! + * This function will always program a full page of data + * If you call it with a non page aligned buffer, you're lost :) + * + * Cached programming is not supported yet. + */ +static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, + u_char *oob_buf, struct nand_oobinfo *oobsel, int cached) +{ + int i, status; + u_char ecc_code[32]; + int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; + int *oob_config = oobsel->eccpos; + int datidx = 0, eccidx = 0, eccsteps = this->eccsteps; + int eccbytes = 0; + + /* FIXME: Enable cached programming */ + cached = 0; + + /* Send command to begin auto page programming */ + this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page); + + /* Write out complete page of data, take care of eccmode */ + switch (eccmode) { + /* No ecc, write all */ + case NAND_ECC_NONE: + printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n"); + this->write_buf(mtd, this->data_poi, mtd->oobblock); + break; + + /* Software ecc 3/256, write all */ + case NAND_ECC_SOFT: + for (; eccsteps; eccsteps--) { + this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); + for (i = 0; i < 3; i++, eccidx++) + oob_buf[oob_config[eccidx]] = ecc_code[i]; + datidx += this->eccsize; + } + this->write_buf(mtd, this->data_poi, mtd->oobblock); + break; + default: + eccbytes = this->eccbytes; + for (; eccsteps; eccsteps--) { + /* enable hardware ecc logic for write */ + this->enable_hwecc(mtd, NAND_ECC_WRITE); + this->write_buf(mtd, &this->data_poi[datidx], this->eccsize); + this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); + for (i = 0; i < eccbytes; i++, eccidx++) + oob_buf[oob_config[eccidx]] = ecc_code[i]; + /* If the hardware ecc provides syndromes then + * the ecc code must be written immidiately after + * the data bytes (words) */ + if (this->options & NAND_HWECC_SYNDROME) + this->write_buf(mtd, ecc_code, eccbytes); + datidx += this->eccsize; + } + break; + } + + /* Write out OOB data */ + if (this->options & NAND_HWECC_SYNDROME) + this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes); + else + this->write_buf(mtd, oob_buf, mtd->oobsize); + + /* Send command to actually program the data */ + this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1); + + if (!cached) { + /* call wait ready function */ + status = this->waitfunc (mtd, this, FL_WRITING); + /* See if device thinks it succeeded */ + if (status & 0x01) { + DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page); + return -EIO; + } + } else { + /* FIXME: Implement cached programming ! */ + /* wait until cache is ready*/ + // status = this->waitfunc (mtd, this, FL_CACHEDRPG); + } + return 0; +} + +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE +/** + * nand_verify_pages - [GENERIC] verify the chip contents after a write + * @mtd: MTD device structure + * @this: NAND chip structure + * @page: startpage inside the chip, must be called with (page & this->pagemask) + * @numpages: number of pages to verify + * @oob_buf: out of band data buffer + * @oobsel: out of band selecttion structre + * @chipnr: number of the current chip + * @oobmode: 1 = full buffer verify, 0 = ecc only + * + * The NAND device assumes that it is always writing to a cleanly erased page. + * Hence, it performs its internal write verification only on bits that + * transitioned from 1 to 0. The device does NOT verify the whole page on a + * byte by byte basis. It is possible that the page was not completely erased + * or the page is becoming unusable due to wear. The read with ECC would catch + * the error later when the ECC page check fails, but we would rather catch + * it early in the page write stage. Better to write no data than invalid data. + */ +static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, + u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode) +{ + int i, j, datidx = 0, oobofs = 0, res = -EIO; + int eccsteps = this->eccsteps; + int hweccbytes; + u_char oobdata[64]; + + hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0; + + /* Send command to read back the first page */ + this->cmdfunc (mtd, NAND_CMD_READ0, 0, page); + + for(;;) { + for (j = 0; j < eccsteps; j++) { + /* Loop through and verify the data */ + if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) { + DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); + goto out; + } + datidx += mtd->eccsize; + /* Have we a hw generator layout ? */ + if (!hweccbytes) + continue; + if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) { + DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); + goto out; + } + oobofs += hweccbytes; + } + + /* check, if we must compare all data or if we just have to + * compare the ecc bytes + */ + if (oobmode) { + if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) { + DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); + goto out; + } + } else { + /* Read always, else autoincrement fails */ + this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps); + + if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) { + int ecccnt = oobsel->eccbytes; + + for (i = 0; i < ecccnt; i++) { + int idx = oobsel->eccpos[i]; + if (oobdata[idx] != oob_buf[oobofs + idx] ) { + DEBUG (MTD_DEBUG_LEVEL0, + "%s: Failed ECC write " + "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i); + goto out; + } + } + } + } + oobofs += mtd->oobsize - hweccbytes * eccsteps; + page++; + numpages--; + + /* Apply delay or wait for ready/busy pin + * Do this before the AUTOINCR check, so no problems + * arise if a chip which does auto increment + * is marked as NOAUTOINCR by the board driver. + * Do this also before returning, so the chip is + * ready for the next command. + */ + if (!this->dev_ready) + udelay (this->chip_delay); + else + while (!this->dev_ready(mtd)); + + /* All done, return happy */ + if (!numpages) + return 0; + + + /* Check, if the chip supports auto page increment */ + if (!NAND_CANAUTOINCR(this)) + this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); + } + /* + * Terminate the read command. We come here in case of an error + * So we must issue a reset command. + */ +out: + this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1); + return res; +} +#endif + +/** + * nand_read - [MTD Interface] MTD compability function for nand_read_ecc + * @mtd: MTD device structure + * @from: offset to read from + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put data + * + * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL +*/ +static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) +{ + return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL); +} + + +/** + * nand_read_ecc - [MTD Interface] Read data with ECC + * @mtd: MTD device structure + * @from: offset to read from + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put data + * @oob_buf: filesystem supplied oob data buffer + * @oobsel: oob selection structure + * + * NAND read with ECC + */ +static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, + size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel) +{ + int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1; + int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0; + struct nand_chip *this = mtd->priv; + u_char *data_poi, *oob_data = oob_buf; + u_char ecc_calc[32]; + u_char ecc_code[32]; + int eccmode, eccsteps; + int *oob_config, datidx; + int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; + int eccbytes; + int compareecc = 1; + int oobreadlen; + + + DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); + + /* Do not allow reads past end of device */ + if ((from + len) > mtd->size) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n"); + *retlen = 0; + return -EINVAL; + } + + /* Grab the lock and see if the device is available */ + nand_get_device (this, mtd ,FL_READING); + + /* use userspace supplied oobinfo, if zero */ + if (oobsel == NULL) + oobsel = &mtd->oobinfo; + + /* Autoplace of oob data ? Use the default placement scheme */ + if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) + oobsel = this->autooob; + + eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; + oob_config = oobsel->eccpos; + + /* Select the NAND device */ + chipnr = (int)(from >> this->chip_shift); + this->select_chip(mtd, chipnr); + + /* First we calculate the starting page */ + realpage = (int) (from >> this->page_shift); + page = realpage & this->pagemask; + + /* Get raw starting column */ + col = from & (mtd->oobblock - 1); + + end = mtd->oobblock; + ecc = this->eccsize; + eccbytes = this->eccbytes; + + if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME)) + compareecc = 0; + + oobreadlen = mtd->oobsize; + if (this->options & NAND_HWECC_SYNDROME) + oobreadlen -= oobsel->eccbytes; + + /* Loop until all data read */ + while (read < len) { + + int aligned = (!col && (len - read) >= end); + /* + * If the read is not page aligned, we have to read into data buffer + * due to ecc, else we read into return buffer direct + */ + if (aligned) + data_poi = &buf[read]; + else + data_poi = this->data_buf; + + /* Check, if we have this page in the buffer + * + * FIXME: Make it work when we must provide oob data too, + * check the usage of data_buf oob field + */ + if (realpage == this->pagebuf && !oob_buf) { + /* aligned read ? */ + if (aligned) + memcpy (data_poi, this->data_buf, end); + goto readdata; + } + + /* Check, if we must send the read command */ + if (sndcmd) { + this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); + sndcmd = 0; + } + + /* get oob area, if we have no oob buffer from fs-driver */ + if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE) + oob_data = &this->data_buf[end]; + + eccsteps = this->eccsteps; + + switch (eccmode) { + case NAND_ECC_NONE: { /* No ECC, Read in a page */ + static unsigned long lastwhinge = 0; + if ((lastwhinge / HZ) != (jiffies / HZ)) { + printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n"); + lastwhinge = jiffies; + } + this->read_buf(mtd, data_poi, end); + break; + } + + case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */ + this->read_buf(mtd, data_poi, end); + for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc) + this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); + break; + + default: + for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) { + this->enable_hwecc(mtd, NAND_ECC_READ); + this->read_buf(mtd, &data_poi[datidx], ecc); + + /* HW ecc with syndrome calculation must read the + * syndrome from flash immidiately after the data */ + if (!compareecc) { + /* Some hw ecc generators need to know when the + * syndrome is read from flash */ + this->enable_hwecc(mtd, NAND_ECC_READSYN); + this->read_buf(mtd, &oob_data[i], eccbytes); + /* We calc error correction directly, it checks the hw + * generator for an error, reads back the syndrome and + * does the error correction on the fly */ + if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " + "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr); + ecc_failed++; + } + } else { + this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); + } + } + break; + } + + /* read oobdata */ + this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen); + + /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */ + if (!compareecc) + goto readoob; + + /* Pick the ECC bytes out of the oob data */ + for (j = 0; j < oobsel->eccbytes; j++) + ecc_code[j] = oob_data[oob_config[j]]; + + /* correct data, if neccecary */ + for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) { + ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]); + + /* Get next chunk of ecc bytes */ + j += eccbytes; + + /* Check, if we have a fs supplied oob-buffer, + * This is the legacy mode. Used by YAFFS1 + * Should go away some day + */ + if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) { + int *p = (int *)(&oob_data[mtd->oobsize]); + p[i] = ecc_status; + } + + if (ecc_status == -1) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page); + ecc_failed++; + } + } + + readoob: + /* check, if we have a fs supplied oob-buffer */ + if (oob_buf) { + /* without autoplace. Legacy mode used by YAFFS1 */ + switch(oobsel->useecc) { + case MTD_NANDECC_AUTOPLACE: + /* Walk through the autoplace chunks */ + for (i = 0, j = 0; j < mtd->oobavail; i++) { + int from = oobsel->oobfree[i][0]; + int num = oobsel->oobfree[i][1]; + memcpy(&oob_buf[oob], &oob_data[from], num); + j+= num; + } + oob += mtd->oobavail; + break; + case MTD_NANDECC_PLACE: + /* YAFFS1 legacy mode */ + oob_data += this->eccsteps * sizeof (int); + default: + oob_data += mtd->oobsize; + } + } + readdata: + /* Partial page read, transfer data into fs buffer */ + if (!aligned) { + for (j = col; j < end && read < len; j++) + buf[read++] = data_poi[j]; + this->pagebuf = realpage; + } else + read += mtd->oobblock; + + /* Apply delay or wait for ready/busy pin + * Do this before the AUTOINCR check, so no problems + * arise if a chip which does auto increment + * is marked as NOAUTOINCR by the board driver. + */ + if (!this->dev_ready) + udelay (this->chip_delay); + else + while (!this->dev_ready(mtd)); + + if (read == len) + break; + + /* For subsequent reads align to page boundary. */ + col = 0; + /* Increment page address */ + realpage++; + + page = realpage & this->pagemask; + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + this->select_chip(mtd, -1); + this->select_chip(mtd, chipnr); + } + /* Check, if the chip supports auto page increment + * or if we have hit a block boundary. + */ + if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) + sndcmd = 1; + } + + /* Deselect and wake up anyone waiting on the device */ + nand_release_device(mtd); + + /* + * Return success, if no ECC failures, else -EBADMSG + * fs driver will take care of that, because + * retlen == desired len and result == -EBADMSG + */ + *retlen = read; + return ecc_failed ? -EBADMSG : 0; +} + +/** + * nand_read_oob - [MTD Interface] NAND read out-of-band + * @mtd: MTD device structure + * @from: offset to read from + * @len: number of bytes to read + * @retlen: pointer to variable to store the number of read bytes + * @buf: the databuffer to put data + * + * NAND read out-of-band data from the spare area + */ +static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) +{ + int i, col, page, chipnr; + struct nand_chip *this = mtd->priv; + int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; + + DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); + + /* Shift to get page */ + page = (int)(from >> this->page_shift); + chipnr = (int)(from >> this->chip_shift); + + /* Mask to get column */ + col = from & (mtd->oobsize - 1); + + /* Initialize return length value */ + *retlen = 0; + + /* Do not allow reads past end of device */ + if ((from + len) > mtd->size) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n"); + *retlen = 0; + return -EINVAL; + } + + /* Grab the lock and see if the device is available */ + nand_get_device (this, mtd , FL_READING); + + /* Select the NAND device */ + this->select_chip(mtd, chipnr); + + /* Send the read command */ + this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask); + /* + * Read the data, if we read more than one page + * oob data, let the device transfer the data ! + */ + i = 0; + while (i < len) { + int thislen = mtd->oobsize - col; + thislen = min_t(int, thislen, len); + this->read_buf(mtd, &buf[i], thislen); + i += thislen; + + /* Apply delay or wait for ready/busy pin + * Do this before the AUTOINCR check, so no problems + * arise if a chip which does auto increment + * is marked as NOAUTOINCR by the board driver. + */ + if (!this->dev_ready) + udelay (this->chip_delay); + else + while (!this->dev_ready(mtd)); + + /* Read more ? */ + if (i < len) { + page++; + col = 0; + + /* Check, if we cross a chip boundary */ + if (!(page & this->pagemask)) { + chipnr++; + this->select_chip(mtd, -1); + this->select_chip(mtd, chipnr); + } + + /* Check, if the chip supports auto page increment + * or if we have hit a block boundary. + */ + if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) { + /* For subsequent page reads set offset to 0 */ + this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask); + } + } + } + + /* Deselect and wake up anyone waiting on the device */ + nand_release_device(mtd); + + /* Return happy */ + *retlen = len; + return 0; +} + +/** + * nand_read_raw - [GENERIC] Read raw data including oob into buffer + * @mtd: MTD device structure + * @buf: temporary buffer + * @from: offset to read from + * @len: number of bytes to read + * @ooblen: number of oob data bytes to read + * + * Read raw data including oob into buffer + */ +int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen) +{ + struct nand_chip *this = mtd->priv; + int page = (int) (from >> this->page_shift); + int chip = (int) (from >> this->chip_shift); + int sndcmd = 1; + int cnt = 0; + int pagesize = mtd->oobblock + mtd->oobsize; + int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; + + /* Do not allow reads past end of device */ + if ((from + len) > mtd->size) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n"); + return -EINVAL; + } + + /* Grab the lock and see if the device is available */ + nand_get_device (this, mtd , FL_READING); + + this->select_chip (mtd, chip); + + /* Add requested oob length */ + len += ooblen; + + while (len) { + if (sndcmd) + this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask); + sndcmd = 0; + + this->read_buf (mtd, &buf[cnt], pagesize); + + len -= pagesize; + cnt += pagesize; + page++; + + if (!this->dev_ready) + udelay (this->chip_delay); + else + while (!this->dev_ready(mtd)); + + /* Check, if the chip supports auto page increment */ + if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) + sndcmd = 1; + } + + /* Deselect and wake up anyone waiting on the device */ + nand_release_device(mtd); + return 0; +} + + +/** + * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer + * @mtd: MTD device structure + * @fsbuf: buffer given by fs driver + * @oobsel: out of band selection structre + * @autoplace: 1 = place given buffer into the oob bytes + * @numpages: number of pages to prepare + * + * Return: + * 1. Filesystem buffer available and autoplacement is off, + * return filesystem buffer + * 2. No filesystem buffer or autoplace is off, return internal + * buffer + * 3. Filesystem buffer is given and autoplace selected + * put data from fs buffer into internal buffer and + * retrun internal buffer + * + * Note: The internal buffer is filled with 0xff. This must + * be done only once, when no autoplacement happens + * Autoplacement sets the buffer dirty flag, which + * forces the 0xff fill before using the buffer again. + * +*/ +static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel, + int autoplace, int numpages) +{ + struct nand_chip *this = mtd->priv; + int i, len, ofs; + + /* Zero copy fs supplied buffer */ + if (fsbuf && !autoplace) + return fsbuf; + + /* Check, if the buffer must be filled with ff again */ + if (this->oobdirty) { + memset (this->oob_buf, 0xff, + mtd->oobsize << (this->phys_erase_shift - this->page_shift)); + this->oobdirty = 0; + } + + /* If we have no autoplacement or no fs buffer use the internal one */ + if (!autoplace || !fsbuf) + return this->oob_buf; + + /* Walk through the pages and place the data */ + this->oobdirty = 1; + ofs = 0; + while (numpages--) { + for (i = 0, len = 0; len < mtd->oobavail; i++) { + int to = ofs + oobsel->oobfree[i][0]; + int num = oobsel->oobfree[i][1]; + memcpy (&this->oob_buf[to], fsbuf, num); + len += num; + fsbuf += num; + } + ofs += mtd->oobavail; + } + return this->oob_buf; +} + +#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0 + +/** + * nand_write - [MTD Interface] compability function for nand_write_ecc + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write + * + * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL + * +*/ +static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) +{ + return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL)); +} + +/** + * nand_write_ecc - [MTD Interface] NAND write with ECC + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write + * @eccbuf: filesystem supplied oob data buffer + * @oobsel: oob selection structure + * + * NAND write with ECC + */ +static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, + size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel) +{ + int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr; + int autoplace = 0, numpages, totalpages; + struct nand_chip *this = mtd->priv; + u_char *oobbuf, *bufstart; + int ppblock = (1 << (this->phys_erase_shift - this->page_shift)); + + DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); + + /* Initialize retlen, in case of early exit */ + *retlen = 0; + + /* Do not allow write past end of device */ + if ((to + len) > mtd->size) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n"); + return -EINVAL; + } + + /* reject writes, which are not page aligned */ + if (NOTALIGNED (to) || NOTALIGNED(len)) { + printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); + return -EINVAL; + } + + /* Grab the lock and see if the device is available */ + nand_get_device (this, mtd, FL_WRITING); + + /* Calculate chipnr */ + chipnr = (int)(to >> this->chip_shift); + /* Select the NAND device */ + this->select_chip(mtd, chipnr); + + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) + goto out; + + /* if oobsel is NULL, use chip defaults */ + if (oobsel == NULL) + oobsel = &mtd->oobinfo; + + /* Autoplace of oob data ? Use the default placement scheme */ + if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { + oobsel = this->autooob; + autoplace = 1; + } + + /* Setup variables and oob buffer */ + totalpages = len >> this->page_shift; + page = (int) (to >> this->page_shift); + /* Invalidate the page cache, if we write to the cached page */ + if (page <= this->pagebuf && this->pagebuf < (page + totalpages)) + this->pagebuf = -1; + + /* Set it relative to chip */ + page &= this->pagemask; + startpage = page; + /* Calc number of pages we can write in one go */ + numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages); + oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages); + bufstart = (u_char *)buf; + + /* Loop until all data is written */ + while (written < len) { + + this->data_poi = (u_char*) &buf[written]; + /* Write one page. If this is the last page to write + * or the last page in this block, then use the + * real pageprogram command, else select cached programming + * if supported by the chip. + */ + ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0)); + if (ret) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret); + goto out; + } + /* Next oob page */ + oob += mtd->oobsize; + /* Update written bytes count */ + written += mtd->oobblock; + if (written == len) + goto cmp; + + /* Increment page address */ + page++; + + /* Have we hit a block boundary ? Then we have to verify and + * if verify is ok, we have to setup the oob buffer for + * the next pages. + */ + if (!(page & (ppblock - 1))){ + int ofs; + this->data_poi = bufstart; + ret = nand_verify_pages (mtd, this, startpage, + page - startpage, + oobbuf, oobsel, chipnr, (eccbuf != NULL)); + if (ret) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); + goto out; + } + *retlen = written; + + ofs = autoplace ? mtd->oobavail : mtd->oobsize; + if (eccbuf) + eccbuf += (page - startpage) * ofs; + totalpages -= page - startpage; + numpages = min (totalpages, ppblock); + page &= this->pagemask; + startpage = page; + oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, + autoplace, numpages); + /* Check, if we cross a chip boundary */ + if (!page) { + chipnr++; + this->select_chip(mtd, -1); + this->select_chip(mtd, chipnr); + } + } + } + /* Verify the remaining pages */ +cmp: + this->data_poi = bufstart; + ret = nand_verify_pages (mtd, this, startpage, totalpages, + oobbuf, oobsel, chipnr, (eccbuf != NULL)); + if (!ret) + *retlen = written; + else + DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); + +out: + /* Deselect and wake up anyone waiting on the device */ + nand_release_device(mtd); + + return ret; +} + + +/** + * nand_write_oob - [MTD Interface] NAND write out-of-band + * @mtd: MTD device structure + * @to: offset to write to + * @len: number of bytes to write + * @retlen: pointer to variable to store the number of written bytes + * @buf: the data to write + * + * NAND write out-of-band + */ +static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) +{ + int column, page, status, ret = -EIO, chipnr; + struct nand_chip *this = mtd->priv; + + DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); + + /* Shift to get page */ + page = (int) (to >> this->page_shift); + chipnr = (int) (to >> this->chip_shift); + + /* Mask to get column */ + column = to & (mtd->oobsize - 1); + + /* Initialize return length value */ + *retlen = 0; + + /* Do not allow write past end of page */ + if ((column + len) > mtd->oobsize) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n"); + return -EINVAL; + } + + /* Grab the lock and see if the device is available */ + nand_get_device (this, mtd, FL_WRITING); + + /* Select the NAND device */ + this->select_chip(mtd, chipnr); + + /* Reset the chip. Some chips (like the Toshiba TC5832DC found + in one of my DiskOnChip 2000 test units) will clear the whole + data page too if we don't do this. I have no clue why, but + I seem to have 'fixed' it in the doc2000 driver in + August 1999. dwmw2. */ + this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); + + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) + goto out; + + /* Invalidate the page cache, if we write to the cached page */ + if (page == this->pagebuf) + this->pagebuf = -1; + + if (NAND_MUST_PAD(this)) { + /* Write out desired data */ + this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask); + /* prepad 0xff for partial programming */ + this->write_buf(mtd, ffchars, column); + /* write data */ + this->write_buf(mtd, buf, len); + /* postpad 0xff for partial programming */ + this->write_buf(mtd, ffchars, mtd->oobsize - (len+column)); + } else { + /* Write out desired data */ + this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask); + /* write data */ + this->write_buf(mtd, buf, len); + } + /* Send command to program the OOB data */ + this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1); + + status = this->waitfunc (mtd, this, FL_WRITING); + + /* See if device thinks it succeeded */ + if (status & 0x01) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page); + ret = -EIO; + goto out; + } + /* Return happy */ + *retlen = len; + +#ifdef CONFIG_MTD_NAND_VERIFY_WRITE + /* Send command to read back the data */ + this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask); + + if (this->verify_buf(mtd, buf, len)) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page); + ret = -EIO; + goto out; + } +#endif + ret = 0; +out: + /* Deselect and wake up anyone waiting on the device */ + nand_release_device(mtd); + + return ret; +} + + +/** + * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc + * @mtd: MTD device structure + * @vecs: the iovectors to write + * @count: number of vectors + * @to: offset to write to + * @retlen: pointer to variable to store the number of written bytes + * + * NAND write with kvec. This just calls the ecc function + */ +static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, + loff_t to, size_t * retlen) +{ + return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL)); +} + +/** + * nand_writev_ecc - [MTD Interface] write with iovec with ecc + * @mtd: MTD device structure + * @vecs: the iovectors to write + * @count: number of vectors + * @to: offset to write to + * @retlen: pointer to variable to store the number of written bytes + * @eccbuf: filesystem supplied oob data buffer + * @oobsel: oob selection structure + * + * NAND write with iovec with ecc + */ +static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, + loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel) +{ + int i, page, len, total_len, ret = -EIO, written = 0, chipnr; + int oob, numpages, autoplace = 0, startpage; + struct nand_chip *this = mtd->priv; + int ppblock = (1 << (this->phys_erase_shift - this->page_shift)); + u_char *oobbuf, *bufstart; + + /* Preset written len for early exit */ + *retlen = 0; + + /* Calculate total length of data */ + total_len = 0; + for (i = 0; i < count; i++) + total_len += (int) vecs[i].iov_len; + + DEBUG (MTD_DEBUG_LEVEL3, + "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count); + + /* Do not allow write past end of page */ + if ((to + total_len) > mtd->size) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n"); + return -EINVAL; + } + + /* reject writes, which are not page aligned */ + if (NOTALIGNED (to) || NOTALIGNED(total_len)) { + printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); + return -EINVAL; + } + + /* Grab the lock and see if the device is available */ + nand_get_device (this, mtd, FL_WRITING); + + /* Get the current chip-nr */ + chipnr = (int) (to >> this->chip_shift); + /* Select the NAND device */ + this->select_chip(mtd, chipnr); + + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) + goto out; + + /* if oobsel is NULL, use chip defaults */ + if (oobsel == NULL) + oobsel = &mtd->oobinfo; + + /* Autoplace of oob data ? Use the default placement scheme */ + if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { + oobsel = this->autooob; + autoplace = 1; + } + + /* Setup start page */ + page = (int) (to >> this->page_shift); + /* Invalidate the page cache, if we write to the cached page */ + if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift)) + this->pagebuf = -1; + + startpage = page & this->pagemask; + + /* Loop until all kvec' data has been written */ + len = 0; + while (count) { + /* If the given tuple is >= pagesize then + * write it out from the iov + */ + if ((vecs->iov_len - len) >= mtd->oobblock) { + /* Calc number of pages we can write + * out of this iov in one go */ + numpages = (vecs->iov_len - len) >> this->page_shift; + /* Do not cross block boundaries */ + numpages = min (ppblock - (startpage & (ppblock - 1)), numpages); + oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); + bufstart = (u_char *)vecs->iov_base; + bufstart += len; + this->data_poi = bufstart; + oob = 0; + for (i = 1; i <= numpages; i++) { + /* Write one page. If this is the last page to write + * then use the real pageprogram command, else select + * cached programming if supported by the chip. + */ + ret = nand_write_page (mtd, this, page & this->pagemask, + &oobbuf[oob], oobsel, i != numpages); + if (ret) + goto out; + this->data_poi += mtd->oobblock; + len += mtd->oobblock; + oob += mtd->oobsize; + page++; + } + /* Check, if we have to switch to the next tuple */ + if (len >= (int) vecs->iov_len) { + vecs++; + len = 0; + count--; + } + } else { + /* We must use the internal buffer, read data out of each + * tuple until we have a full page to write + */ + int cnt = 0; + while (cnt < mtd->oobblock) { + if (vecs->iov_base != NULL && vecs->iov_len) + this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++]; + /* Check, if we have to switch to the next tuple */ + if (len >= (int) vecs->iov_len) { + vecs++; + len = 0; + count--; + } + } + this->pagebuf = page; + this->data_poi = this->data_buf; + bufstart = this->data_poi; + numpages = 1; + oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); + ret = nand_write_page (mtd, this, page & this->pagemask, + oobbuf, oobsel, 0); + if (ret) + goto out; + page++; + } + + this->data_poi = bufstart; + ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0); + if (ret) + goto out; + + written += mtd->oobblock * numpages; + /* All done ? */ + if (!count) + break; + + startpage = page & this->pagemask; + /* Check, if we cross a chip boundary */ + if (!startpage) { + chipnr++; + this->select_chip(mtd, -1); + this->select_chip(mtd, chipnr); + } + } + ret = 0; +out: + /* Deselect and wake up anyone waiting on the device */ + nand_release_device(mtd); + + *retlen = written; + return ret; +} + +/** + * single_erease_cmd - [GENERIC] NAND standard block erase command function + * @mtd: MTD device structure + * @page: the page address of the block which will be erased + * + * Standard erase command for NAND chips + */ +static void single_erase_cmd (struct mtd_info *mtd, int page) +{ + struct nand_chip *this = mtd->priv; + /* Send commands to erase a block */ + this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); + this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); +} + +/** + * multi_erease_cmd - [GENERIC] AND specific block erase command function + * @mtd: MTD device structure + * @page: the page address of the block which will be erased + * + * AND multi block erase command function + * Erase 4 consecutive blocks + */ +static void multi_erase_cmd (struct mtd_info *mtd, int page) +{ + struct nand_chip *this = mtd->priv; + /* Send commands to erase a block */ + this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); + this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); + this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); + this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); + this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); +} + +/** + * nand_erase - [MTD Interface] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * + * Erase one ore more blocks + */ +static int nand_erase (struct mtd_info *mtd, struct erase_info *instr) +{ + return nand_erase_nand (mtd, instr, 0); +} + +/** + * nand_erase_intern - [NAND Interface] erase block(s) + * @mtd: MTD device structure + * @instr: erase instruction + * @allowbbt: allow erasing the bbt area + * + * Erase one ore more blocks + */ +int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt) +{ + int page, len, status, pages_per_block, ret, chipnr; + struct nand_chip *this = mtd->priv; + + DEBUG (MTD_DEBUG_LEVEL3, + "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len); + + /* Start address must align on block boundary */ + if (instr->addr & ((1 << this->phys_erase_shift) - 1)) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n"); + return -EINVAL; + } + + /* Length must align on block boundary */ + if (instr->len & ((1 << this->phys_erase_shift) - 1)) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n"); + return -EINVAL; + } + + /* Do not allow erase past end of device */ + if ((instr->len + instr->addr) > mtd->size) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n"); + return -EINVAL; + } + + instr->fail_addr = 0xffffffff; + + /* Grab the lock and see if the device is available */ + nand_get_device (this, mtd, FL_ERASING); + + /* Shift to get first page */ + page = (int) (instr->addr >> this->page_shift); + chipnr = (int) (instr->addr >> this->chip_shift); + + /* Calculate pages in each block */ + pages_per_block = 1 << (this->phys_erase_shift - this->page_shift); + + /* Select the NAND device */ + this->select_chip(mtd, chipnr); + + /* Check the WP bit */ + /* Check, if it is write protected */ + if (nand_check_wp(mtd)) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n"); + instr->state = MTD_ERASE_FAILED; + goto erase_exit; + } + + /* Loop through the pages */ + len = instr->len; + + instr->state = MTD_ERASING; + + while (len) { + /* Check if we have a bad block, we do not erase bad blocks ! */ + if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) { + printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page); + instr->state = MTD_ERASE_FAILED; + goto erase_exit; + } + + /* Invalidate the page cache, if we erase the block which contains + the current cached page */ + if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block)) + this->pagebuf = -1; + + this->erase_cmd (mtd, page & this->pagemask); + + status = this->waitfunc (mtd, this, FL_ERASING); + + /* See if block erase succeeded */ + if (status & 0x01) { + DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page); + instr->state = MTD_ERASE_FAILED; + instr->fail_addr = (page << this->page_shift); + goto erase_exit; + } + + /* Increment page address and decrement length */ + len -= (1 << this->phys_erase_shift); + page += pages_per_block; + + /* Check, if we cross a chip boundary */ + if (len && !(page & this->pagemask)) { + chipnr++; + this->select_chip(mtd, -1); + this->select_chip(mtd, chipnr); + } + } + instr->state = MTD_ERASE_DONE; + +erase_exit: + + ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; + /* Do call back function */ + if (!ret) + mtd_erase_callback(instr); + + /* Deselect and wake up anyone waiting on the device */ + nand_release_device(mtd); + + /* Return more or less happy */ + return ret; +} + +/** + * nand_sync - [MTD Interface] sync + * @mtd: MTD device structure + * + * Sync is actually a wait for chip ready function + */ +static void nand_sync (struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + + DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n"); + + /* Grab the lock and see if the device is available */ + nand_get_device (this, mtd, FL_SYNCING); + /* Release it and go back */ + nand_release_device (mtd); +} + + +/** + * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + */ +static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs) +{ + /* Check for invalid offset */ + if (ofs > mtd->size) + return -EINVAL; + + return nand_block_checkbad (mtd, ofs, 1, 0); +} + +/** + * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad + * @mtd: MTD device structure + * @ofs: offset relative to mtd start + */ +static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs) +{ + struct nand_chip *this = mtd->priv; + int ret; + + if ((ret = nand_block_isbad(mtd, ofs))) { + /* If it was bad already, return success and do nothing. */ + if (ret > 0) + return 0; + return ret; + } + + return this->block_markbad(mtd, ofs); +} + +/** + * nand_scan - [NAND Interface] Scan for the NAND device + * @mtd: MTD device structure + * @maxchips: Number of chips to scan for + * + * This fills out all the not initialized function pointers + * with the defaults. + * The flash ID is read and the mtd/chip structures are + * filled with the appropriate values. Buffers are allocated if + * they are not provided by the board driver + * + */ +int nand_scan (struct mtd_info *mtd, int maxchips) +{ + int i, j, nand_maf_id, nand_dev_id, busw; + struct nand_chip *this = mtd->priv; + + /* Get buswidth to select the correct functions*/ + busw = this->options & NAND_BUSWIDTH_16; + + /* check for proper chip_delay setup, set 20us if not */ + if (!this->chip_delay) + this->chip_delay = 20; + + /* check, if a user supplied command function given */ + if (this->cmdfunc == NULL) + this->cmdfunc = nand_command; + + /* check, if a user supplied wait function given */ + if (this->waitfunc == NULL) + this->waitfunc = nand_wait; + + if (!this->select_chip) + this->select_chip = nand_select_chip; + if (!this->write_byte) + this->write_byte = busw ? nand_write_byte16 : nand_write_byte; + if (!this->read_byte) + this->read_byte = busw ? nand_read_byte16 : nand_read_byte; + if (!this->write_word) + this->write_word = nand_write_word; + if (!this->read_word) + this->read_word = nand_read_word; + if (!this->block_bad) + this->block_bad = nand_block_bad; + if (!this->block_markbad) + this->block_markbad = nand_default_block_markbad; + if (!this->write_buf) + this->write_buf = busw ? nand_write_buf16 : nand_write_buf; + if (!this->read_buf) + this->read_buf = busw ? nand_read_buf16 : nand_read_buf; + if (!this->verify_buf) + this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; + if (!this->scan_bbt) + this->scan_bbt = nand_default_bbt; + + /* Select the device */ + this->select_chip(mtd, 0); + + /* Send the command for reading device ID */ + this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); + + /* Read manufacturer and device IDs */ + nand_maf_id = this->read_byte(mtd); + nand_dev_id = this->read_byte(mtd); + + /* Print and store flash device information */ + for (i = 0; nand_flash_ids[i].name != NULL; i++) { + + if (nand_dev_id != nand_flash_ids[i].id) + continue; + + if (!mtd->name) mtd->name = nand_flash_ids[i].name; + this->chipsize = nand_flash_ids[i].chipsize << 20; + + /* New devices have all the information in additional id bytes */ + if (!nand_flash_ids[i].pagesize) { + int extid; + /* The 3rd id byte contains non relevant data ATM */ + extid = this->read_byte(mtd); + /* The 4th id byte is the important one */ + extid = this->read_byte(mtd); + /* Calc pagesize */ + mtd->oobblock = 1024 << (extid & 0x3); + extid >>= 2; + /* Calc oobsize */ + mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512); + extid >>= 2; + /* Calc blocksize. Blocksize is multiples of 64KiB */ + mtd->erasesize = (64 * 1024) << (extid & 0x03); + extid >>= 2; + /* Get buswidth information */ + busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; + + } else { + /* Old devices have this data hardcoded in the + * device id table */ + mtd->erasesize = nand_flash_ids[i].erasesize; + mtd->oobblock = nand_flash_ids[i].pagesize; + mtd->oobsize = mtd->oobblock / 32; + busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16; + } + + /* Check, if buswidth is correct. Hardware drivers should set + * this correct ! */ + if (busw != (this->options & NAND_BUSWIDTH_16)) { + printk (KERN_INFO "NAND device: Manufacturer ID:" + " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, + nand_manuf_ids[i].name , mtd->name); + printk (KERN_WARNING + "NAND bus width %d instead %d bit\n", + (this->options & NAND_BUSWIDTH_16) ? 16 : 8, + busw ? 16 : 8); + this->select_chip(mtd, -1); + return 1; + } + + /* Calculate the address shift from the page size */ + this->page_shift = ffs(mtd->oobblock) - 1; + this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1; + this->chip_shift = ffs(this->chipsize) - 1; + + /* Set the bad block position */ + this->badblockpos = mtd->oobblock > 512 ? + NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS; + + /* Get chip options, preserve non chip based options */ + this->options &= ~NAND_CHIPOPTIONS_MSK; + this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK; + /* Set this as a default. Board drivers can override it, if neccecary */ + this->options |= NAND_NO_AUTOINCR; + /* Check if this is a not a samsung device. Do not clear the options + * for chips which are not having an extended id. + */ + if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize) + this->options &= ~NAND_SAMSUNG_LP_OPTIONS; + + /* Check for AND chips with 4 page planes */ + if (this->options & NAND_4PAGE_ARRAY) + this->erase_cmd = multi_erase_cmd; + else + this->erase_cmd = single_erase_cmd; + + /* Do not replace user supplied command function ! */ + if (mtd->oobblock > 512 && this->cmdfunc == nand_command) + this->cmdfunc = nand_command_lp; + + /* Try to identify manufacturer */ + for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { + if (nand_manuf_ids[j].id == nand_maf_id) + break; + } + printk (KERN_INFO "NAND device: Manufacturer ID:" + " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, + nand_manuf_ids[j].name , nand_flash_ids[i].name); + break; + } + + if (!nand_flash_ids[i].name) { + printk (KERN_WARNING "No NAND device found!!!\n"); + this->select_chip(mtd, -1); + return 1; + } + + for (i=1; i < maxchips; i++) { + this->select_chip(mtd, i); + + /* Send the command for reading device ID */ + this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); + + /* Read manufacturer and device IDs */ + if (nand_maf_id != this->read_byte(mtd) || + nand_dev_id != this->read_byte(mtd)) + break; + } + if (i > 1) + printk(KERN_INFO "%d NAND chips detected\n", i); + + /* Allocate buffers, if neccecary */ + if (!this->oob_buf) { + size_t len; + len = mtd->oobsize << (this->phys_erase_shift - this->page_shift); + this->oob_buf = kmalloc (len, GFP_KERNEL); + if (!this->oob_buf) { + printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n"); + return -ENOMEM; + } + this->options |= NAND_OOBBUF_ALLOC; + } + + if (!this->data_buf) { + size_t len; + len = mtd->oobblock + mtd->oobsize; + this->data_buf = kmalloc (len, GFP_KERNEL); + if (!this->data_buf) { + if (this->options & NAND_OOBBUF_ALLOC) + kfree (this->oob_buf); + printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n"); + return -ENOMEM; + } + this->options |= NAND_DATABUF_ALLOC; + } + + /* Store the number of chips and calc total size for mtd */ + this->numchips = i; + mtd->size = i * this->chipsize; + /* Convert chipsize to number of pages per chip -1. */ + this->pagemask = (this->chipsize >> this->page_shift) - 1; + /* Preset the internal oob buffer */ + memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift)); + + /* If no default placement scheme is given, select an + * appropriate one */ + if (!this->autooob) { + /* Select the appropriate default oob placement scheme for + * placement agnostic filesystems */ + switch (mtd->oobsize) { + case 8: + this->autooob = &nand_oob_8; + break; + case 16: + this->autooob = &nand_oob_16; + break; + case 64: + this->autooob = &nand_oob_64; + break; + default: + printk (KERN_WARNING "No oob scheme defined for oobsize %d\n", + mtd->oobsize); + BUG(); + } + } + + /* The number of bytes available for the filesystem to place fs dependend + * oob data */ + if (this->options & NAND_BUSWIDTH_16) { + mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2); + if (this->autooob->eccbytes & 0x01) + mtd->oobavail--; + } else + mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1); + + /* + * check ECC mode, default to software + * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize + * fallback to software ECC + */ + this->eccsize = 256; /* set default eccsize */ + this->eccbytes = 3; + + switch (this->eccmode) { + case NAND_ECC_HW12_2048: + if (mtd->oobblock < 2048) { + printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", + mtd->oobblock); + this->eccmode = NAND_ECC_SOFT; + this->calculate_ecc = nand_calculate_ecc; + this->correct_data = nand_correct_data; + } else + this->eccsize = 2048; + break; + + case NAND_ECC_HW3_512: + case NAND_ECC_HW6_512: + case NAND_ECC_HW8_512: + if (mtd->oobblock == 256) { + printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n"); + this->eccmode = NAND_ECC_SOFT; + this->calculate_ecc = nand_calculate_ecc; + this->correct_data = nand_correct_data; + } else + this->eccsize = 512; /* set eccsize to 512 */ + break; + + case NAND_ECC_HW3_256: + break; + + case NAND_ECC_NONE: + printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n"); + this->eccmode = NAND_ECC_NONE; + break; + + case NAND_ECC_SOFT: + this->calculate_ecc = nand_calculate_ecc; + this->correct_data = nand_correct_data; + break; + + default: + printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode); + BUG(); + } + + /* Check hardware ecc function availability and adjust number of ecc bytes per + * calculation step + */ + switch (this->eccmode) { + case NAND_ECC_HW12_2048: + this->eccbytes += 4; + case NAND_ECC_HW8_512: + this->eccbytes += 2; + case NAND_ECC_HW6_512: + this->eccbytes += 3; + case NAND_ECC_HW3_512: + case NAND_ECC_HW3_256: + if (this->calculate_ecc && this->correct_data && this->enable_hwecc) + break; + printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n"); + BUG(); + } + + mtd->eccsize = this->eccsize; + + /* Set the number of read / write steps for one page to ensure ECC generation */ + switch (this->eccmode) { + case NAND_ECC_HW12_2048: + this->eccsteps = mtd->oobblock / 2048; + break; + case NAND_ECC_HW3_512: + case NAND_ECC_HW6_512: + case NAND_ECC_HW8_512: + this->eccsteps = mtd->oobblock / 512; + break; + case NAND_ECC_HW3_256: + case NAND_ECC_SOFT: + this->eccsteps = mtd->oobblock / 256; + break; + + case NAND_ECC_NONE: + this->eccsteps = 1; + break; + } + + /* Initialize state, waitqueue and spinlock */ + this->state = FL_READY; + init_waitqueue_head (&this->wq); + spin_lock_init (&this->chip_lock); + + /* De-select the device */ + this->select_chip(mtd, -1); + + /* Invalidate the pagebuffer reference */ + this->pagebuf = -1; + + /* Fill in remaining MTD driver data */ + mtd->type = MTD_NANDFLASH; + mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC; + mtd->ecctype = MTD_ECC_SW; + mtd->erase = nand_erase; + mtd->point = NULL; + mtd->unpoint = NULL; + mtd->read = nand_read; + mtd->write = nand_write; + mtd->read_ecc = nand_read_ecc; + mtd->write_ecc = nand_write_ecc; + mtd->read_oob = nand_read_oob; + mtd->write_oob = nand_write_oob; + mtd->readv = NULL; + mtd->writev = nand_writev; + mtd->writev_ecc = nand_writev_ecc; + mtd->sync = nand_sync; + mtd->lock = NULL; + mtd->unlock = NULL; + mtd->suspend = NULL; + mtd->resume = NULL; + mtd->block_isbad = nand_block_isbad; + mtd->block_markbad = nand_block_markbad; + + /* and make the autooob the default one */ + memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo)); + + mtd->owner = THIS_MODULE; + + /* Build bad block table */ + return this->scan_bbt (mtd); +} + +/** + * nand_release - [NAND Interface] Free resources held by the NAND device + * @mtd: MTD device structure +*/ +void nand_release (struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + +#ifdef CONFIG_MTD_PARTITIONS + /* Deregister partitions */ + del_mtd_partitions (mtd); +#endif + /* Deregister the device */ + del_mtd_device (mtd); + + /* Free bad block table memory, if allocated */ + if (this->bbt) + kfree (this->bbt); + /* Buffer allocated by nand_scan ? */ + if (this->options & NAND_OOBBUF_ALLOC) + kfree (this->oob_buf); + /* Buffer allocated by nand_scan ? */ + if (this->options & NAND_DATABUF_ALLOC) + kfree (this->data_buf); +} + +EXPORT_SYMBOL (nand_scan); +EXPORT_SYMBOL (nand_release); + +MODULE_LICENSE ("GPL"); +MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>"); +MODULE_DESCRIPTION ("Generic NAND flash driver code"); diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c new file mode 100644 index 00000000000..9a1949751c1 --- /dev/null +++ b/drivers/mtd/nand/nand_bbt.c @@ -0,0 +1,1056 @@ +/* + * drivers/mtd/nand_bbt.c + * + * Overview: + * Bad block table support for the NAND driver + * + * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de) + * + * $Id: nand_bbt.c,v 1.28 2004/11/13 10:19:09 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Description: + * + * When nand_scan_bbt is called, then it tries to find the bad block table + * depending on the options in the bbt descriptor(s). If a bbt is found + * then the contents are read and the memory based bbt is created. If a + * mirrored bbt is selected then the mirror is searched too and the + * versions are compared. If the mirror has a greater version number + * than the mirror bbt is used to build the memory based bbt. + * If the tables are not versioned, then we "or" the bad block information. + * If one of the bbt's is out of date or does not exist it is (re)created. + * If no bbt exists at all then the device is scanned for factory marked + * good / bad blocks and the bad block tables are created. + * + * For manufacturer created bbts like the one found on M-SYS DOC devices + * the bbt is searched and read but never created + * + * The autogenerated bad block table is located in the last good blocks + * of the device. The table is mirrored, so it can be updated eventually. + * The table is marked in the oob area with an ident pattern and a version + * number which indicates which of both tables is more up to date. + * + * The table uses 2 bits per block + * 11b: block is good + * 00b: block is factory marked bad + * 01b, 10b: block is marked bad due to wear + * + * The memory bad block table uses the following scheme: + * 00b: block is good + * 01b: block is marked bad due to wear + * 10b: block is reserved (to protect the bbt area) + * 11b: block is factory marked bad + * + * Multichip devices like DOC store the bad block info per floor. + * + * Following assumptions are made: + * - bbts start at a page boundary, if autolocated on a block boundary + * - the space neccecary for a bbt in FLASH does not exceed a block boundary + * + */ + +#include <linux/slab.h> +#include <linux/types.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/compatmac.h> +#include <linux/bitops.h> +#include <linux/delay.h> + + +/** + * check_pattern - [GENERIC] check if a pattern is in the buffer + * @buf: the buffer to search + * @len: the length of buffer to search + * @paglen: the pagelength + * @td: search pattern descriptor + * + * Check for a pattern at the given place. Used to search bad block + * tables and good / bad block identifiers. + * If the SCAN_EMPTY option is set then check, if all bytes except the + * pattern area contain 0xff + * +*/ +static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td) +{ + int i, end; + uint8_t *p = buf; + + end = paglen + td->offs; + if (td->options & NAND_BBT_SCANEMPTY) { + for (i = 0; i < end; i++) { + if (p[i] != 0xff) + return -1; + } + } + p += end; + + /* Compare the pattern */ + for (i = 0; i < td->len; i++) { + if (p[i] != td->pattern[i]) + return -1; + } + + p += td->len; + end += td->len; + if (td->options & NAND_BBT_SCANEMPTY) { + for (i = end; i < len; i++) { + if (*p++ != 0xff) + return -1; + } + } + return 0; +} + +/** + * read_bbt - [GENERIC] Read the bad block table starting from page + * @mtd: MTD device structure + * @buf: temporary buffer + * @page: the starting page + * @num: the number of bbt descriptors to read + * @bits: number of bits per block + * @offs: offset in the memory table + * @reserved_block_code: Pattern to identify reserved blocks + * + * Read the bad block table starting from page. + * + */ +static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num, + int bits, int offs, int reserved_block_code) +{ + int res, i, j, act = 0; + struct nand_chip *this = mtd->priv; + size_t retlen, len, totlen; + loff_t from; + uint8_t msk = (uint8_t) ((1 << bits) - 1); + + totlen = (num * bits) >> 3; + from = ((loff_t)page) << this->page_shift; + + while (totlen) { + len = min (totlen, (size_t) (1 << this->bbt_erase_shift)); + res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob); + if (res < 0) { + if (retlen != len) { + printk (KERN_INFO "nand_bbt: Error reading bad block table\n"); + return res; + } + printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n"); + } + + /* Analyse data */ + for (i = 0; i < len; i++) { + uint8_t dat = buf[i]; + for (j = 0; j < 8; j += bits, act += 2) { + uint8_t tmp = (dat >> j) & msk; + if (tmp == msk) + continue; + if (reserved_block_code && + (tmp == reserved_block_code)) { + printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n", + ((offs << 2) + (act >> 1)) << this->bbt_erase_shift); + this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06); + continue; + } + /* Leave it for now, if its matured we can move this + * message to MTD_DEBUG_LEVEL0 */ + printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n", + ((offs << 2) + (act >> 1)) << this->bbt_erase_shift); + /* Factory marked bad or worn out ? */ + if (tmp == 0) + this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06); + else + this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06); + } + } + totlen -= len; + from += len; + } + return 0; +} + +/** + * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @chip: read the table for a specific chip, -1 read all chips. + * Applies only if NAND_BBT_PERCHIP option is set + * + * Read the bad block table for all chips starting at a given page + * We assume that the bbt bits are in consecutive order. +*/ +static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip) +{ + struct nand_chip *this = mtd->priv; + int res = 0, i; + int bits; + + bits = td->options & NAND_BBT_NRBITS_MSK; + if (td->options & NAND_BBT_PERCHIP) { + int offs = 0; + for (i = 0; i < this->numchips; i++) { + if (chip == -1 || chip == i) + res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code); + if (res) + return res; + offs += this->chipsize >> (this->bbt_erase_shift + 2); + } + } else { + res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code); + if (res) + return res; + } + return 0; +} + +/** + * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * + * Read the bad block table(s) for all chips starting at a given page + * We assume that the bbt bits are in consecutive order. + * +*/ +static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, + struct nand_bbt_descr *md) +{ + struct nand_chip *this = mtd->priv; + + /* Read the primary version, if available */ + if (td->options & NAND_BBT_VERSION) { + nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); + td->version[0] = buf[mtd->oobblock + td->veroffs]; + printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]); + } + + /* Read the mirror version, if available */ + if (md && (md->options & NAND_BBT_VERSION)) { + nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize); + md->version[0] = buf[mtd->oobblock + md->veroffs]; + printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]); + } + + return 1; +} + +/** + * create_bbt - [GENERIC] Create a bad block table by scanning the device + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * @chip: create the table for a specific chip, -1 read all chips. + * Applies only if NAND_BBT_PERCHIP option is set + * + * Create a bad block table by scanning the device + * for the given good/bad block identify pattern + */ +static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip) +{ + struct nand_chip *this = mtd->priv; + int i, j, numblocks, len, scanlen; + int startblock; + loff_t from; + size_t readlen, ooblen; + + printk (KERN_INFO "Scanning device for bad blocks\n"); + + if (bd->options & NAND_BBT_SCANALLPAGES) + len = 1 << (this->bbt_erase_shift - this->page_shift); + else { + if (bd->options & NAND_BBT_SCAN2NDPAGE) + len = 2; + else + len = 1; + } + scanlen = mtd->oobblock + mtd->oobsize; + readlen = len * mtd->oobblock; + ooblen = len * mtd->oobsize; + + if (chip == -1) { + /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it + * makes shifting and masking less painful */ + numblocks = mtd->size >> (this->bbt_erase_shift - 1); + startblock = 0; + from = 0; + } else { + if (chip >= this->numchips) { + printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n", + chip + 1, this->numchips); + return; + } + numblocks = this->chipsize >> (this->bbt_erase_shift - 1); + startblock = chip * numblocks; + numblocks += startblock; + from = startblock << (this->bbt_erase_shift - 1); + } + + for (i = startblock; i < numblocks;) { + nand_read_raw (mtd, buf, from, readlen, ooblen); + for (j = 0; j < len; j++) { + if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) { + this->bbt[i >> 3] |= 0x03 << (i & 0x6); + printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n", + i >> 1, (unsigned int) from); + break; + } + } + i += 2; + from += (1 << this->bbt_erase_shift); + } +} + +/** + * search_bbt - [GENERIC] scan the device for a specific bad block table + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * + * Read the bad block table by searching for a given ident pattern. + * Search is preformed either from the beginning up or from the end of + * the device downwards. The search starts always at the start of a + * block. + * If the option NAND_BBT_PERCHIP is given, each chip is searched + * for a bbt, which contains the bad block information of this chip. + * This is neccecary to provide support for certain DOC devices. + * + * The bbt ident pattern resides in the oob area of the first page + * in a block. + */ +static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td) +{ + struct nand_chip *this = mtd->priv; + int i, chips; + int bits, startblock, block, dir; + int scanlen = mtd->oobblock + mtd->oobsize; + int bbtblocks; + + /* Search direction top -> down ? */ + if (td->options & NAND_BBT_LASTBLOCK) { + startblock = (mtd->size >> this->bbt_erase_shift) -1; + dir = -1; + } else { + startblock = 0; + dir = 1; + } + + /* Do we have a bbt per chip ? */ + if (td->options & NAND_BBT_PERCHIP) { + chips = this->numchips; + bbtblocks = this->chipsize >> this->bbt_erase_shift; + startblock &= bbtblocks - 1; + } else { + chips = 1; + bbtblocks = mtd->size >> this->bbt_erase_shift; + } + + /* Number of bits for each erase block in the bbt */ + bits = td->options & NAND_BBT_NRBITS_MSK; + + for (i = 0; i < chips; i++) { + /* Reset version information */ + td->version[i] = 0; + td->pages[i] = -1; + /* Scan the maximum number of blocks */ + for (block = 0; block < td->maxblocks; block++) { + int actblock = startblock + dir * block; + /* Read first page */ + nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize); + if (!check_pattern(buf, scanlen, mtd->oobblock, td)) { + td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift); + if (td->options & NAND_BBT_VERSION) { + td->version[i] = buf[mtd->oobblock + td->veroffs]; + } + break; + } + } + startblock += this->chipsize >> this->bbt_erase_shift; + } + /* Check, if we found a bbt for each requested chip */ + for (i = 0; i < chips; i++) { + if (td->pages[i] == -1) + printk (KERN_WARNING "Bad block table not found for chip %d\n", i); + else + printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]); + } + return 0; +} + +/** + * search_read_bbts - [GENERIC] scan the device for bad block table(s) + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * + * Search and read the bad block table(s) +*/ +static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md) +{ + /* Search the primary table */ + search_bbt (mtd, buf, td); + + /* Search the mirror table */ + if (md) + search_bbt (mtd, buf, md); + + /* Force result check */ + return 1; +} + + +/** + * write_bbt - [GENERIC] (Re)write the bad block table + * + * @mtd: MTD device structure + * @buf: temporary buffer + * @td: descriptor for the bad block table + * @md: descriptor for the bad block table mirror + * @chipsel: selector for a specific chip, -1 for all + * + * (Re)write the bad block table + * +*/ +static int write_bbt (struct mtd_info *mtd, uint8_t *buf, + struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel) +{ + struct nand_chip *this = mtd->priv; + struct nand_oobinfo oobinfo; + struct erase_info einfo; + int i, j, res, chip = 0; + int bits, startblock, dir, page, offs, numblocks, sft, sftmsk; + int nrchips, bbtoffs, pageoffs; + uint8_t msk[4]; + uint8_t rcode = td->reserved_block_code; + size_t retlen, len = 0; + loff_t to; + + if (!rcode) + rcode = 0xff; + /* Write bad block table per chip rather than per device ? */ + if (td->options & NAND_BBT_PERCHIP) { + numblocks = (int) (this->chipsize >> this->bbt_erase_shift); + /* Full device write or specific chip ? */ + if (chipsel == -1) { + nrchips = this->numchips; + } else { + nrchips = chipsel + 1; + chip = chipsel; + } + } else { + numblocks = (int) (mtd->size >> this->bbt_erase_shift); + nrchips = 1; + } + + /* Loop through the chips */ + for (; chip < nrchips; chip++) { + + /* There was already a version of the table, reuse the page + * This applies for absolute placement too, as we have the + * page nr. in td->pages. + */ + if (td->pages[chip] != -1) { + page = td->pages[chip]; + goto write; + } + + /* Automatic placement of the bad block table */ + /* Search direction top -> down ? */ + if (td->options & NAND_BBT_LASTBLOCK) { + startblock = numblocks * (chip + 1) - 1; + dir = -1; + } else { + startblock = chip * numblocks; + dir = 1; + } + + for (i = 0; i < td->maxblocks; i++) { + int block = startblock + dir * i; + /* Check, if the block is bad */ + switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) { + case 0x01: + case 0x03: + continue; + } + page = block << (this->bbt_erase_shift - this->page_shift); + /* Check, if the block is used by the mirror table */ + if (!md || md->pages[chip] != page) + goto write; + } + printk (KERN_ERR "No space left to write bad block table\n"); + return -ENOSPC; +write: + + /* Set up shift count and masks for the flash table */ + bits = td->options & NAND_BBT_NRBITS_MSK; + switch (bits) { + case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break; + case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break; + case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break; + case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break; + default: return -EINVAL; + } + + bbtoffs = chip * (numblocks >> 2); + + to = ((loff_t) page) << this->page_shift; + + memcpy (&oobinfo, this->autooob, sizeof(oobinfo)); + oobinfo.useecc = MTD_NANDECC_PLACEONLY; + + /* Must we save the block contents ? */ + if (td->options & NAND_BBT_SAVECONTENT) { + /* Make it block aligned */ + to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1)); + len = 1 << this->bbt_erase_shift; + res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo); + if (res < 0) { + if (retlen != len) { + printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n"); + return res; + } + printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n"); + } + /* Calc the byte offset in the buffer */ + pageoffs = page - (int)(to >> this->page_shift); + offs = pageoffs << this->page_shift; + /* Preset the bbt area with 0xff */ + memset (&buf[offs], 0xff, (size_t)(numblocks >> sft)); + /* Preset the bbt's oob area with 0xff */ + memset (&buf[len + pageoffs * mtd->oobsize], 0xff, + ((len >> this->page_shift) - pageoffs) * mtd->oobsize); + if (td->options & NAND_BBT_VERSION) { + buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip]; + } + } else { + /* Calc length */ + len = (size_t) (numblocks >> sft); + /* Make it page aligned ! */ + len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1); + /* Preset the buffer with 0xff */ + memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize); + offs = 0; + /* Pattern is located in oob area of first page */ + memcpy (&buf[len + td->offs], td->pattern, td->len); + if (td->options & NAND_BBT_VERSION) { + buf[len + td->veroffs] = td->version[chip]; + } + } + + /* walk through the memory table */ + for (i = 0; i < numblocks; ) { + uint8_t dat; + dat = this->bbt[bbtoffs + (i >> 2)]; + for (j = 0; j < 4; j++ , i++) { + int sftcnt = (i << (3 - sft)) & sftmsk; + /* Do not store the reserved bbt blocks ! */ + buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt); + dat >>= 2; + } + } + + memset (&einfo, 0, sizeof (einfo)); + einfo.mtd = mtd; + einfo.addr = (unsigned long) to; + einfo.len = 1 << this->bbt_erase_shift; + res = nand_erase_nand (mtd, &einfo, 1); + if (res < 0) { + printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res); + return res; + } + + res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo); + if (res < 0) { + printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res); + return res; + } + printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n", + (unsigned int) to, td->version[chip]); + + /* Mark it as used */ + td->pages[chip] = page; + } + return 0; +} + +/** + * nand_memory_bbt - [GENERIC] create a memory based bad block table + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern + * + * The function creates a memory based bbt by scanning the device + * for manufacturer / software marked good / bad blocks +*/ +static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct nand_chip *this = mtd->priv; + + /* Ensure that we only scan for the pattern and nothing else */ + bd->options = 0; + create_bbt (mtd, this->data_buf, bd, -1); + return 0; +} + +/** + * check_create - [GENERIC] create and write bbt(s) if neccecary + * @mtd: MTD device structure + * @buf: temporary buffer + * @bd: descriptor for the good/bad block search pattern + * + * The function checks the results of the previous call to read_bbt + * and creates / updates the bbt(s) if neccecary + * Creation is neccecary if no bbt was found for the chip/device + * Update is neccecary if one of the tables is missing or the + * version nr. of one table is less than the other +*/ +static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd) +{ + int i, chips, writeops, chipsel, res; + struct nand_chip *this = mtd->priv; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + struct nand_bbt_descr *rd, *rd2; + + /* Do we have a bbt per chip ? */ + if (td->options & NAND_BBT_PERCHIP) + chips = this->numchips; + else + chips = 1; + + for (i = 0; i < chips; i++) { + writeops = 0; + rd = NULL; + rd2 = NULL; + /* Per chip or per device ? */ + chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1; + /* Mirrored table avilable ? */ + if (md) { + if (td->pages[i] == -1 && md->pages[i] == -1) { + writeops = 0x03; + goto create; + } + + if (td->pages[i] == -1) { + rd = md; + td->version[i] = md->version[i]; + writeops = 1; + goto writecheck; + } + + if (md->pages[i] == -1) { + rd = td; + md->version[i] = td->version[i]; + writeops = 2; + goto writecheck; + } + + if (td->version[i] == md->version[i]) { + rd = td; + if (!(td->options & NAND_BBT_VERSION)) + rd2 = md; + goto writecheck; + } + + if (((int8_t) (td->version[i] - md->version[i])) > 0) { + rd = td; + md->version[i] = td->version[i]; + writeops = 2; + } else { + rd = md; + td->version[i] = md->version[i]; + writeops = 1; + } + + goto writecheck; + + } else { + if (td->pages[i] == -1) { + writeops = 0x01; + goto create; + } + rd = td; + goto writecheck; + } +create: + /* Create the bad block table by scanning the device ? */ + if (!(td->options & NAND_BBT_CREATE)) + continue; + + /* Create the table in memory by scanning the chip(s) */ + create_bbt (mtd, buf, bd, chipsel); + + td->version[i] = 1; + if (md) + md->version[i] = 1; +writecheck: + /* read back first ? */ + if (rd) + read_abs_bbt (mtd, buf, rd, chipsel); + /* If they weren't versioned, read both. */ + if (rd2) + read_abs_bbt (mtd, buf, rd2, chipsel); + + /* Write the bad block table to the device ? */ + if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { + res = write_bbt (mtd, buf, td, md, chipsel); + if (res < 0) + return res; + } + + /* Write the mirror bad block table to the device ? */ + if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { + res = write_bbt (mtd, buf, md, td, chipsel); + if (res < 0) + return res; + } + } + return 0; +} + +/** + * mark_bbt_regions - [GENERIC] mark the bad block table regions + * @mtd: MTD device structure + * @td: bad block table descriptor + * + * The bad block table regions are marked as "bad" to prevent + * accidental erasures / writes. The regions are identified by + * the mark 0x02. +*/ +static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td) +{ + struct nand_chip *this = mtd->priv; + int i, j, chips, block, nrblocks, update; + uint8_t oldval, newval; + + /* Do we have a bbt per chip ? */ + if (td->options & NAND_BBT_PERCHIP) { + chips = this->numchips; + nrblocks = (int)(this->chipsize >> this->bbt_erase_shift); + } else { + chips = 1; + nrblocks = (int)(mtd->size >> this->bbt_erase_shift); + } + + for (i = 0; i < chips; i++) { + if ((td->options & NAND_BBT_ABSPAGE) || + !(td->options & NAND_BBT_WRITE)) { + if (td->pages[i] == -1) continue; + block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift); + block <<= 1; + oldval = this->bbt[(block >> 3)]; + newval = oldval | (0x2 << (block & 0x06)); + this->bbt[(block >> 3)] = newval; + if ((oldval != newval) && td->reserved_block_code) + nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1)); + continue; + } + update = 0; + if (td->options & NAND_BBT_LASTBLOCK) + block = ((i + 1) * nrblocks) - td->maxblocks; + else + block = i * nrblocks; + block <<= 1; + for (j = 0; j < td->maxblocks; j++) { + oldval = this->bbt[(block >> 3)]; + newval = oldval | (0x2 << (block & 0x06)); + this->bbt[(block >> 3)] = newval; + if (oldval != newval) update = 1; + block += 2; + } + /* If we want reserved blocks to be recorded to flash, and some + new ones have been marked, then we need to update the stored + bbts. This should only happen once. */ + if (update && td->reserved_block_code) + nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1)); + } +} + +/** + * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s) + * @mtd: MTD device structure + * @bd: descriptor for the good/bad block search pattern + * + * The function checks, if a bad block table(s) is/are already + * available. If not it scans the device for manufacturer + * marked good / bad blocks and writes the bad block table(s) to + * the selected place. + * + * The bad block table memory is allocated here. It must be freed + * by calling the nand_free_bbt function. + * +*/ +int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd) +{ + struct nand_chip *this = mtd->priv; + int len, res = 0; + uint8_t *buf; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + + len = mtd->size >> (this->bbt_erase_shift + 2); + /* Allocate memory (2bit per block) */ + this->bbt = kmalloc (len, GFP_KERNEL); + if (!this->bbt) { + printk (KERN_ERR "nand_scan_bbt: Out of memory\n"); + return -ENOMEM; + } + /* Clear the memory bad block table */ + memset (this->bbt, 0x00, len); + + /* If no primary table decriptor is given, scan the device + * to build a memory based bad block table + */ + if (!td) + return nand_memory_bbt(mtd, bd); + + /* Allocate a temporary buffer for one eraseblock incl. oob */ + len = (1 << this->bbt_erase_shift); + len += (len >> this->page_shift) * mtd->oobsize; + buf = kmalloc (len, GFP_KERNEL); + if (!buf) { + printk (KERN_ERR "nand_bbt: Out of memory\n"); + kfree (this->bbt); + this->bbt = NULL; + return -ENOMEM; + } + + /* Is the bbt at a given page ? */ + if (td->options & NAND_BBT_ABSPAGE) { + res = read_abs_bbts (mtd, buf, td, md); + } else { + /* Search the bad block table using a pattern in oob */ + res = search_read_bbts (mtd, buf, td, md); + } + + if (res) + res = check_create (mtd, buf, bd); + + /* Prevent the bbt regions from erasing / writing */ + mark_bbt_region (mtd, td); + if (md) + mark_bbt_region (mtd, md); + + kfree (buf); + return res; +} + + +/** + * nand_update_bbt - [NAND Interface] update bad block table(s) + * @mtd: MTD device structure + * @offs: the offset of the newly marked block + * + * The function updates the bad block table(s) +*/ +int nand_update_bbt (struct mtd_info *mtd, loff_t offs) +{ + struct nand_chip *this = mtd->priv; + int len, res = 0, writeops = 0; + int chip, chipsel; + uint8_t *buf; + struct nand_bbt_descr *td = this->bbt_td; + struct nand_bbt_descr *md = this->bbt_md; + + if (!this->bbt || !td) + return -EINVAL; + + len = mtd->size >> (this->bbt_erase_shift + 2); + /* Allocate a temporary buffer for one eraseblock incl. oob */ + len = (1 << this->bbt_erase_shift); + len += (len >> this->page_shift) * mtd->oobsize; + buf = kmalloc (len, GFP_KERNEL); + if (!buf) { + printk (KERN_ERR "nand_update_bbt: Out of memory\n"); + return -ENOMEM; + } + + writeops = md != NULL ? 0x03 : 0x01; + + /* Do we have a bbt per chip ? */ + if (td->options & NAND_BBT_PERCHIP) { + chip = (int) (offs >> this->chip_shift); + chipsel = chip; + } else { + chip = 0; + chipsel = -1; + } + + td->version[chip]++; + if (md) + md->version[chip]++; + + /* Write the bad block table to the device ? */ + if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) { + res = write_bbt (mtd, buf, td, md, chipsel); + if (res < 0) + goto out; + } + /* Write the mirror bad block table to the device ? */ + if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) { + res = write_bbt (mtd, buf, md, td, chipsel); + } + +out: + kfree (buf); + return res; +} + +/* Define some generic bad / good block scan pattern which are used + * while scanning a device for factory marked good / bad blocks + * + * The memory based patterns just + */ +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr smallpage_memorybased = { + .options = 0, + .offs = 5, + .len = 1, + .pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr largepage_memorybased = { + .options = 0, + .offs = 0, + .len = 2, + .pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr smallpage_flashbased = { + .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, + .offs = 5, + .len = 1, + .pattern = scan_ff_pattern +}; + +static struct nand_bbt_descr largepage_flashbased = { + .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, + .offs = 0, + .len = 2, + .pattern = scan_ff_pattern +}; + +static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 }; + +static struct nand_bbt_descr agand_flashbased = { + .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES, + .offs = 0x20, + .len = 6, + .pattern = scan_agand_pattern +}; + +/* Generic flash bbt decriptors +*/ +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 8, + .len = 4, + .veroffs = 12, + .maxblocks = 4, + .pattern = mirror_pattern +}; + +/** + * nand_default_bbt - [NAND Interface] Select a default bad block table for the device + * @mtd: MTD device structure + * + * This function selects the default bad block table + * support for the device and calls the nand_scan_bbt function + * +*/ +int nand_default_bbt (struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + + /* Default for AG-AND. We must use a flash based + * bad block table as the devices have factory marked + * _good_ blocks. Erasing those blocks leads to loss + * of the good / bad information, so we _must_ store + * this information in a good / bad table during + * startup + */ + if (this->options & NAND_IS_AND) { + /* Use the default pattern descriptors */ + if (!this->bbt_td) { + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; + } + this->options |= NAND_USE_FLASH_BBT; + return nand_scan_bbt (mtd, &agand_flashbased); + } + + + /* Is a flash based bad block table requested ? */ + if (this->options & NAND_USE_FLASH_BBT) { + /* Use the default pattern descriptors */ + if (!this->bbt_td) { + this->bbt_td = &bbt_main_descr; + this->bbt_md = &bbt_mirror_descr; + } + if (!this->badblock_pattern) { + this->badblock_pattern = (mtd->oobblock > 512) ? + &largepage_flashbased : &smallpage_flashbased; + } + } else { + this->bbt_td = NULL; + this->bbt_md = NULL; + if (!this->badblock_pattern) { + this->badblock_pattern = (mtd->oobblock > 512) ? + &largepage_memorybased : &smallpage_memorybased; + } + } + return nand_scan_bbt (mtd, this->badblock_pattern); +} + +/** + * nand_isbad_bbt - [NAND Interface] Check if a block is bad + * @mtd: MTD device structure + * @offs: offset in the device + * @allowbbt: allow access to bad block table region + * +*/ +int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt) +{ + struct nand_chip *this = mtd->priv; + int block; + uint8_t res; + + /* Get block number * 2 */ + block = (int) (offs >> (this->bbt_erase_shift - 1)); + res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03; + + DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n", + (unsigned int)offs, res, block >> 1); + + switch ((int)res) { + case 0x00: return 0; + case 0x01: return 1; + case 0x02: return allowbbt ? 0 : 1; + } + return 1; +} + +EXPORT_SYMBOL (nand_scan_bbt); +EXPORT_SYMBOL (nand_default_bbt); diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c new file mode 100644 index 00000000000..2e341b75437 --- /dev/null +++ b/drivers/mtd/nand/nand_ecc.c @@ -0,0 +1,250 @@ +/* + * This file contains an ECC algorithm from Toshiba that detects and + * corrects 1 bit errors in a 256 byte block of data. + * + * drivers/mtd/nand/nand_ecc.c + * + * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com) + * Toshiba America Electronics Components, Inc. + * + * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $ + * + * This file is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 or (at your option) any + * later version. + * + * This file is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with this file; if not, write to the Free Software Foundation, Inc., + * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. + * + * As a special exception, if other files instantiate templates or use + * macros or inline functions from these files, or you compile these + * files and link them with other works to produce a work based on these + * files, these files do not by themselves cause the resulting work to be + * covered by the GNU General Public License. However the source code for + * these files must still be made available in accordance with section (3) + * of the GNU General Public License. + * + * This exception does not invalidate any other reasons why a work based on + * this file might be covered by the GNU General Public License. + */ + +#include <linux/types.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/mtd/nand_ecc.h> + +/* + * Pre-calculated 256-way 1 byte column parity + */ +static const u_char nand_ecc_precalc_table[] = { + 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, + 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, + 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, + 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, + 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, + 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, + 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, + 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, + 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, + 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, + 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, + 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, + 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, + 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, + 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, + 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 +}; + + +/** + * nand_trans_result - [GENERIC] create non-inverted ECC + * @reg2: line parity reg 2 + * @reg3: line parity reg 3 + * @ecc_code: ecc + * + * Creates non-inverted ECC code from line parity + */ +static void nand_trans_result(u_char reg2, u_char reg3, + u_char *ecc_code) +{ + u_char a, b, i, tmp1, tmp2; + + /* Initialize variables */ + a = b = 0x80; + tmp1 = tmp2 = 0; + + /* Calculate first ECC byte */ + for (i = 0; i < 4; i++) { + if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */ + tmp1 |= b; + b >>= 1; + if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */ + tmp1 |= b; + b >>= 1; + a >>= 1; + } + + /* Calculate second ECC byte */ + b = 0x80; + for (i = 0; i < 4; i++) { + if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */ + tmp2 |= b; + b >>= 1; + if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */ + tmp2 |= b; + b >>= 1; + a >>= 1; + } + + /* Store two of the ECC bytes */ + ecc_code[0] = tmp1; + ecc_code[1] = tmp2; +} + +/** + * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block + * @mtd: MTD block structure + * @dat: raw data + * @ecc_code: buffer for ECC + */ +int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +{ + u_char idx, reg1, reg2, reg3; + int j; + + /* Initialize variables */ + reg1 = reg2 = reg3 = 0; + ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; + + /* Build up column parity */ + for(j = 0; j < 256; j++) { + + /* Get CP0 - CP5 from table */ + idx = nand_ecc_precalc_table[dat[j]]; + reg1 ^= (idx & 0x3f); + + /* All bit XOR = 1 ? */ + if (idx & 0x40) { + reg3 ^= (u_char) j; + reg2 ^= ~((u_char) j); + } + } + + /* Create non-inverted ECC code from line parity */ + nand_trans_result(reg2, reg3, ecc_code); + + /* Calculate final ECC code */ + ecc_code[0] = ~ecc_code[0]; + ecc_code[1] = ~ecc_code[1]; + ecc_code[2] = ((~reg1) << 2) | 0x03; + return 0; +} + +/** + * nand_correct_data - [NAND Interface] Detect and correct bit error(s) + * @mtd: MTD block structure + * @dat: raw data read from the chip + * @read_ecc: ECC from the chip + * @calc_ecc: the ECC calculated from raw data + * + * Detect and correct a 1 bit error for 256 byte block + */ +int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc) +{ + u_char a, b, c, d1, d2, d3, add, bit, i; + + /* Do error detection */ + d1 = calc_ecc[0] ^ read_ecc[0]; + d2 = calc_ecc[1] ^ read_ecc[1]; + d3 = calc_ecc[2] ^ read_ecc[2]; + + if ((d1 | d2 | d3) == 0) { + /* No errors */ + return 0; + } + else { + a = (d1 ^ (d1 >> 1)) & 0x55; + b = (d2 ^ (d2 >> 1)) & 0x55; + c = (d3 ^ (d3 >> 1)) & 0x54; + + /* Found and will correct single bit error in the data */ + if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { + c = 0x80; + add = 0; + a = 0x80; + for (i=0; i<4; i++) { + if (d1 & c) + add |= a; + c >>= 2; + a >>= 1; + } + c = 0x80; + for (i=0; i<4; i++) { + if (d2 & c) + add |= a; + c >>= 2; + a >>= 1; + } + bit = 0; + b = 0x04; + c = 0x80; + for (i=0; i<3; i++) { + if (d3 & c) + bit |= b; + c >>= 2; + b >>= 1; + } + b = 0x01; + a = dat[add]; + a ^= (b << bit); + dat[add] = a; + return 1; + } + else { + i = 0; + while (d1) { + if (d1 & 0x01) + ++i; + d1 >>= 1; + } + while (d2) { + if (d2 & 0x01) + ++i; + d2 >>= 1; + } + while (d3) { + if (d3 & 0x01) + ++i; + d3 >>= 1; + } + if (i == 1) { + /* ECC Code Error Correction */ + read_ecc[0] = calc_ecc[0]; + read_ecc[1] = calc_ecc[1]; + read_ecc[2] = calc_ecc[2]; + return 2; + } + else { + /* Uncorrectable Error */ + return -1; + } + } + } + + /* Should never happen */ + return -1; +} + +EXPORT_SYMBOL(nand_calculate_ecc); +EXPORT_SYMBOL(nand_correct_data); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); +MODULE_DESCRIPTION("Generic NAND ECC support"); diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c new file mode 100644 index 00000000000..2d8c4321275 --- /dev/null +++ b/drivers/mtd/nand/nand_ids.c @@ -0,0 +1,129 @@ +/* + * drivers/mtd/nandids.c + * + * Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de) + * + * $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ +#include <linux/module.h> +#include <linux/mtd/nand.h> +/* +* Chip ID list +* +* Name. ID code, pagesize, chipsize in MegaByte, eraseblock size, +* options +* +* Pagesize; 0, 256, 512 +* 0 get this information from the extended chip ID ++ 256 256 Byte page size +* 512 512 Byte page size +*/ +struct nand_flash_dev nand_flash_ids[] = { + {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0}, + {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0}, + {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0}, + {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0}, + {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0}, + {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0}, + {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0}, + {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0}, + {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0}, + {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0}, + + {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0}, + {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0}, + {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16}, + {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16}, + + {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0}, + {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0}, + {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16}, + + {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0}, + {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0}, + {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16}, + + {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0}, + {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0}, + {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16}, + + {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0}, + {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0}, + {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16}, + {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16}, + + {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0}, + + {"NAND 512MiB 3,3V 8-bit", 0xDC, 512, 512, 0x4000, 0}, + + /* These are the new chips with large page size. The pagesize + * and the erasesize is determined from the extended id bytes + */ + /* 1 Gigabit */ + {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + + /* 2 Gigabit */ + {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + + /* 4 Gigabit */ + {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + + /* 8 Gigabit */ + {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + + /* 16 Gigabit */ + {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR}, + {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR}, + + /* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout ! + * The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes + * 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7 + * Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go + * There are more speed improvements for reads and writes possible, but not implemented now + */ + {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY}, + + {NULL,} +}; + +/* +* Manufacturer ID list +*/ +struct nand_manufacturers nand_manuf_ids[] = { + {NAND_MFR_TOSHIBA, "Toshiba"}, + {NAND_MFR_SAMSUNG, "Samsung"}, + {NAND_MFR_FUJITSU, "Fujitsu"}, + {NAND_MFR_NATIONAL, "National"}, + {NAND_MFR_RENESAS, "Renesas"}, + {NAND_MFR_STMICRO, "ST Micro"}, + {0x0, "Unknown"} +}; + +EXPORT_SYMBOL (nand_manuf_ids); +EXPORT_SYMBOL (nand_flash_ids); + +MODULE_LICENSE ("GPL"); +MODULE_AUTHOR ("Thomas Gleixner <tglx@linutronix.de>"); +MODULE_DESCRIPTION ("Nand device & manufacturer ID's"); diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c new file mode 100644 index 00000000000..13feefd7d8c --- /dev/null +++ b/drivers/mtd/nand/nandsim.c @@ -0,0 +1,1613 @@ +/* + * NAND flash simulator. + * + * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org> + * + * Copyright (C) 2004 Nokia Corporation + * + * Note: NS means "NAND Simulator". + * Note: Input means input TO flash chip, output means output FROM chip. + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2, or (at your option) any later + * version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General + * Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA + * + * $Id: nandsim.c,v 1.7 2004/12/06 11:53:06 dedekind Exp $ + */ + +#include <linux/config.h> +#include <linux/init.h> +#include <linux/types.h> +#include <linux/module.h> +#include <linux/moduleparam.h> +#include <linux/vmalloc.h> +#include <linux/slab.h> +#include <linux/errno.h> +#include <linux/string.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/delay.h> +#ifdef CONFIG_NS_ABS_POS +#include <asm/io.h> +#endif + + +/* Default simulator parameters values */ +#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \ + !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \ + !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \ + !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE) +#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98 +#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39 +#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */ +#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */ +#endif + +#ifndef CONFIG_NANDSIM_ACCESS_DELAY +#define CONFIG_NANDSIM_ACCESS_DELAY 25 +#endif +#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY +#define CONFIG_NANDSIM_PROGRAMM_DELAY 200 +#endif +#ifndef CONFIG_NANDSIM_ERASE_DELAY +#define CONFIG_NANDSIM_ERASE_DELAY 2 +#endif +#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE +#define CONFIG_NANDSIM_OUTPUT_CYCLE 40 +#endif +#ifndef CONFIG_NANDSIM_INPUT_CYCLE +#define CONFIG_NANDSIM_INPUT_CYCLE 50 +#endif +#ifndef CONFIG_NANDSIM_BUS_WIDTH +#define CONFIG_NANDSIM_BUS_WIDTH 8 +#endif +#ifndef CONFIG_NANDSIM_DO_DELAYS +#define CONFIG_NANDSIM_DO_DELAYS 0 +#endif +#ifndef CONFIG_NANDSIM_LOG +#define CONFIG_NANDSIM_LOG 0 +#endif +#ifndef CONFIG_NANDSIM_DBG +#define CONFIG_NANDSIM_DBG 0 +#endif + +static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE; +static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE; +static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE; +static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE; +static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY; +static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY; +static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY; +static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE; +static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE; +static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH; +static uint do_delays = CONFIG_NANDSIM_DO_DELAYS; +static uint log = CONFIG_NANDSIM_LOG; +static uint dbg = CONFIG_NANDSIM_DBG; + +module_param(first_id_byte, uint, 0400); +module_param(second_id_byte, uint, 0400); +module_param(third_id_byte, uint, 0400); +module_param(fourth_id_byte, uint, 0400); +module_param(access_delay, uint, 0400); +module_param(programm_delay, uint, 0400); +module_param(erase_delay, uint, 0400); +module_param(output_cycle, uint, 0400); +module_param(input_cycle, uint, 0400); +module_param(bus_width, uint, 0400); +module_param(do_delays, uint, 0400); +module_param(log, uint, 0400); +module_param(dbg, uint, 0400); + +MODULE_PARM_DESC(first_id_byte, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)"); +MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)"); +MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command"); +MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command"); +MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)"); +MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds"); +MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)"); +MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)"); +MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)"); +MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)"); +MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero"); +MODULE_PARM_DESC(log, "Perform logging if not zero"); +MODULE_PARM_DESC(dbg, "Output debug information if not zero"); + +/* The largest possible page size */ +#define NS_LARGEST_PAGE_SIZE 2048 + +/* The prefix for simulator output */ +#define NS_OUTPUT_PREFIX "[nandsim]" + +/* Simulator's output macros (logging, debugging, warning, error) */ +#define NS_LOG(args...) \ + do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0) +#define NS_DBG(args...) \ + do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0) +#define NS_WARN(args...) \ + do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0) +#define NS_ERR(args...) \ + do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0) + +/* Busy-wait delay macros (microseconds, milliseconds) */ +#define NS_UDELAY(us) \ + do { if (do_delays) udelay(us); } while(0) +#define NS_MDELAY(us) \ + do { if (do_delays) mdelay(us); } while(0) + +/* Is the nandsim structure initialized ? */ +#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0) + +/* Good operation completion status */ +#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0))) + +/* Operation failed completion status */ +#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns)) + +/* Calculate the page offset in flash RAM image by (row, column) address */ +#define NS_RAW_OFFSET(ns) \ + (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column) + +/* Calculate the OOB offset in flash RAM image by (row, column) address */ +#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz) + +/* After a command is input, the simulator goes to one of the following states */ +#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */ +#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */ +#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */ +#define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */ +#define STATE_CMD_READOOB 0x00000005 /* read OOB area */ +#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */ +#define STATE_CMD_STATUS 0x00000007 /* read status */ +#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */ +#define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */ +#define STATE_CMD_READID 0x0000000A /* read ID */ +#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */ +#define STATE_CMD_RESET 0x0000000C /* reset */ +#define STATE_CMD_MASK 0x0000000F /* command states mask */ + +/* After an addres is input, the simulator goes to one of these states */ +#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */ +#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */ +#define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */ +#define STATE_ADDR_MASK 0x00000030 /* address states mask */ + +/* Durind data input/output the simulator is in these states */ +#define STATE_DATAIN 0x00000100 /* waiting for data input */ +#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */ + +#define STATE_DATAOUT 0x00001000 /* waiting for page data output */ +#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */ +#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */ +#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */ +#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */ + +/* Previous operation is done, ready to accept new requests */ +#define STATE_READY 0x00000000 + +/* This state is used to mark that the next state isn't known yet */ +#define STATE_UNKNOWN 0x10000000 + +/* Simulator's actions bit masks */ +#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */ +#define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */ +#define ACTION_SECERASE 0x00300000 /* erase sector */ +#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */ +#define ACTION_HALFOFF 0x00500000 /* add to address half of page */ +#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */ +#define ACTION_MASK 0x00700000 /* action mask */ + +#define NS_OPER_NUM 12 /* Number of operations supported by the simulator */ +#define NS_OPER_STATES 6 /* Maximum number of states in operation */ + +#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */ +#define OPT_PAGE256 0x00000001 /* 256-byte page chips */ +#define OPT_PAGE512 0x00000002 /* 512-byte page chips */ +#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */ +#define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */ +#define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */ +#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */ +#define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */ +#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */ + +/* Remove action bits ftom state */ +#define NS_STATE(x) ((x) & ~ACTION_MASK) + +/* + * Maximum previous states which need to be saved. Currently saving is + * only needed for page programm operation with preceeded read command + * (which is only valid for 512-byte pages). + */ +#define NS_MAX_PREVSTATES 1 + +/* + * The structure which describes all the internal simulator data. + */ +struct nandsim { + struct mtd_partition part; + + uint busw; /* flash chip bus width (8 or 16) */ + u_char ids[4]; /* chip's ID bytes */ + uint32_t options; /* chip's characteristic bits */ + uint32_t state; /* current chip state */ + uint32_t nxstate; /* next expected state */ + + uint32_t *op; /* current operation, NULL operations isn't known yet */ + uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */ + uint16_t npstates; /* number of previous states saved */ + uint16_t stateidx; /* current state index */ + + /* The simulated NAND flash image */ + union flash_media { + u_char *byte; + uint16_t *word; + } mem; + + /* Internal buffer of page + OOB size bytes */ + union internal_buffer { + u_char *byte; /* for byte access */ + uint16_t *word; /* for 16-bit word access */ + } buf; + + /* NAND flash "geometry" */ + struct nandsin_geometry { + uint32_t totsz; /* total flash size, bytes */ + uint32_t secsz; /* flash sector (erase block) size, bytes */ + uint pgsz; /* NAND flash page size, bytes */ + uint oobsz; /* page OOB area size, bytes */ + uint32_t totszoob; /* total flash size including OOB, bytes */ + uint pgszoob; /* page size including OOB , bytes*/ + uint secszoob; /* sector size including OOB, bytes */ + uint pgnum; /* total number of pages */ + uint pgsec; /* number of pages per sector */ + uint secshift; /* bits number in sector size */ + uint pgshift; /* bits number in page size */ + uint oobshift; /* bits number in OOB size */ + uint pgaddrbytes; /* bytes per page address */ + uint secaddrbytes; /* bytes per sector address */ + uint idbytes; /* the number ID bytes that this chip outputs */ + } geom; + + /* NAND flash internal registers */ + struct nandsim_regs { + unsigned command; /* the command register */ + u_char status; /* the status register */ + uint row; /* the page number */ + uint column; /* the offset within page */ + uint count; /* internal counter */ + uint num; /* number of bytes which must be processed */ + uint off; /* fixed page offset */ + } regs; + + /* NAND flash lines state */ + struct ns_lines_status { + int ce; /* chip Enable */ + int cle; /* command Latch Enable */ + int ale; /* address Latch Enable */ + int wp; /* write Protect */ + } lines; +}; + +/* + * Operations array. To perform any operation the simulator must pass + * through the correspondent states chain. + */ +static struct nandsim_operations { + uint32_t reqopts; /* options which are required to perform the operation */ + uint32_t states[NS_OPER_STATES]; /* operation's states */ +} ops[NS_OPER_NUM] = { + /* Read page + OOB from the beginning */ + {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Read page + OOB from the second half */ + {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Read OOB */ + {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY, + STATE_DATAOUT, STATE_READY}}, + /* Programm page starting from the beginning */ + {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN, + STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Programm page starting from the beginning */ + {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE, + STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Programm page starting from the second half */ + {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE, + STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Programm OOB */ + {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE, + STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}}, + /* Erase sector */ + {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}}, + /* Read status */ + {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}}, + /* Read multi-plane status */ + {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}}, + /* Read ID */ + {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}}, + /* Large page devices read page */ + {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY, + STATE_DATAOUT, STATE_READY}} +}; + +/* MTD structure for NAND controller */ +static struct mtd_info *nsmtd; + +static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE]; + +/* + * Initialize the nandsim structure. + * + * RETURNS: 0 if success, -ERRNO if failure. + */ +static int +init_nandsim(struct mtd_info *mtd) +{ + struct nand_chip *chip = (struct nand_chip *)mtd->priv; + struct nandsim *ns = (struct nandsim *)(chip->priv); + int i; + + if (NS_IS_INITIALIZED(ns)) { + NS_ERR("init_nandsim: nandsim is already initialized\n"); + return -EIO; + } + + /* Force mtd to not do delays */ + chip->chip_delay = 0; + + /* Initialize the NAND flash parameters */ + ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8; + ns->geom.totsz = mtd->size; + ns->geom.pgsz = mtd->oobblock; + ns->geom.oobsz = mtd->oobsize; + ns->geom.secsz = mtd->erasesize; + ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz; + ns->geom.pgnum = ns->geom.totsz / ns->geom.pgsz; + ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz; + ns->geom.secshift = ffs(ns->geom.secsz) - 1; + ns->geom.pgshift = chip->page_shift; + ns->geom.oobshift = ffs(ns->geom.oobsz) - 1; + ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz; + ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec; + ns->options = 0; + + if (ns->geom.pgsz == 256) { + ns->options |= OPT_PAGE256; + } + else if (ns->geom.pgsz == 512) { + ns->options |= (OPT_PAGE512 | OPT_AUTOINCR); + if (ns->busw == 8) + ns->options |= OPT_PAGE512_8BIT; + } else if (ns->geom.pgsz == 2048) { + ns->options |= OPT_PAGE2048; + } else { + NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz); + return -EIO; + } + + if (ns->options & OPT_SMALLPAGE) { + if (ns->geom.totsz < (64 << 20)) { + ns->geom.pgaddrbytes = 3; + ns->geom.secaddrbytes = 2; + } else { + ns->geom.pgaddrbytes = 4; + ns->geom.secaddrbytes = 3; + } + } else { + if (ns->geom.totsz <= (128 << 20)) { + ns->geom.pgaddrbytes = 5; + ns->geom.secaddrbytes = 2; + } else { + ns->geom.pgaddrbytes = 5; + ns->geom.secaddrbytes = 3; + } + } + + /* Detect how many ID bytes the NAND chip outputs */ + for (i = 0; nand_flash_ids[i].name != NULL; i++) { + if (second_id_byte != nand_flash_ids[i].id) + continue; + if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR)) + ns->options |= OPT_AUTOINCR; + } + + if (ns->busw == 16) + NS_WARN("16-bit flashes support wasn't tested\n"); + + printk("flash size: %u MiB\n", ns->geom.totsz >> 20); + printk("page size: %u bytes\n", ns->geom.pgsz); + printk("OOB area size: %u bytes\n", ns->geom.oobsz); + printk("sector size: %u KiB\n", ns->geom.secsz >> 10); + printk("pages number: %u\n", ns->geom.pgnum); + printk("pages per sector: %u\n", ns->geom.pgsec); + printk("bus width: %u\n", ns->busw); + printk("bits in sector size: %u\n", ns->geom.secshift); + printk("bits in page size: %u\n", ns->geom.pgshift); + printk("bits in OOB size: %u\n", ns->geom.oobshift); + printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10); + printk("page address bytes: %u\n", ns->geom.pgaddrbytes); + printk("sector address bytes: %u\n", ns->geom.secaddrbytes); + printk("options: %#x\n", ns->options); + + /* Map / allocate and initialize the flash image */ +#ifdef CONFIG_NS_ABS_POS + ns->mem.byte = ioremap(CONFIG_NS_ABS_POS, ns->geom.totszoob); + if (!ns->mem.byte) { + NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n", + (void *)CONFIG_NS_ABS_POS); + return -ENOMEM; + } +#else + ns->mem.byte = vmalloc(ns->geom.totszoob); + if (!ns->mem.byte) { + NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n", + ns->geom.totszoob); + return -ENOMEM; + } + memset(ns->mem.byte, 0xFF, ns->geom.totszoob); +#endif + + /* Allocate / initialize the internal buffer */ + ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL); + if (!ns->buf.byte) { + NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n", + ns->geom.pgszoob); + goto error; + } + memset(ns->buf.byte, 0xFF, ns->geom.pgszoob); + + /* Fill the partition_info structure */ + ns->part.name = "NAND simulator partition"; + ns->part.offset = 0; + ns->part.size = ns->geom.totsz; + + return 0; + +error: +#ifdef CONFIG_NS_ABS_POS + iounmap(ns->mem.byte); +#else + vfree(ns->mem.byte); +#endif + + return -ENOMEM; +} + +/* + * Free the nandsim structure. + */ +static void +free_nandsim(struct nandsim *ns) +{ + kfree(ns->buf.byte); + +#ifdef CONFIG_NS_ABS_POS + iounmap(ns->mem.byte); +#else + vfree(ns->mem.byte); +#endif + + return; +} + +/* + * Returns the string representation of 'state' state. + */ +static char * +get_state_name(uint32_t state) +{ + switch (NS_STATE(state)) { + case STATE_CMD_READ0: + return "STATE_CMD_READ0"; + case STATE_CMD_READ1: + return "STATE_CMD_READ1"; + case STATE_CMD_PAGEPROG: + return "STATE_CMD_PAGEPROG"; + case STATE_CMD_READOOB: + return "STATE_CMD_READOOB"; + case STATE_CMD_READSTART: + return "STATE_CMD_READSTART"; + case STATE_CMD_ERASE1: + return "STATE_CMD_ERASE1"; + case STATE_CMD_STATUS: + return "STATE_CMD_STATUS"; + case STATE_CMD_STATUS_M: + return "STATE_CMD_STATUS_M"; + case STATE_CMD_SEQIN: + return "STATE_CMD_SEQIN"; + case STATE_CMD_READID: + return "STATE_CMD_READID"; + case STATE_CMD_ERASE2: + return "STATE_CMD_ERASE2"; + case STATE_CMD_RESET: + return "STATE_CMD_RESET"; + case STATE_ADDR_PAGE: + return "STATE_ADDR_PAGE"; + case STATE_ADDR_SEC: + return "STATE_ADDR_SEC"; + case STATE_ADDR_ZERO: + return "STATE_ADDR_ZERO"; + case STATE_DATAIN: + return "STATE_DATAIN"; + case STATE_DATAOUT: + return "STATE_DATAOUT"; + case STATE_DATAOUT_ID: + return "STATE_DATAOUT_ID"; + case STATE_DATAOUT_STATUS: + return "STATE_DATAOUT_STATUS"; + case STATE_DATAOUT_STATUS_M: + return "STATE_DATAOUT_STATUS_M"; + case STATE_READY: + return "STATE_READY"; + case STATE_UNKNOWN: + return "STATE_UNKNOWN"; + } + + NS_ERR("get_state_name: unknown state, BUG\n"); + return NULL; +} + +/* + * Check if command is valid. + * + * RETURNS: 1 if wrong command, 0 if right. + */ +static int +check_command(int cmd) +{ + switch (cmd) { + + case NAND_CMD_READ0: + case NAND_CMD_READSTART: + case NAND_CMD_PAGEPROG: + case NAND_CMD_READOOB: + case NAND_CMD_ERASE1: + case NAND_CMD_STATUS: + case NAND_CMD_SEQIN: + case NAND_CMD_READID: + case NAND_CMD_ERASE2: + case NAND_CMD_RESET: + case NAND_CMD_READ1: + return 0; + + case NAND_CMD_STATUS_MULTI: + default: + return 1; + } +} + +/* + * Returns state after command is accepted by command number. + */ +static uint32_t +get_state_by_command(unsigned command) +{ + switch (command) { + case NAND_CMD_READ0: + return STATE_CMD_READ0; + case NAND_CMD_READ1: + return STATE_CMD_READ1; + case NAND_CMD_PAGEPROG: + return STATE_CMD_PAGEPROG; + case NAND_CMD_READSTART: + return STATE_CMD_READSTART; + case NAND_CMD_READOOB: + return STATE_CMD_READOOB; + case NAND_CMD_ERASE1: + return STATE_CMD_ERASE1; + case NAND_CMD_STATUS: + return STATE_CMD_STATUS; + case NAND_CMD_STATUS_MULTI: + return STATE_CMD_STATUS_M; + case NAND_CMD_SEQIN: + return STATE_CMD_SEQIN; + case NAND_CMD_READID: + return STATE_CMD_READID; + case NAND_CMD_ERASE2: + return STATE_CMD_ERASE2; + case NAND_CMD_RESET: + return STATE_CMD_RESET; + } + + NS_ERR("get_state_by_command: unknown command, BUG\n"); + return 0; +} + +/* + * Move an address byte to the correspondent internal register. + */ +static inline void +accept_addr_byte(struct nandsim *ns, u_char bt) +{ + uint byte = (uint)bt; + + if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) + ns->regs.column |= (byte << 8 * ns->regs.count); + else { + ns->regs.row |= (byte << 8 * (ns->regs.count - + ns->geom.pgaddrbytes + + ns->geom.secaddrbytes)); + } + + return; +} + +/* + * Switch to STATE_READY state. + */ +static inline void +switch_to_ready_state(struct nandsim *ns, u_char status) +{ + NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY)); + + ns->state = STATE_READY; + ns->nxstate = STATE_UNKNOWN; + ns->op = NULL; + ns->npstates = 0; + ns->stateidx = 0; + ns->regs.num = 0; + ns->regs.count = 0; + ns->regs.off = 0; + ns->regs.row = 0; + ns->regs.column = 0; + ns->regs.status = status; +} + +/* + * If the operation isn't known yet, try to find it in the global array + * of supported operations. + * + * Operation can be unknown because of the following. + * 1. New command was accepted and this is the firs call to find the + * correspondent states chain. In this case ns->npstates = 0; + * 2. There is several operations which begin with the same command(s) + * (for example program from the second half and read from the + * second half operations both begin with the READ1 command). In this + * case the ns->pstates[] array contains previous states. + * + * Thus, the function tries to find operation containing the following + * states (if the 'flag' parameter is 0): + * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state + * + * If (one and only one) matching operation is found, it is accepted ( + * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is + * zeroed). + * + * If there are several maches, the current state is pushed to the + * ns->pstates. + * + * The operation can be unknown only while commands are input to the chip. + * As soon as address command is accepted, the operation must be known. + * In such situation the function is called with 'flag' != 0, and the + * operation is searched using the following pattern: + * ns->pstates[0], ... ns->pstates[ns->npstates], <address input> + * + * It is supposed that this pattern must either match one operation on + * none. There can't be ambiguity in that case. + * + * If no matches found, the functions does the following: + * 1. if there are saved states present, try to ignore them and search + * again only using the last command. If nothing was found, switch + * to the STATE_READY state. + * 2. if there are no saved states, switch to the STATE_READY state. + * + * RETURNS: -2 - no matched operations found. + * -1 - several matches. + * 0 - operation is found. + */ +static int +find_operation(struct nandsim *ns, uint32_t flag) +{ + int opsfound = 0; + int i, j, idx = 0; + + for (i = 0; i < NS_OPER_NUM; i++) { + + int found = 1; + + if (!(ns->options & ops[i].reqopts)) + /* Ignore operations we can't perform */ + continue; + + if (flag) { + if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK)) + continue; + } else { + if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates])) + continue; + } + + for (j = 0; j < ns->npstates; j++) + if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j]) + && (ns->options & ops[idx].reqopts)) { + found = 0; + break; + } + + if (found) { + idx = i; + opsfound += 1; + } + } + + if (opsfound == 1) { + /* Exact match */ + ns->op = &ops[idx].states[0]; + if (flag) { + /* + * In this case the find_operation function was + * called when address has just began input. But it isn't + * yet fully input and the current state must + * not be one of STATE_ADDR_*, but the STATE_ADDR_* + * state must be the next state (ns->nxstate). + */ + ns->stateidx = ns->npstates - 1; + } else { + ns->stateidx = ns->npstates; + } + ns->npstates = 0; + ns->state = ns->op[ns->stateidx]; + ns->nxstate = ns->op[ns->stateidx + 1]; + NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n", + idx, get_state_name(ns->state), get_state_name(ns->nxstate)); + return 0; + } + + if (opsfound == 0) { + /* Nothing was found. Try to ignore previous commands (if any) and search again */ + if (ns->npstates != 0) { + NS_DBG("find_operation: no operation found, try again with state %s\n", + get_state_name(ns->state)); + ns->npstates = 0; + return find_operation(ns, 0); + + } + NS_DBG("find_operation: no operations found\n"); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return -2; + } + + if (flag) { + /* This shouldn't happen */ + NS_DBG("find_operation: BUG, operation must be known if address is input\n"); + return -2; + } + + NS_DBG("find_operation: there is still ambiguity\n"); + + ns->pstates[ns->npstates++] = ns->state; + + return -1; +} + +/* + * If state has any action bit, perform this action. + * + * RETURNS: 0 if success, -1 if error. + */ +static int +do_state_action(struct nandsim *ns, uint32_t action) +{ + int i, num; + int busdiv = ns->busw == 8 ? 1 : 2; + + action &= ACTION_MASK; + + /* Check that page address input is correct */ + if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) { + NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row); + return -1; + } + + switch (action) { + + case ACTION_CPY: + /* + * Copy page data to the internal buffer. + */ + + /* Column shouldn't be very large */ + if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) { + NS_ERR("do_state_action: column number is too large\n"); + break; + } + num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; + memcpy(ns->buf.byte, ns->mem.byte + NS_RAW_OFFSET(ns) + ns->regs.off, num); + + NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n", + num, NS_RAW_OFFSET(ns) + ns->regs.off); + + if (ns->regs.off == 0) + NS_LOG("read page %d\n", ns->regs.row); + else if (ns->regs.off < ns->geom.pgsz) + NS_LOG("read page %d (second half)\n", ns->regs.row); + else + NS_LOG("read OOB of page %d\n", ns->regs.row); + + NS_UDELAY(access_delay); + NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv); + + break; + + case ACTION_SECERASE: + /* + * Erase sector. + */ + + if (ns->lines.wp) { + NS_ERR("do_state_action: device is write-protected, ignore sector erase\n"); + return -1; + } + + if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec + || (ns->regs.row & ~(ns->geom.secsz - 1))) { + NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row); + return -1; + } + + ns->regs.row = (ns->regs.row << + 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column; + ns->regs.column = 0; + + NS_DBG("do_state_action: erase sector at address %#x, off = %d\n", + ns->regs.row, NS_RAW_OFFSET(ns)); + NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift)); + + memset(ns->mem.byte + NS_RAW_OFFSET(ns), 0xFF, ns->geom.secszoob); + + NS_MDELAY(erase_delay); + + break; + + case ACTION_PRGPAGE: + /* + * Programm page - move internal buffer data to the page. + */ + + if (ns->lines.wp) { + NS_WARN("do_state_action: device is write-protected, programm\n"); + return -1; + } + + num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; + if (num != ns->regs.count) { + NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n", + ns->regs.count, num); + return -1; + } + + for (i = 0; i < num; i++) + ns->mem.byte[NS_RAW_OFFSET(ns) + ns->regs.off + i] &= ns->buf.byte[i]; + + NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n", + num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off); + NS_LOG("programm page %d\n", ns->regs.row); + + NS_UDELAY(programm_delay); + NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv); + + break; + + case ACTION_ZEROOFF: + NS_DBG("do_state_action: set internal offset to 0\n"); + ns->regs.off = 0; + break; + + case ACTION_HALFOFF: + if (!(ns->options & OPT_PAGE512_8BIT)) { + NS_ERR("do_state_action: BUG! can't skip half of page for non-512" + "byte page size 8x chips\n"); + return -1; + } + NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2); + ns->regs.off = ns->geom.pgsz/2; + break; + + case ACTION_OOBOFF: + NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz); + ns->regs.off = ns->geom.pgsz; + break; + + default: + NS_DBG("do_state_action: BUG! unknown action\n"); + } + + return 0; +} + +/* + * Switch simulator's state. + */ +static void +switch_state(struct nandsim *ns) +{ + if (ns->op) { + /* + * The current operation have already been identified. + * Just follow the states chain. + */ + + ns->stateidx += 1; + ns->state = ns->nxstate; + ns->nxstate = ns->op[ns->stateidx + 1]; + + NS_DBG("switch_state: operation is known, switch to the next state, " + "state: %s, nxstate: %s\n", + get_state_name(ns->state), get_state_name(ns->nxstate)); + + /* See, whether we need to do some action */ + if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + } else { + /* + * We don't yet know which operation we perform. + * Try to identify it. + */ + + /* + * The only event causing the switch_state function to + * be called with yet unknown operation is new command. + */ + ns->state = get_state_by_command(ns->regs.command); + + NS_DBG("switch_state: operation is unknown, try to find it\n"); + + if (find_operation(ns, 0) != 0) + return; + + if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + } + + /* For 16x devices column means the page offset in words */ + if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) { + NS_DBG("switch_state: double the column number for 16x device\n"); + ns->regs.column <<= 1; + } + + if (NS_STATE(ns->nxstate) == STATE_READY) { + /* + * The current state is the last. Return to STATE_READY + */ + + u_char status = NS_STATUS_OK(ns); + + /* In case of data states, see if all bytes were input/output */ + if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) + && ns->regs.count != ns->regs.num) { + NS_WARN("switch_state: not all bytes were processed, %d left\n", + ns->regs.num - ns->regs.count); + status = NS_STATUS_FAILED(ns); + } + + NS_DBG("switch_state: operation complete, switch to STATE_READY state\n"); + + switch_to_ready_state(ns, status); + + return; + } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) { + /* + * If the next state is data input/output, switch to it now + */ + + ns->state = ns->nxstate; + ns->nxstate = ns->op[++ns->stateidx + 1]; + ns->regs.num = ns->regs.count = 0; + + NS_DBG("switch_state: the next state is data I/O, switch, " + "state: %s, nxstate: %s\n", + get_state_name(ns->state), get_state_name(ns->nxstate)); + + /* + * Set the internal register to the count of bytes which + * are expected to be input or output + */ + switch (NS_STATE(ns->state)) { + case STATE_DATAIN: + case STATE_DATAOUT: + ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column; + break; + + case STATE_DATAOUT_ID: + ns->regs.num = ns->geom.idbytes; + break; + + case STATE_DATAOUT_STATUS: + case STATE_DATAOUT_STATUS_M: + ns->regs.count = ns->regs.num = 0; + break; + + default: + NS_ERR("switch_state: BUG! unknown data state\n"); + } + + } else if (ns->nxstate & STATE_ADDR_MASK) { + /* + * If the next state is address input, set the internal + * register to the number of expected address bytes + */ + + ns->regs.count = 0; + + switch (NS_STATE(ns->nxstate)) { + case STATE_ADDR_PAGE: + ns->regs.num = ns->geom.pgaddrbytes; + + break; + case STATE_ADDR_SEC: + ns->regs.num = ns->geom.secaddrbytes; + break; + + case STATE_ADDR_ZERO: + ns->regs.num = 1; + break; + + default: + NS_ERR("switch_state: BUG! unknown address state\n"); + } + } else { + /* + * Just reset internal counters. + */ + + ns->regs.num = 0; + ns->regs.count = 0; + } +} + +static void +ns_hwcontrol(struct mtd_info *mtd, int cmd) +{ + struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; + + switch (cmd) { + + /* set CLE line high */ + case NAND_CTL_SETCLE: + NS_DBG("ns_hwcontrol: start command latch cycles\n"); + ns->lines.cle = 1; + break; + + /* set CLE line low */ + case NAND_CTL_CLRCLE: + NS_DBG("ns_hwcontrol: stop command latch cycles\n"); + ns->lines.cle = 0; + break; + + /* set ALE line high */ + case NAND_CTL_SETALE: + NS_DBG("ns_hwcontrol: start address latch cycles\n"); + ns->lines.ale = 1; + break; + + /* set ALE line low */ + case NAND_CTL_CLRALE: + NS_DBG("ns_hwcontrol: stop address latch cycles\n"); + ns->lines.ale = 0; + break; + + /* set WP line high */ + case NAND_CTL_SETWP: + NS_DBG("ns_hwcontrol: enable write protection\n"); + ns->lines.wp = 1; + break; + + /* set WP line low */ + case NAND_CTL_CLRWP: + NS_DBG("ns_hwcontrol: disable write protection\n"); + ns->lines.wp = 0; + break; + + /* set CE line low */ + case NAND_CTL_SETNCE: + NS_DBG("ns_hwcontrol: enable chip\n"); + ns->lines.ce = 1; + break; + + /* set CE line high */ + case NAND_CTL_CLRNCE: + NS_DBG("ns_hwcontrol: disable chip\n"); + ns->lines.ce = 0; + break; + + default: + NS_ERR("hwcontrol: unknown command\n"); + } + + return; +} + +static u_char +ns_nand_read_byte(struct mtd_info *mtd) +{ + struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; + u_char outb = 0x00; + + /* Sanity and correctness checks */ + if (!ns->lines.ce) { + NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb); + return outb; + } + if (ns->lines.ale || ns->lines.cle) { + NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb); + return outb; + } + if (!(ns->state & STATE_DATAOUT_MASK)) { + NS_WARN("read_byte: unexpected data output cycle, state is %s " + "return %#x\n", get_state_name(ns->state), (uint)outb); + return outb; + } + + /* Status register may be read as many times as it is wanted */ + if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) { + NS_DBG("read_byte: return %#x status\n", ns->regs.status); + return ns->regs.status; + } + + /* Check if there is any data in the internal buffer which may be read */ + if (ns->regs.count == ns->regs.num) { + NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb); + return outb; + } + + switch (NS_STATE(ns->state)) { + case STATE_DATAOUT: + if (ns->busw == 8) { + outb = ns->buf.byte[ns->regs.count]; + ns->regs.count += 1; + } else { + outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]); + ns->regs.count += 2; + } + break; + case STATE_DATAOUT_ID: + NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num); + outb = ns->ids[ns->regs.count]; + ns->regs.count += 1; + break; + default: + BUG(); + } + + if (ns->regs.count == ns->regs.num) { + NS_DBG("read_byte: all bytes were read\n"); + + /* + * The OPT_AUTOINCR allows to read next conseqitive pages without + * new read operation cycle. + */ + if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { + ns->regs.count = 0; + if (ns->regs.row + 1 < ns->geom.pgnum) + ns->regs.row += 1; + NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row); + do_state_action(ns, ACTION_CPY); + } + else if (NS_STATE(ns->nxstate) == STATE_READY) + switch_state(ns); + + } + + return outb; +} + +static void +ns_nand_write_byte(struct mtd_info *mtd, u_char byte) +{ + struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; + + /* Sanity and correctness checks */ + if (!ns->lines.ce) { + NS_ERR("write_byte: chip is disabled, ignore write\n"); + return; + } + if (ns->lines.ale && ns->lines.cle) { + NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n"); + return; + } + + if (ns->lines.cle == 1) { + /* + * The byte written is a command. + */ + + if (byte == NAND_CMD_RESET) { + NS_LOG("reset chip\n"); + switch_to_ready_state(ns, NS_STATUS_OK(ns)); + return; + } + + /* + * Chip might still be in STATE_DATAOUT + * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or + * STATE_DATAOUT_STATUS_M state. If so, switch state. + */ + if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS + || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M + || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT)) + switch_state(ns); + + /* Check if chip is expecting command */ + if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) { + /* + * We are in situation when something else (not command) + * was expected but command was input. In this case ignore + * previous command(s)/state(s) and accept the last one. + */ + NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, " + "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate)); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + } + + /* Check that the command byte is correct */ + if (check_command(byte)) { + NS_ERR("write_byte: unknown command %#x\n", (uint)byte); + return; + } + + NS_DBG("command byte corresponding to %s state accepted\n", + get_state_name(get_state_by_command(byte))); + ns->regs.command = byte; + switch_state(ns); + + } else if (ns->lines.ale == 1) { + /* + * The byte written is an address. + */ + + if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) { + + NS_DBG("write_byte: operation isn't known yet, identify it\n"); + + if (find_operation(ns, 1) < 0) + return; + + if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) { + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + ns->regs.count = 0; + switch (NS_STATE(ns->nxstate)) { + case STATE_ADDR_PAGE: + ns->regs.num = ns->geom.pgaddrbytes; + break; + case STATE_ADDR_SEC: + ns->regs.num = ns->geom.secaddrbytes; + break; + case STATE_ADDR_ZERO: + ns->regs.num = 1; + break; + default: + BUG(); + } + } + + /* Check that chip is expecting address */ + if (!(ns->nxstate & STATE_ADDR_MASK)) { + NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, " + "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate)); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* Check if this is expected byte */ + if (ns->regs.count == ns->regs.num) { + NS_ERR("write_byte: no more address bytes expected\n"); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + accept_addr_byte(ns, byte); + + ns->regs.count += 1; + + NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n", + (uint)byte, ns->regs.count, ns->regs.num); + + if (ns->regs.count == ns->regs.num) { + NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column); + switch_state(ns); + } + + } else { + /* + * The byte written is an input data. + */ + + /* Check that chip is expecting data input */ + if (!(ns->state & STATE_DATAIN_MASK)) { + NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, " + "switch to %s\n", (uint)byte, + get_state_name(ns->state), get_state_name(STATE_READY)); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* Check if this is expected byte */ + if (ns->regs.count == ns->regs.num) { + NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n", + ns->regs.num); + return; + } + + if (ns->busw == 8) { + ns->buf.byte[ns->regs.count] = byte; + ns->regs.count += 1; + } else { + ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte); + ns->regs.count += 2; + } + } + + return; +} + +static int +ns_device_ready(struct mtd_info *mtd) +{ + NS_DBG("device_ready\n"); + return 1; +} + +static uint16_t +ns_nand_read_word(struct mtd_info *mtd) +{ + struct nand_chip *chip = (struct nand_chip *)mtd->priv; + + NS_DBG("read_word\n"); + + return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8); +} + +static void +ns_nand_write_word(struct mtd_info *mtd, uint16_t word) +{ + struct nand_chip *chip = (struct nand_chip *)mtd->priv; + + NS_DBG("write_word\n"); + + chip->write_byte(mtd, word & 0xFF); + chip->write_byte(mtd, word >> 8); +} + +static void +ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; + + /* Check that chip is expecting data input */ + if (!(ns->state & STATE_DATAIN_MASK)) { + NS_ERR("write_buf: data input isn't expected, state is %s, " + "switch to STATE_READY\n", get_state_name(ns->state)); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + /* Check if these are expected bytes */ + if (ns->regs.count + len > ns->regs.num) { + NS_ERR("write_buf: too many input bytes\n"); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + memcpy(ns->buf.byte + ns->regs.count, buf, len); + ns->regs.count += len; + + if (ns->regs.count == ns->regs.num) { + NS_DBG("write_buf: %d bytes were written\n", ns->regs.count); + } +} + +static void +ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv; + + /* Sanity and correctness checks */ + if (!ns->lines.ce) { + NS_ERR("read_buf: chip is disabled\n"); + return; + } + if (ns->lines.ale || ns->lines.cle) { + NS_ERR("read_buf: ALE or CLE pin is high\n"); + return; + } + if (!(ns->state & STATE_DATAOUT_MASK)) { + NS_WARN("read_buf: unexpected data output cycle, current state is %s\n", + get_state_name(ns->state)); + return; + } + + if (NS_STATE(ns->state) != STATE_DATAOUT) { + int i; + + for (i = 0; i < len; i++) + buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd); + + return; + } + + /* Check if these are expected bytes */ + if (ns->regs.count + len > ns->regs.num) { + NS_ERR("read_buf: too many bytes to read\n"); + switch_to_ready_state(ns, NS_STATUS_FAILED(ns)); + return; + } + + memcpy(buf, ns->buf.byte + ns->regs.count, len); + ns->regs.count += len; + + if (ns->regs.count == ns->regs.num) { + if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) { + ns->regs.count = 0; + if (ns->regs.row + 1 < ns->geom.pgnum) + ns->regs.row += 1; + NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row); + do_state_action(ns, ACTION_CPY); + } + else if (NS_STATE(ns->nxstate) == STATE_READY) + switch_state(ns); + } + + return; +} + +static int +ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len); + + if (!memcmp(buf, &ns_verify_buf[0], len)) { + NS_DBG("verify_buf: the buffer is OK\n"); + return 0; + } else { + NS_DBG("verify_buf: the buffer is wrong\n"); + return -EFAULT; + } +} + +/* + * Having only NAND chip IDs we call nand_scan which detects NAND flash + * parameters and then calls scan_bbt in order to scan/find/build the + * NAND flash bad block table. But since at that moment the NAND flash + * image isn't allocated in the simulator, errors arise. To avoid this + * we redefine the scan_bbt callback and initialize the nandsim structure + * before the flash media scanning. + */ +int ns_scan_bbt(struct mtd_info *mtd) +{ + struct nand_chip *chip = (struct nand_chip *)mtd->priv; + struct nandsim *ns = (struct nandsim *)(chip->priv); + int retval; + + if (!NS_IS_INITIALIZED(ns)) + if ((retval = init_nandsim(mtd)) != 0) { + NS_ERR("scan_bbt: can't initialize the nandsim structure\n"); + return retval; + } + if ((retval = nand_default_bbt(mtd)) != 0) { + free_nandsim(ns); + return retval; + } + + return 0; +} + +/* + * Module initialization function + */ +int __init ns_init_module(void) +{ + struct nand_chip *chip; + struct nandsim *nand; + int retval = -ENOMEM; + + if (bus_width != 8 && bus_width != 16) { + NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width); + return -EINVAL; + } + + /* Allocate and initialize mtd_info, nand_chip and nandsim structures */ + nsmtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip) + + sizeof(struct nandsim), GFP_KERNEL); + if (!nsmtd) { + NS_ERR("unable to allocate core structures.\n"); + return -ENOMEM; + } + memset(nsmtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip) + + sizeof(struct nandsim)); + chip = (struct nand_chip *)(nsmtd + 1); + nsmtd->priv = (void *)chip; + nand = (struct nandsim *)(chip + 1); + chip->priv = (void *)nand; + + /* + * Register simulator's callbacks. + */ + chip->hwcontrol = ns_hwcontrol; + chip->read_byte = ns_nand_read_byte; + chip->dev_ready = ns_device_ready; + chip->scan_bbt = ns_scan_bbt; + chip->write_byte = ns_nand_write_byte; + chip->write_buf = ns_nand_write_buf; + chip->read_buf = ns_nand_read_buf; + chip->verify_buf = ns_nand_verify_buf; + chip->write_word = ns_nand_write_word; + chip->read_word = ns_nand_read_word; + chip->eccmode = NAND_ECC_SOFT; + + /* + * Perform minimum nandsim structure initialization to handle + * the initial ID read command correctly + */ + if (third_id_byte != 0xFF || fourth_id_byte != 0xFF) + nand->geom.idbytes = 4; + else + nand->geom.idbytes = 2; + nand->regs.status = NS_STATUS_OK(nand); + nand->nxstate = STATE_UNKNOWN; + nand->options |= OPT_PAGE256; /* temporary value */ + nand->ids[0] = first_id_byte; + nand->ids[1] = second_id_byte; + nand->ids[2] = third_id_byte; + nand->ids[3] = fourth_id_byte; + if (bus_width == 16) { + nand->busw = 16; + chip->options |= NAND_BUSWIDTH_16; + } + + if ((retval = nand_scan(nsmtd, 1)) != 0) { + NS_ERR("can't register NAND Simulator\n"); + if (retval > 0) + retval = -ENXIO; + goto error; + } + + /* Register NAND as one big partition */ + add_mtd_partitions(nsmtd, &nand->part, 1); + + return 0; + +error: + kfree(nsmtd); + + return retval; +} + +module_init(ns_init_module); + +/* + * Module clean-up function + */ +static void __exit ns_cleanup_module(void) +{ + struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv); + + free_nandsim(ns); /* Free nandsim private resources */ + nand_release(nsmtd); /* Unregisterd drived */ + kfree(nsmtd); /* Free other structures */ +} + +module_exit(ns_cleanup_module); + +MODULE_LICENSE ("GPL"); +MODULE_AUTHOR ("Artem B. Bityuckiy"); +MODULE_DESCRIPTION ("The NAND flash simulator"); + diff --git a/drivers/mtd/nand/ppchameleonevb.c b/drivers/mtd/nand/ppchameleonevb.c new file mode 100644 index 00000000000..e510a83d7bd --- /dev/null +++ b/drivers/mtd/nand/ppchameleonevb.c @@ -0,0 +1,420 @@ +/* + * drivers/mtd/nand/ppchameleonevb.c + * + * Copyright (C) 2003 DAVE Srl (info@wawnet.biz) + * + * Derived from drivers/mtd/nand/edb7312.c + * + * + * $Id: ppchameleonevb.c,v 1.6 2004/11/05 16:07:16 kalev Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the NAND flash devices found on the + * PPChameleon/PPChameleonEVB system. + * PPChameleon options (autodetected): + * - BA model: no NAND + * - ME model: 32MB (Samsung K9F5608U0B) + * - HI model: 128MB (Samsung K9F1G08UOM) + * PPChameleonEVB options: + * - 32MB (Samsung K9F5608U0B) + */ + +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> +#include <platforms/PPChameleonEVB.h> + +#undef USE_READY_BUSY_PIN +#define USE_READY_BUSY_PIN +/* see datasheets (tR) */ +#define NAND_BIG_DELAY_US 25 +#define NAND_SMALL_DELAY_US 10 + +/* handy sizes */ +#define SZ_4M 0x00400000 +#define NAND_SMALL_SIZE 0x02000000 +#define NAND_MTD_NAME "ppchameleon-nand" +#define NAND_EVB_MTD_NAME "ppchameleonevb-nand" + +/* GPIO pins used to drive NAND chip mounted on processor module */ +#define NAND_nCE_GPIO_PIN (0x80000000 >> 1) +#define NAND_CLE_GPIO_PIN (0x80000000 >> 2) +#define NAND_ALE_GPIO_PIN (0x80000000 >> 3) +#define NAND_RB_GPIO_PIN (0x80000000 >> 4) +/* GPIO pins used to drive NAND chip mounted on EVB */ +#define NAND_EVB_nCE_GPIO_PIN (0x80000000 >> 14) +#define NAND_EVB_CLE_GPIO_PIN (0x80000000 >> 15) +#define NAND_EVB_ALE_GPIO_PIN (0x80000000 >> 16) +#define NAND_EVB_RB_GPIO_PIN (0x80000000 >> 31) + +/* + * MTD structure for PPChameleonEVB board + */ +static struct mtd_info *ppchameleon_mtd = NULL; +static struct mtd_info *ppchameleonevb_mtd = NULL; + +/* + * Module stuff + */ +static unsigned long ppchameleon_fio_pbase = CFG_NAND0_PADDR; +static unsigned long ppchameleonevb_fio_pbase = CFG_NAND1_PADDR; + +#ifdef MODULE +module_param(ppchameleon_fio_pbase, ulong, 0); +module_param(ppchameleonevb_fio_pbase, ulong, 0); +#else +__setup("ppchameleon_fio_pbase=",ppchameleon_fio_pbase); +__setup("ppchameleonevb_fio_pbase=",ppchameleonevb_fio_pbase); +#endif + +#ifdef CONFIG_MTD_PARTITIONS +/* + * Define static partitions for flash devices + */ +static struct mtd_partition partition_info_hi[] = { + { name: "PPChameleon HI Nand Flash", + offset: 0, + size: 128*1024*1024 } +}; + +static struct mtd_partition partition_info_me[] = { + { name: "PPChameleon ME Nand Flash", + offset: 0, + size: 32*1024*1024 } +}; + +static struct mtd_partition partition_info_evb[] = { + { name: "PPChameleonEVB Nand Flash", + offset: 0, + size: 32*1024*1024 } +}; + +#define NUM_PARTITIONS 1 + +extern int parse_cmdline_partitions(struct mtd_info *master, + struct mtd_partition **pparts, + const char *mtd_id); +#endif + + +/* + * hardware specific access to control-lines + */ +static void ppchameleon_hwcontrol(struct mtd_info *mtdinfo, int cmd) +{ + switch(cmd) { + + case NAND_CTL_SETCLE: + MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND0_PADDR); + break; + case NAND_CTL_CLRCLE: + MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND0_PADDR); + break; + case NAND_CTL_SETALE: + MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND0_PADDR); + break; + case NAND_CTL_CLRALE: + MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND0_PADDR); + break; + case NAND_CTL_SETNCE: + MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND0_PADDR); + break; + case NAND_CTL_CLRNCE: + MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND0_PADDR); + break; + } +} + +static void ppchameleonevb_hwcontrol(struct mtd_info *mtdinfo, int cmd) +{ + switch(cmd) { + + case NAND_CTL_SETCLE: + MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND1_PADDR); + break; + case NAND_CTL_CLRCLE: + MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND1_PADDR); + break; + case NAND_CTL_SETALE: + MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND1_PADDR); + break; + case NAND_CTL_CLRALE: + MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND1_PADDR); + break; + case NAND_CTL_SETNCE: + MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND1_PADDR); + break; + case NAND_CTL_CLRNCE: + MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND1_PADDR); + break; + } +} + +#ifdef USE_READY_BUSY_PIN +/* + * read device ready pin + */ +static int ppchameleon_device_ready(struct mtd_info *minfo) +{ + if (in_be32((volatile unsigned*)GPIO0_IR) & NAND_RB_GPIO_PIN) + return 1; + return 0; +} + +static int ppchameleonevb_device_ready(struct mtd_info *minfo) +{ + if (in_be32((volatile unsigned*)GPIO0_IR) & NAND_EVB_RB_GPIO_PIN) + return 1; + return 0; +} +#endif + +#ifdef CONFIG_MTD_PARTITIONS +const char *part_probes[] = { "cmdlinepart", NULL }; +const char *part_probes_evb[] = { "cmdlinepart", NULL }; +#endif + +/* + * Main initialization routine + */ +static int __init ppchameleonevb_init (void) +{ + struct nand_chip *this; + const char *part_type = 0; + int mtd_parts_nb = 0; + struct mtd_partition *mtd_parts = 0; + void __iomem *ppchameleon_fio_base; + void __iomem *ppchameleonevb_fio_base; + + + /********************************* + * Processor module NAND (if any) * + *********************************/ + /* Allocate memory for MTD device structure and private data */ + ppchameleon_mtd = kmalloc(sizeof(struct mtd_info) + + sizeof(struct nand_chip), GFP_KERNEL); + if (!ppchameleon_mtd) { + printk("Unable to allocate PPChameleon NAND MTD device structure.\n"); + return -ENOMEM; + } + + /* map physical address */ + ppchameleon_fio_base = ioremap(ppchameleon_fio_pbase, SZ_4M); + if(!ppchameleon_fio_base) { + printk("ioremap PPChameleon NAND flash failed\n"); + kfree(ppchameleon_mtd); + return -EIO; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&ppchameleon_mtd[1]); + + /* Initialize structures */ + memset((char *) ppchameleon_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + ppchameleon_mtd->priv = this; + + /* Initialize GPIOs */ + /* Pin mapping for NAND chip */ + /* + CE GPIO_01 + CLE GPIO_02 + ALE GPIO_03 + R/B GPIO_04 + */ + /* output select */ + out_be32((volatile unsigned*)GPIO0_OSRH, in_be32((volatile unsigned*)GPIO0_OSRH) & 0xC0FFFFFF); + /* three-state select */ + out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xC0FFFFFF); + /* enable output driver */ + out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_nCE_GPIO_PIN | NAND_CLE_GPIO_PIN | NAND_ALE_GPIO_PIN); +#ifdef USE_READY_BUSY_PIN + /* three-state select */ + out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xFF3FFFFF); + /* high-impedecence */ + out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) & (~NAND_RB_GPIO_PIN)); + /* input select */ + out_be32((volatile unsigned*)GPIO0_ISR1H, (in_be32((volatile unsigned*)GPIO0_ISR1H) & 0xFF3FFFFF) | 0x00400000); +#endif + + /* insert callbacks */ + this->IO_ADDR_R = ppchameleon_fio_base; + this->IO_ADDR_W = ppchameleon_fio_base; + this->hwcontrol = ppchameleon_hwcontrol; +#ifdef USE_READY_BUSY_PIN + this->dev_ready = ppchameleon_device_ready; +#endif + this->chip_delay = NAND_BIG_DELAY_US; + /* ECC mode */ + this->eccmode = NAND_ECC_SOFT; + + /* Scan to find existence of the device (it could not be mounted) */ + if (nand_scan (ppchameleon_mtd, 1)) { + iounmap((void *)ppchameleon_fio_base); + kfree (ppchameleon_mtd); + goto nand_evb_init; + } + +#ifndef USE_READY_BUSY_PIN + /* Adjust delay if necessary */ + if (ppchameleon_mtd->size == NAND_SMALL_SIZE) + this->chip_delay = NAND_SMALL_DELAY_US; +#endif + +#ifdef CONFIG_MTD_PARTITIONS + ppchameleon_mtd->name = "ppchameleon-nand"; + mtd_parts_nb = parse_mtd_partitions(ppchameleon_mtd, part_probes, &mtd_parts, 0); + if (mtd_parts_nb > 0) + part_type = "command line"; + else + mtd_parts_nb = 0; +#endif + if (mtd_parts_nb == 0) + { + if (ppchameleon_mtd->size == NAND_SMALL_SIZE) + mtd_parts = partition_info_me; + else + mtd_parts = partition_info_hi; + mtd_parts_nb = NUM_PARTITIONS; + part_type = "static"; + } + + /* Register the partitions */ + printk(KERN_NOTICE "Using %s partition definition\n", part_type); + add_mtd_partitions(ppchameleon_mtd, mtd_parts, mtd_parts_nb); + +nand_evb_init: + /**************************** + * EVB NAND (always present) * + ****************************/ + /* Allocate memory for MTD device structure and private data */ + ppchameleonevb_mtd = kmalloc(sizeof(struct mtd_info) + + sizeof(struct nand_chip), GFP_KERNEL); + if (!ppchameleonevb_mtd) { + printk("Unable to allocate PPChameleonEVB NAND MTD device structure.\n"); + return -ENOMEM; + } + + /* map physical address */ + ppchameleonevb_fio_base = ioremap(ppchameleonevb_fio_pbase, SZ_4M); + if(!ppchameleonevb_fio_base) { + printk("ioremap PPChameleonEVB NAND flash failed\n"); + kfree(ppchameleonevb_mtd); + return -EIO; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&ppchameleonevb_mtd[1]); + + /* Initialize structures */ + memset((char *) ppchameleonevb_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + ppchameleonevb_mtd->priv = this; + + /* Initialize GPIOs */ + /* Pin mapping for NAND chip */ + /* + CE GPIO_14 + CLE GPIO_15 + ALE GPIO_16 + R/B GPIO_31 + */ + /* output select */ + out_be32((volatile unsigned*)GPIO0_OSRH, in_be32((volatile unsigned*)GPIO0_OSRH) & 0xFFFFFFF0); + out_be32((volatile unsigned*)GPIO0_OSRL, in_be32((volatile unsigned*)GPIO0_OSRL) & 0x3FFFFFFF); + /* three-state select */ + out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xFFFFFFF0); + out_be32((volatile unsigned*)GPIO0_TSRL, in_be32((volatile unsigned*)GPIO0_TSRL) & 0x3FFFFFFF); + /* enable output driver */ + out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_EVB_nCE_GPIO_PIN | + NAND_EVB_CLE_GPIO_PIN | NAND_EVB_ALE_GPIO_PIN); +#ifdef USE_READY_BUSY_PIN + /* three-state select */ + out_be32((volatile unsigned*)GPIO0_TSRL, in_be32((volatile unsigned*)GPIO0_TSRL) & 0xFFFFFFFC); + /* high-impedecence */ + out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) & (~NAND_EVB_RB_GPIO_PIN)); + /* input select */ + out_be32((volatile unsigned*)GPIO0_ISR1L, (in_be32((volatile unsigned*)GPIO0_ISR1L) & 0xFFFFFFFC) | 0x00000001); +#endif + + /* insert callbacks */ + this->IO_ADDR_R = ppchameleonevb_fio_base; + this->IO_ADDR_W = ppchameleonevb_fio_base; + this->hwcontrol = ppchameleonevb_hwcontrol; +#ifdef USE_READY_BUSY_PIN + this->dev_ready = ppchameleonevb_device_ready; +#endif + this->chip_delay = NAND_SMALL_DELAY_US; + + /* ECC mode */ + this->eccmode = NAND_ECC_SOFT; + + /* Scan to find existence of the device */ + if (nand_scan (ppchameleonevb_mtd, 1)) { + iounmap((void *)ppchameleonevb_fio_base); + kfree (ppchameleonevb_mtd); + return -ENXIO; + } + +#ifdef CONFIG_MTD_PARTITIONS + ppchameleonevb_mtd->name = NAND_EVB_MTD_NAME; + mtd_parts_nb = parse_mtd_partitions(ppchameleonevb_mtd, part_probes_evb, &mtd_parts, 0); + if (mtd_parts_nb > 0) + part_type = "command line"; + else + mtd_parts_nb = 0; +#endif + if (mtd_parts_nb == 0) + { + mtd_parts = partition_info_evb; + mtd_parts_nb = NUM_PARTITIONS; + part_type = "static"; + } + + /* Register the partitions */ + printk(KERN_NOTICE "Using %s partition definition\n", part_type); + add_mtd_partitions(ppchameleonevb_mtd, mtd_parts, mtd_parts_nb); + + /* Return happy */ + return 0; +} +module_init(ppchameleonevb_init); + +/* + * Clean up routine + */ +static void __exit ppchameleonevb_cleanup (void) +{ + struct nand_chip *this; + + /* Release resources, unregister device(s) */ + nand_release (ppchameleon_mtd); + nand_release (ppchameleonevb_mtd); + + /* Release iomaps */ + this = (struct nand_chip *) &ppchameleon_mtd[1]; + iounmap((void *) this->IO_ADDR_R; + this = (struct nand_chip *) &ppchameleonevb_mtd[1]; + iounmap((void *) this->IO_ADDR_R; + + /* Free the MTD device structure */ + kfree (ppchameleon_mtd); + kfree (ppchameleonevb_mtd); +} +module_exit(ppchameleonevb_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("DAVE Srl <support-ppchameleon@dave-tech.it>"); +MODULE_DESCRIPTION("MTD map driver for DAVE Srl PPChameleonEVB board"); diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c new file mode 100644 index 00000000000..02305a2adca --- /dev/null +++ b/drivers/mtd/nand/rtc_from4.c @@ -0,0 +1,559 @@ +/* + * drivers/mtd/nand/rtc_from4.c + * + * Copyright (C) 2004 Red Hat, Inc. + * + * Derived from drivers/mtd/nand/spia.c + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * + * $Id: rtc_from4.c,v 1.7 2004/11/04 12:53:10 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the AG-AND flash device found on the + * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), + * which utilizes the Renesas HN29V1G91T-30 part. + * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. + */ + +#include <linux/delay.h> +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/rslib.h> +#include <linux/module.h> +#include <linux/mtd/compatmac.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> + +/* + * MTD structure for Renesas board + */ +static struct mtd_info *rtc_from4_mtd = NULL; + +#define RTC_FROM4_MAX_CHIPS 2 + +/* HS77x9 processor register defines */ +#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60)) +#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62)) +#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64)) +#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66)) +#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68)) +#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C)) +#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80)) + +/* + * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) + */ +/* Address where flash is mapped */ +#define RTC_FROM4_FIO_BASE 0x14000000 + +/* CLE and ALE are tied to address lines 5 & 4, respectively */ +#define RTC_FROM4_CLE (1 << 5) +#define RTC_FROM4_ALE (1 << 4) + +/* address lines A24-A22 used for chip selection */ +#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000) +#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000) +#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000) +/* mask address lines A24-A22 used for chip selection */ +#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) + +/* FPGA status register for checking device ready (bit zero) */ +#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) +#define RTC_FROM4_DEVICE_READY 0x0001 + +/* FPGA Reed-Solomon ECC Control register */ + +#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) +#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7) +#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6) +#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5) + +/* FPGA Reed-Solomon ECC code base */ +#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) +#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) + +/* FPGA Reed-Solomon ECC check register */ +#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) +#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7) + +/* Undefine for software ECC */ +#define RTC_FROM4_HWECC 1 + +/* + * Module stuff + */ +static void __iomem *rtc_from4_fio_base = P2SEGADDR(RTC_FROM4_FIO_BASE); + +const static struct mtd_partition partition_info[] = { + { + .name = "Renesas flash partition 1", + .offset = 0, + .size = MTDPART_SIZ_FULL + }, +}; +#define NUM_PARTITIONS 1 + +/* + * hardware specific flash bbt decriptors + * Note: this is to allow debugging by disabling + * NAND_BBT_CREATE and/or NAND_BBT_WRITE + * + */ +static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; +static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; + +static struct nand_bbt_descr rtc_from4_bbt_main_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 40, + .len = 4, + .veroffs = 44, + .maxblocks = 4, + .pattern = bbt_pattern +}; + +static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { + .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE + | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, + .offs = 40, + .len = 4, + .veroffs = 44, + .maxblocks = 4, + .pattern = mirror_pattern +}; + + + +#ifdef RTC_FROM4_HWECC + +/* the Reed Solomon control structure */ +static struct rs_control *rs_decoder; + +/* + * hardware specific Out Of Band information + */ +static struct nand_oobinfo rtc_from4_nand_oobinfo = { + .useecc = MTD_NANDECC_AUTOPLACE, + .eccbytes = 32, + .eccpos = { + 0, 1, 2, 3, 4, 5, 6, 7, + 8, 9, 10, 11, 12, 13, 14, 15, + 16, 17, 18, 19, 20, 21, 22, 23, + 24, 25, 26, 27, 28, 29, 30, 31}, + .oobfree = { {32, 32} } +}; + +/* Aargh. I missed the reversed bit order, when I + * was talking to Renesas about the FPGA. + * + * The table is used for bit reordering and inversion + * of the ecc byte which we get from the FPGA + */ +static uint8_t revbits[256] = { + 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, + 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, + 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, + 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, + 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, + 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, + 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, + 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, + 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, + 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, + 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, + 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, + 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, + 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, + 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, + 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, + 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, + 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, + 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, + 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, + 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, + 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, + 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, + 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, + 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, + 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, + 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, + 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, + 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, + 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, + 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, + 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, +}; + +#endif + + + +/* + * rtc_from4_hwcontrol - hardware specific access to control-lines + * @mtd: MTD device structure + * @cmd: hardware control command + * + * Address lines (A5 and A4) are used to control Command and Address Latch + * Enable on this board, so set the read/write address appropriately. + * + * Chip Enable is also controlled by the Chip Select (CS5) and + * Address lines (A24-A22), so no action is required here. + * + */ +static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd) +{ + struct nand_chip* this = (struct nand_chip *) (mtd->priv); + + switch(cmd) { + + case NAND_CTL_SETCLE: + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE); + break; + case NAND_CTL_CLRCLE: + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE); + break; + + case NAND_CTL_SETALE: + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE); + break; + case NAND_CTL_CLRALE: + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE); + break; + + case NAND_CTL_SETNCE: + break; + case NAND_CTL_CLRNCE: + break; + + } +} + + +/* + * rtc_from4_nand_select_chip - hardware specific chip select + * @mtd: MTD device structure + * @chip: Chip to select (0 == slot 3, 1 == slot 4) + * + * The chip select is based on address lines A24-A22. + * This driver uses flash slots 3 and 4 (A23-A22). + * + */ +static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) +{ + struct nand_chip *this = mtd->priv; + + this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); + + switch(chip) { + + case 0: /* select slot 3 chip */ + this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); + break; + case 1: /* select slot 4 chip */ + this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); + this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); + break; + + } +} + + + +/* + * rtc_from4_nand_device_ready - hardware specific ready/busy check + * @mtd: MTD device structure + * + * This board provides the Ready/Busy state in the status register + * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal. + * + */ +static int rtc_from4_nand_device_ready(struct mtd_info *mtd) +{ + unsigned short status; + + status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); + + return (status & RTC_FROM4_DEVICE_READY); + +} + +#ifdef RTC_FROM4_HWECC +/* + * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function + * @mtd: MTD device structure + * @mode: I/O mode; read or write + * + * enable hardware ECC for data read or write + * + */ +static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) +{ + volatile unsigned short * rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); + unsigned short status; + + switch (mode) { + case NAND_ECC_READ : + status = RTC_FROM4_RS_ECC_CTL_CLR + | RTC_FROM4_RS_ECC_CTL_FD_E; + + *rs_ecc_ctl = status; + break; + + case NAND_ECC_READSYN : + status = 0x00; + + *rs_ecc_ctl = status; + break; + + case NAND_ECC_WRITE : + status = RTC_FROM4_RS_ECC_CTL_CLR + | RTC_FROM4_RS_ECC_CTL_GEN + | RTC_FROM4_RS_ECC_CTL_FD_E; + + *rs_ecc_ctl = status; + break; + + default: + BUG(); + break; + } + +} + +/* + * rtc_from4_calculate_ecc - hardware specific code to read ECC code + * @mtd: MTD device structure + * @dat: buffer containing the data to generate ECC codes + * @ecc_code ECC codes calculated + * + * The ECC code is calculated by the FPGA. All we have to do is read the values + * from the FPGA registers. + * + * Note: We read from the inverted registers, since data is inverted before + * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code + * + */ +static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +{ + volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); + unsigned short value; + int i; + + for (i = 0; i < 8; i++) { + value = *rs_eccn; + ecc_code[i] = (unsigned char)value; + rs_eccn++; + } + ecc_code[7] |= 0x0f; /* set the last four bits (not used) */ +} + +/* + * rtc_from4_correct_data - hardware specific code to correct data using ECC code + * @mtd: MTD device structure + * @buf: buffer containing the data to generate ECC codes + * @ecc1 ECC codes read + * @ecc2 ECC codes calculated + * + * The FPGA tells us fast, if there's an error or not. If no, we go back happy + * else we read the ecc results from the fpga and call the rs library to decode + * and hopefully correct the error + * + * For now I use the code, which we read from the FLASH to use the RS lib, + * as the syndrom conversion has a unresolved issue. + */ +static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) +{ + int i, j, res; + unsigned short status; + uint16_t par[6], syn[6], tmp; + uint8_t ecc[8]; + volatile unsigned short *rs_ecc; + + status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); + + if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { + return 0; + } + + /* Read the syndrom pattern from the FPGA and correct the bitorder */ + rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); + for (i = 0; i < 8; i++) { + ecc[i] = revbits[(*rs_ecc) & 0xFF]; + rs_ecc++; + } + + /* convert into 6 10bit syndrome fields */ + par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) | + (((uint16_t)ecc[1] << 8) & 0x300)]; + par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) | + (((uint16_t)ecc[2] << 6) & 0x3c0)]; + par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) | + (((uint16_t)ecc[3] << 4) & 0x3f0)]; + par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) | + (((uint16_t)ecc[4] << 2) & 0x3fc)]; + par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) | + (((uint16_t)ecc[6] << 8) & 0x300)]; + par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0); + + /* Convert to computable syndrome */ + for (i = 0; i < 6; i++) { + syn[i] = par[0]; + for (j = 1; j < 6; j++) + if (par[j] != rs_decoder->nn) + syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; + + /* Convert to index form */ + syn[i] = rs_decoder->index_of[syn[i]]; + } + + /* Let the library code do its magic.*/ + res = decode_rs8(rs_decoder, buf, par, 512, syn, 0, NULL, 0xff, NULL); + if (res > 0) { + DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " + "ECC corrected %d errors on read\n", res); + } + return res; +} +#endif + +/* + * Main initialization routine + */ +int __init rtc_from4_init (void) +{ + struct nand_chip *this; + unsigned short bcr1, bcr2, wcr2; + + /* Allocate memory for MTD device structure and private data */ + rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip), + GFP_KERNEL); + if (!rtc_from4_mtd) { + printk ("Unable to allocate Renesas NAND MTD device structure.\n"); + return -ENOMEM; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&rtc_from4_mtd[1]); + + /* Initialize structures */ + memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + rtc_from4_mtd->priv = this; + + /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ + bcr1 = *SH77X9_BCR1 & ~0x0002; + bcr1 |= 0x0002; + *SH77X9_BCR1 = bcr1; + + /* set */ + bcr2 = *SH77X9_BCR2 & ~0x0c00; + bcr2 |= 0x0800; + *SH77X9_BCR2 = bcr2; + + /* set area 5 wait states */ + wcr2 = *SH77X9_WCR2 & ~0x1c00; + wcr2 |= 0x1c00; + *SH77X9_WCR2 = wcr2; + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = rtc_from4_fio_base; + this->IO_ADDR_W = rtc_from4_fio_base; + /* Set address of hardware control function */ + this->hwcontrol = rtc_from4_hwcontrol; + /* Set address of chip select function */ + this->select_chip = rtc_from4_nand_select_chip; + /* command delay time (in us) */ + this->chip_delay = 100; + /* return the status of the Ready/Busy line */ + this->dev_ready = rtc_from4_nand_device_ready; + +#ifdef RTC_FROM4_HWECC + printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); + + this->eccmode = NAND_ECC_HW8_512; + this->options |= NAND_HWECC_SYNDROME; + /* set the nand_oobinfo to support FPGA H/W error detection */ + this->autooob = &rtc_from4_nand_oobinfo; + this->enable_hwecc = rtc_from4_enable_hwecc; + this->calculate_ecc = rtc_from4_calculate_ecc; + this->correct_data = rtc_from4_correct_data; +#else + printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); + + this->eccmode = NAND_ECC_SOFT; +#endif + + /* set the bad block tables to support debugging */ + this->bbt_td = &rtc_from4_bbt_main_descr; + this->bbt_md = &rtc_from4_bbt_mirror_descr; + + /* Scan to find existence of the device */ + if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { + kfree(rtc_from4_mtd); + return -ENXIO; + } + + /* Register the partitions */ + add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS); + +#ifdef RTC_FROM4_HWECC + /* We could create the decoder on demand, if memory is a concern. + * This way we have it handy, if an error happens + * + * Symbolsize is 10 (bits) + * Primitve polynomial is x^10+x^3+1 + * first consecutive root is 0 + * primitve element to generate roots = 1 + * generator polinomial degree = 6 + */ + rs_decoder = init_rs(10, 0x409, 0, 1, 6); + if (!rs_decoder) { + printk (KERN_ERR "Could not create a RS decoder\n"); + nand_release(rtc_from4_mtd); + kfree(rtc_from4_mtd); + return -ENOMEM; + } +#endif + /* Return happy */ + return 0; +} +module_init(rtc_from4_init); + + +/* + * Clean up routine + */ +#ifdef MODULE +static void __exit rtc_from4_cleanup (void) +{ + /* Release resource, unregister partitions */ + nand_release(rtc_from4_mtd); + + /* Free the MTD device structure */ + kfree (rtc_from4_mtd); + +#ifdef RTC_FROM4_HWECC + /* Free the reed solomon resources */ + if (rs_decoder) { + free_rs(rs_decoder); + } +#endif +} +module_exit(rtc_from4_cleanup); +#endif + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("d.marlin <dmarlin@redhat.com"); +MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4"); + diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c new file mode 100644 index 00000000000..d05e9b97947 --- /dev/null +++ b/drivers/mtd/nand/s3c2410.c @@ -0,0 +1,704 @@ +/* linux/drivers/mtd/nand/s3c2410.c + * + * Copyright (c) 2004 Simtec Electronics + * Ben Dooks <ben@simtec.co.uk> + * + * Samsung S3C2410 NAND driver + * + * Changelog: + * 21-Sep-2004 BJD Initial version + * 23-Sep-2004 BJD Mulitple device support + * 28-Sep-2004 BJD Fixed ECC placement for Hardware mode + * 12-Oct-2004 BJD Fixed errors in use of platform data + * + * $Id: s3c2410.c,v 1.7 2005/01/05 18:05:14 dwmw2 Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA +*/ + +#include <config/mtd/nand/s3c2410/hwecc.h> +#include <config/mtd/nand/s3c2410/debug.h> + +#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG +#define DEBUG +#endif + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/init.h> +#include <linux/kernel.h> +#include <linux/string.h> +#include <linux/ioport.h> +#include <linux/device.h> +#include <linux/delay.h> +#include <linux/err.h> + +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/partitions.h> + +#include <asm/io.h> +#include <asm/mach-types.h> +#include <asm/hardware/clock.h> + +#include <asm/arch/regs-nand.h> +#include <asm/arch/nand.h> + +#define PFX "s3c2410-nand: " + +#ifdef CONFIG_MTD_NAND_S3C2410_HWECC +static int hardware_ecc = 1; +#else +static int hardware_ecc = 0; +#endif + +/* new oob placement block for use with hardware ecc generation + */ + +static struct nand_oobinfo nand_hw_eccoob = { + .useecc = MTD_NANDECC_AUTOPLACE, + .eccbytes = 3, + .eccpos = {0, 1, 2 }, + .oobfree = { {8, 8} } +}; + +/* controller and mtd information */ + +struct s3c2410_nand_info; + +struct s3c2410_nand_mtd { + struct mtd_info mtd; + struct nand_chip chip; + struct s3c2410_nand_set *set; + struct s3c2410_nand_info *info; + int scan_res; +}; + +/* overview of the s3c2410 nand state */ + +struct s3c2410_nand_info { + /* mtd info */ + struct nand_hw_control controller; + struct s3c2410_nand_mtd *mtds; + struct s3c2410_platform_nand *platform; + + /* device info */ + struct device *device; + struct resource *area; + struct clk *clk; + void *regs; + int mtd_count; +}; + +/* conversion functions */ + +static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) +{ + return container_of(mtd, struct s3c2410_nand_mtd, mtd); +} + +static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) +{ + return s3c2410_nand_mtd_toours(mtd)->info; +} + +static struct s3c2410_nand_info *to_nand_info(struct device *dev) +{ + return dev_get_drvdata(dev); +} + +static struct s3c2410_platform_nand *to_nand_plat(struct device *dev) +{ + return dev->platform_data; +} + +/* timing calculations */ + +#define NS_IN_KHZ 10000000 + +static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max) +{ + int result; + + result = (wanted * NS_IN_KHZ) / clk; + result++; + + pr_debug("result %d from %ld, %d\n", result, clk, wanted); + + if (result > max) { + printk("%d ns is too big for current clock rate %ld\n", + wanted, clk); + return -1; + } + + if (result < 1) + result = 1; + + return result; +} + +#define to_ns(ticks,clk) (((clk) * (ticks)) / NS_IN_KHZ) + +/* controller setup */ + +static int s3c2410_nand_inithw(struct s3c2410_nand_info *info, + struct device *dev) +{ + struct s3c2410_platform_nand *plat = to_nand_plat(dev); + unsigned int tacls, twrph0, twrph1; + unsigned long clkrate = clk_get_rate(info->clk); + unsigned long cfg; + + /* calculate the timing information for the controller */ + + if (plat != NULL) { + tacls = s3c2410_nand_calc_rate(plat->tacls, clkrate, 8); + twrph0 = s3c2410_nand_calc_rate(plat->twrph0, clkrate, 8); + twrph1 = s3c2410_nand_calc_rate(plat->twrph1, clkrate, 8); + } else { + /* default timings */ + tacls = 8; + twrph0 = 8; + twrph1 = 8; + } + + if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { + printk(KERN_ERR PFX "cannot get timings suitable for board\n"); + return -EINVAL; + } + + printk(KERN_INFO PFX "timing: Tacls %ldns, Twrph0 %ldns, Twrph1 %ldns\n", + to_ns(tacls, clkrate), + to_ns(twrph0, clkrate), + to_ns(twrph1, clkrate)); + + cfg = S3C2410_NFCONF_EN; + cfg |= S3C2410_NFCONF_TACLS(tacls-1); + cfg |= S3C2410_NFCONF_TWRPH0(twrph0-1); + cfg |= S3C2410_NFCONF_TWRPH1(twrph1-1); + + pr_debug(PFX "NF_CONF is 0x%lx\n", cfg); + + writel(cfg, info->regs + S3C2410_NFCONF); + return 0; +} + +/* select chip */ + +static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip) +{ + struct s3c2410_nand_info *info; + struct s3c2410_nand_mtd *nmtd; + struct nand_chip *this = mtd->priv; + unsigned long cur; + + nmtd = this->priv; + info = nmtd->info; + + cur = readl(info->regs + S3C2410_NFCONF); + + if (chip == -1) { + cur |= S3C2410_NFCONF_nFCE; + } else { + if (chip > nmtd->set->nr_chips) { + printk(KERN_ERR PFX "chip %d out of range\n", chip); + return; + } + + if (info->platform != NULL) { + if (info->platform->select_chip != NULL) + (info->platform->select_chip)(nmtd->set, chip); + } + + cur &= ~S3C2410_NFCONF_nFCE; + } + + writel(cur, info->regs + S3C2410_NFCONF); +} + +/* command and control functions */ + +static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned long cur; + + switch (cmd) { + case NAND_CTL_SETNCE: + cur = readl(info->regs + S3C2410_NFCONF); + cur &= ~S3C2410_NFCONF_nFCE; + writel(cur, info->regs + S3C2410_NFCONF); + break; + + case NAND_CTL_CLRNCE: + cur = readl(info->regs + S3C2410_NFCONF); + cur |= S3C2410_NFCONF_nFCE; + writel(cur, info->regs + S3C2410_NFCONF); + break; + + /* we don't need to implement these */ + case NAND_CTL_SETCLE: + case NAND_CTL_CLRCLE: + case NAND_CTL_SETALE: + case NAND_CTL_CLRALE: + pr_debug(PFX "s3c2410_nand_hwcontrol(%d) unusedn", cmd); + break; + } +} + +/* s3c2410_nand_command + * + * This function implements sending commands and the relevant address + * information to the chip, via the hardware controller. Since the + * S3C2410 generates the correct ALE/CLE signaling automatically, we + * do not need to use hwcontrol. +*/ + +static void s3c2410_nand_command (struct mtd_info *mtd, unsigned command, + int column, int page_addr) +{ + register struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + register struct nand_chip *this = mtd->priv; + + /* + * Write out the command to the device. + */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->oobblock) { + /* OOB area */ + column -= mtd->oobblock; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + + writeb(readcmd, info->regs + S3C2410_NFCMD); + } + writeb(command, info->regs + S3C2410_NFCMD); + + /* Set ALE and clear CLE to start address cycle */ + + if (column != -1 || page_addr != -1) { + + /* Serially input address */ + if (column != -1) { + /* Adjust columns for 16 bit buswidth */ + if (this->options & NAND_BUSWIDTH_16) + column >>= 1; + writeb(column, info->regs + S3C2410_NFADDR); + } + if (page_addr != -1) { + writeb((unsigned char) (page_addr), info->regs + S3C2410_NFADDR); + writeb((unsigned char) (page_addr >> 8), info->regs + S3C2410_NFADDR); + /* One more address cycle for higher density devices */ + if (this->chipsize & 0x0c000000) + writeb((unsigned char) ((page_addr >> 16) & 0x0f), + info->regs + S3C2410_NFADDR); + } + /* Latch in address */ + } + + /* + * program and erase have their own busy handlers + * status and sequential in needs no delay + */ + switch (command) { + + case NAND_CMD_PAGEPROG: + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_SEQIN: + case NAND_CMD_STATUS: + return; + + case NAND_CMD_RESET: + if (this->dev_ready) + break; + + udelay(this->chip_delay); + writeb(NAND_CMD_STATUS, info->regs + S3C2410_NFCMD); + + while ( !(this->read_byte(mtd) & 0x40)); + return; + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!this->dev_ready) { + udelay (this->chip_delay); + return; + } + } + + /* Apply this short delay always to ensure that we do wait tWB in + * any case on any machine. */ + ndelay (100); + /* wait until command is processed */ + while (!this->dev_ready(mtd)); +} + + +/* s3c2410_nand_devready() + * + * returns 0 if the nand is busy, 1 if it is ready +*/ + +static int s3c2410_nand_devready(struct mtd_info *mtd) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; +} + +/* ECC handling functions */ + +static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat, + u_char *read_ecc, u_char *calc_ecc) +{ + pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n", + mtd, dat, read_ecc, calc_ecc); + + pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n", + read_ecc[0], read_ecc[1], read_ecc[2], + calc_ecc[0], calc_ecc[1], calc_ecc[2]); + + if (read_ecc[0] == calc_ecc[0] && + read_ecc[1] == calc_ecc[1] && + read_ecc[2] == calc_ecc[2]) + return 0; + + /* we curently have no method for correcting the error */ + + return -1; +} + +static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + unsigned long ctrl; + + ctrl = readl(info->regs + S3C2410_NFCONF); + ctrl |= S3C2410_NFCONF_INITECC; + writel(ctrl, info->regs + S3C2410_NFCONF); +} + +static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, + const u_char *dat, u_char *ecc_code) +{ + struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); + + ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); + ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); + ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); + + pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", + ecc_code[0], ecc_code[1], ecc_code[2]); + + return 0; +} + + +/* over-ride the standard functions for a little more speed? */ + +static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + readsb(this->IO_ADDR_R, buf, len); +} + +static void s3c2410_nand_write_buf(struct mtd_info *mtd, + const u_char *buf, int len) +{ + struct nand_chip *this = mtd->priv; + writesb(this->IO_ADDR_W, buf, len); +} + +/* device management functions */ + +static int s3c2410_nand_remove(struct device *dev) +{ + struct s3c2410_nand_info *info = to_nand_info(dev); + + dev_set_drvdata(dev, NULL); + + if (info == NULL) + return 0; + + /* first thing we need to do is release all our mtds + * and their partitions, then go through freeing the + * resources used + */ + + if (info->mtds != NULL) { + struct s3c2410_nand_mtd *ptr = info->mtds; + int mtdno; + + for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { + pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); + nand_release(&ptr->mtd); + } + + kfree(info->mtds); + } + + /* free the common resources */ + + if (info->clk != NULL && !IS_ERR(info->clk)) { + clk_disable(info->clk); + clk_unuse(info->clk); + clk_put(info->clk); + } + + if (info->regs != NULL) { + iounmap(info->regs); + info->regs = NULL; + } + + if (info->area != NULL) { + release_resource(info->area); + kfree(info->area); + info->area = NULL; + } + + kfree(info); + + return 0; +} + +#ifdef CONFIG_MTD_PARTITIONS +static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, + struct s3c2410_nand_mtd *mtd, + struct s3c2410_nand_set *set) +{ + if (set == NULL) + return add_mtd_device(&mtd->mtd); + + if (set->nr_partitions > 0 && set->partitions != NULL) { + return add_mtd_partitions(&mtd->mtd, + set->partitions, + set->nr_partitions); + } + + return add_mtd_device(&mtd->mtd); +} +#else +static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, + struct s3c2410_nand_mtd *mtd, + struct s3c2410_nand_set *set) +{ + return add_mtd_device(&mtd->mtd); +} +#endif + +/* s3c2410_nand_init_chip + * + * init a single instance of an chip +*/ + +static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, + struct s3c2410_nand_mtd *nmtd, + struct s3c2410_nand_set *set) +{ + struct nand_chip *chip = &nmtd->chip; + + chip->IO_ADDR_R = (char *)info->regs + S3C2410_NFDATA; + chip->IO_ADDR_W = (char *)info->regs + S3C2410_NFDATA; + chip->hwcontrol = s3c2410_nand_hwcontrol; + chip->dev_ready = s3c2410_nand_devready; + chip->cmdfunc = s3c2410_nand_command; + chip->write_buf = s3c2410_nand_write_buf; + chip->read_buf = s3c2410_nand_read_buf; + chip->select_chip = s3c2410_nand_select_chip; + chip->chip_delay = 50; + chip->priv = nmtd; + chip->options = 0; + chip->controller = &info->controller; + + nmtd->info = info; + nmtd->mtd.priv = chip; + nmtd->set = set; + + if (hardware_ecc) { + chip->correct_data = s3c2410_nand_correct_data; + chip->enable_hwecc = s3c2410_nand_enable_hwecc; + chip->calculate_ecc = s3c2410_nand_calculate_ecc; + chip->eccmode = NAND_ECC_HW3_512; + chip->autooob = &nand_hw_eccoob; + } else { + chip->eccmode = NAND_ECC_SOFT; + } +} + +/* s3c2410_nand_probe + * + * called by device layer when it finds a device matching + * one our driver can handled. This code checks to see if + * it can allocate all necessary resources then calls the + * nand layer to look for devices +*/ + +static int s3c2410_nand_probe(struct device *dev) +{ + struct platform_device *pdev = to_platform_device(dev); + struct s3c2410_platform_nand *plat = to_nand_plat(dev); + struct s3c2410_nand_info *info; + struct s3c2410_nand_mtd *nmtd; + struct s3c2410_nand_set *sets; + struct resource *res; + int err = 0; + int size; + int nr_sets; + int setno; + + pr_debug("s3c2410_nand_probe(%p)\n", dev); + + info = kmalloc(sizeof(*info), GFP_KERNEL); + if (info == NULL) { + printk(KERN_ERR PFX "no memory for flash info\n"); + err = -ENOMEM; + goto exit_error; + } + + memzero(info, sizeof(*info)); + dev_set_drvdata(dev, info); + + spin_lock_init(&info->controller.lock); + + /* get the clock source and enable it */ + + info->clk = clk_get(dev, "nand"); + if (IS_ERR(info->clk)) { + printk(KERN_ERR PFX "failed to get clock"); + err = -ENOENT; + goto exit_error; + } + + clk_use(info->clk); + clk_enable(info->clk); + + /* allocate and map the resource */ + + res = pdev->resource; /* assume that the flash has one resource */ + size = res->end - res->start + 1; + + info->area = request_mem_region(res->start, size, pdev->name); + + if (info->area == NULL) { + printk(KERN_ERR PFX "cannot reserve register region\n"); + err = -ENOENT; + goto exit_error; + } + + info->device = dev; + info->platform = plat; + info->regs = ioremap(res->start, size); + + if (info->regs == NULL) { + printk(KERN_ERR PFX "cannot reserve register region\n"); + err = -EIO; + goto exit_error; + } + + printk(KERN_INFO PFX "mapped registers at %p\n", info->regs); + + /* initialise the hardware */ + + err = s3c2410_nand_inithw(info, dev); + if (err != 0) + goto exit_error; + + sets = (plat != NULL) ? plat->sets : NULL; + nr_sets = (plat != NULL) ? plat->nr_sets : 1; + + info->mtd_count = nr_sets; + + /* allocate our information */ + + size = nr_sets * sizeof(*info->mtds); + info->mtds = kmalloc(size, GFP_KERNEL); + if (info->mtds == NULL) { + printk(KERN_ERR PFX "failed to allocate mtd storage\n"); + err = -ENOMEM; + goto exit_error; + } + + memzero(info->mtds, size); + + /* initialise all possible chips */ + + nmtd = info->mtds; + + for (setno = 0; setno < nr_sets; setno++, nmtd++) { + pr_debug("initialising set %d (%p, info %p)\n", + setno, nmtd, info); + + s3c2410_nand_init_chip(info, nmtd, sets); + + nmtd->scan_res = nand_scan(&nmtd->mtd, + (sets) ? sets->nr_chips : 1); + + if (nmtd->scan_res == 0) { + s3c2410_nand_add_partition(info, nmtd, sets); + } + + if (sets != NULL) + sets++; + } + + pr_debug("initialised ok\n"); + return 0; + + exit_error: + s3c2410_nand_remove(dev); + + if (err == 0) + err = -EINVAL; + return err; +} + +static struct device_driver s3c2410_nand_driver = { + .name = "s3c2410-nand", + .bus = &platform_bus_type, + .probe = s3c2410_nand_probe, + .remove = s3c2410_nand_remove, +}; + +static int __init s3c2410_nand_init(void) +{ + printk("S3C2410 NAND Driver, (c) 2004 Simtec Electronics\n"); + return driver_register(&s3c2410_nand_driver); +} + +static void __exit s3c2410_nand_exit(void) +{ + driver_unregister(&s3c2410_nand_driver); +} + +module_init(s3c2410_nand_init); +module_exit(s3c2410_nand_exit); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); +MODULE_DESCRIPTION("S3C2410 MTD NAND driver"); diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/sharpsl.c new file mode 100755 index 00000000000..29572793334 --- /dev/null +++ b/drivers/mtd/nand/sharpsl.c @@ -0,0 +1,260 @@ +/* + * drivers/mtd/nand/sharpsl.c + * + * Copyright (C) 2004 Richard Purdie + * + * $Id: sharpsl.c,v 1.3 2005/01/03 14:53:50 rpurdie Exp $ + * + * Based on Sharp's NAND driver sharp_sl.c + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + */ + +#include <linux/genhd.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/partitions.h> +#include <linux/interrupt.h> +#include <asm/io.h> +#include <asm/hardware.h> +#include <asm/mach-types.h> + +static void __iomem *sharpsl_io_base; +static int sharpsl_phys_base = 0x0C000000; + +/* register offset */ +#define ECCLPLB sharpsl_io_base+0x00 /* line parity 7 - 0 bit */ +#define ECCLPUB sharpsl_io_base+0x04 /* line parity 15 - 8 bit */ +#define ECCCP sharpsl_io_base+0x08 /* column parity 5 - 0 bit */ +#define ECCCNTR sharpsl_io_base+0x0C /* ECC byte counter */ +#define ECCCLRR sharpsl_io_base+0x10 /* cleare ECC */ +#define FLASHIO sharpsl_io_base+0x14 /* Flash I/O */ +#define FLASHCTL sharpsl_io_base+0x18 /* Flash Control */ + +/* Flash control bit */ +#define FLRYBY (1 << 5) +#define FLCE1 (1 << 4) +#define FLWP (1 << 3) +#define FLALE (1 << 2) +#define FLCLE (1 << 1) +#define FLCE0 (1 << 0) + + +/* + * MTD structure for SharpSL + */ +static struct mtd_info *sharpsl_mtd = NULL; + +/* + * Define partitions for flash device + */ +#define DEFAULT_NUM_PARTITIONS 3 + +static int nr_partitions; +static struct mtd_partition sharpsl_nand_default_partition_info[] = { + { + .name = "System Area", + .offset = 0, + .size = 7 * 1024 * 1024, + }, + { + .name = "Root Filesystem", + .offset = 7 * 1024 * 1024, + .size = 30 * 1024 * 1024, + }, + { + .name = "Home Filesystem", + .offset = MTDPART_OFS_APPEND , + .size = MTDPART_SIZ_FULL , + }, +}; + +/* + * hardware specific access to control-lines + */ +static void +sharpsl_nand_hwcontrol(struct mtd_info* mtd, int cmd) +{ + switch (cmd) { + case NAND_CTL_SETCLE: + writeb(readb(FLASHCTL) | FLCLE, FLASHCTL); + break; + case NAND_CTL_CLRCLE: + writeb(readb(FLASHCTL) & ~FLCLE, FLASHCTL); + break; + + case NAND_CTL_SETALE: + writeb(readb(FLASHCTL) | FLALE, FLASHCTL); + break; + case NAND_CTL_CLRALE: + writeb(readb(FLASHCTL) & ~FLALE, FLASHCTL); + break; + + case NAND_CTL_SETNCE: + writeb(readb(FLASHCTL) & ~(FLCE0|FLCE1), FLASHCTL); + break; + case NAND_CTL_CLRNCE: + writeb(readb(FLASHCTL) | (FLCE0|FLCE1), FLASHCTL); + break; + } +} + +static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; + +static struct nand_bbt_descr sharpsl_bbt = { + .options = 0, + .offs = 4, + .len = 2, + .pattern = scan_ff_pattern +}; + +static int +sharpsl_nand_dev_ready(struct mtd_info* mtd) +{ + return !((readb(FLASHCTL) & FLRYBY) == 0); +} + +static void +sharpsl_nand_enable_hwecc(struct mtd_info* mtd, int mode) +{ + writeb(0 ,ECCCLRR); +} + +static int +sharpsl_nand_calculate_ecc(struct mtd_info* mtd, const u_char* dat, + u_char* ecc_code) +{ + ecc_code[0] = ~readb(ECCLPUB); + ecc_code[1] = ~readb(ECCLPLB); + ecc_code[2] = (~readb(ECCCP) << 2) | 0x03; + return readb(ECCCNTR) != 0; +} + + +#ifdef CONFIG_MTD_PARTITIONS +const char *part_probes[] = { "cmdlinepart", NULL }; +#endif + + +/* + * Main initialization routine + */ +int __init +sharpsl_nand_init(void) +{ + struct nand_chip *this; + struct mtd_partition* sharpsl_partition_info; + int err = 0; + + /* Allocate memory for MTD device structure and private data */ + sharpsl_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), + GFP_KERNEL); + if (!sharpsl_mtd) { + printk ("Unable to allocate SharpSL NAND MTD device structure.\n"); + return -ENOMEM; + } + + /* map physical adress */ + sharpsl_io_base = ioremap(sharpsl_phys_base, 0x1000); + if(!sharpsl_io_base){ + printk("ioremap to access Sharp SL NAND chip failed\n"); + kfree(sharpsl_mtd); + return -EIO; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&sharpsl_mtd[1]); + + /* Initialize structures */ + memset((char *) sharpsl_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + sharpsl_mtd->priv = this; + + /* + * PXA initialize + */ + writeb(readb(FLASHCTL) | FLWP, FLASHCTL); + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = FLASHIO; + this->IO_ADDR_W = FLASHIO; + /* Set address of hardware control function */ + this->hwcontrol = sharpsl_nand_hwcontrol; + this->dev_ready = sharpsl_nand_dev_ready; + /* 15 us command delay time */ + this->chip_delay = 15; + /* set eccmode using hardware ECC */ + this->eccmode = NAND_ECC_HW3_256; + this->enable_hwecc = sharpsl_nand_enable_hwecc; + this->calculate_ecc = sharpsl_nand_calculate_ecc; + this->correct_data = nand_correct_data; + this->badblock_pattern = &sharpsl_bbt; + + /* Scan to find existence of the device */ + err=nand_scan(sharpsl_mtd,1); + if (err) { + iounmap(sharpsl_io_base); + kfree(sharpsl_mtd); + return err; + } + + /* Register the partitions */ + sharpsl_mtd->name = "sharpsl-nand"; + nr_partitions = parse_mtd_partitions(sharpsl_mtd, part_probes, + &sharpsl_partition_info, 0); + + if (nr_partitions <= 0) { + nr_partitions = DEFAULT_NUM_PARTITIONS; + sharpsl_partition_info = sharpsl_nand_default_partition_info; + if (machine_is_poodle()) { + sharpsl_partition_info[1].size=22 * 1024 * 1024; + } else if (machine_is_corgi() || machine_is_shepherd()) { + sharpsl_partition_info[1].size=25 * 1024 * 1024; + } else if (machine_is_husky()) { + sharpsl_partition_info[1].size=53 * 1024 * 1024; + } + } + + if (machine_is_husky()) { + /* Need to use small eraseblock size for backward compatibility */ + sharpsl_mtd->flags |= MTD_NO_VIRTBLOCKS; + } + + add_mtd_partitions(sharpsl_mtd, sharpsl_partition_info, nr_partitions); + + /* Return happy */ + return 0; +} +module_init(sharpsl_nand_init); + +/* + * Clean up routine + */ +#ifdef MODULE +static void __exit sharpsl_nand_cleanup(void) +{ + struct nand_chip *this = (struct nand_chip *) &sharpsl_mtd[1]; + + /* Release resources, unregister device */ + nand_release(sharpsl_mtd); + + iounmap(sharpsl_io_base); + + /* Free the MTD device structure */ + kfree(sharpsl_mtd); +} +module_exit(sharpsl_nand_cleanup); +#endif + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>"); +MODULE_DESCRIPTION("Device specific logic for NAND flash on Sharp SL-C7xx Series"); diff --git a/drivers/mtd/nand/spia.c b/drivers/mtd/nand/spia.c new file mode 100644 index 00000000000..b777c412b75 --- /dev/null +++ b/drivers/mtd/nand/spia.c @@ -0,0 +1,173 @@ +/* + * drivers/mtd/nand/spia.c + * + * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) + * + * + * 10-29-2001 TG change to support hardwarespecific access + * to controllines (due to change in nand.c) + * page_cache added + * + * $Id: spia.c,v 1.24 2004/11/04 12:53:10 gleixner Exp $ + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the NAND flash device found on the + * SPIA board which utilizes the Toshiba TC58V64AFT part. This is + * a 64Mibit (8MiB x 8 bits) NAND flash device. + */ + +#include <linux/kernel.h> +#include <linux/init.h> +#include <linux/slab.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> + +/* + * MTD structure for SPIA board + */ +static struct mtd_info *spia_mtd = NULL; + +/* + * Values specific to the SPIA board (used with EP7212 processor) + */ +#define SPIA_IO_BASE 0xd0000000 /* Start of EP7212 IO address space */ +#define SPIA_FIO_BASE 0xf0000000 /* Address where flash is mapped */ +#define SPIA_PEDR 0x0080 /* + * IO offset to Port E data register + * where the CLE, ALE and NCE pins + * are wired to. + */ +#define SPIA_PEDDR 0x00c0 /* + * IO offset to Port E data direction + * register so we can control the IO + * lines. + */ + +/* + * Module stuff + */ + +static int spia_io_base = SPIA_IO_BASE; +static int spia_fio_base = SPIA_FIO_BASE; +static int spia_pedr = SPIA_PEDR; +static int spia_peddr = SPIA_PEDDR; + +module_param(spia_io_base, int, 0); +module_param(spia_fio_base, int, 0); +module_param(spia_pedr, int, 0); +module_param(spia_peddr, int, 0); + +/* + * Define partitions for flash device + */ +const static struct mtd_partition partition_info[] = { + { + .name = "SPIA flash partition 1", + .offset = 0, + .size = 2*1024*1024 + }, + { + .name = "SPIA flash partition 2", + .offset = 2*1024*1024, + .size = 6*1024*1024 + } +}; +#define NUM_PARTITIONS 2 + + +/* + * hardware specific access to control-lines +*/ +static void spia_hwcontrol(struct mtd_info *mtd, int cmd){ + + switch(cmd){ + + case NAND_CTL_SETCLE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) |= 0x01; break; + case NAND_CTL_CLRCLE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) &= ~0x01; break; + + case NAND_CTL_SETALE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) |= 0x02; break; + case NAND_CTL_CLRALE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) &= ~0x02; break; + + case NAND_CTL_SETNCE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) &= ~0x04; break; + case NAND_CTL_CLRNCE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) |= 0x04; break; + } +} + +/* + * Main initialization routine + */ +int __init spia_init (void) +{ + struct nand_chip *this; + + /* Allocate memory for MTD device structure and private data */ + spia_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip), + GFP_KERNEL); + if (!spia_mtd) { + printk ("Unable to allocate SPIA NAND MTD device structure.\n"); + return -ENOMEM; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&spia_mtd[1]); + + /* Initialize structures */ + memset((char *) spia_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + spia_mtd->priv = this; + + /* + * Set GPIO Port E control register so that the pins are configured + * to be outputs for controlling the NAND flash. + */ + (*(volatile unsigned char *) (spia_io_base + spia_peddr)) = 0x07; + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = (void __iomem *) spia_fio_base; + this->IO_ADDR_W = (void __iomem *) spia_fio_base; + /* Set address of hardware control function */ + this->hwcontrol = spia_hwcontrol; + /* 15 us command delay time */ + this->chip_delay = 15; + + /* Scan to find existence of the device */ + if (nand_scan (spia_mtd, 1)) { + kfree (spia_mtd); + return -ENXIO; + } + + /* Register the partitions */ + add_mtd_partitions(spia_mtd, partition_info, NUM_PARTITIONS); + + /* Return happy */ + return 0; +} +module_init(spia_init); + +/* + * Clean up routine + */ +#ifdef MODULE +static void __exit spia_cleanup (void) +{ + /* Release resources, unregister device */ + nand_release (spia_mtd); + + /* Free the MTD device structure */ + kfree (spia_mtd); +} +module_exit(spia_cleanup); +#endif + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com"); +MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on SPIA board"); diff --git a/drivers/mtd/nand/toto.c b/drivers/mtd/nand/toto.c new file mode 100644 index 00000000000..52c808fb5fa --- /dev/null +++ b/drivers/mtd/nand/toto.c @@ -0,0 +1,205 @@ +/* + * drivers/mtd/nand/toto.c + * + * Copyright (c) 2003 Texas Instruments + * + * Derived from drivers/mtd/autcpu12.c + * + * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de> + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License version 2 as + * published by the Free Software Foundation. + * + * Overview: + * This is a device driver for the NAND flash device found on the + * TI fido board. It supports 32MiB and 64MiB cards + * + * $Id: toto.c,v 1.4 2004/10/05 13:50:20 gleixner Exp $ + */ + +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/delay.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> +#include <asm/arch/hardware.h> +#include <asm/sizes.h> +#include <asm/arch/toto.h> +#include <asm/arch-omap1510/hardware.h> +#include <asm/arch/gpio.h> + +/* + * MTD structure for TOTO board + */ +static struct mtd_info *toto_mtd = NULL; + +static unsigned long toto_io_base = OMAP_FLASH_1_BASE; + +#define CONFIG_NAND_WORKAROUND 1 + +#define NAND_NCE 0x4000 +#define NAND_CLE 0x1000 +#define NAND_ALE 0x0002 +#define NAND_MASK (NAND_CLE | NAND_ALE | NAND_NCE) + +#define T_NAND_CTL_CLRALE(iob) gpiosetout(NAND_ALE, 0) +#define T_NAND_CTL_SETALE(iob) gpiosetout(NAND_ALE, NAND_ALE) +#ifdef CONFIG_NAND_WORKAROUND /* "some" dev boards busted, blue wired to rts2 :( */ +#define T_NAND_CTL_CLRCLE(iob) gpiosetout(NAND_CLE, 0); rts2setout(2, 2) +#define T_NAND_CTL_SETCLE(iob) gpiosetout(NAND_CLE, NAND_CLE); rts2setout(2, 0) +#else +#define T_NAND_CTL_CLRCLE(iob) gpiosetout(NAND_CLE, 0) +#define T_NAND_CTL_SETCLE(iob) gpiosetout(NAND_CLE, NAND_CLE) +#endif +#define T_NAND_CTL_SETNCE(iob) gpiosetout(NAND_NCE, 0) +#define T_NAND_CTL_CLRNCE(iob) gpiosetout(NAND_NCE, NAND_NCE) + +/* + * Define partitions for flash devices + */ + +static struct mtd_partition partition_info64M[] = { + { .name = "toto kernel partition 1", + .offset = 0, + .size = 2 * SZ_1M }, + { .name = "toto file sys partition 2", + .offset = 2 * SZ_1M, + .size = 14 * SZ_1M }, + { .name = "toto user partition 3", + .offset = 16 * SZ_1M, + .size = 16 * SZ_1M }, + { .name = "toto devboard extra partition 4", + .offset = 32 * SZ_1M, + .size = 32 * SZ_1M }, +}; + +static struct mtd_partition partition_info32M[] = { + { .name = "toto kernel partition 1", + .offset = 0, + .size = 2 * SZ_1M }, + { .name = "toto file sys partition 2", + .offset = 2 * SZ_1M, + .size = 14 * SZ_1M }, + { .name = "toto user partition 3", + .offset = 16 * SZ_1M, + .size = 16 * SZ_1M }, +}; + +#define NUM_PARTITIONS32M 3 +#define NUM_PARTITIONS64M 4 +/* + * hardware specific access to control-lines +*/ + +static void toto_hwcontrol(struct mtd_info *mtd, int cmd) +{ + + udelay(1); /* hopefully enough time for tc make proceding write to clear */ + switch(cmd){ + + case NAND_CTL_SETCLE: T_NAND_CTL_SETCLE(cmd); break; + case NAND_CTL_CLRCLE: T_NAND_CTL_CLRCLE(cmd); break; + + case NAND_CTL_SETALE: T_NAND_CTL_SETALE(cmd); break; + case NAND_CTL_CLRALE: T_NAND_CTL_CLRALE(cmd); break; + + case NAND_CTL_SETNCE: T_NAND_CTL_SETNCE(cmd); break; + case NAND_CTL_CLRNCE: T_NAND_CTL_CLRNCE(cmd); break; + } + udelay(1); /* allow time to ensure gpio state to over take memory write */ +} + +/* + * Main initialization routine + */ +int __init toto_init (void) +{ + struct nand_chip *this; + int err = 0; + + /* Allocate memory for MTD device structure and private data */ + toto_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip), + GFP_KERNEL); + if (!toto_mtd) { + printk (KERN_WARNING "Unable to allocate toto NAND MTD device structure.\n"); + err = -ENOMEM; + goto out; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&toto_mtd[1]); + + /* Initialize structures */ + memset((char *) toto_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + toto_mtd->priv = this; + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = toto_io_base; + this->IO_ADDR_W = toto_io_base; + this->hwcontrol = toto_hwcontrol; + this->dev_ready = NULL; + /* 25 us command delay time */ + this->chip_delay = 30; + this->eccmode = NAND_ECC_SOFT; + + /* Scan to find existance of the device */ + if (nand_scan (toto_mtd, 1)) { + err = -ENXIO; + goto out_mtd; + } + + /* Register the partitions */ + switch(toto_mtd->size){ + case SZ_64M: add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M); break; + case SZ_32M: add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M); break; + default: { + printk (KERN_WARNING "Unsupported Nand device\n"); + err = -ENXIO; + goto out_buf; + } + } + + gpioreserve(NAND_MASK); /* claim our gpios */ + archflashwp(0,0); /* open up flash for writing */ + + goto out; + +out_buf: + kfree (this->data_buf); +out_mtd: + kfree (toto_mtd); +out: + return err; +} + +module_init(toto_init); + +/* + * Clean up routine + */ +static void __exit toto_cleanup (void) +{ + /* Release resources, unregister device */ + nand_release (toto_mtd); + + /* Free the MTD device structure */ + kfree (toto_mtd); + + /* stop flash writes */ + archflashwp(0,1); + + /* release gpios to system */ + gpiorelease(NAND_MASK); +} +module_exit(toto_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Richard Woodruff <r-woodruff2@ti.com>"); +MODULE_DESCRIPTION("Glue layer for NAND flash on toto board"); diff --git a/drivers/mtd/nand/tx4925ndfmc.c b/drivers/mtd/nand/tx4925ndfmc.c new file mode 100644 index 00000000000..bba688830c9 --- /dev/null +++ b/drivers/mtd/nand/tx4925ndfmc.c @@ -0,0 +1,416 @@ +/* + * drivers/mtd/tx4925ndfmc.c + * + * Overview: + * This is a device driver for the NAND flash device found on the + * Toshiba RBTX4925 reference board, which is a SmartMediaCard. It supports + * 16MiB, 32MiB and 64MiB cards. + * + * Author: MontaVista Software, Inc. source@mvista.com + * + * Derived from drivers/mtd/autcpu12.c + * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de) + * + * $Id: tx4925ndfmc.c,v 1.5 2004/10/05 13:50:20 gleixner Exp $ + * + * Copyright (C) 2001 Toshiba Corporation + * + * 2003 (c) MontaVista Software, Inc. This file is licensed under + * the terms of the GNU General Public License version 2. This program + * is licensed "as is" without any warranty of any kind, whether express + * or implied. + * + */ + +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/partitions.h> +#include <linux/delay.h> +#include <asm/io.h> +#include <asm/tx4925/tx4925_nand.h> + +extern struct nand_oobinfo jffs2_oobinfo; + +/* + * MTD structure for RBTX4925 board + */ +static struct mtd_info *tx4925ndfmc_mtd = NULL; + +/* + * Define partitions for flash devices + */ + +static struct mtd_partition partition_info16k[] = { + { .name = "RBTX4925 flash partition 1", + .offset = 0, + .size = 8 * 0x00100000 }, + { .name = "RBTX4925 flash partition 2", + .offset = 8 * 0x00100000, + .size = 8 * 0x00100000 }, +}; + +static struct mtd_partition partition_info32k[] = { + { .name = "RBTX4925 flash partition 1", + .offset = 0, + .size = 8 * 0x00100000 }, + { .name = "RBTX4925 flash partition 2", + .offset = 8 * 0x00100000, + .size = 24 * 0x00100000 }, +}; + +static struct mtd_partition partition_info64k[] = { + { .name = "User FS", + .offset = 0, + .size = 16 * 0x00100000 }, + { .name = "RBTX4925 flash partition 2", + .offset = 16 * 0x00100000, + .size = 48 * 0x00100000}, +}; + +static struct mtd_partition partition_info128k[] = { + { .name = "Skip bad section", + .offset = 0, + .size = 16 * 0x00100000 }, + { .name = "User FS", + .offset = 16 * 0x00100000, + .size = 112 * 0x00100000 }, +}; +#define NUM_PARTITIONS16K 2 +#define NUM_PARTITIONS32K 2 +#define NUM_PARTITIONS64K 2 +#define NUM_PARTITIONS128K 2 + +/* + * hardware specific access to control-lines +*/ +static void tx4925ndfmc_hwcontrol(struct mtd_info *mtd, int cmd) +{ + + switch(cmd){ + + case NAND_CTL_SETCLE: + tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_CLE; + break; + case NAND_CTL_CLRCLE: + tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_CLE; + break; + case NAND_CTL_SETALE: + tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ALE; + break; + case NAND_CTL_CLRALE: + tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ALE; + break; + case NAND_CTL_SETNCE: + tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_CE; + break; + case NAND_CTL_CLRNCE: + tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_CE; + break; + case NAND_CTL_SETWP: + tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_WE; + break; + case NAND_CTL_CLRWP: + tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_WE; + break; + } +} + +/* +* read device ready pin +*/ +static int tx4925ndfmc_device_ready(struct mtd_info *mtd) +{ + int ready; + ready = (tx4925_ndfmcptr->sr & TX4925_NDSFR_BUSY) ? 0 : 1; + return ready; +} +void tx4925ndfmc_enable_hwecc(struct mtd_info *mtd, int mode) +{ + /* reset first */ + tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_MASK; + tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK; + tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_ENAB; +} +static void tx4925ndfmc_disable_ecc(void) +{ + tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK; +} +static void tx4925ndfmc_enable_read_ecc(void) +{ + tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK; + tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_READ; +} +void tx4925ndfmc_readecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code){ + int i; + u_char *ecc = ecc_code; + tx4925ndfmc_enable_read_ecc(); + for (i = 0;i < 6;i++,ecc++) + *ecc = tx4925_read_nfmc(&(tx4925_ndfmcptr->dtr)); + tx4925ndfmc_disable_ecc(); +} +void tx4925ndfmc_device_setup(void) +{ + + *(unsigned char *)0xbb005000 &= ~0x08; + + /* reset NDFMC */ + tx4925_ndfmcptr->rstr |= TX4925_NDFRSTR_RST; + while (tx4925_ndfmcptr->rstr & TX4925_NDFRSTR_RST); + + /* setup BusSeparete, Hold Time, Strobe Pulse Width */ + tx4925_ndfmcptr->mcr = TX4925_BSPRT ? TX4925_NDFMCR_BSPRT : 0; + tx4925_ndfmcptr->spr = TX4925_HOLD << 4 | TX4925_SPW; +} +static u_char tx4925ndfmc_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + return tx4925_read_nfmc(this->IO_ADDR_R); +} + +static void tx4925ndfmc_nand_write_byte(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd->priv; + tx4925_write_nfmc(byte, this->IO_ADDR_W); +} + +static void tx4925ndfmc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) + tx4925_write_nfmc(buf[i], this->IO_ADDR_W); +} + +static void tx4925ndfmc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) + buf[i] = tx4925_read_nfmc(this->IO_ADDR_R); +} + +static int tx4925ndfmc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) + if (buf[i] != tx4925_read_nfmc(this->IO_ADDR_R)) + return -EFAULT; + + return 0; +} + +/* + * Send command to NAND device + */ +static void tx4925ndfmc_nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ + register struct nand_chip *this = mtd->priv; + + /* Begin command latch cycle */ + this->hwcontrol(mtd, NAND_CTL_SETCLE); + /* + * Write out the command to the device. + */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->oobblock) { + /* OOB area */ + column -= mtd->oobblock; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + this->write_byte(mtd, readcmd); + } + this->write_byte(mtd, command); + + /* Set ALE and clear CLE to start address cycle */ + this->hwcontrol(mtd, NAND_CTL_CLRCLE); + + if (column != -1 || page_addr != -1) { + this->hwcontrol(mtd, NAND_CTL_SETALE); + + /* Serially input address */ + if (column != -1) + this->write_byte(mtd, column); + if (page_addr != -1) { + this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); + this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); + /* One more address cycle for higher density devices */ + if (mtd->size & 0x0c000000) + this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f)); + } + /* Latch in address */ + this->hwcontrol(mtd, NAND_CTL_CLRALE); + } + + /* + * program and erase have their own busy handlers + * status and sequential in needs no delay + */ + switch (command) { + + case NAND_CMD_PAGEPROG: + /* Turn off WE */ + this->hwcontrol (mtd, NAND_CTL_CLRWP); + return; + + case NAND_CMD_SEQIN: + /* Turn on WE */ + this->hwcontrol (mtd, NAND_CTL_SETWP); + return; + + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_STATUS: + return; + + case NAND_CMD_RESET: + if (this->dev_ready) + break; + this->hwcontrol(mtd, NAND_CTL_SETCLE); + this->write_byte(mtd, NAND_CMD_STATUS); + this->hwcontrol(mtd, NAND_CTL_CLRCLE); + while ( !(this->read_byte(mtd) & 0x40)); + return; + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!this->dev_ready) { + udelay (this->chip_delay); + return; + } + } + + /* wait until command is processed */ + while (!this->dev_ready(mtd)); +} + +#ifdef CONFIG_MTD_CMDLINE_PARTS +extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partitio +n **pparts, char *); +#endif + +/* + * Main initialization routine + */ +extern int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc); +int __init tx4925ndfmc_init (void) +{ + struct nand_chip *this; + int err = 0; + + /* Allocate memory for MTD device structure and private data */ + tx4925ndfmc_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip), + GFP_KERNEL); + if (!tx4925ndfmc_mtd) { + printk ("Unable to allocate RBTX4925 NAND MTD device structure.\n"); + err = -ENOMEM; + goto out; + } + + tx4925ndfmc_device_setup(); + + /* io is indirect via a register so don't need to ioremap address */ + + /* Get pointer to private data */ + this = (struct nand_chip *) (&tx4925ndfmc_mtd[1]); + + /* Initialize structures */ + memset((char *) tx4925ndfmc_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + tx4925ndfmc_mtd->priv = this; + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = (void __iomem *)&(tx4925_ndfmcptr->dtr); + this->IO_ADDR_W = (void __iomem *)&(tx4925_ndfmcptr->dtr); + this->hwcontrol = tx4925ndfmc_hwcontrol; + this->enable_hwecc = tx4925ndfmc_enable_hwecc; + this->calculate_ecc = tx4925ndfmc_readecc; + this->correct_data = nand_correct_data; + this->eccmode = NAND_ECC_HW6_512; + this->dev_ready = tx4925ndfmc_device_ready; + /* 20 us command delay time */ + this->chip_delay = 20; + this->read_byte = tx4925ndfmc_nand_read_byte; + this->write_byte = tx4925ndfmc_nand_write_byte; + this->cmdfunc = tx4925ndfmc_nand_command; + this->write_buf = tx4925ndfmc_nand_write_buf; + this->read_buf = tx4925ndfmc_nand_read_buf; + this->verify_buf = tx4925ndfmc_nand_verify_buf; + + /* Scan to find existance of the device */ + if (nand_scan (tx4925ndfmc_mtd, 1)) { + err = -ENXIO; + goto out_ior; + } + + /* Register the partitions */ +#ifdef CONFIG_MTD_CMDLINE_PARTS + { + int mtd_parts_nb = 0; + struct mtd_partition *mtd_parts = 0; + mtd_parts_nb = parse_cmdline_partitions(tx4925ndfmc_mtd, &mtd_parts, "tx4925ndfmc"); + if (mtd_parts_nb > 0) + add_mtd_partitions(tx4925ndfmc_mtd, mtd_parts, mtd_parts_nb); + else + add_mtd_device(tx4925ndfmc_mtd); + } +#else /* ifdef CONFIG_MTD_CMDLINE_PARTS */ + switch(tx4925ndfmc_mtd->size){ + case 0x01000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info16k, NUM_PARTITIONS16K); break; + case 0x02000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info32k, NUM_PARTITIONS32K); break; + case 0x04000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info64k, NUM_PARTITIONS64K); break; + case 0x08000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info128k, NUM_PARTITIONS128K); break; + default: { + printk ("Unsupported SmartMedia device\n"); + err = -ENXIO; + goto out_ior; + } + } +#endif /* ifdef CONFIG_MTD_CMDLINE_PARTS */ + goto out; + +out_ior: +out: + return err; +} + +module_init(tx4925ndfmc_init); + +/* + * Clean up routine + */ +#ifdef MODULE +static void __exit tx4925ndfmc_cleanup (void) +{ + /* Release resources, unregister device */ + nand_release (tx4925ndfmc_mtd); + + /* Free the MTD device structure */ + kfree (tx4925ndfmc_mtd); +} +module_exit(tx4925ndfmc_cleanup); +#endif + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Alice Hennessy <ahennessy@mvista.com>"); +MODULE_DESCRIPTION("Glue layer for SmartMediaCard on Toshiba RBTX4925"); diff --git a/drivers/mtd/nand/tx4938ndfmc.c b/drivers/mtd/nand/tx4938ndfmc.c new file mode 100644 index 00000000000..df26e58820b --- /dev/null +++ b/drivers/mtd/nand/tx4938ndfmc.c @@ -0,0 +1,406 @@ +/* + * drivers/mtd/nand/tx4938ndfmc.c + * + * Overview: + * This is a device driver for the NAND flash device connected to + * TX4938 internal NAND Memory Controller. + * TX4938 NDFMC is almost same as TX4925 NDFMC, but register size are 64 bit. + * + * Author: source@mvista.com + * + * Based on spia.c by Steven J. Hill + * + * $Id: tx4938ndfmc.c,v 1.4 2004/10/05 13:50:20 gleixner Exp $ + * + * Copyright (C) 2000-2001 Toshiba Corporation + * + * 2003 (c) MontaVista Software, Inc. This file is licensed under the + * terms of the GNU General Public License version 2. This program is + * licensed "as is" without any warranty of any kind, whether express + * or implied. + */ +#include <linux/config.h> +#include <linux/slab.h> +#include <linux/init.h> +#include <linux/module.h> +#include <linux/mtd/mtd.h> +#include <linux/mtd/nand.h> +#include <linux/mtd/nand_ecc.h> +#include <linux/mtd/partitions.h> +#include <asm/io.h> +#include <asm/bootinfo.h> +#include <linux/delay.h> +#include <asm/tx4938/rbtx4938.h> + +extern struct nand_oobinfo jffs2_oobinfo; + +/* + * MTD structure for TX4938 NDFMC + */ +static struct mtd_info *tx4938ndfmc_mtd; + +/* + * Define partitions for flash device + */ +#define flush_wb() (void)tx4938_ndfmcptr->mcr; + +#define NUM_PARTITIONS 3 +#define NUMBER_OF_CIS_BLOCKS 24 +#define SIZE_OF_BLOCK 0x00004000 +#define NUMBER_OF_BLOCK_PER_ZONE 1024 +#define SIZE_OF_ZONE (NUMBER_OF_BLOCK_PER_ZONE * SIZE_OF_BLOCK) +#ifndef CONFIG_MTD_CMDLINE_PARTS +/* + * You can use the following sample of MTD partitions + * on the NAND Flash Memory 32MB or more. + * + * The following figure shows the image of the sample partition on + * the 32MB NAND Flash Memory. + * + * Block No. + * 0 +-----------------------------+ ------ + * | CIS | ^ + * 24 +-----------------------------+ | + * | kernel image | | Zone 0 + * | | | + * +-----------------------------+ | + * 1023 | unused area | v + * +-----------------------------+ ------ + * 1024 | JFFS2 | ^ + * | | | + * | | | Zone 1 + * | | | + * | | | + * | | v + * 2047 +-----------------------------+ ------ + * + */ +static struct mtd_partition partition_info[NUM_PARTITIONS] = { + { + .name = "RBTX4938 CIS Area", + .offset = 0, + .size = (NUMBER_OF_CIS_BLOCKS * SIZE_OF_BLOCK), + .mask_flags = MTD_WRITEABLE /* This partition is NOT writable */ + }, + { + .name = "RBTX4938 kernel image", + .offset = MTDPART_OFS_APPEND, + .size = 8 * 0x00100000, /* 8MB (Depends on size of kernel image) */ + .mask_flags = MTD_WRITEABLE /* This partition is NOT writable */ + }, + { + .name = "Root FS (JFFS2)", + .offset = (0 + SIZE_OF_ZONE), /* start address of next zone */ + .size = MTDPART_SIZ_FULL + }, +}; +#endif + +static void tx4938ndfmc_hwcontrol(struct mtd_info *mtd, int cmd) +{ + switch (cmd) { + case NAND_CTL_SETCLE: + tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_CLE; + break; + case NAND_CTL_CLRCLE: + tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_CLE; + break; + case NAND_CTL_SETALE: + tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_ALE; + break; + case NAND_CTL_CLRALE: + tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_ALE; + break; + /* TX4938_NDFMCR_CE bit is 0:high 1:low */ + case NAND_CTL_SETNCE: + tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_CE; + break; + case NAND_CTL_CLRNCE: + tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_CE; + break; + case NAND_CTL_SETWP: + tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_WE; + break; + case NAND_CTL_CLRWP: + tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_WE; + break; + } +} +static int tx4938ndfmc_dev_ready(struct mtd_info *mtd) +{ + flush_wb(); + return !(tx4938_ndfmcptr->sr & TX4938_NDFSR_BUSY); +} +static void tx4938ndfmc_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) +{ + u32 mcr = tx4938_ndfmcptr->mcr; + mcr &= ~TX4938_NDFMCR_ECC_ALL; + tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF; + tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_READ; + ecc_code[1] = tx4938_ndfmcptr->dtr; + ecc_code[0] = tx4938_ndfmcptr->dtr; + ecc_code[2] = tx4938_ndfmcptr->dtr; + tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF; +} +static void tx4938ndfmc_enable_hwecc(struct mtd_info *mtd, int mode) +{ + u32 mcr = tx4938_ndfmcptr->mcr; + mcr &= ~TX4938_NDFMCR_ECC_ALL; + tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_RESET; + tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF; + tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_ON; +} + +static u_char tx4938ndfmc_nand_read_byte(struct mtd_info *mtd) +{ + struct nand_chip *this = mtd->priv; + return tx4938_read_nfmc(this->IO_ADDR_R); +} + +static void tx4938ndfmc_nand_write_byte(struct mtd_info *mtd, u_char byte) +{ + struct nand_chip *this = mtd->priv; + tx4938_write_nfmc(byte, this->IO_ADDR_W); +} + +static void tx4938ndfmc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) + tx4938_write_nfmc(buf[i], this->IO_ADDR_W); +} + +static void tx4938ndfmc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) + buf[i] = tx4938_read_nfmc(this->IO_ADDR_R); +} + +static int tx4938ndfmc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) +{ + int i; + struct nand_chip *this = mtd->priv; + + for (i=0; i<len; i++) + if (buf[i] != tx4938_read_nfmc(this->IO_ADDR_R)) + return -EFAULT; + + return 0; +} + +/* + * Send command to NAND device + */ +static void tx4938ndfmc_nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) +{ + register struct nand_chip *this = mtd->priv; + + /* Begin command latch cycle */ + this->hwcontrol(mtd, NAND_CTL_SETCLE); + /* + * Write out the command to the device. + */ + if (command == NAND_CMD_SEQIN) { + int readcmd; + + if (column >= mtd->oobblock) { + /* OOB area */ + column -= mtd->oobblock; + readcmd = NAND_CMD_READOOB; + } else if (column < 256) { + /* First 256 bytes --> READ0 */ + readcmd = NAND_CMD_READ0; + } else { + column -= 256; + readcmd = NAND_CMD_READ1; + } + this->write_byte(mtd, readcmd); + } + this->write_byte(mtd, command); + + /* Set ALE and clear CLE to start address cycle */ + this->hwcontrol(mtd, NAND_CTL_CLRCLE); + + if (column != -1 || page_addr != -1) { + this->hwcontrol(mtd, NAND_CTL_SETALE); + + /* Serially input address */ + if (column != -1) + this->write_byte(mtd, column); + if (page_addr != -1) { + this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); + this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); + /* One more address cycle for higher density devices */ + if (mtd->size & 0x0c000000) + this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f)); + } + /* Latch in address */ + this->hwcontrol(mtd, NAND_CTL_CLRALE); + } + + /* + * program and erase have their own busy handlers + * status and sequential in needs no delay + */ + switch (command) { + + case NAND_CMD_PAGEPROG: + /* Turn off WE */ + this->hwcontrol (mtd, NAND_CTL_CLRWP); + return; + + case NAND_CMD_SEQIN: + /* Turn on WE */ + this->hwcontrol (mtd, NAND_CTL_SETWP); + return; + + case NAND_CMD_ERASE1: + case NAND_CMD_ERASE2: + case NAND_CMD_STATUS: + return; + + case NAND_CMD_RESET: + if (this->dev_ready) + break; + this->hwcontrol(mtd, NAND_CTL_SETCLE); + this->write_byte(mtd, NAND_CMD_STATUS); + this->hwcontrol(mtd, NAND_CTL_CLRCLE); + while ( !(this->read_byte(mtd) & 0x40)); + return; + + /* This applies to read commands */ + default: + /* + * If we don't have access to the busy pin, we apply the given + * command delay + */ + if (!this->dev_ready) { + udelay (this->chip_delay); + return; + } + } + + /* wait until command is processed */ + while (!this->dev_ready(mtd)); +} + +#ifdef CONFIG_MTD_CMDLINE_PARTS +extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partition **pparts, char *); +#endif +/* + * Main initialization routine + */ +int __init tx4938ndfmc_init (void) +{ + struct nand_chip *this; + int bsprt = 0, hold = 0xf, spw = 0xf; + int protected = 0; + + if ((*rbtx4938_piosel_ptr & 0x0c) != 0x08) { + printk("TX4938 NDFMC: disabled by IOC PIOSEL\n"); + return -ENODEV; + } + bsprt = 1; + hold = 2; + spw = 9 - 1; /* 8 GBUSCLK = 80ns (@ GBUSCLK 100MHz) */ + + if ((tx4938_ccfgptr->pcfg & + (TX4938_PCFG_ATA_SEL|TX4938_PCFG_ISA_SEL|TX4938_PCFG_NDF_SEL)) + != TX4938_PCFG_NDF_SEL) { + printk("TX4938 NDFMC: disabled by PCFG.\n"); + return -ENODEV; + } + + /* reset NDFMC */ + tx4938_ndfmcptr->rstr |= TX4938_NDFRSTR_RST; + while (tx4938_ndfmcptr->rstr & TX4938_NDFRSTR_RST) + ; + /* setup BusSeparete, Hold Time, Strobe Pulse Width */ + tx4938_ndfmcptr->mcr = bsprt ? TX4938_NDFMCR_BSPRT : 0; + tx4938_ndfmcptr->spr = hold << 4 | spw; + + /* Allocate memory for MTD device structure and private data */ + tx4938ndfmc_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip), + GFP_KERNEL); + if (!tx4938ndfmc_mtd) { + printk ("Unable to allocate TX4938 NDFMC MTD device structure.\n"); + return -ENOMEM; + } + + /* Get pointer to private data */ + this = (struct nand_chip *) (&tx4938ndfmc_mtd[1]); + + /* Initialize structures */ + memset((char *) tx4938ndfmc_mtd, 0, sizeof(struct mtd_info)); + memset((char *) this, 0, sizeof(struct nand_chip)); + + /* Link the private data with the MTD structure */ + tx4938ndfmc_mtd->priv = this; + + /* Set address of NAND IO lines */ + this->IO_ADDR_R = (unsigned long)&tx4938_ndfmcptr->dtr; + this->IO_ADDR_W = (unsigned long)&tx4938_ndfmcptr->dtr; + this->hwcontrol = tx4938ndfmc_hwcontrol; + this->dev_ready = tx4938ndfmc_dev_ready; + this->calculate_ecc = tx4938ndfmc_calculate_ecc; + this->correct_data = nand_correct_data; + this->enable_hwecc = tx4938ndfmc_enable_hwecc; + this->eccmode = NAND_ECC_HW3_256; + this->chip_delay = 100; + this->read_byte = tx4938ndfmc_nand_read_byte; + this->write_byte = tx4938ndfmc_nand_write_byte; + this->cmdfunc = tx4938ndfmc_nand_command; + this->write_buf = tx4938ndfmc_nand_write_buf; + this->read_buf = tx4938ndfmc_nand_read_buf; + this->verify_buf = tx4938ndfmc_nand_verify_buf; + + /* Scan to find existance of the device */ + if (nand_scan (tx4938ndfmc_mtd, 1)) { + kfree (tx4938ndfmc_mtd); + return -ENXIO; + } + + if (protected) { + printk(KERN_INFO "TX4938 NDFMC: write protected.\n"); + tx4938ndfmc_mtd->flags &= ~(MTD_WRITEABLE | MTD_ERASEABLE); + } + +#ifdef CONFIG_MTD_CMDLINE_PARTS + { + int mtd_parts_nb = 0; + struct mtd_partition *mtd_parts = 0; + mtd_parts_nb = parse_cmdline_partitions(tx4938ndfmc_mtd, &mtd_parts, "tx4938ndfmc"); + if (mtd_parts_nb > 0) + add_mtd_partitions(tx4938ndfmc_mtd, mtd_parts, mtd_parts_nb); + else + add_mtd_device(tx4938ndfmc_mtd); + } +#else + add_mtd_partitions(tx4938ndfmc_mtd, partition_info, NUM_PARTITIONS ); +#endif + + return 0; +} +module_init(tx4938ndfmc_init); + +/* + * Clean up routine + */ +static void __exit tx4938ndfmc_cleanup (void) +{ + /* Release resources, unregister device */ + nand_release (tx4938ndfmc_mtd); + + /* Free the MTD device structure */ + kfree (tx4938ndfmc_mtd); +} +module_exit(tx4938ndfmc_cleanup); + +MODULE_LICENSE("GPL"); +MODULE_AUTHOR("Alice Hennessy <ahennessy@mvista.com>"); +MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on TX4938 NDFMC"); |