aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/mtd/nand')
-rw-r--r--drivers/mtd/nand/Kconfig207
-rw-r--r--drivers/mtd/nand/Makefile24
-rw-r--r--drivers/mtd/nand/au1550nd.c477
-rw-r--r--drivers/mtd/nand/autcpu12.c225
-rw-r--r--drivers/mtd/nand/diskonchip.c1782
-rw-r--r--drivers/mtd/nand/edb7312.c218
-rw-r--r--drivers/mtd/nand/h1910.c208
-rw-r--r--drivers/mtd/nand/nand_base.c2563
-rw-r--r--drivers/mtd/nand/nand_bbt.c1056
-rw-r--r--drivers/mtd/nand/nand_ecc.c250
-rw-r--r--drivers/mtd/nand/nand_ids.c129
-rw-r--r--drivers/mtd/nand/nandsim.c1613
-rw-r--r--drivers/mtd/nand/ppchameleonevb.c420
-rw-r--r--drivers/mtd/nand/rtc_from4.c559
-rw-r--r--drivers/mtd/nand/s3c2410.c704
-rwxr-xr-xdrivers/mtd/nand/sharpsl.c260
-rw-r--r--drivers/mtd/nand/spia.c173
-rw-r--r--drivers/mtd/nand/toto.c205
-rw-r--r--drivers/mtd/nand/tx4925ndfmc.c416
-rw-r--r--drivers/mtd/nand/tx4938ndfmc.c406
20 files changed, 11895 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
new file mode 100644
index 00000000000..f7801eb730c
--- /dev/null
+++ b/drivers/mtd/nand/Kconfig
@@ -0,0 +1,207 @@
+# drivers/mtd/nand/Kconfig
+# $Id: Kconfig,v 1.26 2005/01/05 12:42:24 dwmw2 Exp $
+
+menu "NAND Flash Device Drivers"
+ depends on MTD!=n
+
+config MTD_NAND
+ tristate "NAND Device Support"
+ depends on MTD
+ select MTD_NAND_IDS
+ help
+ This enables support for accessing all type of NAND flash
+ devices. For further information see
+ <http://www.linux-mtd.infradead.org/tech/nand.html>.
+
+config MTD_NAND_VERIFY_WRITE
+ bool "Verify NAND page writes"
+ depends on MTD_NAND
+ help
+ This adds an extra check when data is written to the flash. The
+ NAND flash device internally checks only bits transitioning
+ from 1 to 0. There is a rare possibility that even though the
+ device thinks the write was successful, a bit could have been
+ flipped accidentaly due to device wear or something else.
+
+config MTD_NAND_AUTCPU12
+ tristate "SmartMediaCard on autronix autcpu12 board"
+ depends on ARM && MTD_NAND && ARCH_AUTCPU12
+ help
+ This enables the driver for the autronix autcpu12 board to
+ access the SmartMediaCard.
+
+config MTD_NAND_EDB7312
+ tristate "Support for Cirrus Logic EBD7312 evaluation board"
+ depends on ARM && MTD_NAND && ARCH_EDB7312
+ help
+ This enables the driver for the Cirrus Logic EBD7312 evaluation
+ board to access the onboard NAND Flash.
+
+config MTD_NAND_H1900
+ tristate "iPAQ H1900 flash"
+ depends on ARM && MTD_NAND && ARCH_PXA && MTD_PARTITIONS
+ help
+ This enables the driver for the iPAQ h1900 flash.
+
+config MTD_NAND_SPIA
+ tristate "NAND Flash device on SPIA board"
+ depends on ARM && ARCH_P720T && MTD_NAND
+ help
+ If you had to ask, you don't have one. Say 'N'.
+
+config MTD_NAND_TOTO
+ tristate "NAND Flash device on TOTO board"
+ depends on ARM && ARCH_OMAP && MTD_NAND
+ help
+ Support for NAND flash on Texas Instruments Toto platform.
+
+config MTD_NAND_IDS
+ tristate
+
+config MTD_NAND_TX4925NDFMC
+ tristate "SmartMedia Card on Toshiba RBTX4925 reference board"
+ depends on TOSHIBA_RBTX4925 && MTD_NAND && TOSHIBA_RBTX4925_MPLEX_NAND
+ help
+ This enables the driver for the NAND flash device found on the
+ Toshiba RBTX4925 reference board, which is a SmartMediaCard.
+
+config MTD_NAND_TX4938NDFMC
+ tristate "NAND Flash device on Toshiba RBTX4938 reference board"
+ depends on TOSHIBA_RBTX4938 && MTD_NAND && TOSHIBA_RBTX4938_MPLEX_NAND
+ help
+ This enables the driver for the NAND flash device found on the
+ Toshiba RBTX4938 reference board.
+
+config MTD_NAND_AU1550
+ tristate "Au1550 NAND support"
+ depends on SOC_AU1550 && MTD_NAND
+ help
+ This enables the driver for the NAND flash controller on the
+ AMD/Alchemy 1550 SOC.
+
+config MTD_NAND_RTC_FROM4
+ tristate "Renesas Flash ROM 4-slot interface board (FROM_BOARD4)"
+ depends on MTD_NAND && SH_SOLUTION_ENGINE
+ select REED_SOLOMON
+ select REED_SOLOMON_DEC8
+ help
+ This enables the driver for the Renesas Technology AG-AND
+ flash interface board (FROM_BOARD4)
+
+config MTD_NAND_PPCHAMELEONEVB
+ tristate "NAND Flash device on PPChameleonEVB board"
+ depends on PPCHAMELEONEVB && MTD_NAND
+ help
+ This enables the NAND flash driver on the PPChameleon EVB Board.
+
+config MTD_NAND_S3C2410
+ tristate "NAND Flash support for S3C2410 SoC"
+ depends on ARCH_S3C2410 && MTD_NAND
+ help
+ This enables the NAND flash controller on the S3C2410.
+
+ No board specfic support is done by this driver, each board
+ must advertise a platform_device for the driver to attach.
+
+config MTD_NAND_S3C2410_DEBUG
+ bool "S3C2410 NAND driver debug"
+ depends on MTD_NAND_S3C2410
+ help
+ Enable debugging of the S3C2410 NAND driver
+
+config MTD_NAND_S3C2410_HWECC
+ bool "S3C2410 NAND Hardware ECC"
+ depends on MTD_NAND_S3C2410
+ help
+ Enable the use of the S3C2410's internal ECC generator when
+ using NAND. Early versions of the chip have had problems with
+ incorrect ECC generation, and if using these, the default of
+ software ECC is preferable.
+
+ If you lay down a device with the hardware ECC, then you will
+ currently not be able to switch to software, as there is no
+ implementation for ECC method used by the S3C2410
+
+config MTD_NAND_DISKONCHIP
+ tristate "DiskOnChip 2000, Millennium and Millennium Plus (NAND reimplementation) (EXPERIMENTAL)"
+ depends on MTD_NAND && EXPERIMENTAL
+ select REED_SOLOMON
+ select REED_SOLOMON_DEC16
+ help
+ This is a reimplementation of M-Systems DiskOnChip 2000,
+ Millennium and Millennium Plus as a standard NAND device driver,
+ as opposed to the earlier self-contained MTD device drivers.
+ This should enable, among other things, proper JFFS2 operation on
+ these devices.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+ bool "Advanced detection options for DiskOnChip"
+ depends on MTD_NAND_DISKONCHIP
+ help
+ This option allows you to specify nonstandard address at which to
+ probe for a DiskOnChip, or to change the detection options. You
+ are unlikely to need any of this unless you are using LinuxBIOS.
+ Say 'N'.
+
+config MTD_NAND_DISKONCHIP_PROBE_ADDRESS
+ hex "Physical address of DiskOnChip" if MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+ depends on MTD_NAND_DISKONCHIP
+ default "0"
+ ---help---
+ By default, the probe for DiskOnChip devices will look for a
+ DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+ This option allows you to specify a single address at which to probe
+ for the device, which is useful if you have other devices in that
+ range which get upset when they are probed.
+
+ (Note that on PowerPC, the normal probe will only check at
+ 0xE4000000.)
+
+ Normally, you should leave this set to zero, to allow the probe at
+ the normal addresses.
+
+config MTD_NAND_DISKONCHIP_PROBE_HIGH
+ bool "Probe high addresses"
+ depends on MTD_NAND_DISKONCHIP_PROBE_ADVANCED
+ help
+ By default, the probe for DiskOnChip devices will look for a
+ DiskOnChip at every multiple of 0x2000 between 0xC8000 and 0xEE000.
+ This option changes to make it probe between 0xFFFC8000 and
+ 0xFFFEE000. Unless you are using LinuxBIOS, this is unlikely to be
+ useful to you. Say 'N'.
+
+config MTD_NAND_DISKONCHIP_BBTWRITE
+ bool "Allow BBT writes on DiskOnChip Millennium and 2000TSOP"
+ depends on MTD_NAND_DISKONCHIP
+ help
+ On DiskOnChip devices shipped with the INFTL filesystem (Millennium
+ and 2000 TSOP/Alon), Linux reserves some space at the end of the
+ device for the Bad Block Table (BBT). If you have existing INFTL
+ data on your device (created by non-Linux tools such as M-Systems'
+ DOS drivers), your data might overlap the area Linux wants to use for
+ the BBT. If this is a concern for you, leave this option disabled and
+ Linux will not write BBT data into this area.
+ The downside of leaving this option disabled is that if bad blocks
+ are detected by Linux, they will not be recorded in the BBT, which
+ could cause future problems.
+ Once you enable this option, new filesystems (INFTL or others, created
+ in Linux or other operating systems) will not use the reserved area.
+ The only reason not to enable this option is to prevent damage to
+ preexisting filesystems.
+ Even if you leave this disabled, you can enable BBT writes at module
+ load time (assuming you build diskonchip as a module) with the module
+ parameter "inftl_bbt_write=1".
+
+ config MTD_NAND_SHARPSL
+ bool "Support for NAND Flash on Sharp SL Series (C7xx + others)"
+ depends on MTD_NAND && ARCH_PXA
+
+ config MTD_NAND_NANDSIM
+ bool "Support for NAND Flash Simulator"
+ depends on MTD_NAND && MTD_PARTITIONS
+
+ help
+ The simulator may simulate verious NAND flash chips for the
+ MTD nand layer.
+
+endmenu
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
new file mode 100644
index 00000000000..d9dc8cc2da8
--- /dev/null
+++ b/drivers/mtd/nand/Makefile
@@ -0,0 +1,24 @@
+#
+# linux/drivers/nand/Makefile
+#
+# $Id: Makefile.common,v 1.15 2004/11/26 12:28:22 dedekind Exp $
+
+obj-$(CONFIG_MTD_NAND) += nand.o nand_ecc.o
+obj-$(CONFIG_MTD_NAND_IDS) += nand_ids.o
+
+obj-$(CONFIG_MTD_NAND_SPIA) += spia.o
+obj-$(CONFIG_MTD_NAND_TOTO) += toto.o
+obj-$(CONFIG_MTD_NAND_AUTCPU12) += autcpu12.o
+obj-$(CONFIG_MTD_NAND_EDB7312) += edb7312.o
+obj-$(CONFIG_MTD_NAND_TX4925NDFMC) += tx4925ndfmc.o
+obj-$(CONFIG_MTD_NAND_TX4938NDFMC) += tx4938ndfmc.o
+obj-$(CONFIG_MTD_NAND_AU1550) += au1550nd.o
+obj-$(CONFIG_MTD_NAND_PPCHAMELEONEVB) += ppchameleonevb.o
+obj-$(CONFIG_MTD_NAND_S3C2410) += s3c2410.o
+obj-$(CONFIG_MTD_NAND_DISKONCHIP) += diskonchip.o
+obj-$(CONFIG_MTD_NAND_H1900) += h1910.o
+obj-$(CONFIG_MTD_NAND_RTC_FROM4) += rtc_from4.o
+obj-$(CONFIG_MTD_NAND_SHARPSL) += sharpsl.o
+obj-$(CONFIG_MTD_NAND_NANDSIM) += nandsim.o
+
+nand-objs = nand_base.o nand_bbt.o
diff --git a/drivers/mtd/nand/au1550nd.c b/drivers/mtd/nand/au1550nd.c
new file mode 100644
index 00000000000..4c7719ce3f4
--- /dev/null
+++ b/drivers/mtd/nand/au1550nd.c
@@ -0,0 +1,477 @@
+/*
+ * drivers/mtd/nand/au1550nd.c
+ *
+ * Copyright (C) 2004 Embedded Edge, LLC
+ *
+ * $Id: au1550nd.c,v 1.11 2004/11/04 12:53:10 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+
+/* fixme: this is ugly */
+#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 6, 0)
+#include <asm/mach-au1x00/au1000.h>
+#ifdef CONFIG_MIPS_PB1550
+#include <asm/mach-pb1x00/pb1550.h>
+#endif
+#ifdef CONFIG_MIPS_DB1550
+#include <asm/mach-db1x00/db1x00.h>
+#endif
+#else
+#include <asm/au1000.h>
+#ifdef CONFIG_MIPS_PB1550
+#include <asm/pb1550.h>
+#endif
+#ifdef CONFIG_MIPS_DB1550
+#include <asm/db1x00.h>
+#endif
+#endif
+
+/*
+ * MTD structure for NAND controller
+ */
+static struct mtd_info *au1550_mtd = NULL;
+static void __iomem *p_nand;
+static int nand_width = 1; /* default x8*/
+
+#define NAND_CS 1
+
+/*
+ * Define partitions for flash device
+ */
+const static struct mtd_partition partition_info[] = {
+#ifdef CONFIG_MIPS_PB1550
+#define NUM_PARTITIONS 2
+ {
+ .name = "Pb1550 NAND FS 0",
+ .offset = 0,
+ .size = 8*1024*1024
+ },
+ {
+ .name = "Pb1550 NAND FS 1",
+ .offset = MTDPART_OFS_APPEND,
+ .size = MTDPART_SIZ_FULL
+ }
+#endif
+#ifdef CONFIG_MIPS_DB1550
+#define NUM_PARTITIONS 2
+ {
+ .name = "Db1550 NAND FS 0",
+ .offset = 0,
+ .size = 8*1024*1024
+ },
+ {
+ .name = "Db1550 NAND FS 1",
+ .offset = MTDPART_OFS_APPEND,
+ .size = MTDPART_SIZ_FULL
+ }
+#endif
+};
+
+
+/**
+ * au_read_byte - read one byte from the chip
+ * @mtd: MTD device structure
+ *
+ * read function for 8bit buswith
+ */
+static u_char au_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ u_char ret = readb(this->IO_ADDR_R);
+ au_sync();
+ return ret;
+}
+
+/**
+ * au_write_byte - write one byte to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * write function for 8it buswith
+ */
+static void au_write_byte(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writeb(byte, this->IO_ADDR_W);
+ au_sync();
+}
+
+/**
+ * au_read_byte16 - read one byte endianess aware from the chip
+ * @mtd: MTD device structure
+ *
+ * read function for 16bit buswith with
+ * endianess conversion
+ */
+static u_char au_read_byte16(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ u_char ret = (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+ au_sync();
+ return ret;
+}
+
+/**
+ * au_write_byte16 - write one byte endianess aware to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * write function for 16bit buswith with
+ * endianess conversion
+ */
+static void au_write_byte16(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+ au_sync();
+}
+
+/**
+ * au_read_word - read one word from the chip
+ * @mtd: MTD device structure
+ *
+ * read function for 16bit buswith without
+ * endianess conversion
+ */
+static u16 au_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ u16 ret = readw(this->IO_ADDR_R);
+ au_sync();
+ return ret;
+}
+
+/**
+ * au_write_word - write one word to the chip
+ * @mtd: MTD device structure
+ * @word: data word to write
+ *
+ * write function for 16bit buswith without
+ * endianess conversion
+ */
+static void au_write_word(struct mtd_info *mtd, u16 word)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(word, this->IO_ADDR_W);
+ au_sync();
+}
+
+/**
+ * au_write_buf - write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * write function for 8bit buswith
+ */
+static void au_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++) {
+ writeb(buf[i], this->IO_ADDR_W);
+ au_sync();
+ }
+}
+
+/**
+ * au_read_buf - read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * read function for 8bit buswith
+ */
+static void au_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++) {
+ buf[i] = readb(this->IO_ADDR_R);
+ au_sync();
+ }
+}
+
+/**
+ * au_verify_buf - Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * verify function for 8bit buswith
+ */
+static int au_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++) {
+ if (buf[i] != readb(this->IO_ADDR_R))
+ return -EFAULT;
+ au_sync();
+ }
+
+ return 0;
+}
+
+/**
+ * au_write_buf16 - write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * write function for 16bit buswith
+ */
+static void au_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++) {
+ writew(p[i], this->IO_ADDR_W);
+ au_sync();
+ }
+
+}
+
+/**
+ * au_read_buf16 - read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * read function for 16bit buswith
+ */
+static void au_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++) {
+ p[i] = readw(this->IO_ADDR_R);
+ au_sync();
+ }
+}
+
+/**
+ * au_verify_buf16 - Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * verify function for 16bit buswith
+ */
+static int au_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++) {
+ if (p[i] != readw(this->IO_ADDR_R))
+ return -EFAULT;
+ au_sync();
+ }
+ return 0;
+}
+
+
+static void au1550_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ switch(cmd){
+
+ case NAND_CTL_SETCLE: this->IO_ADDR_W = p_nand + MEM_STNAND_CMD; break;
+ case NAND_CTL_CLRCLE: this->IO_ADDR_W = p_nand + MEM_STNAND_DATA; break;
+
+ case NAND_CTL_SETALE: this->IO_ADDR_W = p_nand + MEM_STNAND_ADDR; break;
+ case NAND_CTL_CLRALE:
+ this->IO_ADDR_W = p_nand + MEM_STNAND_DATA;
+ /* FIXME: Nobody knows why this is neccecary,
+ * but it works only that way */
+ udelay(1);
+ break;
+
+ case NAND_CTL_SETNCE:
+ /* assert (force assert) chip enable */
+ au_writel((1<<(4+NAND_CS)) , MEM_STNDCTL); break;
+ break;
+
+ case NAND_CTL_CLRNCE:
+ /* deassert chip enable */
+ au_writel(0, MEM_STNDCTL); break;
+ break;
+ }
+
+ this->IO_ADDR_R = this->IO_ADDR_W;
+
+ /* Drain the writebuffer */
+ au_sync();
+}
+
+int au1550_device_ready(struct mtd_info *mtd)
+{
+ int ret = (au_readl(MEM_STSTAT) & 0x1) ? 1 : 0;
+ au_sync();
+ return ret;
+}
+
+/*
+ * Main initialization routine
+ */
+int __init au1550_init (void)
+{
+ struct nand_chip *this;
+ u16 boot_swapboot = 0; /* default value */
+ int retval;
+
+ /* Allocate memory for MTD device structure and private data */
+ au1550_mtd = kmalloc (sizeof(struct mtd_info) +
+ sizeof (struct nand_chip), GFP_KERNEL);
+ if (!au1550_mtd) {
+ printk ("Unable to allocate NAND MTD dev structure.\n");
+ return -ENOMEM;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&au1550_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) au1550_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ au1550_mtd->priv = this;
+
+
+ /* MEM_STNDCTL: disable ints, disable nand boot */
+ au_writel(0, MEM_STNDCTL);
+
+#ifdef CONFIG_MIPS_PB1550
+ /* set gpio206 high */
+ au_writel(au_readl(GPIO2_DIR) & ~(1<<6), GPIO2_DIR);
+
+ boot_swapboot = (au_readl(MEM_STSTAT) & (0x7<<1)) |
+ ((bcsr->status >> 6) & 0x1);
+ switch (boot_swapboot) {
+ case 0:
+ case 2:
+ case 8:
+ case 0xC:
+ case 0xD:
+ /* x16 NAND Flash */
+ nand_width = 0;
+ break;
+ case 1:
+ case 9:
+ case 3:
+ case 0xE:
+ case 0xF:
+ /* x8 NAND Flash */
+ nand_width = 1;
+ break;
+ default:
+ printk("Pb1550 NAND: bad boot:swap\n");
+ retval = -EINVAL;
+ goto outmem;
+ }
+#endif
+
+ /* Configure RCE1 - should be done by YAMON */
+ au_writel(0x5 | (nand_width << 22), 0xB4001010); /* MEM_STCFG1 */
+ au_writel(NAND_TIMING, 0xB4001014); /* MEM_STTIME1 */
+ au_sync();
+
+ /* setup and enable chip select, MEM_STADDR1 */
+ /* we really need to decode offsets only up till 0x20 */
+ au_writel((1<<28) | (NAND_PHYS_ADDR>>4) |
+ (((NAND_PHYS_ADDR + 0x1000)-1) & (0x3fff<<18)>>18),
+ MEM_STADDR1);
+ au_sync();
+
+ p_nand = ioremap(NAND_PHYS_ADDR, 0x1000);
+
+ /* Set address of hardware control function */
+ this->hwcontrol = au1550_hwcontrol;
+ this->dev_ready = au1550_device_ready;
+ /* 30 us command delay time */
+ this->chip_delay = 30;
+ this->eccmode = NAND_ECC_SOFT;
+
+ this->options = NAND_NO_AUTOINCR;
+
+ if (!nand_width)
+ this->options |= NAND_BUSWIDTH_16;
+
+ this->read_byte = (!nand_width) ? au_read_byte16 : au_read_byte;
+ this->write_byte = (!nand_width) ? au_write_byte16 : au_write_byte;
+ this->write_word = au_write_word;
+ this->read_word = au_read_word;
+ this->write_buf = (!nand_width) ? au_write_buf16 : au_write_buf;
+ this->read_buf = (!nand_width) ? au_read_buf16 : au_read_buf;
+ this->verify_buf = (!nand_width) ? au_verify_buf16 : au_verify_buf;
+
+ /* Scan to find existence of the device */
+ if (nand_scan (au1550_mtd, 1)) {
+ retval = -ENXIO;
+ goto outio;
+ }
+
+ /* Register the partitions */
+ add_mtd_partitions(au1550_mtd, partition_info, NUM_PARTITIONS);
+
+ return 0;
+
+ outio:
+ iounmap ((void *)p_nand);
+
+ outmem:
+ kfree (au1550_mtd);
+ return retval;
+}
+
+module_init(au1550_init);
+
+/*
+ * Clean up routine
+ */
+#ifdef MODULE
+static void __exit au1550_cleanup (void)
+{
+ struct nand_chip *this = (struct nand_chip *) &au1550_mtd[1];
+
+ /* Release resources, unregister device */
+ nand_release (au1550_mtd);
+
+ /* Free the MTD device structure */
+ kfree (au1550_mtd);
+
+ /* Unmap */
+ iounmap ((void *)p_nand);
+}
+module_exit(au1550_cleanup);
+#endif
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Embedded Edge, LLC");
+MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");
diff --git a/drivers/mtd/nand/autcpu12.c b/drivers/mtd/nand/autcpu12.c
new file mode 100644
index 00000000000..4afa8ced05a
--- /dev/null
+++ b/drivers/mtd/nand/autcpu12.c
@@ -0,0 +1,225 @@
+/*
+ * drivers/mtd/autcpu12.c
+ *
+ * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
+ *
+ * Derived from drivers/mtd/spia.c
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *
+ * $Id: autcpu12.c,v 1.22 2004/11/04 12:53:10 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the NAND flash device found on the
+ * autronix autcpu12 board, which is a SmartMediaCard. It supports
+ * 16MiB, 32MiB and 64MiB cards.
+ *
+ *
+ * 02-12-2002 TG Cleanup of module params
+ *
+ * 02-20-2002 TG adjusted for different rd/wr adress support
+ * added support for read device ready/busy line
+ * added page_cache
+ *
+ * 10-06-2002 TG 128K card support added
+ */
+
+#include <linux/version.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <asm/arch/hardware.h>
+#include <asm/sizes.h>
+#include <asm/arch/autcpu12.h>
+
+/*
+ * MTD structure for AUTCPU12 board
+ */
+static struct mtd_info *autcpu12_mtd = NULL;
+
+static int autcpu12_io_base = CS89712_VIRT_BASE;
+static int autcpu12_fio_pbase = AUTCPU12_PHYS_SMC;
+static int autcpu12_fio_ctrl = AUTCPU12_SMC_SELECT_OFFSET;
+static int autcpu12_pedr = AUTCPU12_SMC_PORT_OFFSET;
+static void __iomem * autcpu12_fio_base;
+
+/*
+ * Define partitions for flash devices
+ */
+static struct mtd_partition partition_info16k[] = {
+ { .name = "AUTCPU12 flash partition 1",
+ .offset = 0,
+ .size = 8 * SZ_1M },
+ { .name = "AUTCPU12 flash partition 2",
+ .offset = 8 * SZ_1M,
+ .size = 8 * SZ_1M },
+};
+
+static struct mtd_partition partition_info32k[] = {
+ { .name = "AUTCPU12 flash partition 1",
+ .offset = 0,
+ .size = 8 * SZ_1M },
+ { .name = "AUTCPU12 flash partition 2",
+ .offset = 8 * SZ_1M,
+ .size = 24 * SZ_1M },
+};
+
+static struct mtd_partition partition_info64k[] = {
+ { .name = "AUTCPU12 flash partition 1",
+ .offset = 0,
+ .size = 16 * SZ_1M },
+ { .name = "AUTCPU12 flash partition 2",
+ .offset = 16 * SZ_1M,
+ .size = 48 * SZ_1M },
+};
+
+static struct mtd_partition partition_info128k[] = {
+ { .name = "AUTCPU12 flash partition 1",
+ .offset = 0,
+ .size = 16 * SZ_1M },
+ { .name = "AUTCPU12 flash partition 2",
+ .offset = 16 * SZ_1M,
+ .size = 112 * SZ_1M },
+};
+
+#define NUM_PARTITIONS16K 2
+#define NUM_PARTITIONS32K 2
+#define NUM_PARTITIONS64K 2
+#define NUM_PARTITIONS128K 2
+/*
+ * hardware specific access to control-lines
+*/
+static void autcpu12_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+
+ switch(cmd){
+
+ case NAND_CTL_SETCLE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) |= AUTCPU12_SMC_CLE; break;
+ case NAND_CTL_CLRCLE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) &= ~AUTCPU12_SMC_CLE; break;
+
+ case NAND_CTL_SETALE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) |= AUTCPU12_SMC_ALE; break;
+ case NAND_CTL_CLRALE: (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) &= ~AUTCPU12_SMC_ALE; break;
+
+ case NAND_CTL_SETNCE: (*(volatile unsigned char *) (autcpu12_fio_base + autcpu12_fio_ctrl)) = 0x01; break;
+ case NAND_CTL_CLRNCE: (*(volatile unsigned char *) (autcpu12_fio_base + autcpu12_fio_ctrl)) = 0x00; break;
+ }
+}
+
+/*
+* read device ready pin
+*/
+int autcpu12_device_ready(struct mtd_info *mtd)
+{
+
+ return ( (*(volatile unsigned char *) (autcpu12_io_base + autcpu12_pedr)) & AUTCPU12_SMC_RDY) ? 1 : 0;
+
+}
+
+/*
+ * Main initialization routine
+ */
+int __init autcpu12_init (void)
+{
+ struct nand_chip *this;
+ int err = 0;
+
+ /* Allocate memory for MTD device structure and private data */
+ autcpu12_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
+ GFP_KERNEL);
+ if (!autcpu12_mtd) {
+ printk ("Unable to allocate AUTCPU12 NAND MTD device structure.\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /* map physical adress */
+ autcpu12_fio_base = ioremap(autcpu12_fio_pbase,SZ_1K);
+ if(!autcpu12_fio_base){
+ printk("Ioremap autcpu12 SmartMedia Card failed\n");
+ err = -EIO;
+ goto out_mtd;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&autcpu12_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) autcpu12_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ autcpu12_mtd->priv = this;
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_R = autcpu12_fio_base;
+ this->IO_ADDR_W = autcpu12_fio_base;
+ this->hwcontrol = autcpu12_hwcontrol;
+ this->dev_ready = autcpu12_device_ready;
+ /* 20 us command delay time */
+ this->chip_delay = 20;
+ this->eccmode = NAND_ECC_SOFT;
+
+ /* Enable the following for a flash based bad block table */
+ /*
+ this->options = NAND_USE_FLASH_BBT;
+ */
+ this->options = NAND_USE_FLASH_BBT;
+
+ /* Scan to find existance of the device */
+ if (nand_scan (autcpu12_mtd, 1)) {
+ err = -ENXIO;
+ goto out_ior;
+ }
+
+ /* Register the partitions */
+ switch(autcpu12_mtd->size){
+ case SZ_16M: add_mtd_partitions(autcpu12_mtd, partition_info16k, NUM_PARTITIONS16K); break;
+ case SZ_32M: add_mtd_partitions(autcpu12_mtd, partition_info32k, NUM_PARTITIONS32K); break;
+ case SZ_64M: add_mtd_partitions(autcpu12_mtd, partition_info64k, NUM_PARTITIONS64K); break;
+ case SZ_128M: add_mtd_partitions(autcpu12_mtd, partition_info128k, NUM_PARTITIONS128K); break;
+ default: {
+ printk ("Unsupported SmartMedia device\n");
+ err = -ENXIO;
+ goto out_ior;
+ }
+ }
+ goto out;
+
+out_ior:
+ iounmap((void *)autcpu12_fio_base);
+out_mtd:
+ kfree (autcpu12_mtd);
+out:
+ return err;
+}
+
+module_init(autcpu12_init);
+
+/*
+ * Clean up routine
+ */
+#ifdef MODULE
+static void __exit autcpu12_cleanup (void)
+{
+ /* Release resources, unregister device */
+ nand_release (autcpu12_mtd);
+
+ /* unmap physical adress */
+ iounmap((void *)autcpu12_fio_base);
+
+ /* Free the MTD device structure */
+ kfree (autcpu12_mtd);
+}
+module_exit(autcpu12_cleanup);
+#endif
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION("Glue layer for SmartMediaCard on autronix autcpu12");
diff --git a/drivers/mtd/nand/diskonchip.c b/drivers/mtd/nand/diskonchip.c
new file mode 100644
index 00000000000..02135c3ac29
--- /dev/null
+++ b/drivers/mtd/nand/diskonchip.c
@@ -0,0 +1,1782 @@
+/*
+ * drivers/mtd/nand/diskonchip.c
+ *
+ * (C) 2003 Red Hat, Inc.
+ * (C) 2004 Dan Brown <dan_brown@ieee.org>
+ * (C) 2004 Kalev Lember <kalev@smartlink.ee>
+ *
+ * Author: David Woodhouse <dwmw2@infradead.org>
+ * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org>
+ * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee>
+ *
+ * Error correction code lifted from the old docecc code
+ * Author: Fabrice Bellard (fabrice.bellard@netgem.com)
+ * Copyright (C) 2000 Netgem S.A.
+ * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de>
+ *
+ * Interface to generic NAND code for M-Systems DiskOnChip devices
+ *
+ * $Id: diskonchip.c,v 1.45 2005/01/05 18:05:14 dwmw2 Exp $
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/sched.h>
+#include <linux/delay.h>
+#include <linux/rslib.h>
+#include <linux/moduleparam.h>
+#include <asm/io.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/doc2000.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/partitions.h>
+#include <linux/mtd/inftl.h>
+
+/* Where to look for the devices? */
+#ifndef CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS
+#define CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS 0
+#endif
+
+static unsigned long __initdata doc_locations[] = {
+#if defined (__alpha__) || defined(__i386__) || defined(__x86_64__)
+#ifdef CONFIG_MTD_DISKONCHIP_PROBE_HIGH
+ 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000,
+ 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000,
+ 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000,
+ 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000,
+ 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000,
+#else /* CONFIG_MTD_DOCPROBE_HIGH */
+ 0xc8000, 0xca000, 0xcc000, 0xce000,
+ 0xd0000, 0xd2000, 0xd4000, 0xd6000,
+ 0xd8000, 0xda000, 0xdc000, 0xde000,
+ 0xe0000, 0xe2000, 0xe4000, 0xe6000,
+ 0xe8000, 0xea000, 0xec000, 0xee000,
+#endif /* CONFIG_MTD_DOCPROBE_HIGH */
+#elif defined(__PPC__)
+ 0xe4000000,
+#elif defined(CONFIG_MOMENCO_OCELOT)
+ 0x2f000000,
+ 0xff000000,
+#elif defined(CONFIG_MOMENCO_OCELOT_G) || defined (CONFIG_MOMENCO_OCELOT_C)
+ 0xff000000,
+##else
+#warning Unknown architecture for DiskOnChip. No default probe locations defined
+#endif
+ 0xffffffff };
+
+static struct mtd_info *doclist = NULL;
+
+struct doc_priv {
+ void __iomem *virtadr;
+ unsigned long physadr;
+ u_char ChipID;
+ u_char CDSNControl;
+ int chips_per_floor; /* The number of chips detected on each floor */
+ int curfloor;
+ int curchip;
+ int mh0_page;
+ int mh1_page;
+ struct mtd_info *nextdoc;
+};
+
+/* Max number of eraseblocks to scan (from start of device) for the (I)NFTL
+ MediaHeader. The spec says to just keep going, I think, but that's just
+ silly. */
+#define MAX_MEDIAHEADER_SCAN 8
+
+/* This is the syndrome computed by the HW ecc generator upon reading an empty
+ page, one with all 0xff for data and stored ecc code. */
+static u_char empty_read_syndrome[6] = { 0x26, 0xff, 0x6d, 0x47, 0x73, 0x7a };
+/* This is the ecc value computed by the HW ecc generator upon writing an empty
+ page, one with all 0xff for data. */
+static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 };
+
+#define INFTL_BBT_RESERVED_BLOCKS 4
+
+#define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32)
+#define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil)
+#define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k)
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd);
+static void doc200x_select_chip(struct mtd_info *mtd, int chip);
+
+static int debug=0;
+module_param(debug, int, 0);
+
+static int try_dword=1;
+module_param(try_dword, int, 0);
+
+static int no_ecc_failures=0;
+module_param(no_ecc_failures, int, 0);
+
+#ifdef CONFIG_MTD_PARTITIONS
+static int no_autopart=0;
+module_param(no_autopart, int, 0);
+#endif
+
+#ifdef MTD_NAND_DISKONCHIP_BBTWRITE
+static int inftl_bbt_write=1;
+#else
+static int inftl_bbt_write=0;
+#endif
+module_param(inftl_bbt_write, int, 0);
+
+static unsigned long doc_config_location = CONFIG_MTD_DISKONCHIP_PROBE_ADDRESS;
+module_param(doc_config_location, ulong, 0);
+MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip");
+
+
+/* Sector size for HW ECC */
+#define SECTOR_SIZE 512
+/* The sector bytes are packed into NB_DATA 10 bit words */
+#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10)
+/* Number of roots */
+#define NROOTS 4
+/* First consective root */
+#define FCR 510
+/* Number of symbols */
+#define NN 1023
+
+/* the Reed Solomon control structure */
+static struct rs_control *rs_decoder;
+
+/*
+ * The HW decoder in the DoC ASIC's provides us a error syndrome,
+ * which we must convert to a standard syndrom usable by the generic
+ * Reed-Solomon library code.
+ *
+ * Fabrice Bellard figured this out in the old docecc code. I added
+ * some comments, improved a minor bit and converted it to make use
+ * of the generic Reed-Solomon libary. tglx
+ */
+static int doc_ecc_decode (struct rs_control *rs, uint8_t *data, uint8_t *ecc)
+{
+ int i, j, nerr, errpos[8];
+ uint8_t parity;
+ uint16_t ds[4], s[5], tmp, errval[8], syn[4];
+
+ /* Convert the ecc bytes into words */
+ ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8);
+ ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6);
+ ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4);
+ ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2);
+ parity = ecc[1];
+
+ /* Initialize the syndrom buffer */
+ for (i = 0; i < NROOTS; i++)
+ s[i] = ds[0];
+ /*
+ * Evaluate
+ * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0]
+ * where x = alpha^(FCR + i)
+ */
+ for(j = 1; j < NROOTS; j++) {
+ if(ds[j] == 0)
+ continue;
+ tmp = rs->index_of[ds[j]];
+ for(i = 0; i < NROOTS; i++)
+ s[i] ^= rs->alpha_to[rs_modnn(rs, tmp + (FCR + i) * j)];
+ }
+
+ /* Calc s[i] = s[i] / alpha^(v + i) */
+ for (i = 0; i < NROOTS; i++) {
+ if (syn[i])
+ syn[i] = rs_modnn(rs, rs->index_of[s[i]] + (NN - FCR - i));
+ }
+ /* Call the decoder library */
+ nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval);
+
+ /* Incorrectable errors ? */
+ if (nerr < 0)
+ return nerr;
+
+ /*
+ * Correct the errors. The bitpositions are a bit of magic,
+ * but they are given by the design of the de/encoder circuit
+ * in the DoC ASIC's.
+ */
+ for(i = 0;i < nerr; i++) {
+ int index, bitpos, pos = 1015 - errpos[i];
+ uint8_t val;
+ if (pos >= NB_DATA && pos < 1019)
+ continue;
+ if (pos < NB_DATA) {
+ /* extract bit position (MSB first) */
+ pos = 10 * (NB_DATA - 1 - pos) - 6;
+ /* now correct the following 10 bits. At most two bytes
+ can be modified since pos is even */
+ index = (pos >> 3) ^ 1;
+ bitpos = pos & 7;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = (uint8_t) (errval[i] >> (2 + bitpos));
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ data[index] ^= val;
+ }
+ index = ((pos >> 3) + 1) ^ 1;
+ bitpos = (bitpos + 10) & 7;
+ if (bitpos == 0)
+ bitpos = 8;
+ if ((index >= 0 && index < SECTOR_SIZE) ||
+ index == (SECTOR_SIZE + 1)) {
+ val = (uint8_t)(errval[i] << (8 - bitpos));
+ parity ^= val;
+ if (index < SECTOR_SIZE)
+ data[index] ^= val;
+ }
+ }
+ }
+ /* If the parity is wrong, no rescue possible */
+ return parity ? -1 : nerr;
+}
+
+static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
+{
+ volatile char dummy;
+ int i;
+
+ for (i = 0; i < cycles; i++) {
+ if (DoC_is_Millennium(doc))
+ dummy = ReadDOC(doc->virtadr, NOP);
+ else if (DoC_is_MillenniumPlus(doc))
+ dummy = ReadDOC(doc->virtadr, Mplus_NOP);
+ else
+ dummy = ReadDOC(doc->virtadr, DOCStatus);
+ }
+
+}
+
+#define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1)
+
+/* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
+static int _DoC_WaitReady(struct doc_priv *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+ unsigned long timeo = jiffies + (HZ * 10);
+
+ if(debug) printk("_DoC_WaitReady...\n");
+ /* Out-of-line routine to wait for chip response */
+ if (DoC_is_MillenniumPlus(doc)) {
+ while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+ if (time_after(jiffies, timeo)) {
+ printk("_DoC_WaitReady timed out.\n");
+ return -EIO;
+ }
+ udelay(1);
+ cond_resched();
+ }
+ } else {
+ while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+ if (time_after(jiffies, timeo)) {
+ printk("_DoC_WaitReady timed out.\n");
+ return -EIO;
+ }
+ udelay(1);
+ cond_resched();
+ }
+ }
+
+ return 0;
+}
+
+static inline int DoC_WaitReady(struct doc_priv *doc)
+{
+ void __iomem *docptr = doc->virtadr;
+ int ret = 0;
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ DoC_Delay(doc, 4);
+
+ if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK)
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(doc);
+ } else {
+ DoC_Delay(doc, 4);
+
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
+ /* Call the out-of-line routine to wait */
+ ret = _DoC_WaitReady(doc);
+ DoC_Delay(doc, 2);
+ }
+
+ if(debug) printk("DoC_WaitReady OK\n");
+ return ret;
+}
+
+static void doc2000_write_byte(struct mtd_info *mtd, u_char datum)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ if(debug)printk("write_byte %02x\n", datum);
+ WriteDOC(datum, docptr, CDSNSlowIO);
+ WriteDOC(datum, docptr, 2k_CDSN_IO);
+}
+
+static u_char doc2000_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ u_char ret;
+
+ ReadDOC(docptr, CDSNSlowIO);
+ DoC_Delay(doc, 2);
+ ret = ReadDOC(docptr, 2k_CDSN_IO);
+ if (debug) printk("read_byte returns %02x\n", ret);
+ return ret;
+}
+
+static void doc2000_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+ if (debug)printk("writebuf of %d bytes: ", len);
+ for (i=0; i < len; i++) {
+ WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+ if (debug) printk("\n");
+}
+
+static void doc2000_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("readbuf of %d bytes: ", len);
+
+ for (i=0; i < len; i++) {
+ buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i);
+ }
+}
+
+static void doc2000_readbuf_dword(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug) printk("readbuf_dword of %d bytes: ", len);
+
+ if (unlikely((((unsigned long)buf)|len) & 3)) {
+ for (i=0; i < len; i++) {
+ *(uint8_t *)(&buf[i]) = ReadDOC(docptr, 2k_CDSN_IO + i);
+ }
+ } else {
+ for (i=0; i < len; i+=4) {
+ *(uint32_t*)(&buf[i]) = readl(docptr + DoC_2k_CDSN_IO + i);
+ }
+ }
+}
+
+static int doc2000_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ for (i=0; i < len; i++)
+ if (buf[i] != ReadDOC(docptr, 2k_CDSN_IO))
+ return -EFAULT;
+ return 0;
+}
+
+static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ uint16_t ret;
+
+ doc200x_select_chip(mtd, nr);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_READID);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+ this->write_byte(mtd, 0);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+ ret = this->read_byte(mtd) << 8;
+ ret |= this->read_byte(mtd);
+
+ if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) {
+ /* First chip probe. See if we get same results by 32-bit access */
+ union {
+ uint32_t dword;
+ uint8_t byte[4];
+ } ident;
+ void __iomem *docptr = doc->virtadr;
+
+ doc200x_hwcontrol(mtd, NAND_CTL_SETCLE);
+ doc2000_write_byte(mtd, NAND_CMD_READID);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRCLE);
+ doc200x_hwcontrol(mtd, NAND_CTL_SETALE);
+ doc2000_write_byte(mtd, 0);
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRALE);
+
+ ident.dword = readl(docptr + DoC_2k_CDSN_IO);
+ if (((ident.byte[0] << 8) | ident.byte[1]) == ret) {
+ printk(KERN_INFO "DiskOnChip 2000 responds to DWORD access\n");
+ this->read_buf = &doc2000_readbuf_dword;
+ }
+ }
+
+ return ret;
+}
+
+static void __init doc2000_count_chips(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ uint16_t mfrid;
+ int i;
+
+ /* Max 4 chips per floor on DiskOnChip 2000 */
+ doc->chips_per_floor = 4;
+
+ /* Find out what the first chip is */
+ mfrid = doc200x_ident_chip(mtd, 0);
+
+ /* Find how many chips in each floor. */
+ for (i = 1; i < 4; i++) {
+ if (doc200x_ident_chip(mtd, i) != mfrid)
+ break;
+ }
+ doc->chips_per_floor = i;
+ printk(KERN_DEBUG "Detected %d chips per floor.\n", i);
+}
+
+static int doc200x_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+ struct doc_priv *doc = this->priv;
+
+ int status;
+
+ DoC_WaitReady(doc);
+ this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+ DoC_WaitReady(doc);
+ status = (int)this->read_byte(mtd);
+
+ return status;
+}
+
+static void doc2001_write_byte(struct mtd_info *mtd, u_char datum)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ WriteDOC(datum, docptr, CDSNSlowIO);
+ WriteDOC(datum, docptr, Mil_CDSN_IO);
+ WriteDOC(datum, docptr, WritePipeTerm);
+}
+
+static u_char doc2001_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ //ReadDOC(docptr, CDSNSlowIO);
+ /* 11.4.5 -- delay twice to allow extended length cycle */
+ DoC_Delay(doc, 2);
+ ReadDOC(docptr, ReadPipeInit);
+ //return ReadDOC(docptr, Mil_CDSN_IO);
+ return ReadDOC(docptr, LastDataRead);
+}
+
+static void doc2001_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ for (i=0; i < len; i++)
+ WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+ /* Terminate write pipeline */
+ WriteDOC(0x00, docptr, WritePipeTerm);
+}
+
+static void doc2001_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ /* Start read pipeline */
+ ReadDOC(docptr, ReadPipeInit);
+
+ for (i=0; i < len-1; i++)
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff));
+
+ /* Terminate read pipeline */
+ buf[i] = ReadDOC(docptr, LastDataRead);
+}
+
+static int doc2001_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ /* Start read pipeline */
+ ReadDOC(docptr, ReadPipeInit);
+
+ for (i=0; i < len-1; i++)
+ if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+ ReadDOC(docptr, LastDataRead);
+ return i;
+ }
+ if (buf[i] != ReadDOC(docptr, LastDataRead))
+ return i;
+ return 0;
+}
+
+static u_char doc2001plus_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ u_char ret;
+
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ret = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug) printk("read_byte returns %02x\n", ret);
+ return ret;
+}
+
+static void doc2001plus_writebuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("writebuf of %d bytes: ", len);
+ for (i=0; i < len; i++) {
+ WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+ if (debug) printk("\n");
+}
+
+static void doc2001plus_readbuf(struct mtd_info *mtd,
+ u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("readbuf of %d bytes: ", len);
+
+ /* Start read pipeline */
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ for (i=0; i < len-2; i++) {
+ buf[i] = ReadDOC(docptr, Mil_CDSN_IO);
+ if (debug && i < 16)
+ printk("%02x ", buf[i]);
+ }
+
+ /* Terminate read pipeline */
+ buf[len-2] = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug && i < 16)
+ printk("%02x ", buf[len-2]);
+ buf[len-1] = ReadDOC(docptr, Mplus_LastDataRead);
+ if (debug && i < 16)
+ printk("%02x ", buf[len-1]);
+ if (debug) printk("\n");
+}
+
+static int doc2001plus_verifybuf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+
+ if (debug)printk("verifybuf of %d bytes: ", len);
+
+ /* Start read pipeline */
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+ ReadDOC(docptr, Mplus_ReadPipeInit);
+
+ for (i=0; i < len-2; i++)
+ if (buf[i] != ReadDOC(docptr, Mil_CDSN_IO)) {
+ ReadDOC(docptr, Mplus_LastDataRead);
+ ReadDOC(docptr, Mplus_LastDataRead);
+ return i;
+ }
+ if (buf[len-2] != ReadDOC(docptr, Mplus_LastDataRead))
+ return len-2;
+ if (buf[len-1] != ReadDOC(docptr, Mplus_LastDataRead))
+ return len-1;
+ return 0;
+}
+
+static void doc2001plus_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int floor = 0;
+
+ if(debug)printk("select chip (%d)\n", chip);
+
+ if (chip == -1) {
+ /* Disable flash internally */
+ WriteDOC(0, docptr, Mplus_FlashSelect);
+ return;
+ }
+
+ floor = chip / doc->chips_per_floor;
+ chip -= (floor * doc->chips_per_floor);
+
+ /* Assert ChipEnable and deassert WriteProtect */
+ WriteDOC((DOC_FLASH_CE), docptr, Mplus_FlashSelect);
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ doc->curchip = chip;
+ doc->curfloor = floor;
+}
+
+static void doc200x_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int floor = 0;
+
+ if(debug)printk("select chip (%d)\n", chip);
+
+ if (chip == -1)
+ return;
+
+ floor = chip / doc->chips_per_floor;
+ chip -= (floor * doc->chips_per_floor);
+
+ /* 11.4.4 -- deassert CE before changing chip */
+ doc200x_hwcontrol(mtd, NAND_CTL_CLRNCE);
+
+ WriteDOC(floor, docptr, FloorSelect);
+ WriteDOC(chip, docptr, CDSNDeviceSelect);
+
+ doc200x_hwcontrol(mtd, NAND_CTL_SETNCE);
+
+ doc->curchip = chip;
+ doc->curfloor = floor;
+}
+
+static void doc200x_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ switch(cmd) {
+ case NAND_CTL_SETNCE:
+ doc->CDSNControl |= CDSN_CTRL_CE;
+ break;
+ case NAND_CTL_CLRNCE:
+ doc->CDSNControl &= ~CDSN_CTRL_CE;
+ break;
+ case NAND_CTL_SETCLE:
+ doc->CDSNControl |= CDSN_CTRL_CLE;
+ break;
+ case NAND_CTL_CLRCLE:
+ doc->CDSNControl &= ~CDSN_CTRL_CLE;
+ break;
+ case NAND_CTL_SETALE:
+ doc->CDSNControl |= CDSN_CTRL_ALE;
+ break;
+ case NAND_CTL_CLRALE:
+ doc->CDSNControl &= ~CDSN_CTRL_ALE;
+ break;
+ case NAND_CTL_SETWP:
+ doc->CDSNControl |= CDSN_CTRL_WP;
+ break;
+ case NAND_CTL_CLRWP:
+ doc->CDSNControl &= ~CDSN_CTRL_WP;
+ break;
+ }
+ if (debug)printk("hwcontrol(%d): %02x\n", cmd, doc->CDSNControl);
+ WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+ /* 11.4.3 -- 4 NOPs after CSDNControl write */
+ DoC_Delay(doc, 4);
+}
+
+static void doc2001plus_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /*
+ * Must terminate write pipeline before sending any commands
+ * to the device.
+ */
+ if (command == NAND_CMD_PAGEPROG) {
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0x00, docptr, Mplus_WritePipeTerm);
+ }
+
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ WriteDOC(readcmd, docptr, Mplus_FlashCmd);
+ }
+ WriteDOC(command, docptr, Mplus_FlashCmd);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+
+ if (column != -1 || page_addr != -1) {
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ WriteDOC(column, docptr, Mplus_FlashAddress);
+ }
+ if (page_addr != -1) {
+ WriteDOC((unsigned char) (page_addr & 0xff), docptr, Mplus_FlashAddress);
+ WriteDOC((unsigned char) ((page_addr >> 8) & 0xff), docptr, Mplus_FlashAddress);
+ /* One more address cycle for higher density devices */
+ if (this->chipsize & 0x0c000000) {
+ WriteDOC((unsigned char) ((page_addr >> 16) & 0x0f), docptr, Mplus_FlashAddress);
+ printk("high density\n");
+ }
+ }
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ /* deassert ALE */
+ if (command == NAND_CMD_READ0 || command == NAND_CMD_READ1 || command == NAND_CMD_READOOB || command == NAND_CMD_READID)
+ WriteDOC(0, docptr, Mplus_FlashControl);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ WriteDOC(NAND_CMD_STATUS, docptr, Mplus_FlashCmd);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ WriteDOC(0, docptr, Mplus_WritePipeTerm);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+static int doc200x_dev_ready(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ /* 11.4.2 -- must NOP four times before checking FR/B# */
+ DoC_Delay(doc, 4);
+ if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) {
+ if(debug)
+ printk("not ready\n");
+ return 0;
+ }
+ if (debug)printk("was ready\n");
+ return 1;
+ } else {
+ /* 11.4.2 -- must NOP four times before checking FR/B# */
+ DoC_Delay(doc, 4);
+ if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
+ if(debug)
+ printk("not ready\n");
+ return 0;
+ }
+ /* 11.4.2 -- Must NOP twice if it's ready */
+ DoC_Delay(doc, 2);
+ if (debug)printk("was ready\n");
+ return 1;
+ }
+}
+
+static int doc200x_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ /* This is our last resort if we couldn't find or create a BBT. Just
+ pretend all blocks are good. */
+ return 0;
+}
+
+static void doc200x_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /* Prime the ECC engine */
+ switch(mode) {
+ case NAND_ECC_READ:
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, ECCConf);
+ break;
+ case NAND_ECC_WRITE:
+ WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
+ break;
+ }
+}
+
+static void doc2001plus_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+
+ /* Prime the ECC engine */
+ switch(mode) {
+ case NAND_ECC_READ:
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf);
+ break;
+ case NAND_ECC_WRITE:
+ WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf);
+ WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf);
+ break;
+ }
+}
+
+/* This code is only called on write */
+static int doc200x_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
+ unsigned char *ecc_code)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ int i;
+ int emptymatch = 1;
+
+ /* flush the pipeline */
+ if (DoC_is_2000(doc)) {
+ WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(0, docptr, 2k_CDSN_IO);
+ WriteDOC(doc->CDSNControl, docptr, CDSNControl);
+ } else if (DoC_is_MillenniumPlus(doc)) {
+ WriteDOC(0, docptr, Mplus_NOP);
+ WriteDOC(0, docptr, Mplus_NOP);
+ WriteDOC(0, docptr, Mplus_NOP);
+ } else {
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ WriteDOC(0, docptr, NOP);
+ }
+
+ for (i = 0; i < 6; i++) {
+ if (DoC_is_MillenniumPlus(doc))
+ ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+ else
+ ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+ if (ecc_code[i] != empty_write_ecc[i])
+ emptymatch = 0;
+ }
+ if (DoC_is_MillenniumPlus(doc))
+ WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+ else
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+#if 0
+ /* If emptymatch=1, we might have an all-0xff data buffer. Check. */
+ if (emptymatch) {
+ /* Note: this somewhat expensive test should not be triggered
+ often. It could be optimized away by examining the data in
+ the writebuf routine, and remembering the result. */
+ for (i = 0; i < 512; i++) {
+ if (dat[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, we do have an all-0xff data buffer.
+ Return all-0xff ecc value instead of the computed one, so
+ it'll look just like a freshly-erased page. */
+ if (emptymatch) memset(ecc_code, 0xff, 6);
+#endif
+ return 0;
+}
+
+static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ int i, ret = 0;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ void __iomem *docptr = doc->virtadr;
+ volatile u_char dummy;
+ int emptymatch = 1;
+
+ /* flush the pipeline */
+ if (DoC_is_2000(doc)) {
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ dummy = ReadDOC(docptr, 2k_ECCStatus);
+ } else if (DoC_is_MillenniumPlus(doc)) {
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ dummy = ReadDOC(docptr, Mplus_ECCConf);
+ } else {
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+ dummy = ReadDOC(docptr, ECCConf);
+ }
+
+ /* Error occured ? */
+ if (dummy & 0x80) {
+ for (i = 0; i < 6; i++) {
+ if (DoC_is_MillenniumPlus(doc))
+ calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i);
+ else
+ calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i);
+ if (calc_ecc[i] != empty_read_syndrome[i])
+ emptymatch = 0;
+ }
+ /* If emptymatch=1, the read syndrome is consistent with an
+ all-0xff data and stored ecc block. Check the stored ecc. */
+ if (emptymatch) {
+ for (i = 0; i < 6; i++) {
+ if (read_ecc[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, check the data block. */
+ if (emptymatch) {
+ /* Note: this somewhat expensive test should not be triggered
+ often. It could be optimized away by examining the data in
+ the readbuf routine, and remembering the result. */
+ for (i = 0; i < 512; i++) {
+ if (dat[i] == 0xff) continue;
+ emptymatch = 0;
+ break;
+ }
+ }
+ /* If emptymatch still =1, this is almost certainly a freshly-
+ erased block, in which case the ECC will not come out right.
+ We'll suppress the error and tell the caller everything's
+ OK. Because it is. */
+ if (!emptymatch) ret = doc_ecc_decode (rs_decoder, dat, calc_ecc);
+ if (ret > 0)
+ printk(KERN_ERR "doc200x_correct_data corrected %d errors\n", ret);
+ }
+ if (DoC_is_MillenniumPlus(doc))
+ WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
+ else
+ WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
+ if (no_ecc_failures && (ret == -1)) {
+ printk(KERN_ERR "suppressing ECC failure\n");
+ ret = 0;
+ }
+ return ret;
+}
+
+//u_char mydatabuf[528];
+
+static struct nand_oobinfo doc200x_oobinfo = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 4, 5},
+ .oobfree = { {8, 8} }
+};
+
+/* Find the (I)NFTL Media Header, and optionally also the mirror media header.
+ On sucessful return, buf will contain a copy of the media header for
+ further processing. id is the string to scan for, and will presumably be
+ either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media
+ header. The page #s of the found media headers are placed in mh0_page and
+ mh1_page in the DOC private structure. */
+static int __init find_media_headers(struct mtd_info *mtd, u_char *buf,
+ const char *id, int findmirror)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ unsigned offs, end = (MAX_MEDIAHEADER_SCAN << this->phys_erase_shift);
+ int ret;
+ size_t retlen;
+
+ end = min(end, mtd->size); // paranoia
+ for (offs = 0; offs < end; offs += mtd->erasesize) {
+ ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+ if (retlen != mtd->oobblock) continue;
+ if (ret) {
+ printk(KERN_WARNING "ECC error scanning DOC at 0x%x\n",
+ offs);
+ }
+ if (memcmp(buf, id, 6)) continue;
+ printk(KERN_INFO "Found DiskOnChip %s Media Header at 0x%x\n", id, offs);
+ if (doc->mh0_page == -1) {
+ doc->mh0_page = offs >> this->page_shift;
+ if (!findmirror) return 1;
+ continue;
+ }
+ doc->mh1_page = offs >> this->page_shift;
+ return 2;
+ }
+ if (doc->mh0_page == -1) {
+ printk(KERN_WARNING "DiskOnChip %s Media Header not found.\n", id);
+ return 0;
+ }
+ /* Only one mediaheader was found. We want buf to contain a
+ mediaheader on return, so we'll have to re-read the one we found. */
+ offs = doc->mh0_page << this->page_shift;
+ ret = mtd->read(mtd, offs, mtd->oobblock, &retlen, buf);
+ if (retlen != mtd->oobblock) {
+ /* Insanity. Give up. */
+ printk(KERN_ERR "Read DiskOnChip Media Header once, but can't reread it???\n");
+ return 0;
+ }
+ return 1;
+}
+
+static inline int __init nftl_partscan(struct mtd_info *mtd,
+ struct mtd_partition *parts)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ int ret = 0;
+ u_char *buf;
+ struct NFTLMediaHeader *mh;
+ const unsigned psize = 1 << this->page_shift;
+ unsigned blocks, maxblocks;
+ int offs, numheaders;
+
+ buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+ return 0;
+ }
+ if (!(numheaders=find_media_headers(mtd, buf, "ANAND", 1))) goto out;
+ mh = (struct NFTLMediaHeader *) buf;
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+// if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+ printk(KERN_INFO " DataOrgID = %s\n"
+ " NumEraseUnits = %d\n"
+ " FirstPhysicalEUN = %d\n"
+ " FormattedSize = %d\n"
+ " UnitSizeFactor = %d\n",
+ mh->DataOrgID, mh->NumEraseUnits,
+ mh->FirstPhysicalEUN, mh->FormattedSize,
+ mh->UnitSizeFactor);
+//#endif
+
+ blocks = mtd->size >> this->phys_erase_shift;
+ maxblocks = min(32768U, mtd->erasesize - psize);
+
+ if (mh->UnitSizeFactor == 0x00) {
+ /* Auto-determine UnitSizeFactor. The constraints are:
+ - There can be at most 32768 virtual blocks.
+ - There can be at most (virtual block size - page size)
+ virtual blocks (because MediaHeader+BBT must fit in 1).
+ */
+ mh->UnitSizeFactor = 0xff;
+ while (blocks > maxblocks) {
+ blocks >>= 1;
+ maxblocks = min(32768U, (maxblocks << 1) + psize);
+ mh->UnitSizeFactor--;
+ }
+ printk(KERN_WARNING "UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor);
+ }
+
+ /* NOTE: The lines below modify internal variables of the NAND and MTD
+ layers; variables with have already been configured by nand_scan.
+ Unfortunately, we didn't know before this point what these values
+ should be. Thus, this code is somewhat dependant on the exact
+ implementation of the NAND layer. */
+ if (mh->UnitSizeFactor != 0xff) {
+ this->bbt_erase_shift += (0xff - mh->UnitSizeFactor);
+ mtd->erasesize <<= (0xff - mh->UnitSizeFactor);
+ printk(KERN_INFO "Setting virtual erase size to %d\n", mtd->erasesize);
+ blocks = mtd->size >> this->bbt_erase_shift;
+ maxblocks = min(32768U, mtd->erasesize - psize);
+ }
+
+ if (blocks > maxblocks) {
+ printk(KERN_ERR "UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor);
+ goto out;
+ }
+
+ /* Skip past the media headers. */
+ offs = max(doc->mh0_page, doc->mh1_page);
+ offs <<= this->page_shift;
+ offs += mtd->erasesize;
+
+ //parts[0].name = " DiskOnChip Boot / Media Header partition";
+ //parts[0].offset = 0;
+ //parts[0].size = offs;
+
+ parts[0].name = " DiskOnChip BDTL partition";
+ parts[0].offset = offs;
+ parts[0].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift;
+
+ offs += parts[0].size;
+ if (offs < mtd->size) {
+ parts[1].name = " DiskOnChip Remainder partition";
+ parts[1].offset = offs;
+ parts[1].size = mtd->size - offs;
+ ret = 2;
+ goto out;
+ }
+ ret = 1;
+out:
+ kfree(buf);
+ return ret;
+}
+
+/* This is a stripped-down copy of the code in inftlmount.c */
+static inline int __init inftl_partscan(struct mtd_info *mtd,
+ struct mtd_partition *parts)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ int ret = 0;
+ u_char *buf;
+ struct INFTLMediaHeader *mh;
+ struct INFTLPartition *ip;
+ int numparts = 0;
+ int blocks;
+ int vshift, lastvunit = 0;
+ int i;
+ int end = mtd->size;
+
+ if (inftl_bbt_write)
+ end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift);
+
+ buf = kmalloc(mtd->oobblock, GFP_KERNEL);
+ if (!buf) {
+ printk(KERN_ERR "DiskOnChip mediaheader kmalloc failed!\n");
+ return 0;
+ }
+
+ if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out;
+ doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift);
+ mh = (struct INFTLMediaHeader *) buf;
+
+ mh->NoOfBootImageBlocks = le32_to_cpu(mh->NoOfBootImageBlocks);
+ mh->NoOfBinaryPartitions = le32_to_cpu(mh->NoOfBinaryPartitions);
+ mh->NoOfBDTLPartitions = le32_to_cpu(mh->NoOfBDTLPartitions);
+ mh->BlockMultiplierBits = le32_to_cpu(mh->BlockMultiplierBits);
+ mh->FormatFlags = le32_to_cpu(mh->FormatFlags);
+ mh->PercentUsed = le32_to_cpu(mh->PercentUsed);
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+// if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+ printk(KERN_INFO " bootRecordID = %s\n"
+ " NoOfBootImageBlocks = %d\n"
+ " NoOfBinaryPartitions = %d\n"
+ " NoOfBDTLPartitions = %d\n"
+ " BlockMultiplerBits = %d\n"
+ " FormatFlgs = %d\n"
+ " OsakVersion = %d.%d.%d.%d\n"
+ " PercentUsed = %d\n",
+ mh->bootRecordID, mh->NoOfBootImageBlocks,
+ mh->NoOfBinaryPartitions,
+ mh->NoOfBDTLPartitions,
+ mh->BlockMultiplierBits, mh->FormatFlags,
+ ((unsigned char *) &mh->OsakVersion)[0] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[1] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[2] & 0xf,
+ ((unsigned char *) &mh->OsakVersion)[3] & 0xf,
+ mh->PercentUsed);
+//#endif
+
+ vshift = this->phys_erase_shift + mh->BlockMultiplierBits;
+
+ blocks = mtd->size >> vshift;
+ if (blocks > 32768) {
+ printk(KERN_ERR "BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits);
+ goto out;
+ }
+
+ blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift);
+ if (inftl_bbt_write && (blocks > mtd->erasesize)) {
+ printk(KERN_ERR "Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n");
+ goto out;
+ }
+
+ /* Scan the partitions */
+ for (i = 0; (i < 4); i++) {
+ ip = &(mh->Partitions[i]);
+ ip->virtualUnits = le32_to_cpu(ip->virtualUnits);
+ ip->firstUnit = le32_to_cpu(ip->firstUnit);
+ ip->lastUnit = le32_to_cpu(ip->lastUnit);
+ ip->flags = le32_to_cpu(ip->flags);
+ ip->spareUnits = le32_to_cpu(ip->spareUnits);
+ ip->Reserved0 = le32_to_cpu(ip->Reserved0);
+
+//#ifdef CONFIG_MTD_DEBUG_VERBOSE
+// if (CONFIG_MTD_DEBUG_VERBOSE >= 2)
+ printk(KERN_INFO " PARTITION[%d] ->\n"
+ " virtualUnits = %d\n"
+ " firstUnit = %d\n"
+ " lastUnit = %d\n"
+ " flags = 0x%x\n"
+ " spareUnits = %d\n",
+ i, ip->virtualUnits, ip->firstUnit,
+ ip->lastUnit, ip->flags,
+ ip->spareUnits);
+//#endif
+
+/*
+ if ((i == 0) && (ip->firstUnit > 0)) {
+ parts[0].name = " DiskOnChip IPL / Media Header partition";
+ parts[0].offset = 0;
+ parts[0].size = mtd->erasesize * ip->firstUnit;
+ numparts = 1;
+ }
+*/
+
+ if (ip->flags & INFTL_BINARY)
+ parts[numparts].name = " DiskOnChip BDK partition";
+ else
+ parts[numparts].name = " DiskOnChip BDTL partition";
+ parts[numparts].offset = ip->firstUnit << vshift;
+ parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift;
+ numparts++;
+ if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit;
+ if (ip->flags & INFTL_LAST) break;
+ }
+ lastvunit++;
+ if ((lastvunit << vshift) < end) {
+ parts[numparts].name = " DiskOnChip Remainder partition";
+ parts[numparts].offset = lastvunit << vshift;
+ parts[numparts].size = end - parts[numparts].offset;
+ numparts++;
+ }
+ ret = numparts;
+out:
+ kfree(buf);
+ return ret;
+}
+
+static int __init nftl_scan_bbt(struct mtd_info *mtd)
+{
+ int ret, numparts;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ struct mtd_partition parts[2];
+
+ memset((char *) parts, 0, sizeof(parts));
+ /* On NFTL, we have to find the media headers before we can read the
+ BBTs, since they're stored in the media header eraseblocks. */
+ numparts = nftl_partscan(mtd, parts);
+ if (!numparts) return -EIO;
+ this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+ NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+ NAND_BBT_VERSION;
+ this->bbt_td->veroffs = 7;
+ this->bbt_td->pages[0] = doc->mh0_page + 1;
+ if (doc->mh1_page != -1) {
+ this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT |
+ NAND_BBT_SAVECONTENT | NAND_BBT_WRITE |
+ NAND_BBT_VERSION;
+ this->bbt_md->veroffs = 7;
+ this->bbt_md->pages[0] = doc->mh1_page + 1;
+ } else {
+ this->bbt_md = NULL;
+ }
+
+ /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+ At least as nand_bbt.c is currently written. */
+ if ((ret = nand_scan_bbt(mtd, NULL)))
+ return ret;
+ add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+ if (!no_autopart)
+ add_mtd_partitions(mtd, parts, numparts);
+#endif
+ return 0;
+}
+
+static int __init inftl_scan_bbt(struct mtd_info *mtd)
+{
+ int ret, numparts;
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+ struct mtd_partition parts[5];
+
+ if (this->numchips > doc->chips_per_floor) {
+ printk(KERN_ERR "Multi-floor INFTL devices not yet supported.\n");
+ return -EIO;
+ }
+
+ if (DoC_is_MillenniumPlus(doc)) {
+ this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE;
+ if (inftl_bbt_write)
+ this->bbt_td->options |= NAND_BBT_WRITE;
+ this->bbt_td->pages[0] = 2;
+ this->bbt_md = NULL;
+ } else {
+ this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+ NAND_BBT_VERSION;
+ if (inftl_bbt_write)
+ this->bbt_td->options |= NAND_BBT_WRITE;
+ this->bbt_td->offs = 8;
+ this->bbt_td->len = 8;
+ this->bbt_td->veroffs = 7;
+ this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+ this->bbt_td->reserved_block_code = 0x01;
+ this->bbt_td->pattern = "MSYS_BBT";
+
+ this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT |
+ NAND_BBT_VERSION;
+ if (inftl_bbt_write)
+ this->bbt_md->options |= NAND_BBT_WRITE;
+ this->bbt_md->offs = 8;
+ this->bbt_md->len = 8;
+ this->bbt_md->veroffs = 7;
+ this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS;
+ this->bbt_md->reserved_block_code = 0x01;
+ this->bbt_md->pattern = "TBB_SYSM";
+ }
+
+ /* It's safe to set bd=NULL below because NAND_BBT_CREATE is not set.
+ At least as nand_bbt.c is currently written. */
+ if ((ret = nand_scan_bbt(mtd, NULL)))
+ return ret;
+ memset((char *) parts, 0, sizeof(parts));
+ numparts = inftl_partscan(mtd, parts);
+ /* At least for now, require the INFTL Media Header. We could probably
+ do without it for non-INFTL use, since all it gives us is
+ autopartitioning, but I want to give it more thought. */
+ if (!numparts) return -EIO;
+ add_mtd_device(mtd);
+#ifdef CONFIG_MTD_PARTITIONS
+ if (!no_autopart)
+ add_mtd_partitions(mtd, parts, numparts);
+#endif
+ return 0;
+}
+
+static inline int __init doc2000_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = doc2000_write_byte;
+ this->read_byte = doc2000_read_byte;
+ this->write_buf = doc2000_writebuf;
+ this->read_buf = doc2000_readbuf;
+ this->verify_buf = doc2000_verifybuf;
+ this->scan_bbt = nftl_scan_bbt;
+
+ doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO;
+ doc2000_count_chips(mtd);
+ mtd->name = "DiskOnChip 2000 (NFTL Model)";
+ return (4 * doc->chips_per_floor);
+}
+
+static inline int __init doc2001_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = doc2001_write_byte;
+ this->read_byte = doc2001_read_byte;
+ this->write_buf = doc2001_writebuf;
+ this->read_buf = doc2001_readbuf;
+ this->verify_buf = doc2001_verifybuf;
+
+ ReadDOC(doc->virtadr, ChipID);
+ ReadDOC(doc->virtadr, ChipID);
+ ReadDOC(doc->virtadr, ChipID);
+ if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) {
+ /* It's not a Millennium; it's one of the newer
+ DiskOnChip 2000 units with a similar ASIC.
+ Treat it like a Millennium, except that it
+ can have multiple chips. */
+ doc2000_count_chips(mtd);
+ mtd->name = "DiskOnChip 2000 (INFTL Model)";
+ this->scan_bbt = inftl_scan_bbt;
+ return (4 * doc->chips_per_floor);
+ } else {
+ /* Bog-standard Millennium */
+ doc->chips_per_floor = 1;
+ mtd->name = "DiskOnChip Millennium";
+ this->scan_bbt = nftl_scan_bbt;
+ return 1;
+ }
+}
+
+static inline int __init doc2001plus_init(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ struct doc_priv *doc = this->priv;
+
+ this->write_byte = NULL;
+ this->read_byte = doc2001plus_read_byte;
+ this->write_buf = doc2001plus_writebuf;
+ this->read_buf = doc2001plus_readbuf;
+ this->verify_buf = doc2001plus_verifybuf;
+ this->scan_bbt = inftl_scan_bbt;
+ this->hwcontrol = NULL;
+ this->select_chip = doc2001plus_select_chip;
+ this->cmdfunc = doc2001plus_command;
+ this->enable_hwecc = doc2001plus_enable_hwecc;
+
+ doc->chips_per_floor = 1;
+ mtd->name = "DiskOnChip Millennium Plus";
+
+ return 1;
+}
+
+static inline int __init doc_probe(unsigned long physadr)
+{
+ unsigned char ChipID;
+ struct mtd_info *mtd;
+ struct nand_chip *nand;
+ struct doc_priv *doc;
+ void __iomem *virtadr;
+ unsigned char save_control;
+ unsigned char tmp, tmpb, tmpc;
+ int reg, len, numchips;
+ int ret = 0;
+
+ virtadr = ioremap(physadr, DOC_IOREMAP_LEN);
+ if (!virtadr) {
+ printk(KERN_ERR "Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr);
+ return -EIO;
+ }
+
+ /* It's not possible to cleanly detect the DiskOnChip - the
+ * bootup procedure will put the device into reset mode, and
+ * it's not possible to talk to it without actually writing
+ * to the DOCControl register. So we store the current contents
+ * of the DOCControl register's location, in case we later decide
+ * that it's not a DiskOnChip, and want to put it back how we
+ * found it.
+ */
+ save_control = ReadDOC(virtadr, DOCControl);
+
+ /* Reset the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ virtadr, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET,
+ virtadr, DOCControl);
+
+ /* Enable the DiskOnChip ASIC */
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ virtadr, DOCControl);
+ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL,
+ virtadr, DOCControl);
+
+ ChipID = ReadDOC(virtadr, ChipID);
+
+ switch(ChipID) {
+ case DOC_ChipID_Doc2k:
+ reg = DoC_2k_ECCStatus;
+ break;
+ case DOC_ChipID_DocMil:
+ reg = DoC_ECCConf;
+ break;
+ case DOC_ChipID_DocMilPlus16:
+ case DOC_ChipID_DocMilPlus32:
+ case 0:
+ /* Possible Millennium Plus, need to do more checks */
+ /* Possibly release from power down mode */
+ for (tmp = 0; (tmp < 4); tmp++)
+ ReadDOC(virtadr, Mplus_Power);
+
+ /* Reset the Millennium Plus ASIC */
+ tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, virtadr, Mplus_DOCControl);
+ WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+
+ mdelay(1);
+ /* Enable the Millennium Plus ASIC */
+ tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT |
+ DOC_MODE_BDECT;
+ WriteDOC(tmp, virtadr, Mplus_DOCControl);
+ WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm);
+ mdelay(1);
+
+ ChipID = ReadDOC(virtadr, ChipID);
+
+ switch (ChipID) {
+ case DOC_ChipID_DocMilPlus16:
+ reg = DoC_Mplus_Toggle;
+ break;
+ case DOC_ChipID_DocMilPlus32:
+ printk(KERN_ERR "DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n");
+ default:
+ ret = -ENODEV;
+ goto notfound;
+ }
+ break;
+
+ default:
+ ret = -ENODEV;
+ goto notfound;
+ }
+ /* Check the TOGGLE bit in the ECC register */
+ tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT;
+ if ((tmp == tmpb) || (tmp != tmpc)) {
+ printk(KERN_WARNING "Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr);
+ ret = -ENODEV;
+ goto notfound;
+ }
+
+ for (mtd = doclist; mtd; mtd = doc->nextdoc) {
+ unsigned char oldval;
+ unsigned char newval;
+ nand = mtd->priv;
+ doc = nand->priv;
+ /* Use the alias resolution register to determine if this is
+ in fact the same DOC aliased to a new address. If writes
+ to one chip's alias resolution register change the value on
+ the other chip, they're the same chip. */
+ if (ChipID == DOC_ChipID_DocMilPlus16) {
+ oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+ newval = ReadDOC(virtadr, Mplus_AliasResolution);
+ } else {
+ oldval = ReadDOC(doc->virtadr, AliasResolution);
+ newval = ReadDOC(virtadr, AliasResolution);
+ }
+ if (oldval != newval)
+ continue;
+ if (ChipID == DOC_ChipID_DocMilPlus16) {
+ WriteDOC(~newval, virtadr, Mplus_AliasResolution);
+ oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution);
+ WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it
+ } else {
+ WriteDOC(~newval, virtadr, AliasResolution);
+ oldval = ReadDOC(doc->virtadr, AliasResolution);
+ WriteDOC(newval, virtadr, AliasResolution); // restore it
+ }
+ newval = ~newval;
+ if (oldval == newval) {
+ printk(KERN_DEBUG "Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr);
+ goto notfound;
+ }
+ }
+
+ printk(KERN_NOTICE "DiskOnChip found at 0x%lx\n", physadr);
+
+ len = sizeof(struct mtd_info) +
+ sizeof(struct nand_chip) +
+ sizeof(struct doc_priv) +
+ (2 * sizeof(struct nand_bbt_descr));
+ mtd = kmalloc(len, GFP_KERNEL);
+ if (!mtd) {
+ printk(KERN_ERR "DiskOnChip kmalloc (%d bytes) failed!\n", len);
+ ret = -ENOMEM;
+ goto fail;
+ }
+ memset(mtd, 0, len);
+
+ nand = (struct nand_chip *) (mtd + 1);
+ doc = (struct doc_priv *) (nand + 1);
+ nand->bbt_td = (struct nand_bbt_descr *) (doc + 1);
+ nand->bbt_md = nand->bbt_td + 1;
+
+ mtd->priv = nand;
+ mtd->owner = THIS_MODULE;
+
+ nand->priv = doc;
+ nand->select_chip = doc200x_select_chip;
+ nand->hwcontrol = doc200x_hwcontrol;
+ nand->dev_ready = doc200x_dev_ready;
+ nand->waitfunc = doc200x_wait;
+ nand->block_bad = doc200x_block_bad;
+ nand->enable_hwecc = doc200x_enable_hwecc;
+ nand->calculate_ecc = doc200x_calculate_ecc;
+ nand->correct_data = doc200x_correct_data;
+
+ nand->autooob = &doc200x_oobinfo;
+ nand->eccmode = NAND_ECC_HW6_512;
+ nand->options = NAND_USE_FLASH_BBT | NAND_HWECC_SYNDROME;
+
+ doc->physadr = physadr;
+ doc->virtadr = virtadr;
+ doc->ChipID = ChipID;
+ doc->curfloor = -1;
+ doc->curchip = -1;
+ doc->mh0_page = -1;
+ doc->mh1_page = -1;
+ doc->nextdoc = doclist;
+
+ if (ChipID == DOC_ChipID_Doc2k)
+ numchips = doc2000_init(mtd);
+ else if (ChipID == DOC_ChipID_DocMilPlus16)
+ numchips = doc2001plus_init(mtd);
+ else
+ numchips = doc2001_init(mtd);
+
+ if ((ret = nand_scan(mtd, numchips))) {
+ /* DBB note: i believe nand_release is necessary here, as
+ buffers may have been allocated in nand_base. Check with
+ Thomas. FIX ME! */
+ /* nand_release will call del_mtd_device, but we haven't yet
+ added it. This is handled without incident by
+ del_mtd_device, as far as I can tell. */
+ nand_release(mtd);
+ kfree(mtd);
+ goto fail;
+ }
+
+ /* Success! */
+ doclist = mtd;
+ return 0;
+
+notfound:
+ /* Put back the contents of the DOCControl register, in case it's not
+ actually a DiskOnChip. */
+ WriteDOC(save_control, virtadr, DOCControl);
+fail:
+ iounmap(virtadr);
+ return ret;
+}
+
+static void release_nanddoc(void)
+{
+ struct mtd_info *mtd, *nextmtd;
+ struct nand_chip *nand;
+ struct doc_priv *doc;
+
+ for (mtd = doclist; mtd; mtd = nextmtd) {
+ nand = mtd->priv;
+ doc = nand->priv;
+
+ nextmtd = doc->nextdoc;
+ nand_release(mtd);
+ iounmap(doc->virtadr);
+ kfree(mtd);
+ }
+}
+
+static int __init init_nanddoc(void)
+{
+ int i, ret = 0;
+
+ /* We could create the decoder on demand, if memory is a concern.
+ * This way we have it handy, if an error happens
+ *
+ * Symbolsize is 10 (bits)
+ * Primitve polynomial is x^10+x^3+1
+ * first consecutive root is 510
+ * primitve element to generate roots = 1
+ * generator polinomial degree = 4
+ */
+ rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS);
+ if (!rs_decoder) {
+ printk (KERN_ERR "DiskOnChip: Could not create a RS decoder\n");
+ return -ENOMEM;
+ }
+
+ if (doc_config_location) {
+ printk(KERN_INFO "Using configured DiskOnChip probe address 0x%lx\n", doc_config_location);
+ ret = doc_probe(doc_config_location);
+ if (ret < 0)
+ goto outerr;
+ } else {
+ for (i=0; (doc_locations[i] != 0xffffffff); i++) {
+ doc_probe(doc_locations[i]);
+ }
+ }
+ /* No banner message any more. Print a message if no DiskOnChip
+ found, so the user knows we at least tried. */
+ if (!doclist) {
+ printk(KERN_INFO "No valid DiskOnChip devices found\n");
+ ret = -ENODEV;
+ goto outerr;
+ }
+ return 0;
+outerr:
+ free_rs(rs_decoder);
+ return ret;
+}
+
+static void __exit cleanup_nanddoc(void)
+{
+ /* Cleanup the nand/DoC resources */
+ release_nanddoc();
+
+ /* Free the reed solomon resources */
+ if (rs_decoder) {
+ free_rs(rs_decoder);
+ }
+}
+
+module_init(init_nanddoc);
+module_exit(cleanup_nanddoc);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
+MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver\n");
diff --git a/drivers/mtd/nand/edb7312.c b/drivers/mtd/nand/edb7312.c
new file mode 100644
index 00000000000..5549681ccdc
--- /dev/null
+++ b/drivers/mtd/nand/edb7312.c
@@ -0,0 +1,218 @@
+/*
+ * drivers/mtd/nand/edb7312.c
+ *
+ * Copyright (C) 2002 Marius Gröger (mag@sysgo.de)
+ *
+ * Derived from drivers/mtd/nand/autcpu12.c
+ * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ * $Id: edb7312.c,v 1.11 2004/11/04 12:53:10 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the NAND flash device found on the
+ * CLEP7312 board which utilizes the Toshiba TC58V64AFT part. This is
+ * a 64Mibit (8MiB x 8 bits) NAND flash device.
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <asm/arch/hardware.h> /* for CLPS7111_VIRT_BASE */
+#include <asm/sizes.h>
+#include <asm/hardware/clps7111.h>
+
+/*
+ * MTD structure for EDB7312 board
+ */
+static struct mtd_info *ep7312_mtd = NULL;
+
+/*
+ * Values specific to the EDB7312 board (used with EP7312 processor)
+ */
+#define EP7312_FIO_PBASE 0x10000000 /* Phys address of flash */
+#define EP7312_PXDR 0x0001 /*
+ * IO offset to Port B data register
+ * where the CLE, ALE and NCE pins
+ * are wired to.
+ */
+#define EP7312_PXDDR 0x0041 /*
+ * IO offset to Port B data direction
+ * register so we can control the IO
+ * lines.
+ */
+
+/*
+ * Module stuff
+ */
+
+static unsigned long ep7312_fio_pbase = EP7312_FIO_PBASE;
+static void __iomem * ep7312_pxdr = (void __iomem *) EP7312_PXDR;
+static void __iomem * ep7312_pxddr = (void __iomem *) EP7312_PXDDR;
+
+#ifdef CONFIG_MTD_PARTITIONS
+/*
+ * Define static partitions for flash device
+ */
+static struct mtd_partition partition_info[] = {
+ { .name = "EP7312 Nand Flash",
+ .offset = 0,
+ .size = 8*1024*1024 }
+};
+#define NUM_PARTITIONS 1
+
+#endif
+
+
+/*
+ * hardware specific access to control-lines
+ */
+static void ep7312_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ switch(cmd) {
+
+ case NAND_CTL_SETCLE:
+ clps_writeb(clps_readb(ep7312_pxdr) | 0x10, ep7312_pxdr);
+ break;
+ case NAND_CTL_CLRCLE:
+ clps_writeb(clps_readb(ep7312_pxdr) & ~0x10, ep7312_pxdr);
+ break;
+
+ case NAND_CTL_SETALE:
+ clps_writeb(clps_readb(ep7312_pxdr) | 0x20, ep7312_pxdr);
+ break;
+ case NAND_CTL_CLRALE:
+ clps_writeb(clps_readb(ep7312_pxdr) & ~0x20, ep7312_pxdr);
+ break;
+
+ case NAND_CTL_SETNCE:
+ clps_writeb((clps_readb(ep7312_pxdr) | 0x80) & ~0x40, ep7312_pxdr);
+ break;
+ case NAND_CTL_CLRNCE:
+ clps_writeb((clps_readb(ep7312_pxdr) | 0x80) | 0x40, ep7312_pxdr);
+ break;
+ }
+}
+
+/*
+ * read device ready pin
+ */
+static int ep7312_device_ready(struct mtd_info *mtd)
+{
+ return 1;
+}
+#ifdef CONFIG_MTD_PARTITIONS
+const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
+
+/*
+ * Main initialization routine
+ */
+static int __init ep7312_init (void)
+{
+ struct nand_chip *this;
+ const char *part_type = 0;
+ int mtd_parts_nb = 0;
+ struct mtd_partition *mtd_parts = 0;
+ void __iomem * ep7312_fio_base;
+
+ /* Allocate memory for MTD device structure and private data */
+ ep7312_mtd = kmalloc(sizeof(struct mtd_info) +
+ sizeof(struct nand_chip),
+ GFP_KERNEL);
+ if (!ep7312_mtd) {
+ printk("Unable to allocate EDB7312 NAND MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* map physical adress */
+ ep7312_fio_base = ioremap(ep7312_fio_pbase, SZ_1K);
+ if(!ep7312_fio_base) {
+ printk("ioremap EDB7312 NAND flash failed\n");
+ kfree(ep7312_mtd);
+ return -EIO;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&ep7312_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) ep7312_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ ep7312_mtd->priv = this;
+
+ /*
+ * Set GPIO Port B control register so that the pins are configured
+ * to be outputs for controlling the NAND flash.
+ */
+ clps_writeb(0xf0, ep7312_pxddr);
+
+ /* insert callbacks */
+ this->IO_ADDR_R = ep7312_fio_base;
+ this->IO_ADDR_W = ep7312_fio_base;
+ this->hwcontrol = ep7312_hwcontrol;
+ this->dev_ready = ep7312_device_ready;
+ /* 15 us command delay time */
+ this->chip_delay = 15;
+
+ /* Scan to find existence of the device */
+ if (nand_scan (ep7312_mtd, 1)) {
+ iounmap((void *)ep7312_fio_base);
+ kfree (ep7312_mtd);
+ return -ENXIO;
+ }
+
+#ifdef CONFIG_MTD_PARTITIONS
+ ep7312_mtd->name = "edb7312-nand";
+ mtd_parts_nb = parse_mtd_partitions(ep7312_mtd, part_probes,
+ &mtd_parts, 0);
+ if (mtd_parts_nb > 0)
+ part_type = "command line";
+ else
+ mtd_parts_nb = 0;
+#endif
+ if (mtd_parts_nb == 0) {
+ mtd_parts = partition_info;
+ mtd_parts_nb = NUM_PARTITIONS;
+ part_type = "static";
+ }
+
+ /* Register the partitions */
+ printk(KERN_NOTICE "Using %s partition definition\n", part_type);
+ add_mtd_partitions(ep7312_mtd, mtd_parts, mtd_parts_nb);
+
+ /* Return happy */
+ return 0;
+}
+module_init(ep7312_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit ep7312_cleanup (void)
+{
+ struct nand_chip *this = (struct nand_chip *) &ep7312_mtd[1];
+
+ /* Release resources, unregister device */
+ nand_release (ap7312_mtd);
+
+ /* Free internal data buffer */
+ kfree (this->data_buf);
+
+ /* Free the MTD device structure */
+ kfree (ep7312_mtd);
+}
+module_exit(ep7312_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Marius Groeger <mag@sysgo.de>");
+MODULE_DESCRIPTION("MTD map driver for Cogent EDB7312 board");
diff --git a/drivers/mtd/nand/h1910.c b/drivers/mtd/nand/h1910.c
new file mode 100644
index 00000000000..3825a7a0900
--- /dev/null
+++ b/drivers/mtd/nand/h1910.c
@@ -0,0 +1,208 @@
+/*
+ * drivers/mtd/nand/h1910.c
+ *
+ * Copyright (C) 2003 Joshua Wise (joshua@joshuawise.com)
+ *
+ * Derived from drivers/mtd/nand/edb7312.c
+ * Copyright (C) 2002 Marius Gröger (mag@sysgo.de)
+ * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ * $Id: h1910.c,v 1.5 2004/11/04 12:53:10 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the NAND flash device found on the
+ * iPAQ h1910 board which utilizes the Samsung K9F2808 part. This is
+ * a 128Mibit (16MiB x 8 bits) NAND flash device.
+ */
+
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <asm/arch/hardware.h> /* for CLPS7111_VIRT_BASE */
+#include <asm/sizes.h>
+#include <asm/arch/h1900-gpio.h>
+#include <asm/arch/ipaq.h>
+
+/*
+ * MTD structure for EDB7312 board
+ */
+static struct mtd_info *h1910_nand_mtd = NULL;
+
+/*
+ * Module stuff
+ */
+
+#ifdef CONFIG_MTD_PARTITIONS
+/*
+ * Define static partitions for flash device
+ */
+static struct mtd_partition partition_info[] = {
+ { name: "h1910 NAND Flash",
+ offset: 0,
+ size: 16*1024*1024 }
+};
+#define NUM_PARTITIONS 1
+
+#endif
+
+
+/*
+ * hardware specific access to control-lines
+ */
+static void h1910_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ struct nand_chip* this = (struct nand_chip *) (mtd->priv);
+
+ switch(cmd) {
+
+ case NAND_CTL_SETCLE:
+ this->IO_ADDR_R |= (1 << 2);
+ this->IO_ADDR_W |= (1 << 2);
+ break;
+ case NAND_CTL_CLRCLE:
+ this->IO_ADDR_R &= ~(1 << 2);
+ this->IO_ADDR_W &= ~(1 << 2);
+ break;
+
+ case NAND_CTL_SETALE:
+ this->IO_ADDR_R |= (1 << 3);
+ this->IO_ADDR_W |= (1 << 3);
+ break;
+ case NAND_CTL_CLRALE:
+ this->IO_ADDR_R &= ~(1 << 3);
+ this->IO_ADDR_W &= ~(1 << 3);
+ break;
+
+ case NAND_CTL_SETNCE:
+ break;
+ case NAND_CTL_CLRNCE:
+ break;
+ }
+}
+
+/*
+ * read device ready pin
+ */
+#if 0
+static int h1910_device_ready(struct mtd_info *mtd)
+{
+ return (GPLR(55) & GPIO_bit(55));
+}
+#endif
+
+/*
+ * Main initialization routine
+ */
+static int __init h1910_init (void)
+{
+ struct nand_chip *this;
+ const char *part_type = 0;
+ int mtd_parts_nb = 0;
+ struct mtd_partition *mtd_parts = 0;
+ void __iomem *nandaddr;
+
+ if (!machine_is_h1900())
+ return -ENODEV;
+
+ nandaddr = __ioremap(0x08000000, 0x1000, 0, 1);
+ if (!nandaddr) {
+ printk("Failed to ioremap nand flash.\n");
+ return -ENOMEM;
+ }
+
+ /* Allocate memory for MTD device structure and private data */
+ h1910_nand_mtd = kmalloc(sizeof(struct mtd_info) +
+ sizeof(struct nand_chip),
+ GFP_KERNEL);
+ if (!h1910_nand_mtd) {
+ printk("Unable to allocate h1910 NAND MTD device structure.\n");
+ iounmap ((void *) nandaddr);
+ return -ENOMEM;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&h1910_nand_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) h1910_nand_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ h1910_nand_mtd->priv = this;
+
+ /*
+ * Enable VPEN
+ */
+ GPSR(37) = GPIO_bit(37);
+
+ /* insert callbacks */
+ this->IO_ADDR_R = nandaddr;
+ this->IO_ADDR_W = nandaddr;
+ this->hwcontrol = h1910_hwcontrol;
+ this->dev_ready = NULL; /* unknown whether that was correct or not so we will just do it like this */
+ /* 15 us command delay time */
+ this->chip_delay = 50;
+ this->eccmode = NAND_ECC_SOFT;
+ this->options = NAND_NO_AUTOINCR;
+
+ /* Scan to find existence of the device */
+ if (nand_scan (h1910_nand_mtd, 1)) {
+ printk(KERN_NOTICE "No NAND device - returning -ENXIO\n");
+ kfree (h1910_nand_mtd);
+ iounmap ((void *) nandaddr);
+ return -ENXIO;
+ }
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+ mtd_parts_nb = parse_cmdline_partitions(h1910_nand_mtd, &mtd_parts,
+ "h1910-nand");
+ if (mtd_parts_nb > 0)
+ part_type = "command line";
+ else
+ mtd_parts_nb = 0;
+#endif
+ if (mtd_parts_nb == 0)
+ {
+ mtd_parts = partition_info;
+ mtd_parts_nb = NUM_PARTITIONS;
+ part_type = "static";
+ }
+
+ /* Register the partitions */
+ printk(KERN_NOTICE "Using %s partition definition\n", part_type);
+ add_mtd_partitions(h1910_nand_mtd, mtd_parts, mtd_parts_nb);
+
+ /* Return happy */
+ return 0;
+}
+module_init(h1910_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit h1910_cleanup (void)
+{
+ struct nand_chip *this = (struct nand_chip *) &h1910_nand_mtd[1];
+
+ /* Release resources, unregister device */
+ nand_release (h1910_nand_mtd);
+
+ /* Release io resource */
+ iounmap ((void *) this->IO_ADDR_W);
+
+ /* Free the MTD device structure */
+ kfree (h1910_nand_mtd);
+}
+module_exit(h1910_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Joshua Wise <joshua at joshuawise dot com>");
+MODULE_DESCRIPTION("NAND flash driver for iPAQ h1910");
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c
new file mode 100644
index 00000000000..44d5b128911
--- /dev/null
+++ b/drivers/mtd/nand/nand_base.c
@@ -0,0 +1,2563 @@
+/*
+ * drivers/mtd/nand.c
+ *
+ * Overview:
+ * This is the generic MTD driver for NAND flash devices. It should be
+ * capable of working with almost all NAND chips currently available.
+ * Basic support for AG-AND chips is provided.
+ *
+ * Additional technical information is available on
+ * http://www.linux-mtd.infradead.org/tech/nand.html
+ *
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ * 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * 02-08-2004 tglx: support for strange chips, which cannot auto increment
+ * pages on read / read_oob
+ *
+ * 03-17-2004 tglx: Check ready before auto increment check. Simon Bayes
+ * pointed this out, as he marked an auto increment capable chip
+ * as NOAUTOINCR in the board driver.
+ * Make reads over block boundaries work too
+ *
+ * 04-14-2004 tglx: first working version for 2k page size chips
+ *
+ * 05-19-2004 tglx: Basic support for Renesas AG-AND chips
+ *
+ * 09-24-2004 tglx: add support for hardware controllers (e.g. ECC) shared
+ * among multiple independend devices. Suggestions and initial patch
+ * from Ben Dooks <ben-mtd@fluff.org>
+ *
+ * Credits:
+ * David Woodhouse for adding multichip support
+ *
+ * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
+ * rework for 2K page size chips
+ *
+ * TODO:
+ * Enable cached programming for 2k page size chips
+ * Check, if mtd->ecctype should be set to MTD_ECC_HW
+ * if we have HW ecc support.
+ * The AG-AND chips have nice features for speed improvement,
+ * which are not supported yet. Read / program 4 pages in one go.
+ *
+ * $Id: nand_base.c,v 1.126 2004/12/13 11:22:25 lavinen Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/delay.h>
+#include <linux/errno.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/interrupt.h>
+#include <linux/bitops.h>
+#include <asm/io.h>
+
+#ifdef CONFIG_MTD_PARTITIONS
+#include <linux/mtd/partitions.h>
+#endif
+
+/* Define default oob placement schemes for large and small page devices */
+static struct nand_oobinfo nand_oob_8 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 3,
+ .eccpos = {0, 1, 2},
+ .oobfree = { {3, 2}, {6, 2} }
+};
+
+static struct nand_oobinfo nand_oob_16 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 6,
+ .eccpos = {0, 1, 2, 3, 6, 7},
+ .oobfree = { {8, 8} }
+};
+
+static struct nand_oobinfo nand_oob_64 = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 24,
+ .eccpos = {
+ 40, 41, 42, 43, 44, 45, 46, 47,
+ 48, 49, 50, 51, 52, 53, 54, 55,
+ 56, 57, 58, 59, 60, 61, 62, 63},
+ .oobfree = { {2, 38} }
+};
+
+/* This is used for padding purposes in nand_write_oob */
+static u_char ffchars[] = {
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
+};
+
+/*
+ * NAND low-level MTD interface functions
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len);
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len);
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len);
+
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf);
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf);
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel);
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf);
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t * retlen);
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs,
+ unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel);
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr);
+static void nand_sync (struct mtd_info *mtd);
+
+/* Some internal functions */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf,
+ struct nand_oobinfo *oobsel, int mode);
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode);
+#else
+#define nand_verify_pages(...) (0)
+#endif
+
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state);
+
+/**
+ * nand_release_device - [GENERIC] release chip
+ * @mtd: MTD device structure
+ *
+ * Deselect, release chip lock and wake up anyone waiting on the device
+ */
+static void nand_release_device (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* De-select the NAND device */
+ this->select_chip(mtd, -1);
+ /* Do we have a hardware controller ? */
+ if (this->controller) {
+ spin_lock(&this->controller->lock);
+ this->controller->active = NULL;
+ spin_unlock(&this->controller->lock);
+ }
+ /* Release the chip */
+ spin_lock (&this->chip_lock);
+ this->state = FL_READY;
+ wake_up (&this->wq);
+ spin_unlock (&this->chip_lock);
+}
+
+/**
+ * nand_read_byte - [DEFAULT] read one byte from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 8bit buswith
+ */
+static u_char nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_byte - [DEFAULT] write one byte to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * Default write function for 8it buswith
+ */
+static void nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writeb(byte, this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith with
+ * endianess conversion
+ */
+static u_char nand_read_byte16(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return (u_char) cpu_to_le16(readw(this->IO_ADDR_R));
+}
+
+/**
+ * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip
+ * @mtd: MTD device structure
+ * @byte: pointer to data byte to write
+ *
+ * Default write function for 16bit buswith with
+ * endianess conversion
+ */
+static void nand_write_byte16(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(le16_to_cpu((u16) byte), this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_word - [DEFAULT] read one word from the chip
+ * @mtd: MTD device structure
+ *
+ * Default read function for 16bit buswith without
+ * endianess conversion
+ */
+static u16 nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_write_word - [DEFAULT] write one word to the chip
+ * @mtd: MTD device structure
+ * @word: data word to write
+ *
+ * Default write function for 16bit buswith without
+ * endianess conversion
+ */
+static void nand_write_word(struct mtd_info *mtd, u16 word)
+{
+ struct nand_chip *this = mtd->priv;
+ writew(word, this->IO_ADDR_W);
+}
+
+/**
+ * nand_select_chip - [DEFAULT] control CE line
+ * @mtd: MTD device structure
+ * @chip: chipnumber to select, -1 for deselect
+ *
+ * Default select function for 1 chip devices.
+ */
+static void nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ switch(chip) {
+ case -1:
+ this->hwcontrol(mtd, NAND_CTL_CLRNCE);
+ break;
+ case 0:
+ this->hwcontrol(mtd, NAND_CTL_SETNCE);
+ break;
+
+ default:
+ BUG();
+ }
+}
+
+/**
+ * nand_write_buf - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 8bit buswith
+ */
+static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ writeb(buf[i], this->IO_ADDR_W);
+}
+
+/**
+ * nand_read_buf - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 8bit buswith
+ */
+static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ buf[i] = readb(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 8bit buswith
+ */
+static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ if (buf[i] != readb(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/**
+ * nand_write_buf16 - [DEFAULT] write buffer to chip
+ * @mtd: MTD device structure
+ * @buf: data buffer
+ * @len: number of bytes to write
+ *
+ * Default write function for 16bit buswith
+ */
+static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ writew(p[i], this->IO_ADDR_W);
+
+}
+
+/**
+ * nand_read_buf16 - [DEFAULT] read chip data into buffer
+ * @mtd: MTD device structure
+ * @buf: buffer to store date
+ * @len: number of bytes to read
+ *
+ * Default read function for 16bit buswith
+ */
+static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ p[i] = readw(this->IO_ADDR_R);
+}
+
+/**
+ * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to compare
+ * @len: number of bytes to compare
+ *
+ * Default verify function for 16bit buswith
+ */
+static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+ u16 *p = (u16 *) buf;
+ len >>= 1;
+
+ for (i=0; i<len; i++)
+ if (p[i] != readw(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/**
+ * nand_block_bad - [DEFAULT] Read bad block marker from the chip
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ *
+ * Check, if the block is bad.
+ */
+static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
+{
+ int page, chipnr, res = 0;
+ struct nand_chip *this = mtd->priv;
+ u16 bad;
+
+ if (getchip) {
+ page = (int)(ofs >> this->page_shift);
+ chipnr = (int)(ofs >> this->chip_shift);
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_READING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+ } else
+ page = (int) ofs;
+
+ if (this->options & NAND_BUSWIDTH_16) {
+ this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask);
+ bad = cpu_to_le16(this->read_word(mtd));
+ if (this->badblockpos & 0x1)
+ bad >>= 1;
+ if ((bad & 0xFF) != 0xff)
+ res = 1;
+ } else {
+ this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask);
+ if (this->read_byte(mtd) != 0xff)
+ res = 1;
+ }
+
+ if (getchip) {
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+ }
+
+ return res;
+}
+
+/**
+ * nand_default_block_markbad - [DEFAULT] mark a block bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ *
+ * This is the default implementation, which can be overridden by
+ * a hardware specific driver.
+*/
+static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *this = mtd->priv;
+ u_char buf[2] = {0, 0};
+ size_t retlen;
+ int block;
+
+ /* Get block number */
+ block = ((int) ofs) >> this->bbt_erase_shift;
+ this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
+
+ /* Do we have a flash based bad block table ? */
+ if (this->options & NAND_USE_FLASH_BBT)
+ return nand_update_bbt (mtd, ofs);
+
+ /* We write two bytes, so we dont have to mess with 16 bit access */
+ ofs += mtd->oobsize + (this->badblockpos & ~0x01);
+ return nand_write_oob (mtd, ofs , 2, &retlen, buf);
+}
+
+/**
+ * nand_check_wp - [GENERIC] check if the chip is write protected
+ * @mtd: MTD device structure
+ * Check, if the device is write protected
+ *
+ * The function expects, that the device is already selected
+ */
+static int nand_check_wp (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Check the WP bit */
+ this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+ return (this->read_byte(mtd) & 0x80) ? 0 : 1;
+}
+
+/**
+ * nand_block_checkbad - [GENERIC] Check if a block is marked bad
+ * @mtd: MTD device structure
+ * @ofs: offset from device start
+ * @getchip: 0, if the chip is already selected
+ * @allowbbt: 1, if its allowed to access the bbt area
+ *
+ * Check, if the block is bad. Either by reading the bad block table or
+ * calling of the scan function.
+ */
+static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt)
+{
+ struct nand_chip *this = mtd->priv;
+
+ if (!this->bbt)
+ return this->block_bad(mtd, ofs, getchip);
+
+ /* Return info from the table */
+ return nand_isbad_bbt (mtd, ofs, allowbbt);
+}
+
+/**
+ * nand_command - [DEFAULT] Send command to NAND device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This function is used for small page
+ * devices (256/512 Bytes per page)
+ */
+static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ this->write_byte(mtd, readcmd);
+ }
+ this->write_byte(mtd, command);
+
+ /* Set ALE and clear CLE to start address cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ this->write_byte(mtd, column);
+ }
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for devices > 32MiB */
+ if (this->chipsize > (32 << 20))
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_command_lp - [DEFAULT] Send command to NAND large page device
+ * @mtd: MTD device structure
+ * @command: the command to be sent
+ * @column: the column address for this command, -1 if none
+ * @page_addr: the page address for this command, -1 if none
+ *
+ * Send command to NAND device. This is the version for the new large page devices
+ * We dont have the seperate regions as we have in the small page devices.
+ * We must emulate NAND_CMD_READOOB to keep the code compatible.
+ *
+ */
+static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Emulate NAND_CMD_READOOB */
+ if (command == NAND_CMD_READOOB) {
+ column += mtd->oobblock;
+ command = NAND_CMD_READ0;
+ }
+
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /* Write out the command to the device. */
+ this->write_byte(mtd, command);
+ /* End command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ this->write_byte(mtd, column & 0xff);
+ this->write_byte(mtd, column >> 8);
+ }
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for devices > 128MiB */
+ if (this->chipsize > (128 << 20))
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_CACHEDPROG:
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ udelay(this->chip_delay);
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ case NAND_CMD_READ0:
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /* Write out the start read command */
+ this->write_byte(mtd, NAND_CMD_READSTART);
+ /* End command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ /* Fall through into ready check */
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+/**
+ * nand_get_device - [GENERIC] Get chip for selected access
+ * @this: the nand chip descriptor
+ * @mtd: MTD device structure
+ * @new_state: the state which is requested
+ *
+ * Get the device and lock it for exclusive access
+ */
+static void nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state)
+{
+ struct nand_chip *active = this;
+
+ DECLARE_WAITQUEUE (wait, current);
+
+ /*
+ * Grab the lock and see if the device is available
+ */
+retry:
+ /* Hardware controller shared among independend devices */
+ if (this->controller) {
+ spin_lock (&this->controller->lock);
+ if (this->controller->active)
+ active = this->controller->active;
+ else
+ this->controller->active = this;
+ spin_unlock (&this->controller->lock);
+ }
+
+ if (active == this) {
+ spin_lock (&this->chip_lock);
+ if (this->state == FL_READY) {
+ this->state = new_state;
+ spin_unlock (&this->chip_lock);
+ return;
+ }
+ }
+ set_current_state (TASK_UNINTERRUPTIBLE);
+ add_wait_queue (&active->wq, &wait);
+ spin_unlock (&active->chip_lock);
+ schedule ();
+ remove_wait_queue (&active->wq, &wait);
+ goto retry;
+}
+
+/**
+ * nand_wait - [DEFAULT] wait until the command is done
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @state: state to select the max. timeout value
+ *
+ * Wait for command done. This applies to erase and program only
+ * Erase can take up to 400ms and program up to 20ms according to
+ * general NAND and SmartMedia specs
+ *
+*/
+static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+
+ unsigned long timeo = jiffies;
+ int status;
+
+ if (state == FL_ERASING)
+ timeo += (HZ * 400) / 1000;
+ else
+ timeo += (HZ * 20) / 1000;
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+
+ if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
+ this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+ else
+ this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1);
+
+ while (time_before(jiffies, timeo)) {
+ /* Check, if we were interrupted */
+ if (this->state != state)
+ return 0;
+
+ if (this->dev_ready) {
+ if (this->dev_ready(mtd))
+ break;
+ } else {
+ if (this->read_byte(mtd) & NAND_STATUS_READY)
+ break;
+ }
+ yield ();
+ }
+ status = (int) this->read_byte(mtd);
+ return status;
+}
+
+/**
+ * nand_write_page - [GENERIC] write one page
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @page: startpage inside the chip, must be called with (page & this->pagemask)
+ * @oob_buf: out of band data buffer
+ * @oobsel: out of band selecttion structre
+ * @cached: 1 = enable cached programming if supported by chip
+ *
+ * Nand_page_program function is used for write and writev !
+ * This function will always program a full page of data
+ * If you call it with a non page aligned buffer, you're lost :)
+ *
+ * Cached programming is not supported yet.
+ */
+static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int cached)
+{
+ int i, status;
+ u_char ecc_code[32];
+ int eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+ int *oob_config = oobsel->eccpos;
+ int datidx = 0, eccidx = 0, eccsteps = this->eccsteps;
+ int eccbytes = 0;
+
+ /* FIXME: Enable cached programming */
+ cached = 0;
+
+ /* Send command to begin auto page programming */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page);
+
+ /* Write out complete page of data, take care of eccmode */
+ switch (eccmode) {
+ /* No ecc, write all */
+ case NAND_ECC_NONE:
+ printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n");
+ this->write_buf(mtd, this->data_poi, mtd->oobblock);
+ break;
+
+ /* Software ecc 3/256, write all */
+ case NAND_ECC_SOFT:
+ for (; eccsteps; eccsteps--) {
+ this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+ for (i = 0; i < 3; i++, eccidx++)
+ oob_buf[oob_config[eccidx]] = ecc_code[i];
+ datidx += this->eccsize;
+ }
+ this->write_buf(mtd, this->data_poi, mtd->oobblock);
+ break;
+ default:
+ eccbytes = this->eccbytes;
+ for (; eccsteps; eccsteps--) {
+ /* enable hardware ecc logic for write */
+ this->enable_hwecc(mtd, NAND_ECC_WRITE);
+ this->write_buf(mtd, &this->data_poi[datidx], this->eccsize);
+ this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code);
+ for (i = 0; i < eccbytes; i++, eccidx++)
+ oob_buf[oob_config[eccidx]] = ecc_code[i];
+ /* If the hardware ecc provides syndromes then
+ * the ecc code must be written immidiately after
+ * the data bytes (words) */
+ if (this->options & NAND_HWECC_SYNDROME)
+ this->write_buf(mtd, ecc_code, eccbytes);
+ datidx += this->eccsize;
+ }
+ break;
+ }
+
+ /* Write out OOB data */
+ if (this->options & NAND_HWECC_SYNDROME)
+ this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes);
+ else
+ this->write_buf(mtd, oob_buf, mtd->oobsize);
+
+ /* Send command to actually program the data */
+ this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1);
+
+ if (!cached) {
+ /* call wait ready function */
+ status = this->waitfunc (mtd, this, FL_WRITING);
+ /* See if device thinks it succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page);
+ return -EIO;
+ }
+ } else {
+ /* FIXME: Implement cached programming ! */
+ /* wait until cache is ready*/
+ // status = this->waitfunc (mtd, this, FL_CACHEDRPG);
+ }
+ return 0;
+}
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+/**
+ * nand_verify_pages - [GENERIC] verify the chip contents after a write
+ * @mtd: MTD device structure
+ * @this: NAND chip structure
+ * @page: startpage inside the chip, must be called with (page & this->pagemask)
+ * @numpages: number of pages to verify
+ * @oob_buf: out of band data buffer
+ * @oobsel: out of band selecttion structre
+ * @chipnr: number of the current chip
+ * @oobmode: 1 = full buffer verify, 0 = ecc only
+ *
+ * The NAND device assumes that it is always writing to a cleanly erased page.
+ * Hence, it performs its internal write verification only on bits that
+ * transitioned from 1 to 0. The device does NOT verify the whole page on a
+ * byte by byte basis. It is possible that the page was not completely erased
+ * or the page is becoming unusable due to wear. The read with ECC would catch
+ * the error later when the ECC page check fails, but we would rather catch
+ * it early in the page write stage. Better to write no data than invalid data.
+ */
+static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages,
+ u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode)
+{
+ int i, j, datidx = 0, oobofs = 0, res = -EIO;
+ int eccsteps = this->eccsteps;
+ int hweccbytes;
+ u_char oobdata[64];
+
+ hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0;
+
+ /* Send command to read back the first page */
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0, page);
+
+ for(;;) {
+ for (j = 0; j < eccsteps; j++) {
+ /* Loop through and verify the data */
+ if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ datidx += mtd->eccsize;
+ /* Have we a hw generator layout ? */
+ if (!hweccbytes)
+ continue;
+ if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ oobofs += hweccbytes;
+ }
+
+ /* check, if we must compare all data or if we just have to
+ * compare the ecc bytes
+ */
+ if (oobmode) {
+ if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page);
+ goto out;
+ }
+ } else {
+ /* Read always, else autoincrement fails */
+ this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps);
+
+ if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) {
+ int ecccnt = oobsel->eccbytes;
+
+ for (i = 0; i < ecccnt; i++) {
+ int idx = oobsel->eccpos[i];
+ if (oobdata[idx] != oob_buf[oobofs + idx] ) {
+ DEBUG (MTD_DEBUG_LEVEL0,
+ "%s: Failed ECC write "
+ "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i);
+ goto out;
+ }
+ }
+ }
+ }
+ oobofs += mtd->oobsize - hweccbytes * eccsteps;
+ page++;
+ numpages--;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ * Do this also before returning, so the chip is
+ * ready for the next command.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* All done, return happy */
+ if (!numpages)
+ return 0;
+
+
+ /* Check, if the chip supports auto page increment */
+ if (!NAND_CANAUTOINCR(this))
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+ }
+ /*
+ * Terminate the read command. We come here in case of an error
+ * So we must issue a reset command.
+ */
+out:
+ this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1);
+ return res;
+}
+#endif
+
+/**
+ * nand_read - [MTD Interface] MTD compability function for nand_read_ecc
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * This function simply calls nand_read_ecc with oob buffer and oobsel = NULL
+*/
+static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+ return nand_read_ecc (mtd, from, len, retlen, buf, NULL, NULL);
+}
+
+
+/**
+ * nand_read_ecc - [MTD Interface] Read data with ECC
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ * @oob_buf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND read with ECC
+ */
+static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len,
+ size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel)
+{
+ int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1;
+ int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0;
+ struct nand_chip *this = mtd->priv;
+ u_char *data_poi, *oob_data = oob_buf;
+ u_char ecc_calc[32];
+ u_char ecc_code[32];
+ int eccmode, eccsteps;
+ int *oob_config, datidx;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+ int eccbytes;
+ int compareecc = 1;
+ int oobreadlen;
+
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n");
+ *retlen = 0;
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd ,FL_READING);
+
+ /* use userspace supplied oobinfo, if zero */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+ oobsel = this->autooob;
+
+ eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE;
+ oob_config = oobsel->eccpos;
+
+ /* Select the NAND device */
+ chipnr = (int)(from >> this->chip_shift);
+ this->select_chip(mtd, chipnr);
+
+ /* First we calculate the starting page */
+ realpage = (int) (from >> this->page_shift);
+ page = realpage & this->pagemask;
+
+ /* Get raw starting column */
+ col = from & (mtd->oobblock - 1);
+
+ end = mtd->oobblock;
+ ecc = this->eccsize;
+ eccbytes = this->eccbytes;
+
+ if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME))
+ compareecc = 0;
+
+ oobreadlen = mtd->oobsize;
+ if (this->options & NAND_HWECC_SYNDROME)
+ oobreadlen -= oobsel->eccbytes;
+
+ /* Loop until all data read */
+ while (read < len) {
+
+ int aligned = (!col && (len - read) >= end);
+ /*
+ * If the read is not page aligned, we have to read into data buffer
+ * due to ecc, else we read into return buffer direct
+ */
+ if (aligned)
+ data_poi = &buf[read];
+ else
+ data_poi = this->data_buf;
+
+ /* Check, if we have this page in the buffer
+ *
+ * FIXME: Make it work when we must provide oob data too,
+ * check the usage of data_buf oob field
+ */
+ if (realpage == this->pagebuf && !oob_buf) {
+ /* aligned read ? */
+ if (aligned)
+ memcpy (data_poi, this->data_buf, end);
+ goto readdata;
+ }
+
+ /* Check, if we must send the read command */
+ if (sndcmd) {
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page);
+ sndcmd = 0;
+ }
+
+ /* get oob area, if we have no oob buffer from fs-driver */
+ if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE)
+ oob_data = &this->data_buf[end];
+
+ eccsteps = this->eccsteps;
+
+ switch (eccmode) {
+ case NAND_ECC_NONE: { /* No ECC, Read in a page */
+ static unsigned long lastwhinge = 0;
+ if ((lastwhinge / HZ) != (jiffies / HZ)) {
+ printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n");
+ lastwhinge = jiffies;
+ }
+ this->read_buf(mtd, data_poi, end);
+ break;
+ }
+
+ case NAND_ECC_SOFT: /* Software ECC 3/256: Read in a page + oob data */
+ this->read_buf(mtd, data_poi, end);
+ for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc)
+ this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+ break;
+
+ default:
+ for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) {
+ this->enable_hwecc(mtd, NAND_ECC_READ);
+ this->read_buf(mtd, &data_poi[datidx], ecc);
+
+ /* HW ecc with syndrome calculation must read the
+ * syndrome from flash immidiately after the data */
+ if (!compareecc) {
+ /* Some hw ecc generators need to know when the
+ * syndrome is read from flash */
+ this->enable_hwecc(mtd, NAND_ECC_READSYN);
+ this->read_buf(mtd, &oob_data[i], eccbytes);
+ /* We calc error correction directly, it checks the hw
+ * generator for an error, reads back the syndrome and
+ * does the error correction on the fly */
+ if (this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]) == -1) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: "
+ "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr);
+ ecc_failed++;
+ }
+ } else {
+ this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]);
+ }
+ }
+ break;
+ }
+
+ /* read oobdata */
+ this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen);
+
+ /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */
+ if (!compareecc)
+ goto readoob;
+
+ /* Pick the ECC bytes out of the oob data */
+ for (j = 0; j < oobsel->eccbytes; j++)
+ ecc_code[j] = oob_data[oob_config[j]];
+
+ /* correct data, if neccecary */
+ for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) {
+ ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]);
+
+ /* Get next chunk of ecc bytes */
+ j += eccbytes;
+
+ /* Check, if we have a fs supplied oob-buffer,
+ * This is the legacy mode. Used by YAFFS1
+ * Should go away some day
+ */
+ if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) {
+ int *p = (int *)(&oob_data[mtd->oobsize]);
+ p[i] = ecc_status;
+ }
+
+ if (ecc_status == -1) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page);
+ ecc_failed++;
+ }
+ }
+
+ readoob:
+ /* check, if we have a fs supplied oob-buffer */
+ if (oob_buf) {
+ /* without autoplace. Legacy mode used by YAFFS1 */
+ switch(oobsel->useecc) {
+ case MTD_NANDECC_AUTOPLACE:
+ /* Walk through the autoplace chunks */
+ for (i = 0, j = 0; j < mtd->oobavail; i++) {
+ int from = oobsel->oobfree[i][0];
+ int num = oobsel->oobfree[i][1];
+ memcpy(&oob_buf[oob], &oob_data[from], num);
+ j+= num;
+ }
+ oob += mtd->oobavail;
+ break;
+ case MTD_NANDECC_PLACE:
+ /* YAFFS1 legacy mode */
+ oob_data += this->eccsteps * sizeof (int);
+ default:
+ oob_data += mtd->oobsize;
+ }
+ }
+ readdata:
+ /* Partial page read, transfer data into fs buffer */
+ if (!aligned) {
+ for (j = col; j < end && read < len; j++)
+ buf[read++] = data_poi[j];
+ this->pagebuf = realpage;
+ } else
+ read += mtd->oobblock;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ if (read == len)
+ break;
+
+ /* For subsequent reads align to page boundary. */
+ col = 0;
+ /* Increment page address */
+ realpage++;
+
+ page = realpage & this->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+ sndcmd = 1;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /*
+ * Return success, if no ECC failures, else -EBADMSG
+ * fs driver will take care of that, because
+ * retlen == desired len and result == -EBADMSG
+ */
+ *retlen = read;
+ return ecc_failed ? -EBADMSG : 0;
+}
+
+/**
+ * nand_read_oob - [MTD Interface] NAND read out-of-band
+ * @mtd: MTD device structure
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @retlen: pointer to variable to store the number of read bytes
+ * @buf: the databuffer to put data
+ *
+ * NAND read out-of-band data from the spare area
+ */
+static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf)
+{
+ int i, col, page, chipnr;
+ struct nand_chip *this = mtd->priv;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len);
+
+ /* Shift to get page */
+ page = (int)(from >> this->page_shift);
+ chipnr = (int)(from >> this->chip_shift);
+
+ /* Mask to get column */
+ col = from & (mtd->oobsize - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n");
+ *retlen = 0;
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd , FL_READING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Send the read command */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask);
+ /*
+ * Read the data, if we read more than one page
+ * oob data, let the device transfer the data !
+ */
+ i = 0;
+ while (i < len) {
+ int thislen = mtd->oobsize - col;
+ thislen = min_t(int, thislen, len);
+ this->read_buf(mtd, &buf[i], thislen);
+ i += thislen;
+
+ /* Apply delay or wait for ready/busy pin
+ * Do this before the AUTOINCR check, so no problems
+ * arise if a chip which does auto increment
+ * is marked as NOAUTOINCR by the board driver.
+ */
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* Read more ? */
+ if (i < len) {
+ page++;
+ col = 0;
+
+ /* Check, if we cross a chip boundary */
+ if (!(page & this->pagemask)) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+
+ /* Check, if the chip supports auto page increment
+ * or if we have hit a block boundary.
+ */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) {
+ /* For subsequent page reads set offset to 0 */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask);
+ }
+ }
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /* Return happy */
+ *retlen = len;
+ return 0;
+}
+
+/**
+ * nand_read_raw - [GENERIC] Read raw data including oob into buffer
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @from: offset to read from
+ * @len: number of bytes to read
+ * @ooblen: number of oob data bytes to read
+ *
+ * Read raw data including oob into buffer
+ */
+int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen)
+{
+ struct nand_chip *this = mtd->priv;
+ int page = (int) (from >> this->page_shift);
+ int chip = (int) (from >> this->chip_shift);
+ int sndcmd = 1;
+ int cnt = 0;
+ int pagesize = mtd->oobblock + mtd->oobsize;
+ int blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1;
+
+ /* Do not allow reads past end of device */
+ if ((from + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd , FL_READING);
+
+ this->select_chip (mtd, chip);
+
+ /* Add requested oob length */
+ len += ooblen;
+
+ while (len) {
+ if (sndcmd)
+ this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask);
+ sndcmd = 0;
+
+ this->read_buf (mtd, &buf[cnt], pagesize);
+
+ len -= pagesize;
+ cnt += pagesize;
+ page++;
+
+ if (!this->dev_ready)
+ udelay (this->chip_delay);
+ else
+ while (!this->dev_ready(mtd));
+
+ /* Check, if the chip supports auto page increment */
+ if (!NAND_CANAUTOINCR(this) || !(page & blockcheck))
+ sndcmd = 1;
+ }
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+ return 0;
+}
+
+
+/**
+ * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer
+ * @mtd: MTD device structure
+ * @fsbuf: buffer given by fs driver
+ * @oobsel: out of band selection structre
+ * @autoplace: 1 = place given buffer into the oob bytes
+ * @numpages: number of pages to prepare
+ *
+ * Return:
+ * 1. Filesystem buffer available and autoplacement is off,
+ * return filesystem buffer
+ * 2. No filesystem buffer or autoplace is off, return internal
+ * buffer
+ * 3. Filesystem buffer is given and autoplace selected
+ * put data from fs buffer into internal buffer and
+ * retrun internal buffer
+ *
+ * Note: The internal buffer is filled with 0xff. This must
+ * be done only once, when no autoplacement happens
+ * Autoplacement sets the buffer dirty flag, which
+ * forces the 0xff fill before using the buffer again.
+ *
+*/
+static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel,
+ int autoplace, int numpages)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, len, ofs;
+
+ /* Zero copy fs supplied buffer */
+ if (fsbuf && !autoplace)
+ return fsbuf;
+
+ /* Check, if the buffer must be filled with ff again */
+ if (this->oobdirty) {
+ memset (this->oob_buf, 0xff,
+ mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+ this->oobdirty = 0;
+ }
+
+ /* If we have no autoplacement or no fs buffer use the internal one */
+ if (!autoplace || !fsbuf)
+ return this->oob_buf;
+
+ /* Walk through the pages and place the data */
+ this->oobdirty = 1;
+ ofs = 0;
+ while (numpages--) {
+ for (i = 0, len = 0; len < mtd->oobavail; i++) {
+ int to = ofs + oobsel->oobfree[i][0];
+ int num = oobsel->oobfree[i][1];
+ memcpy (&this->oob_buf[to], fsbuf, num);
+ len += num;
+ fsbuf += num;
+ }
+ ofs += mtd->oobavail;
+ }
+ return this->oob_buf;
+}
+
+#define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0
+
+/**
+ * nand_write - [MTD Interface] compability function for nand_write_ecc
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL
+ *
+*/
+static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+ return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL));
+}
+
+/**
+ * nand_write_ecc - [MTD Interface] NAND write with ECC
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ * @eccbuf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND write with ECC
+ */
+static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len,
+ size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel)
+{
+ int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr;
+ int autoplace = 0, numpages, totalpages;
+ struct nand_chip *this = mtd->priv;
+ u_char *oobbuf, *bufstart;
+ int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+ /* Initialize retlen, in case of early exit */
+ *retlen = 0;
+
+ /* Do not allow write past end of device */
+ if ((to + len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n");
+ return -EINVAL;
+ }
+
+ /* reject writes, which are not page aligned */
+ if (NOTALIGNED (to) || NOTALIGNED(len)) {
+ printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Calculate chipnr */
+ chipnr = (int)(to >> this->chip_shift);
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* if oobsel is NULL, use chip defaults */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+ oobsel = this->autooob;
+ autoplace = 1;
+ }
+
+ /* Setup variables and oob buffer */
+ totalpages = len >> this->page_shift;
+ page = (int) (to >> this->page_shift);
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page <= this->pagebuf && this->pagebuf < (page + totalpages))
+ this->pagebuf = -1;
+
+ /* Set it relative to chip */
+ page &= this->pagemask;
+ startpage = page;
+ /* Calc number of pages we can write in one go */
+ numpages = min (ppblock - (startpage & (ppblock - 1)), totalpages);
+ oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages);
+ bufstart = (u_char *)buf;
+
+ /* Loop until all data is written */
+ while (written < len) {
+
+ this->data_poi = (u_char*) &buf[written];
+ /* Write one page. If this is the last page to write
+ * or the last page in this block, then use the
+ * real pageprogram command, else select cached programming
+ * if supported by the chip.
+ */
+ ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0));
+ if (ret) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret);
+ goto out;
+ }
+ /* Next oob page */
+ oob += mtd->oobsize;
+ /* Update written bytes count */
+ written += mtd->oobblock;
+ if (written == len)
+ goto cmp;
+
+ /* Increment page address */
+ page++;
+
+ /* Have we hit a block boundary ? Then we have to verify and
+ * if verify is ok, we have to setup the oob buffer for
+ * the next pages.
+ */
+ if (!(page & (ppblock - 1))){
+ int ofs;
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage,
+ page - startpage,
+ oobbuf, oobsel, chipnr, (eccbuf != NULL));
+ if (ret) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+ goto out;
+ }
+ *retlen = written;
+
+ ofs = autoplace ? mtd->oobavail : mtd->oobsize;
+ if (eccbuf)
+ eccbuf += (page - startpage) * ofs;
+ totalpages -= page - startpage;
+ numpages = min (totalpages, ppblock);
+ page &= this->pagemask;
+ startpage = page;
+ oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel,
+ autoplace, numpages);
+ /* Check, if we cross a chip boundary */
+ if (!page) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ }
+ /* Verify the remaining pages */
+cmp:
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage, totalpages,
+ oobbuf, oobsel, chipnr, (eccbuf != NULL));
+ if (!ret)
+ *retlen = written;
+ else
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret);
+
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+
+/**
+ * nand_write_oob - [MTD Interface] NAND write out-of-band
+ * @mtd: MTD device structure
+ * @to: offset to write to
+ * @len: number of bytes to write
+ * @retlen: pointer to variable to store the number of written bytes
+ * @buf: the data to write
+ *
+ * NAND write out-of-band
+ */
+static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf)
+{
+ int column, page, status, ret = -EIO, chipnr;
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len);
+
+ /* Shift to get page */
+ page = (int) (to >> this->page_shift);
+ chipnr = (int) (to >> this->chip_shift);
+
+ /* Mask to get column */
+ column = to & (mtd->oobsize - 1);
+
+ /* Initialize return length value */
+ *retlen = 0;
+
+ /* Do not allow write past end of page */
+ if ((column + len) > mtd->oobsize) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Reset the chip. Some chips (like the Toshiba TC5832DC found
+ in one of my DiskOnChip 2000 test units) will clear the whole
+ data page too if we don't do this. I have no clue why, but
+ I seem to have 'fixed' it in the doc2000 driver in
+ August 1999. dwmw2. */
+ this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page == this->pagebuf)
+ this->pagebuf = -1;
+
+ if (NAND_MUST_PAD(this)) {
+ /* Write out desired data */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask);
+ /* prepad 0xff for partial programming */
+ this->write_buf(mtd, ffchars, column);
+ /* write data */
+ this->write_buf(mtd, buf, len);
+ /* postpad 0xff for partial programming */
+ this->write_buf(mtd, ffchars, mtd->oobsize - (len+column));
+ } else {
+ /* Write out desired data */
+ this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask);
+ /* write data */
+ this->write_buf(mtd, buf, len);
+ }
+ /* Send command to program the OOB data */
+ this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1);
+
+ status = this->waitfunc (mtd, this, FL_WRITING);
+
+ /* See if device thinks it succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page);
+ ret = -EIO;
+ goto out;
+ }
+ /* Return happy */
+ *retlen = len;
+
+#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
+ /* Send command to read back the data */
+ this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask);
+
+ if (this->verify_buf(mtd, buf, len)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page);
+ ret = -EIO;
+ goto out;
+ }
+#endif
+ ret = 0;
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ return ret;
+}
+
+
+/**
+ * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc
+ * @mtd: MTD device structure
+ * @vecs: the iovectors to write
+ * @count: number of vectors
+ * @to: offset to write to
+ * @retlen: pointer to variable to store the number of written bytes
+ *
+ * NAND write with kvec. This just calls the ecc function
+ */
+static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
+ loff_t to, size_t * retlen)
+{
+ return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL));
+}
+
+/**
+ * nand_writev_ecc - [MTD Interface] write with iovec with ecc
+ * @mtd: MTD device structure
+ * @vecs: the iovectors to write
+ * @count: number of vectors
+ * @to: offset to write to
+ * @retlen: pointer to variable to store the number of written bytes
+ * @eccbuf: filesystem supplied oob data buffer
+ * @oobsel: oob selection structure
+ *
+ * NAND write with iovec with ecc
+ */
+static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count,
+ loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel)
+{
+ int i, page, len, total_len, ret = -EIO, written = 0, chipnr;
+ int oob, numpages, autoplace = 0, startpage;
+ struct nand_chip *this = mtd->priv;
+ int ppblock = (1 << (this->phys_erase_shift - this->page_shift));
+ u_char *oobbuf, *bufstart;
+
+ /* Preset written len for early exit */
+ *retlen = 0;
+
+ /* Calculate total length of data */
+ total_len = 0;
+ for (i = 0; i < count; i++)
+ total_len += (int) vecs[i].iov_len;
+
+ DEBUG (MTD_DEBUG_LEVEL3,
+ "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count);
+
+ /* Do not allow write past end of page */
+ if ((to + total_len) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n");
+ return -EINVAL;
+ }
+
+ /* reject writes, which are not page aligned */
+ if (NOTALIGNED (to) || NOTALIGNED(total_len)) {
+ printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n");
+ return -EINVAL;
+ }
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_WRITING);
+
+ /* Get the current chip-nr */
+ chipnr = (int) (to >> this->chip_shift);
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd))
+ goto out;
+
+ /* if oobsel is NULL, use chip defaults */
+ if (oobsel == NULL)
+ oobsel = &mtd->oobinfo;
+
+ /* Autoplace of oob data ? Use the default placement scheme */
+ if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) {
+ oobsel = this->autooob;
+ autoplace = 1;
+ }
+
+ /* Setup start page */
+ page = (int) (to >> this->page_shift);
+ /* Invalidate the page cache, if we write to the cached page */
+ if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift))
+ this->pagebuf = -1;
+
+ startpage = page & this->pagemask;
+
+ /* Loop until all kvec' data has been written */
+ len = 0;
+ while (count) {
+ /* If the given tuple is >= pagesize then
+ * write it out from the iov
+ */
+ if ((vecs->iov_len - len) >= mtd->oobblock) {
+ /* Calc number of pages we can write
+ * out of this iov in one go */
+ numpages = (vecs->iov_len - len) >> this->page_shift;
+ /* Do not cross block boundaries */
+ numpages = min (ppblock - (startpage & (ppblock - 1)), numpages);
+ oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+ bufstart = (u_char *)vecs->iov_base;
+ bufstart += len;
+ this->data_poi = bufstart;
+ oob = 0;
+ for (i = 1; i <= numpages; i++) {
+ /* Write one page. If this is the last page to write
+ * then use the real pageprogram command, else select
+ * cached programming if supported by the chip.
+ */
+ ret = nand_write_page (mtd, this, page & this->pagemask,
+ &oobbuf[oob], oobsel, i != numpages);
+ if (ret)
+ goto out;
+ this->data_poi += mtd->oobblock;
+ len += mtd->oobblock;
+ oob += mtd->oobsize;
+ page++;
+ }
+ /* Check, if we have to switch to the next tuple */
+ if (len >= (int) vecs->iov_len) {
+ vecs++;
+ len = 0;
+ count--;
+ }
+ } else {
+ /* We must use the internal buffer, read data out of each
+ * tuple until we have a full page to write
+ */
+ int cnt = 0;
+ while (cnt < mtd->oobblock) {
+ if (vecs->iov_base != NULL && vecs->iov_len)
+ this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++];
+ /* Check, if we have to switch to the next tuple */
+ if (len >= (int) vecs->iov_len) {
+ vecs++;
+ len = 0;
+ count--;
+ }
+ }
+ this->pagebuf = page;
+ this->data_poi = this->data_buf;
+ bufstart = this->data_poi;
+ numpages = 1;
+ oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages);
+ ret = nand_write_page (mtd, this, page & this->pagemask,
+ oobbuf, oobsel, 0);
+ if (ret)
+ goto out;
+ page++;
+ }
+
+ this->data_poi = bufstart;
+ ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0);
+ if (ret)
+ goto out;
+
+ written += mtd->oobblock * numpages;
+ /* All done ? */
+ if (!count)
+ break;
+
+ startpage = page & this->pagemask;
+ /* Check, if we cross a chip boundary */
+ if (!startpage) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ ret = 0;
+out:
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ *retlen = written;
+ return ret;
+}
+
+/**
+ * single_erease_cmd - [GENERIC] NAND standard block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * Standard erase command for NAND chips
+ */
+static void single_erase_cmd (struct mtd_info *mtd, int page)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Send commands to erase a block */
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+ this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * multi_erease_cmd - [GENERIC] AND specific block erase command function
+ * @mtd: MTD device structure
+ * @page: the page address of the block which will be erased
+ *
+ * AND multi block erase command function
+ * Erase 4 consecutive blocks
+ */
+static void multi_erase_cmd (struct mtd_info *mtd, int page)
+{
+ struct nand_chip *this = mtd->priv;
+ /* Send commands to erase a block */
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++);
+ this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page);
+ this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1);
+}
+
+/**
+ * nand_erase - [MTD Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ *
+ * Erase one ore more blocks
+ */
+static int nand_erase (struct mtd_info *mtd, struct erase_info *instr)
+{
+ return nand_erase_nand (mtd, instr, 0);
+}
+
+/**
+ * nand_erase_intern - [NAND Interface] erase block(s)
+ * @mtd: MTD device structure
+ * @instr: erase instruction
+ * @allowbbt: allow erasing the bbt area
+ *
+ * Erase one ore more blocks
+ */
+int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt)
+{
+ int page, len, status, pages_per_block, ret, chipnr;
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3,
+ "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len);
+
+ /* Start address must align on block boundary */
+ if (instr->addr & ((1 << this->phys_erase_shift) - 1)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
+ return -EINVAL;
+ }
+
+ /* Length must align on block boundary */
+ if (instr->len & ((1 << this->phys_erase_shift) - 1)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n");
+ return -EINVAL;
+ }
+
+ /* Do not allow erase past end of device */
+ if ((instr->len + instr->addr) > mtd->size) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n");
+ return -EINVAL;
+ }
+
+ instr->fail_addr = 0xffffffff;
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_ERASING);
+
+ /* Shift to get first page */
+ page = (int) (instr->addr >> this->page_shift);
+ chipnr = (int) (instr->addr >> this->chip_shift);
+
+ /* Calculate pages in each block */
+ pages_per_block = 1 << (this->phys_erase_shift - this->page_shift);
+
+ /* Select the NAND device */
+ this->select_chip(mtd, chipnr);
+
+ /* Check the WP bit */
+ /* Check, if it is write protected */
+ if (nand_check_wp(mtd)) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n");
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /* Loop through the pages */
+ len = instr->len;
+
+ instr->state = MTD_ERASING;
+
+ while (len) {
+ /* Check if we have a bad block, we do not erase bad blocks ! */
+ if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) {
+ printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ goto erase_exit;
+ }
+
+ /* Invalidate the page cache, if we erase the block which contains
+ the current cached page */
+ if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block))
+ this->pagebuf = -1;
+
+ this->erase_cmd (mtd, page & this->pagemask);
+
+ status = this->waitfunc (mtd, this, FL_ERASING);
+
+ /* See if block erase succeeded */
+ if (status & 0x01) {
+ DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page);
+ instr->state = MTD_ERASE_FAILED;
+ instr->fail_addr = (page << this->page_shift);
+ goto erase_exit;
+ }
+
+ /* Increment page address and decrement length */
+ len -= (1 << this->phys_erase_shift);
+ page += pages_per_block;
+
+ /* Check, if we cross a chip boundary */
+ if (len && !(page & this->pagemask)) {
+ chipnr++;
+ this->select_chip(mtd, -1);
+ this->select_chip(mtd, chipnr);
+ }
+ }
+ instr->state = MTD_ERASE_DONE;
+
+erase_exit:
+
+ ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
+ /* Do call back function */
+ if (!ret)
+ mtd_erase_callback(instr);
+
+ /* Deselect and wake up anyone waiting on the device */
+ nand_release_device(mtd);
+
+ /* Return more or less happy */
+ return ret;
+}
+
+/**
+ * nand_sync - [MTD Interface] sync
+ * @mtd: MTD device structure
+ *
+ * Sync is actually a wait for chip ready function
+ */
+static void nand_sync (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n");
+
+ /* Grab the lock and see if the device is available */
+ nand_get_device (this, mtd, FL_SYNCING);
+ /* Release it and go back */
+ nand_release_device (mtd);
+}
+
+
+/**
+ * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs)
+{
+ /* Check for invalid offset */
+ if (ofs > mtd->size)
+ return -EINVAL;
+
+ return nand_block_checkbad (mtd, ofs, 1, 0);
+}
+
+/**
+ * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
+ * @mtd: MTD device structure
+ * @ofs: offset relative to mtd start
+ */
+static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs)
+{
+ struct nand_chip *this = mtd->priv;
+ int ret;
+
+ if ((ret = nand_block_isbad(mtd, ofs))) {
+ /* If it was bad already, return success and do nothing. */
+ if (ret > 0)
+ return 0;
+ return ret;
+ }
+
+ return this->block_markbad(mtd, ofs);
+}
+
+/**
+ * nand_scan - [NAND Interface] Scan for the NAND device
+ * @mtd: MTD device structure
+ * @maxchips: Number of chips to scan for
+ *
+ * This fills out all the not initialized function pointers
+ * with the defaults.
+ * The flash ID is read and the mtd/chip structures are
+ * filled with the appropriate values. Buffers are allocated if
+ * they are not provided by the board driver
+ *
+ */
+int nand_scan (struct mtd_info *mtd, int maxchips)
+{
+ int i, j, nand_maf_id, nand_dev_id, busw;
+ struct nand_chip *this = mtd->priv;
+
+ /* Get buswidth to select the correct functions*/
+ busw = this->options & NAND_BUSWIDTH_16;
+
+ /* check for proper chip_delay setup, set 20us if not */
+ if (!this->chip_delay)
+ this->chip_delay = 20;
+
+ /* check, if a user supplied command function given */
+ if (this->cmdfunc == NULL)
+ this->cmdfunc = nand_command;
+
+ /* check, if a user supplied wait function given */
+ if (this->waitfunc == NULL)
+ this->waitfunc = nand_wait;
+
+ if (!this->select_chip)
+ this->select_chip = nand_select_chip;
+ if (!this->write_byte)
+ this->write_byte = busw ? nand_write_byte16 : nand_write_byte;
+ if (!this->read_byte)
+ this->read_byte = busw ? nand_read_byte16 : nand_read_byte;
+ if (!this->write_word)
+ this->write_word = nand_write_word;
+ if (!this->read_word)
+ this->read_word = nand_read_word;
+ if (!this->block_bad)
+ this->block_bad = nand_block_bad;
+ if (!this->block_markbad)
+ this->block_markbad = nand_default_block_markbad;
+ if (!this->write_buf)
+ this->write_buf = busw ? nand_write_buf16 : nand_write_buf;
+ if (!this->read_buf)
+ this->read_buf = busw ? nand_read_buf16 : nand_read_buf;
+ if (!this->verify_buf)
+ this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
+ if (!this->scan_bbt)
+ this->scan_bbt = nand_default_bbt;
+
+ /* Select the device */
+ this->select_chip(mtd, 0);
+
+ /* Send the command for reading device ID */
+ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ nand_maf_id = this->read_byte(mtd);
+ nand_dev_id = this->read_byte(mtd);
+
+ /* Print and store flash device information */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+
+ if (nand_dev_id != nand_flash_ids[i].id)
+ continue;
+
+ if (!mtd->name) mtd->name = nand_flash_ids[i].name;
+ this->chipsize = nand_flash_ids[i].chipsize << 20;
+
+ /* New devices have all the information in additional id bytes */
+ if (!nand_flash_ids[i].pagesize) {
+ int extid;
+ /* The 3rd id byte contains non relevant data ATM */
+ extid = this->read_byte(mtd);
+ /* The 4th id byte is the important one */
+ extid = this->read_byte(mtd);
+ /* Calc pagesize */
+ mtd->oobblock = 1024 << (extid & 0x3);
+ extid >>= 2;
+ /* Calc oobsize */
+ mtd->oobsize = (8 << (extid & 0x03)) * (mtd->oobblock / 512);
+ extid >>= 2;
+ /* Calc blocksize. Blocksize is multiples of 64KiB */
+ mtd->erasesize = (64 * 1024) << (extid & 0x03);
+ extid >>= 2;
+ /* Get buswidth information */
+ busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
+
+ } else {
+ /* Old devices have this data hardcoded in the
+ * device id table */
+ mtd->erasesize = nand_flash_ids[i].erasesize;
+ mtd->oobblock = nand_flash_ids[i].pagesize;
+ mtd->oobsize = mtd->oobblock / 32;
+ busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16;
+ }
+
+ /* Check, if buswidth is correct. Hardware drivers should set
+ * this correct ! */
+ if (busw != (this->options & NAND_BUSWIDTH_16)) {
+ printk (KERN_INFO "NAND device: Manufacturer ID:"
+ " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
+ nand_manuf_ids[i].name , mtd->name);
+ printk (KERN_WARNING
+ "NAND bus width %d instead %d bit\n",
+ (this->options & NAND_BUSWIDTH_16) ? 16 : 8,
+ busw ? 16 : 8);
+ this->select_chip(mtd, -1);
+ return 1;
+ }
+
+ /* Calculate the address shift from the page size */
+ this->page_shift = ffs(mtd->oobblock) - 1;
+ this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1;
+ this->chip_shift = ffs(this->chipsize) - 1;
+
+ /* Set the bad block position */
+ this->badblockpos = mtd->oobblock > 512 ?
+ NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
+
+ /* Get chip options, preserve non chip based options */
+ this->options &= ~NAND_CHIPOPTIONS_MSK;
+ this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK;
+ /* Set this as a default. Board drivers can override it, if neccecary */
+ this->options |= NAND_NO_AUTOINCR;
+ /* Check if this is a not a samsung device. Do not clear the options
+ * for chips which are not having an extended id.
+ */
+ if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize)
+ this->options &= ~NAND_SAMSUNG_LP_OPTIONS;
+
+ /* Check for AND chips with 4 page planes */
+ if (this->options & NAND_4PAGE_ARRAY)
+ this->erase_cmd = multi_erase_cmd;
+ else
+ this->erase_cmd = single_erase_cmd;
+
+ /* Do not replace user supplied command function ! */
+ if (mtd->oobblock > 512 && this->cmdfunc == nand_command)
+ this->cmdfunc = nand_command_lp;
+
+ /* Try to identify manufacturer */
+ for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
+ if (nand_manuf_ids[j].id == nand_maf_id)
+ break;
+ }
+ printk (KERN_INFO "NAND device: Manufacturer ID:"
+ " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id,
+ nand_manuf_ids[j].name , nand_flash_ids[i].name);
+ break;
+ }
+
+ if (!nand_flash_ids[i].name) {
+ printk (KERN_WARNING "No NAND device found!!!\n");
+ this->select_chip(mtd, -1);
+ return 1;
+ }
+
+ for (i=1; i < maxchips; i++) {
+ this->select_chip(mtd, i);
+
+ /* Send the command for reading device ID */
+ this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1);
+
+ /* Read manufacturer and device IDs */
+ if (nand_maf_id != this->read_byte(mtd) ||
+ nand_dev_id != this->read_byte(mtd))
+ break;
+ }
+ if (i > 1)
+ printk(KERN_INFO "%d NAND chips detected\n", i);
+
+ /* Allocate buffers, if neccecary */
+ if (!this->oob_buf) {
+ size_t len;
+ len = mtd->oobsize << (this->phys_erase_shift - this->page_shift);
+ this->oob_buf = kmalloc (len, GFP_KERNEL);
+ if (!this->oob_buf) {
+ printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n");
+ return -ENOMEM;
+ }
+ this->options |= NAND_OOBBUF_ALLOC;
+ }
+
+ if (!this->data_buf) {
+ size_t len;
+ len = mtd->oobblock + mtd->oobsize;
+ this->data_buf = kmalloc (len, GFP_KERNEL);
+ if (!this->data_buf) {
+ if (this->options & NAND_OOBBUF_ALLOC)
+ kfree (this->oob_buf);
+ printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n");
+ return -ENOMEM;
+ }
+ this->options |= NAND_DATABUF_ALLOC;
+ }
+
+ /* Store the number of chips and calc total size for mtd */
+ this->numchips = i;
+ mtd->size = i * this->chipsize;
+ /* Convert chipsize to number of pages per chip -1. */
+ this->pagemask = (this->chipsize >> this->page_shift) - 1;
+ /* Preset the internal oob buffer */
+ memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift));
+
+ /* If no default placement scheme is given, select an
+ * appropriate one */
+ if (!this->autooob) {
+ /* Select the appropriate default oob placement scheme for
+ * placement agnostic filesystems */
+ switch (mtd->oobsize) {
+ case 8:
+ this->autooob = &nand_oob_8;
+ break;
+ case 16:
+ this->autooob = &nand_oob_16;
+ break;
+ case 64:
+ this->autooob = &nand_oob_64;
+ break;
+ default:
+ printk (KERN_WARNING "No oob scheme defined for oobsize %d\n",
+ mtd->oobsize);
+ BUG();
+ }
+ }
+
+ /* The number of bytes available for the filesystem to place fs dependend
+ * oob data */
+ if (this->options & NAND_BUSWIDTH_16) {
+ mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 2);
+ if (this->autooob->eccbytes & 0x01)
+ mtd->oobavail--;
+ } else
+ mtd->oobavail = mtd->oobsize - (this->autooob->eccbytes + 1);
+
+ /*
+ * check ECC mode, default to software
+ * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize
+ * fallback to software ECC
+ */
+ this->eccsize = 256; /* set default eccsize */
+ this->eccbytes = 3;
+
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ if (mtd->oobblock < 2048) {
+ printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
+ mtd->oobblock);
+ this->eccmode = NAND_ECC_SOFT;
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ } else
+ this->eccsize = 2048;
+ break;
+
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW6_512:
+ case NAND_ECC_HW8_512:
+ if (mtd->oobblock == 256) {
+ printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n");
+ this->eccmode = NAND_ECC_SOFT;
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ } else
+ this->eccsize = 512; /* set eccsize to 512 */
+ break;
+
+ case NAND_ECC_HW3_256:
+ break;
+
+ case NAND_ECC_NONE:
+ printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n");
+ this->eccmode = NAND_ECC_NONE;
+ break;
+
+ case NAND_ECC_SOFT:
+ this->calculate_ecc = nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ break;
+
+ default:
+ printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode);
+ BUG();
+ }
+
+ /* Check hardware ecc function availability and adjust number of ecc bytes per
+ * calculation step
+ */
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ this->eccbytes += 4;
+ case NAND_ECC_HW8_512:
+ this->eccbytes += 2;
+ case NAND_ECC_HW6_512:
+ this->eccbytes += 3;
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW3_256:
+ if (this->calculate_ecc && this->correct_data && this->enable_hwecc)
+ break;
+ printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n");
+ BUG();
+ }
+
+ mtd->eccsize = this->eccsize;
+
+ /* Set the number of read / write steps for one page to ensure ECC generation */
+ switch (this->eccmode) {
+ case NAND_ECC_HW12_2048:
+ this->eccsteps = mtd->oobblock / 2048;
+ break;
+ case NAND_ECC_HW3_512:
+ case NAND_ECC_HW6_512:
+ case NAND_ECC_HW8_512:
+ this->eccsteps = mtd->oobblock / 512;
+ break;
+ case NAND_ECC_HW3_256:
+ case NAND_ECC_SOFT:
+ this->eccsteps = mtd->oobblock / 256;
+ break;
+
+ case NAND_ECC_NONE:
+ this->eccsteps = 1;
+ break;
+ }
+
+ /* Initialize state, waitqueue and spinlock */
+ this->state = FL_READY;
+ init_waitqueue_head (&this->wq);
+ spin_lock_init (&this->chip_lock);
+
+ /* De-select the device */
+ this->select_chip(mtd, -1);
+
+ /* Invalidate the pagebuffer reference */
+ this->pagebuf = -1;
+
+ /* Fill in remaining MTD driver data */
+ mtd->type = MTD_NANDFLASH;
+ mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC;
+ mtd->ecctype = MTD_ECC_SW;
+ mtd->erase = nand_erase;
+ mtd->point = NULL;
+ mtd->unpoint = NULL;
+ mtd->read = nand_read;
+ mtd->write = nand_write;
+ mtd->read_ecc = nand_read_ecc;
+ mtd->write_ecc = nand_write_ecc;
+ mtd->read_oob = nand_read_oob;
+ mtd->write_oob = nand_write_oob;
+ mtd->readv = NULL;
+ mtd->writev = nand_writev;
+ mtd->writev_ecc = nand_writev_ecc;
+ mtd->sync = nand_sync;
+ mtd->lock = NULL;
+ mtd->unlock = NULL;
+ mtd->suspend = NULL;
+ mtd->resume = NULL;
+ mtd->block_isbad = nand_block_isbad;
+ mtd->block_markbad = nand_block_markbad;
+
+ /* and make the autooob the default one */
+ memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo));
+
+ mtd->owner = THIS_MODULE;
+
+ /* Build bad block table */
+ return this->scan_bbt (mtd);
+}
+
+/**
+ * nand_release - [NAND Interface] Free resources held by the NAND device
+ * @mtd: MTD device structure
+*/
+void nand_release (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+#ifdef CONFIG_MTD_PARTITIONS
+ /* Deregister partitions */
+ del_mtd_partitions (mtd);
+#endif
+ /* Deregister the device */
+ del_mtd_device (mtd);
+
+ /* Free bad block table memory, if allocated */
+ if (this->bbt)
+ kfree (this->bbt);
+ /* Buffer allocated by nand_scan ? */
+ if (this->options & NAND_OOBBUF_ALLOC)
+ kfree (this->oob_buf);
+ /* Buffer allocated by nand_scan ? */
+ if (this->options & NAND_DATABUF_ALLOC)
+ kfree (this->data_buf);
+}
+
+EXPORT_SYMBOL (nand_scan);
+EXPORT_SYMBOL (nand_release);
+
+MODULE_LICENSE ("GPL");
+MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION ("Generic NAND flash driver code");
diff --git a/drivers/mtd/nand/nand_bbt.c b/drivers/mtd/nand/nand_bbt.c
new file mode 100644
index 00000000000..9a1949751c1
--- /dev/null
+++ b/drivers/mtd/nand/nand_bbt.c
@@ -0,0 +1,1056 @@
+/*
+ * drivers/mtd/nand_bbt.c
+ *
+ * Overview:
+ * Bad block table support for the NAND driver
+ *
+ * Copyright (C) 2004 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_bbt.c,v 1.28 2004/11/13 10:19:09 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Description:
+ *
+ * When nand_scan_bbt is called, then it tries to find the bad block table
+ * depending on the options in the bbt descriptor(s). If a bbt is found
+ * then the contents are read and the memory based bbt is created. If a
+ * mirrored bbt is selected then the mirror is searched too and the
+ * versions are compared. If the mirror has a greater version number
+ * than the mirror bbt is used to build the memory based bbt.
+ * If the tables are not versioned, then we "or" the bad block information.
+ * If one of the bbt's is out of date or does not exist it is (re)created.
+ * If no bbt exists at all then the device is scanned for factory marked
+ * good / bad blocks and the bad block tables are created.
+ *
+ * For manufacturer created bbts like the one found on M-SYS DOC devices
+ * the bbt is searched and read but never created
+ *
+ * The autogenerated bad block table is located in the last good blocks
+ * of the device. The table is mirrored, so it can be updated eventually.
+ * The table is marked in the oob area with an ident pattern and a version
+ * number which indicates which of both tables is more up to date.
+ *
+ * The table uses 2 bits per block
+ * 11b: block is good
+ * 00b: block is factory marked bad
+ * 01b, 10b: block is marked bad due to wear
+ *
+ * The memory bad block table uses the following scheme:
+ * 00b: block is good
+ * 01b: block is marked bad due to wear
+ * 10b: block is reserved (to protect the bbt area)
+ * 11b: block is factory marked bad
+ *
+ * Multichip devices like DOC store the bad block info per floor.
+ *
+ * Following assumptions are made:
+ * - bbts start at a page boundary, if autolocated on a block boundary
+ * - the space neccecary for a bbt in FLASH does not exceed a block boundary
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/types.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/bitops.h>
+#include <linux/delay.h>
+
+
+/**
+ * check_pattern - [GENERIC] check if a pattern is in the buffer
+ * @buf: the buffer to search
+ * @len: the length of buffer to search
+ * @paglen: the pagelength
+ * @td: search pattern descriptor
+ *
+ * Check for a pattern at the given place. Used to search bad block
+ * tables and good / bad block identifiers.
+ * If the SCAN_EMPTY option is set then check, if all bytes except the
+ * pattern area contain 0xff
+ *
+*/
+static int check_pattern (uint8_t *buf, int len, int paglen, struct nand_bbt_descr *td)
+{
+ int i, end;
+ uint8_t *p = buf;
+
+ end = paglen + td->offs;
+ if (td->options & NAND_BBT_SCANEMPTY) {
+ for (i = 0; i < end; i++) {
+ if (p[i] != 0xff)
+ return -1;
+ }
+ }
+ p += end;
+
+ /* Compare the pattern */
+ for (i = 0; i < td->len; i++) {
+ if (p[i] != td->pattern[i])
+ return -1;
+ }
+
+ p += td->len;
+ end += td->len;
+ if (td->options & NAND_BBT_SCANEMPTY) {
+ for (i = end; i < len; i++) {
+ if (*p++ != 0xff)
+ return -1;
+ }
+ }
+ return 0;
+}
+
+/**
+ * read_bbt - [GENERIC] Read the bad block table starting from page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @page: the starting page
+ * @num: the number of bbt descriptors to read
+ * @bits: number of bits per block
+ * @offs: offset in the memory table
+ * @reserved_block_code: Pattern to identify reserved blocks
+ *
+ * Read the bad block table starting from page.
+ *
+ */
+static int read_bbt (struct mtd_info *mtd, uint8_t *buf, int page, int num,
+ int bits, int offs, int reserved_block_code)
+{
+ int res, i, j, act = 0;
+ struct nand_chip *this = mtd->priv;
+ size_t retlen, len, totlen;
+ loff_t from;
+ uint8_t msk = (uint8_t) ((1 << bits) - 1);
+
+ totlen = (num * bits) >> 3;
+ from = ((loff_t)page) << this->page_shift;
+
+ while (totlen) {
+ len = min (totlen, (size_t) (1 << this->bbt_erase_shift));
+ res = mtd->read_ecc (mtd, from, len, &retlen, buf, NULL, this->autooob);
+ if (res < 0) {
+ if (retlen != len) {
+ printk (KERN_INFO "nand_bbt: Error reading bad block table\n");
+ return res;
+ }
+ printk (KERN_WARNING "nand_bbt: ECC error while reading bad block table\n");
+ }
+
+ /* Analyse data */
+ for (i = 0; i < len; i++) {
+ uint8_t dat = buf[i];
+ for (j = 0; j < 8; j += bits, act += 2) {
+ uint8_t tmp = (dat >> j) & msk;
+ if (tmp == msk)
+ continue;
+ if (reserved_block_code &&
+ (tmp == reserved_block_code)) {
+ printk (KERN_DEBUG "nand_read_bbt: Reserved block at 0x%08x\n",
+ ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+ this->bbt[offs + (act >> 3)] |= 0x2 << (act & 0x06);
+ continue;
+ }
+ /* Leave it for now, if its matured we can move this
+ * message to MTD_DEBUG_LEVEL0 */
+ printk (KERN_DEBUG "nand_read_bbt: Bad block at 0x%08x\n",
+ ((offs << 2) + (act >> 1)) << this->bbt_erase_shift);
+ /* Factory marked bad or worn out ? */
+ if (tmp == 0)
+ this->bbt[offs + (act >> 3)] |= 0x3 << (act & 0x06);
+ else
+ this->bbt[offs + (act >> 3)] |= 0x1 << (act & 0x06);
+ }
+ }
+ totlen -= len;
+ from += len;
+ }
+ return 0;
+}
+
+/**
+ * read_abs_bbt - [GENERIC] Read the bad block table starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @chip: read the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Read the bad block table for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+*/
+static int read_abs_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ int res = 0, i;
+ int bits;
+
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+ if (td->options & NAND_BBT_PERCHIP) {
+ int offs = 0;
+ for (i = 0; i < this->numchips; i++) {
+ if (chip == -1 || chip == i)
+ res = read_bbt (mtd, buf, td->pages[i], this->chipsize >> this->bbt_erase_shift, bits, offs, td->reserved_block_code);
+ if (res)
+ return res;
+ offs += this->chipsize >> (this->bbt_erase_shift + 2);
+ }
+ } else {
+ res = read_bbt (mtd, buf, td->pages[0], mtd->size >> this->bbt_erase_shift, bits, 0, td->reserved_block_code);
+ if (res)
+ return res;
+ }
+ return 0;
+}
+
+/**
+ * read_abs_bbts - [GENERIC] Read the bad block table(s) for all chips starting at a given page
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Read the bad block table(s) for all chips starting at a given page
+ * We assume that the bbt bits are in consecutive order.
+ *
+*/
+static int read_abs_bbts (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td,
+ struct nand_bbt_descr *md)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Read the primary version, if available */
+ if (td->options & NAND_BBT_VERSION) {
+ nand_read_raw (mtd, buf, td->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
+ td->version[0] = buf[mtd->oobblock + td->veroffs];
+ printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", td->pages[0], td->version[0]);
+ }
+
+ /* Read the mirror version, if available */
+ if (md && (md->options & NAND_BBT_VERSION)) {
+ nand_read_raw (mtd, buf, md->pages[0] << this->page_shift, mtd->oobblock, mtd->oobsize);
+ md->version[0] = buf[mtd->oobblock + md->veroffs];
+ printk (KERN_DEBUG "Bad block table at page %d, version 0x%02X\n", md->pages[0], md->version[0]);
+ }
+
+ return 1;
+}
+
+/**
+ * create_bbt - [GENERIC] Create a bad block table by scanning the device
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ * @chip: create the table for a specific chip, -1 read all chips.
+ * Applies only if NAND_BBT_PERCHIP option is set
+ *
+ * Create a bad block table by scanning the device
+ * for the given good/bad block identify pattern
+ */
+static void create_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, j, numblocks, len, scanlen;
+ int startblock;
+ loff_t from;
+ size_t readlen, ooblen;
+
+ printk (KERN_INFO "Scanning device for bad blocks\n");
+
+ if (bd->options & NAND_BBT_SCANALLPAGES)
+ len = 1 << (this->bbt_erase_shift - this->page_shift);
+ else {
+ if (bd->options & NAND_BBT_SCAN2NDPAGE)
+ len = 2;
+ else
+ len = 1;
+ }
+ scanlen = mtd->oobblock + mtd->oobsize;
+ readlen = len * mtd->oobblock;
+ ooblen = len * mtd->oobsize;
+
+ if (chip == -1) {
+ /* Note that numblocks is 2 * (real numblocks) here, see i+=2 below as it
+ * makes shifting and masking less painful */
+ numblocks = mtd->size >> (this->bbt_erase_shift - 1);
+ startblock = 0;
+ from = 0;
+ } else {
+ if (chip >= this->numchips) {
+ printk (KERN_WARNING "create_bbt(): chipnr (%d) > available chips (%d)\n",
+ chip + 1, this->numchips);
+ return;
+ }
+ numblocks = this->chipsize >> (this->bbt_erase_shift - 1);
+ startblock = chip * numblocks;
+ numblocks += startblock;
+ from = startblock << (this->bbt_erase_shift - 1);
+ }
+
+ for (i = startblock; i < numblocks;) {
+ nand_read_raw (mtd, buf, from, readlen, ooblen);
+ for (j = 0; j < len; j++) {
+ if (check_pattern (&buf[j * scanlen], scanlen, mtd->oobblock, bd)) {
+ this->bbt[i >> 3] |= 0x03 << (i & 0x6);
+ printk (KERN_WARNING "Bad eraseblock %d at 0x%08x\n",
+ i >> 1, (unsigned int) from);
+ break;
+ }
+ }
+ i += 2;
+ from += (1 << this->bbt_erase_shift);
+ }
+}
+
+/**
+ * search_bbt - [GENERIC] scan the device for a specific bad block table
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ *
+ * Read the bad block table by searching for a given ident pattern.
+ * Search is preformed either from the beginning up or from the end of
+ * the device downwards. The search starts always at the start of a
+ * block.
+ * If the option NAND_BBT_PERCHIP is given, each chip is searched
+ * for a bbt, which contains the bad block information of this chip.
+ * This is neccecary to provide support for certain DOC devices.
+ *
+ * The bbt ident pattern resides in the oob area of the first page
+ * in a block.
+ */
+static int search_bbt (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *td)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, chips;
+ int bits, startblock, block, dir;
+ int scanlen = mtd->oobblock + mtd->oobsize;
+ int bbtblocks;
+
+ /* Search direction top -> down ? */
+ if (td->options & NAND_BBT_LASTBLOCK) {
+ startblock = (mtd->size >> this->bbt_erase_shift) -1;
+ dir = -1;
+ } else {
+ startblock = 0;
+ dir = 1;
+ }
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chips = this->numchips;
+ bbtblocks = this->chipsize >> this->bbt_erase_shift;
+ startblock &= bbtblocks - 1;
+ } else {
+ chips = 1;
+ bbtblocks = mtd->size >> this->bbt_erase_shift;
+ }
+
+ /* Number of bits for each erase block in the bbt */
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+
+ for (i = 0; i < chips; i++) {
+ /* Reset version information */
+ td->version[i] = 0;
+ td->pages[i] = -1;
+ /* Scan the maximum number of blocks */
+ for (block = 0; block < td->maxblocks; block++) {
+ int actblock = startblock + dir * block;
+ /* Read first page */
+ nand_read_raw (mtd, buf, actblock << this->bbt_erase_shift, mtd->oobblock, mtd->oobsize);
+ if (!check_pattern(buf, scanlen, mtd->oobblock, td)) {
+ td->pages[i] = actblock << (this->bbt_erase_shift - this->page_shift);
+ if (td->options & NAND_BBT_VERSION) {
+ td->version[i] = buf[mtd->oobblock + td->veroffs];
+ }
+ break;
+ }
+ }
+ startblock += this->chipsize >> this->bbt_erase_shift;
+ }
+ /* Check, if we found a bbt for each requested chip */
+ for (i = 0; i < chips; i++) {
+ if (td->pages[i] == -1)
+ printk (KERN_WARNING "Bad block table not found for chip %d\n", i);
+ else
+ printk (KERN_DEBUG "Bad block table found at page %d, version 0x%02X\n", td->pages[i], td->version[i]);
+ }
+ return 0;
+}
+
+/**
+ * search_read_bbts - [GENERIC] scan the device for bad block table(s)
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ *
+ * Search and read the bad block table(s)
+*/
+static int search_read_bbts (struct mtd_info *mtd, uint8_t *buf,
+ struct nand_bbt_descr *td, struct nand_bbt_descr *md)
+{
+ /* Search the primary table */
+ search_bbt (mtd, buf, td);
+
+ /* Search the mirror table */
+ if (md)
+ search_bbt (mtd, buf, md);
+
+ /* Force result check */
+ return 1;
+}
+
+
+/**
+ * write_bbt - [GENERIC] (Re)write the bad block table
+ *
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @td: descriptor for the bad block table
+ * @md: descriptor for the bad block table mirror
+ * @chipsel: selector for a specific chip, -1 for all
+ *
+ * (Re)write the bad block table
+ *
+*/
+static int write_bbt (struct mtd_info *mtd, uint8_t *buf,
+ struct nand_bbt_descr *td, struct nand_bbt_descr *md, int chipsel)
+{
+ struct nand_chip *this = mtd->priv;
+ struct nand_oobinfo oobinfo;
+ struct erase_info einfo;
+ int i, j, res, chip = 0;
+ int bits, startblock, dir, page, offs, numblocks, sft, sftmsk;
+ int nrchips, bbtoffs, pageoffs;
+ uint8_t msk[4];
+ uint8_t rcode = td->reserved_block_code;
+ size_t retlen, len = 0;
+ loff_t to;
+
+ if (!rcode)
+ rcode = 0xff;
+ /* Write bad block table per chip rather than per device ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ numblocks = (int) (this->chipsize >> this->bbt_erase_shift);
+ /* Full device write or specific chip ? */
+ if (chipsel == -1) {
+ nrchips = this->numchips;
+ } else {
+ nrchips = chipsel + 1;
+ chip = chipsel;
+ }
+ } else {
+ numblocks = (int) (mtd->size >> this->bbt_erase_shift);
+ nrchips = 1;
+ }
+
+ /* Loop through the chips */
+ for (; chip < nrchips; chip++) {
+
+ /* There was already a version of the table, reuse the page
+ * This applies for absolute placement too, as we have the
+ * page nr. in td->pages.
+ */
+ if (td->pages[chip] != -1) {
+ page = td->pages[chip];
+ goto write;
+ }
+
+ /* Automatic placement of the bad block table */
+ /* Search direction top -> down ? */
+ if (td->options & NAND_BBT_LASTBLOCK) {
+ startblock = numblocks * (chip + 1) - 1;
+ dir = -1;
+ } else {
+ startblock = chip * numblocks;
+ dir = 1;
+ }
+
+ for (i = 0; i < td->maxblocks; i++) {
+ int block = startblock + dir * i;
+ /* Check, if the block is bad */
+ switch ((this->bbt[block >> 2] >> (2 * (block & 0x03))) & 0x03) {
+ case 0x01:
+ case 0x03:
+ continue;
+ }
+ page = block << (this->bbt_erase_shift - this->page_shift);
+ /* Check, if the block is used by the mirror table */
+ if (!md || md->pages[chip] != page)
+ goto write;
+ }
+ printk (KERN_ERR "No space left to write bad block table\n");
+ return -ENOSPC;
+write:
+
+ /* Set up shift count and masks for the flash table */
+ bits = td->options & NAND_BBT_NRBITS_MSK;
+ switch (bits) {
+ case 1: sft = 3; sftmsk = 0x07; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x01; break;
+ case 2: sft = 2; sftmsk = 0x06; msk[0] = 0x00; msk[1] = 0x01; msk[2] = ~rcode; msk[3] = 0x03; break;
+ case 4: sft = 1; sftmsk = 0x04; msk[0] = 0x00; msk[1] = 0x0C; msk[2] = ~rcode; msk[3] = 0x0f; break;
+ case 8: sft = 0; sftmsk = 0x00; msk[0] = 0x00; msk[1] = 0x0F; msk[2] = ~rcode; msk[3] = 0xff; break;
+ default: return -EINVAL;
+ }
+
+ bbtoffs = chip * (numblocks >> 2);
+
+ to = ((loff_t) page) << this->page_shift;
+
+ memcpy (&oobinfo, this->autooob, sizeof(oobinfo));
+ oobinfo.useecc = MTD_NANDECC_PLACEONLY;
+
+ /* Must we save the block contents ? */
+ if (td->options & NAND_BBT_SAVECONTENT) {
+ /* Make it block aligned */
+ to &= ~((loff_t) ((1 << this->bbt_erase_shift) - 1));
+ len = 1 << this->bbt_erase_shift;
+ res = mtd->read_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+ if (res < 0) {
+ if (retlen != len) {
+ printk (KERN_INFO "nand_bbt: Error reading block for writing the bad block table\n");
+ return res;
+ }
+ printk (KERN_WARNING "nand_bbt: ECC error while reading block for writing bad block table\n");
+ }
+ /* Calc the byte offset in the buffer */
+ pageoffs = page - (int)(to >> this->page_shift);
+ offs = pageoffs << this->page_shift;
+ /* Preset the bbt area with 0xff */
+ memset (&buf[offs], 0xff, (size_t)(numblocks >> sft));
+ /* Preset the bbt's oob area with 0xff */
+ memset (&buf[len + pageoffs * mtd->oobsize], 0xff,
+ ((len >> this->page_shift) - pageoffs) * mtd->oobsize);
+ if (td->options & NAND_BBT_VERSION) {
+ buf[len + (pageoffs * mtd->oobsize) + td->veroffs] = td->version[chip];
+ }
+ } else {
+ /* Calc length */
+ len = (size_t) (numblocks >> sft);
+ /* Make it page aligned ! */
+ len = (len + (mtd->oobblock-1)) & ~(mtd->oobblock-1);
+ /* Preset the buffer with 0xff */
+ memset (buf, 0xff, len + (len >> this->page_shift) * mtd->oobsize);
+ offs = 0;
+ /* Pattern is located in oob area of first page */
+ memcpy (&buf[len + td->offs], td->pattern, td->len);
+ if (td->options & NAND_BBT_VERSION) {
+ buf[len + td->veroffs] = td->version[chip];
+ }
+ }
+
+ /* walk through the memory table */
+ for (i = 0; i < numblocks; ) {
+ uint8_t dat;
+ dat = this->bbt[bbtoffs + (i >> 2)];
+ for (j = 0; j < 4; j++ , i++) {
+ int sftcnt = (i << (3 - sft)) & sftmsk;
+ /* Do not store the reserved bbt blocks ! */
+ buf[offs + (i >> sft)] &= ~(msk[dat & 0x03] << sftcnt);
+ dat >>= 2;
+ }
+ }
+
+ memset (&einfo, 0, sizeof (einfo));
+ einfo.mtd = mtd;
+ einfo.addr = (unsigned long) to;
+ einfo.len = 1 << this->bbt_erase_shift;
+ res = nand_erase_nand (mtd, &einfo, 1);
+ if (res < 0) {
+ printk (KERN_WARNING "nand_bbt: Error during block erase: %d\n", res);
+ return res;
+ }
+
+ res = mtd->write_ecc (mtd, to, len, &retlen, buf, &buf[len], &oobinfo);
+ if (res < 0) {
+ printk (KERN_WARNING "nand_bbt: Error while writing bad block table %d\n", res);
+ return res;
+ }
+ printk (KERN_DEBUG "Bad block table written to 0x%08x, version 0x%02X\n",
+ (unsigned int) to, td->version[chip]);
+
+ /* Mark it as used */
+ td->pages[chip] = page;
+ }
+ return 0;
+}
+
+/**
+ * nand_memory_bbt - [GENERIC] create a memory based bad block table
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function creates a memory based bbt by scanning the device
+ * for manufacturer / software marked good / bad blocks
+*/
+static int nand_memory_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Ensure that we only scan for the pattern and nothing else */
+ bd->options = 0;
+ create_bbt (mtd, this->data_buf, bd, -1);
+ return 0;
+}
+
+/**
+ * check_create - [GENERIC] create and write bbt(s) if neccecary
+ * @mtd: MTD device structure
+ * @buf: temporary buffer
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks the results of the previous call to read_bbt
+ * and creates / updates the bbt(s) if neccecary
+ * Creation is neccecary if no bbt was found for the chip/device
+ * Update is neccecary if one of the tables is missing or the
+ * version nr. of one table is less than the other
+*/
+static int check_create (struct mtd_info *mtd, uint8_t *buf, struct nand_bbt_descr *bd)
+{
+ int i, chips, writeops, chipsel, res;
+ struct nand_chip *this = mtd->priv;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+ struct nand_bbt_descr *rd, *rd2;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP)
+ chips = this->numchips;
+ else
+ chips = 1;
+
+ for (i = 0; i < chips; i++) {
+ writeops = 0;
+ rd = NULL;
+ rd2 = NULL;
+ /* Per chip or per device ? */
+ chipsel = (td->options & NAND_BBT_PERCHIP) ? i : -1;
+ /* Mirrored table avilable ? */
+ if (md) {
+ if (td->pages[i] == -1 && md->pages[i] == -1) {
+ writeops = 0x03;
+ goto create;
+ }
+
+ if (td->pages[i] == -1) {
+ rd = md;
+ td->version[i] = md->version[i];
+ writeops = 1;
+ goto writecheck;
+ }
+
+ if (md->pages[i] == -1) {
+ rd = td;
+ md->version[i] = td->version[i];
+ writeops = 2;
+ goto writecheck;
+ }
+
+ if (td->version[i] == md->version[i]) {
+ rd = td;
+ if (!(td->options & NAND_BBT_VERSION))
+ rd2 = md;
+ goto writecheck;
+ }
+
+ if (((int8_t) (td->version[i] - md->version[i])) > 0) {
+ rd = td;
+ md->version[i] = td->version[i];
+ writeops = 2;
+ } else {
+ rd = md;
+ td->version[i] = md->version[i];
+ writeops = 1;
+ }
+
+ goto writecheck;
+
+ } else {
+ if (td->pages[i] == -1) {
+ writeops = 0x01;
+ goto create;
+ }
+ rd = td;
+ goto writecheck;
+ }
+create:
+ /* Create the bad block table by scanning the device ? */
+ if (!(td->options & NAND_BBT_CREATE))
+ continue;
+
+ /* Create the table in memory by scanning the chip(s) */
+ create_bbt (mtd, buf, bd, chipsel);
+
+ td->version[i] = 1;
+ if (md)
+ md->version[i] = 1;
+writecheck:
+ /* read back first ? */
+ if (rd)
+ read_abs_bbt (mtd, buf, rd, chipsel);
+ /* If they weren't versioned, read both. */
+ if (rd2)
+ read_abs_bbt (mtd, buf, rd2, chipsel);
+
+ /* Write the bad block table to the device ? */
+ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, td, md, chipsel);
+ if (res < 0)
+ return res;
+ }
+
+ /* Write the mirror bad block table to the device ? */
+ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, md, td, chipsel);
+ if (res < 0)
+ return res;
+ }
+ }
+ return 0;
+}
+
+/**
+ * mark_bbt_regions - [GENERIC] mark the bad block table regions
+ * @mtd: MTD device structure
+ * @td: bad block table descriptor
+ *
+ * The bad block table regions are marked as "bad" to prevent
+ * accidental erasures / writes. The regions are identified by
+ * the mark 0x02.
+*/
+static void mark_bbt_region (struct mtd_info *mtd, struct nand_bbt_descr *td)
+{
+ struct nand_chip *this = mtd->priv;
+ int i, j, chips, block, nrblocks, update;
+ uint8_t oldval, newval;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chips = this->numchips;
+ nrblocks = (int)(this->chipsize >> this->bbt_erase_shift);
+ } else {
+ chips = 1;
+ nrblocks = (int)(mtd->size >> this->bbt_erase_shift);
+ }
+
+ for (i = 0; i < chips; i++) {
+ if ((td->options & NAND_BBT_ABSPAGE) ||
+ !(td->options & NAND_BBT_WRITE)) {
+ if (td->pages[i] == -1) continue;
+ block = td->pages[i] >> (this->bbt_erase_shift - this->page_shift);
+ block <<= 1;
+ oldval = this->bbt[(block >> 3)];
+ newval = oldval | (0x2 << (block & 0x06));
+ this->bbt[(block >> 3)] = newval;
+ if ((oldval != newval) && td->reserved_block_code)
+ nand_update_bbt(mtd, block << (this->bbt_erase_shift - 1));
+ continue;
+ }
+ update = 0;
+ if (td->options & NAND_BBT_LASTBLOCK)
+ block = ((i + 1) * nrblocks) - td->maxblocks;
+ else
+ block = i * nrblocks;
+ block <<= 1;
+ for (j = 0; j < td->maxblocks; j++) {
+ oldval = this->bbt[(block >> 3)];
+ newval = oldval | (0x2 << (block & 0x06));
+ this->bbt[(block >> 3)] = newval;
+ if (oldval != newval) update = 1;
+ block += 2;
+ }
+ /* If we want reserved blocks to be recorded to flash, and some
+ new ones have been marked, then we need to update the stored
+ bbts. This should only happen once. */
+ if (update && td->reserved_block_code)
+ nand_update_bbt(mtd, (block - 2) << (this->bbt_erase_shift - 1));
+ }
+}
+
+/**
+ * nand_scan_bbt - [NAND Interface] scan, find, read and maybe create bad block table(s)
+ * @mtd: MTD device structure
+ * @bd: descriptor for the good/bad block search pattern
+ *
+ * The function checks, if a bad block table(s) is/are already
+ * available. If not it scans the device for manufacturer
+ * marked good / bad blocks and writes the bad block table(s) to
+ * the selected place.
+ *
+ * The bad block table memory is allocated here. It must be freed
+ * by calling the nand_free_bbt function.
+ *
+*/
+int nand_scan_bbt (struct mtd_info *mtd, struct nand_bbt_descr *bd)
+{
+ struct nand_chip *this = mtd->priv;
+ int len, res = 0;
+ uint8_t *buf;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+
+ len = mtd->size >> (this->bbt_erase_shift + 2);
+ /* Allocate memory (2bit per block) */
+ this->bbt = kmalloc (len, GFP_KERNEL);
+ if (!this->bbt) {
+ printk (KERN_ERR "nand_scan_bbt: Out of memory\n");
+ return -ENOMEM;
+ }
+ /* Clear the memory bad block table */
+ memset (this->bbt, 0x00, len);
+
+ /* If no primary table decriptor is given, scan the device
+ * to build a memory based bad block table
+ */
+ if (!td)
+ return nand_memory_bbt(mtd, bd);
+
+ /* Allocate a temporary buffer for one eraseblock incl. oob */
+ len = (1 << this->bbt_erase_shift);
+ len += (len >> this->page_shift) * mtd->oobsize;
+ buf = kmalloc (len, GFP_KERNEL);
+ if (!buf) {
+ printk (KERN_ERR "nand_bbt: Out of memory\n");
+ kfree (this->bbt);
+ this->bbt = NULL;
+ return -ENOMEM;
+ }
+
+ /* Is the bbt at a given page ? */
+ if (td->options & NAND_BBT_ABSPAGE) {
+ res = read_abs_bbts (mtd, buf, td, md);
+ } else {
+ /* Search the bad block table using a pattern in oob */
+ res = search_read_bbts (mtd, buf, td, md);
+ }
+
+ if (res)
+ res = check_create (mtd, buf, bd);
+
+ /* Prevent the bbt regions from erasing / writing */
+ mark_bbt_region (mtd, td);
+ if (md)
+ mark_bbt_region (mtd, md);
+
+ kfree (buf);
+ return res;
+}
+
+
+/**
+ * nand_update_bbt - [NAND Interface] update bad block table(s)
+ * @mtd: MTD device structure
+ * @offs: the offset of the newly marked block
+ *
+ * The function updates the bad block table(s)
+*/
+int nand_update_bbt (struct mtd_info *mtd, loff_t offs)
+{
+ struct nand_chip *this = mtd->priv;
+ int len, res = 0, writeops = 0;
+ int chip, chipsel;
+ uint8_t *buf;
+ struct nand_bbt_descr *td = this->bbt_td;
+ struct nand_bbt_descr *md = this->bbt_md;
+
+ if (!this->bbt || !td)
+ return -EINVAL;
+
+ len = mtd->size >> (this->bbt_erase_shift + 2);
+ /* Allocate a temporary buffer for one eraseblock incl. oob */
+ len = (1 << this->bbt_erase_shift);
+ len += (len >> this->page_shift) * mtd->oobsize;
+ buf = kmalloc (len, GFP_KERNEL);
+ if (!buf) {
+ printk (KERN_ERR "nand_update_bbt: Out of memory\n");
+ return -ENOMEM;
+ }
+
+ writeops = md != NULL ? 0x03 : 0x01;
+
+ /* Do we have a bbt per chip ? */
+ if (td->options & NAND_BBT_PERCHIP) {
+ chip = (int) (offs >> this->chip_shift);
+ chipsel = chip;
+ } else {
+ chip = 0;
+ chipsel = -1;
+ }
+
+ td->version[chip]++;
+ if (md)
+ md->version[chip]++;
+
+ /* Write the bad block table to the device ? */
+ if ((writeops & 0x01) && (td->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, td, md, chipsel);
+ if (res < 0)
+ goto out;
+ }
+ /* Write the mirror bad block table to the device ? */
+ if ((writeops & 0x02) && md && (md->options & NAND_BBT_WRITE)) {
+ res = write_bbt (mtd, buf, md, td, chipsel);
+ }
+
+out:
+ kfree (buf);
+ return res;
+}
+
+/* Define some generic bad / good block scan pattern which are used
+ * while scanning a device for factory marked good / bad blocks
+ *
+ * The memory based patterns just
+ */
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr smallpage_memorybased = {
+ .options = 0,
+ .offs = 5,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_memorybased = {
+ .options = 0,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr smallpage_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 5,
+ .len = 1,
+ .pattern = scan_ff_pattern
+};
+
+static struct nand_bbt_descr largepage_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 0,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+static uint8_t scan_agand_pattern[] = { 0x1C, 0x71, 0xC7, 0x1C, 0x71, 0xC7 };
+
+static struct nand_bbt_descr agand_flashbased = {
+ .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
+ .offs = 0x20,
+ .len = 6,
+ .pattern = scan_agand_pattern
+};
+
+/* Generic flash bbt decriptors
+*/
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 8,
+ .len = 4,
+ .veroffs = 12,
+ .maxblocks = 4,
+ .pattern = mirror_pattern
+};
+
+/**
+ * nand_default_bbt - [NAND Interface] Select a default bad block table for the device
+ * @mtd: MTD device structure
+ *
+ * This function selects the default bad block table
+ * support for the device and calls the nand_scan_bbt function
+ *
+*/
+int nand_default_bbt (struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+
+ /* Default for AG-AND. We must use a flash based
+ * bad block table as the devices have factory marked
+ * _good_ blocks. Erasing those blocks leads to loss
+ * of the good / bad information, so we _must_ store
+ * this information in a good / bad table during
+ * startup
+ */
+ if (this->options & NAND_IS_AND) {
+ /* Use the default pattern descriptors */
+ if (!this->bbt_td) {
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+ }
+ this->options |= NAND_USE_FLASH_BBT;
+ return nand_scan_bbt (mtd, &agand_flashbased);
+ }
+
+
+ /* Is a flash based bad block table requested ? */
+ if (this->options & NAND_USE_FLASH_BBT) {
+ /* Use the default pattern descriptors */
+ if (!this->bbt_td) {
+ this->bbt_td = &bbt_main_descr;
+ this->bbt_md = &bbt_mirror_descr;
+ }
+ if (!this->badblock_pattern) {
+ this->badblock_pattern = (mtd->oobblock > 512) ?
+ &largepage_flashbased : &smallpage_flashbased;
+ }
+ } else {
+ this->bbt_td = NULL;
+ this->bbt_md = NULL;
+ if (!this->badblock_pattern) {
+ this->badblock_pattern = (mtd->oobblock > 512) ?
+ &largepage_memorybased : &smallpage_memorybased;
+ }
+ }
+ return nand_scan_bbt (mtd, this->badblock_pattern);
+}
+
+/**
+ * nand_isbad_bbt - [NAND Interface] Check if a block is bad
+ * @mtd: MTD device structure
+ * @offs: offset in the device
+ * @allowbbt: allow access to bad block table region
+ *
+*/
+int nand_isbad_bbt (struct mtd_info *mtd, loff_t offs, int allowbbt)
+{
+ struct nand_chip *this = mtd->priv;
+ int block;
+ uint8_t res;
+
+ /* Get block number * 2 */
+ block = (int) (offs >> (this->bbt_erase_shift - 1));
+ res = (this->bbt[block >> 3] >> (block & 0x06)) & 0x03;
+
+ DEBUG (MTD_DEBUG_LEVEL2, "nand_isbad_bbt(): bbt info for offs 0x%08x: (block %d) 0x%02x\n",
+ (unsigned int)offs, res, block >> 1);
+
+ switch ((int)res) {
+ case 0x00: return 0;
+ case 0x01: return 1;
+ case 0x02: return allowbbt ? 0 : 1;
+ }
+ return 1;
+}
+
+EXPORT_SYMBOL (nand_scan_bbt);
+EXPORT_SYMBOL (nand_default_bbt);
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c
new file mode 100644
index 00000000000..2e341b75437
--- /dev/null
+++ b/drivers/mtd/nand/nand_ecc.c
@@ -0,0 +1,250 @@
+/*
+ * This file contains an ECC algorithm from Toshiba that detects and
+ * corrects 1 bit errors in a 256 byte block of data.
+ *
+ * drivers/mtd/nand/nand_ecc.c
+ *
+ * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com)
+ * Toshiba America Electronics Components, Inc.
+ *
+ * $Id: nand_ecc.c,v 1.14 2004/06/16 15:34:37 gleixner Exp $
+ *
+ * This file is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 or (at your option) any
+ * later version.
+ *
+ * This file is distributed in the hope that it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+ * for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this file; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
+ *
+ * As a special exception, if other files instantiate templates or use
+ * macros or inline functions from these files, or you compile these
+ * files and link them with other works to produce a work based on these
+ * files, these files do not by themselves cause the resulting work to be
+ * covered by the GNU General Public License. However the source code for
+ * these files must still be made available in accordance with section (3)
+ * of the GNU General Public License.
+ *
+ * This exception does not invalidate any other reasons why a work based on
+ * this file might be covered by the GNU General Public License.
+ */
+
+#include <linux/types.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/mtd/nand_ecc.h>
+
+/*
+ * Pre-calculated 256-way 1 byte column parity
+ */
+static const u_char nand_ecc_precalc_table[] = {
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a,
+ 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f,
+ 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c,
+ 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69,
+ 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03,
+ 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66,
+ 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65,
+ 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00
+};
+
+
+/**
+ * nand_trans_result - [GENERIC] create non-inverted ECC
+ * @reg2: line parity reg 2
+ * @reg3: line parity reg 3
+ * @ecc_code: ecc
+ *
+ * Creates non-inverted ECC code from line parity
+ */
+static void nand_trans_result(u_char reg2, u_char reg3,
+ u_char *ecc_code)
+{
+ u_char a, b, i, tmp1, tmp2;
+
+ /* Initialize variables */
+ a = b = 0x80;
+ tmp1 = tmp2 = 0;
+
+ /* Calculate first ECC byte */
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP15,13,11,9 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP14,12,10,8 --> ecc_code[0] */
+ tmp1 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Calculate second ECC byte */
+ b = 0x80;
+ for (i = 0; i < 4; i++) {
+ if (reg3 & a) /* LP7,5,3,1 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ if (reg2 & a) /* LP6,4,2,0 --> ecc_code[1] */
+ tmp2 |= b;
+ b >>= 1;
+ a >>= 1;
+ }
+
+ /* Store two of the ECC bytes */
+ ecc_code[0] = tmp1;
+ ecc_code[1] = tmp2;
+}
+
+/**
+ * nand_calculate_ecc - [NAND Interface] Calculate 3 byte ECC code for 256 byte block
+ * @mtd: MTD block structure
+ * @dat: raw data
+ * @ecc_code: buffer for ECC
+ */
+int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+ u_char idx, reg1, reg2, reg3;
+ int j;
+
+ /* Initialize variables */
+ reg1 = reg2 = reg3 = 0;
+ ecc_code[0] = ecc_code[1] = ecc_code[2] = 0;
+
+ /* Build up column parity */
+ for(j = 0; j < 256; j++) {
+
+ /* Get CP0 - CP5 from table */
+ idx = nand_ecc_precalc_table[dat[j]];
+ reg1 ^= (idx & 0x3f);
+
+ /* All bit XOR = 1 ? */
+ if (idx & 0x40) {
+ reg3 ^= (u_char) j;
+ reg2 ^= ~((u_char) j);
+ }
+ }
+
+ /* Create non-inverted ECC code from line parity */
+ nand_trans_result(reg2, reg3, ecc_code);
+
+ /* Calculate final ECC code */
+ ecc_code[0] = ~ecc_code[0];
+ ecc_code[1] = ~ecc_code[1];
+ ecc_code[2] = ((~reg1) << 2) | 0x03;
+ return 0;
+}
+
+/**
+ * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
+ * @mtd: MTD block structure
+ * @dat: raw data read from the chip
+ * @read_ecc: ECC from the chip
+ * @calc_ecc: the ECC calculated from raw data
+ *
+ * Detect and correct a 1 bit error for 256 byte block
+ */
+int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc)
+{
+ u_char a, b, c, d1, d2, d3, add, bit, i;
+
+ /* Do error detection */
+ d1 = calc_ecc[0] ^ read_ecc[0];
+ d2 = calc_ecc[1] ^ read_ecc[1];
+ d3 = calc_ecc[2] ^ read_ecc[2];
+
+ if ((d1 | d2 | d3) == 0) {
+ /* No errors */
+ return 0;
+ }
+ else {
+ a = (d1 ^ (d1 >> 1)) & 0x55;
+ b = (d2 ^ (d2 >> 1)) & 0x55;
+ c = (d3 ^ (d3 >> 1)) & 0x54;
+
+ /* Found and will correct single bit error in the data */
+ if ((a == 0x55) && (b == 0x55) && (c == 0x54)) {
+ c = 0x80;
+ add = 0;
+ a = 0x80;
+ for (i=0; i<4; i++) {
+ if (d1 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ c = 0x80;
+ for (i=0; i<4; i++) {
+ if (d2 & c)
+ add |= a;
+ c >>= 2;
+ a >>= 1;
+ }
+ bit = 0;
+ b = 0x04;
+ c = 0x80;
+ for (i=0; i<3; i++) {
+ if (d3 & c)
+ bit |= b;
+ c >>= 2;
+ b >>= 1;
+ }
+ b = 0x01;
+ a = dat[add];
+ a ^= (b << bit);
+ dat[add] = a;
+ return 1;
+ }
+ else {
+ i = 0;
+ while (d1) {
+ if (d1 & 0x01)
+ ++i;
+ d1 >>= 1;
+ }
+ while (d2) {
+ if (d2 & 0x01)
+ ++i;
+ d2 >>= 1;
+ }
+ while (d3) {
+ if (d3 & 0x01)
+ ++i;
+ d3 >>= 1;
+ }
+ if (i == 1) {
+ /* ECC Code Error Correction */
+ read_ecc[0] = calc_ecc[0];
+ read_ecc[1] = calc_ecc[1];
+ read_ecc[2] = calc_ecc[2];
+ return 2;
+ }
+ else {
+ /* Uncorrectable Error */
+ return -1;
+ }
+ }
+ }
+
+ /* Should never happen */
+ return -1;
+}
+
+EXPORT_SYMBOL(nand_calculate_ecc);
+EXPORT_SYMBOL(nand_correct_data);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
+MODULE_DESCRIPTION("Generic NAND ECC support");
diff --git a/drivers/mtd/nand/nand_ids.c b/drivers/mtd/nand/nand_ids.c
new file mode 100644
index 00000000000..2d8c4321275
--- /dev/null
+++ b/drivers/mtd/nand/nand_ids.c
@@ -0,0 +1,129 @@
+/*
+ * drivers/mtd/nandids.c
+ *
+ * Copyright (C) 2002 Thomas Gleixner (tglx@linutronix.de)
+ *
+ * $Id: nand_ids.c,v 1.10 2004/05/26 13:40:12 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+#include <linux/module.h>
+#include <linux/mtd/nand.h>
+/*
+* Chip ID list
+*
+* Name. ID code, pagesize, chipsize in MegaByte, eraseblock size,
+* options
+*
+* Pagesize; 0, 256, 512
+* 0 get this information from the extended chip ID
++ 256 256 Byte page size
+* 512 512 Byte page size
+*/
+struct nand_flash_dev nand_flash_ids[] = {
+ {"NAND 1MiB 5V 8-bit", 0x6e, 256, 1, 0x1000, 0},
+ {"NAND 2MiB 5V 8-bit", 0x64, 256, 2, 0x1000, 0},
+ {"NAND 4MiB 5V 8-bit", 0x6b, 512, 4, 0x2000, 0},
+ {"NAND 1MiB 3,3V 8-bit", 0xe8, 256, 1, 0x1000, 0},
+ {"NAND 1MiB 3,3V 8-bit", 0xec, 256, 1, 0x1000, 0},
+ {"NAND 2MiB 3,3V 8-bit", 0xea, 256, 2, 0x1000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xd5, 512, 4, 0x2000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xe3, 512, 4, 0x2000, 0},
+ {"NAND 4MiB 3,3V 8-bit", 0xe5, 512, 4, 0x2000, 0},
+ {"NAND 8MiB 3,3V 8-bit", 0xd6, 512, 8, 0x2000, 0},
+
+ {"NAND 8MiB 1,8V 8-bit", 0x39, 512, 8, 0x2000, 0},
+ {"NAND 8MiB 3,3V 8-bit", 0xe6, 512, 8, 0x2000, 0},
+ {"NAND 8MiB 1,8V 16-bit", 0x49, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+ {"NAND 8MiB 3,3V 16-bit", 0x59, 512, 8, 0x2000, NAND_BUSWIDTH_16},
+
+ {"NAND 16MiB 1,8V 8-bit", 0x33, 512, 16, 0x4000, 0},
+ {"NAND 16MiB 3,3V 8-bit", 0x73, 512, 16, 0x4000, 0},
+ {"NAND 16MiB 1,8V 16-bit", 0x43, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 16MiB 3,3V 16-bit", 0x53, 512, 16, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 32MiB 1,8V 8-bit", 0x35, 512, 32, 0x4000, 0},
+ {"NAND 32MiB 3,3V 8-bit", 0x75, 512, 32, 0x4000, 0},
+ {"NAND 32MiB 1,8V 16-bit", 0x45, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 32MiB 3,3V 16-bit", 0x55, 512, 32, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 64MiB 1,8V 8-bit", 0x36, 512, 64, 0x4000, 0},
+ {"NAND 64MiB 3,3V 8-bit", 0x76, 512, 64, 0x4000, 0},
+ {"NAND 64MiB 1,8V 16-bit", 0x46, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 64MiB 3,3V 16-bit", 0x56, 512, 64, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 128MiB 1,8V 8-bit", 0x78, 512, 128, 0x4000, 0},
+ {"NAND 128MiB 3,3V 8-bit", 0x79, 512, 128, 0x4000, 0},
+ {"NAND 128MiB 1,8V 16-bit", 0x72, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+ {"NAND 128MiB 3,3V 16-bit", 0x74, 512, 128, 0x4000, NAND_BUSWIDTH_16},
+
+ {"NAND 256MiB 3,3V 8-bit", 0x71, 512, 256, 0x4000, 0},
+
+ {"NAND 512MiB 3,3V 8-bit", 0xDC, 512, 512, 0x4000, 0},
+
+ /* These are the new chips with large page size. The pagesize
+ * and the erasesize is determined from the extended id bytes
+ */
+ /* 1 Gigabit */
+ {"NAND 128MiB 1,8V 8-bit", 0xA1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 128MiB 3,3V 8-bit", 0xF1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 128MiB 1,8V 16-bit", 0xB1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 128MiB 3,3V 16-bit", 0xC1, 0, 128, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 2 Gigabit */
+ {"NAND 256MiB 1,8V 8-bit", 0xAA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 256MiB 3,3V 8-bit", 0xDA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 256MiB 1,8V 16-bit", 0xBA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 256MiB 3,3V 16-bit", 0xCA, 0, 256, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 4 Gigabit */
+ {"NAND 512MiB 1,8V 8-bit", 0xAC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 512MiB 3,3V 8-bit", 0xDC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 512MiB 1,8V 16-bit", 0xBC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 512MiB 3,3V 16-bit", 0xCC, 0, 512, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 8 Gigabit */
+ {"NAND 1GiB 1,8V 8-bit", 0xA3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 1GiB 3,3V 8-bit", 0xD3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 1GiB 1,8V 16-bit", 0xB3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 1GiB 3,3V 16-bit", 0xC3, 0, 1024, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* 16 Gigabit */
+ {"NAND 2GiB 1,8V 8-bit", 0xA5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 2GiB 3,3V 8-bit", 0xD5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_NO_AUTOINCR},
+ {"NAND 2GiB 1,8V 16-bit", 0xB5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+ {"NAND 2GiB 3,3V 16-bit", 0xC5, 0, 2048, 0, NAND_SAMSUNG_LP_OPTIONS | NAND_BUSWIDTH_16 | NAND_NO_AUTOINCR},
+
+ /* Renesas AND 1 Gigabit. Those chips do not support extended id and have a strange page/block layout !
+ * The chosen minimum erasesize is 4 * 2 * 2048 = 16384 Byte, as those chips have an array of 4 page planes
+ * 1 block = 2 pages, but due to plane arrangement the blocks 0-3 consists of page 0 + 4,1 + 5, 2 + 6, 3 + 7
+ * Anyway JFFS2 would increase the eraseblock size so we chose a combined one which can be erased in one go
+ * There are more speed improvements for reads and writes possible, but not implemented now
+ */
+ {"AND 128MiB 3,3V 8-bit", 0x01, 2048, 128, 0x4000, NAND_IS_AND | NAND_NO_AUTOINCR | NAND_4PAGE_ARRAY},
+
+ {NULL,}
+};
+
+/*
+* Manufacturer ID list
+*/
+struct nand_manufacturers nand_manuf_ids[] = {
+ {NAND_MFR_TOSHIBA, "Toshiba"},
+ {NAND_MFR_SAMSUNG, "Samsung"},
+ {NAND_MFR_FUJITSU, "Fujitsu"},
+ {NAND_MFR_NATIONAL, "National"},
+ {NAND_MFR_RENESAS, "Renesas"},
+ {NAND_MFR_STMICRO, "ST Micro"},
+ {0x0, "Unknown"}
+};
+
+EXPORT_SYMBOL (nand_manuf_ids);
+EXPORT_SYMBOL (nand_flash_ids);
+
+MODULE_LICENSE ("GPL");
+MODULE_AUTHOR ("Thomas Gleixner <tglx@linutronix.de>");
+MODULE_DESCRIPTION ("Nand device & manufacturer ID's");
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c
new file mode 100644
index 00000000000..13feefd7d8c
--- /dev/null
+++ b/drivers/mtd/nand/nandsim.c
@@ -0,0 +1,1613 @@
+/*
+ * NAND flash simulator.
+ *
+ * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
+ *
+ * Copyright (C) 2004 Nokia Corporation
+ *
+ * Note: NS means "NAND Simulator".
+ * Note: Input means input TO flash chip, output means output FROM chip.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2, or (at your option) any later
+ * version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
+ * Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
+ *
+ * $Id: nandsim.c,v 1.7 2004/12/06 11:53:06 dedekind Exp $
+ */
+
+#include <linux/config.h>
+#include <linux/init.h>
+#include <linux/types.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/vmalloc.h>
+#include <linux/slab.h>
+#include <linux/errno.h>
+#include <linux/string.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/delay.h>
+#ifdef CONFIG_NS_ABS_POS
+#include <asm/io.h>
+#endif
+
+
+/* Default simulator parameters values */
+#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
+ !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
+ !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
+ !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
+#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
+#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
+#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
+#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
+#endif
+
+#ifndef CONFIG_NANDSIM_ACCESS_DELAY
+#define CONFIG_NANDSIM_ACCESS_DELAY 25
+#endif
+#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
+#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
+#endif
+#ifndef CONFIG_NANDSIM_ERASE_DELAY
+#define CONFIG_NANDSIM_ERASE_DELAY 2
+#endif
+#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
+#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
+#endif
+#ifndef CONFIG_NANDSIM_INPUT_CYCLE
+#define CONFIG_NANDSIM_INPUT_CYCLE 50
+#endif
+#ifndef CONFIG_NANDSIM_BUS_WIDTH
+#define CONFIG_NANDSIM_BUS_WIDTH 8
+#endif
+#ifndef CONFIG_NANDSIM_DO_DELAYS
+#define CONFIG_NANDSIM_DO_DELAYS 0
+#endif
+#ifndef CONFIG_NANDSIM_LOG
+#define CONFIG_NANDSIM_LOG 0
+#endif
+#ifndef CONFIG_NANDSIM_DBG
+#define CONFIG_NANDSIM_DBG 0
+#endif
+
+static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
+static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
+static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
+static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
+static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
+static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
+static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
+static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
+static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
+static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
+static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
+static uint log = CONFIG_NANDSIM_LOG;
+static uint dbg = CONFIG_NANDSIM_DBG;
+
+module_param(first_id_byte, uint, 0400);
+module_param(second_id_byte, uint, 0400);
+module_param(third_id_byte, uint, 0400);
+module_param(fourth_id_byte, uint, 0400);
+module_param(access_delay, uint, 0400);
+module_param(programm_delay, uint, 0400);
+module_param(erase_delay, uint, 0400);
+module_param(output_cycle, uint, 0400);
+module_param(input_cycle, uint, 0400);
+module_param(bus_width, uint, 0400);
+module_param(do_delays, uint, 0400);
+module_param(log, uint, 0400);
+module_param(dbg, uint, 0400);
+
+MODULE_PARM_DESC(first_id_byte, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
+MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
+MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
+MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
+MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
+MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
+MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
+MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
+MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
+MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
+MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
+MODULE_PARM_DESC(log, "Perform logging if not zero");
+MODULE_PARM_DESC(dbg, "Output debug information if not zero");
+
+/* The largest possible page size */
+#define NS_LARGEST_PAGE_SIZE 2048
+
+/* The prefix for simulator output */
+#define NS_OUTPUT_PREFIX "[nandsim]"
+
+/* Simulator's output macros (logging, debugging, warning, error) */
+#define NS_LOG(args...) \
+ do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
+#define NS_DBG(args...) \
+ do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
+#define NS_WARN(args...) \
+ do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
+#define NS_ERR(args...) \
+ do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
+
+/* Busy-wait delay macros (microseconds, milliseconds) */
+#define NS_UDELAY(us) \
+ do { if (do_delays) udelay(us); } while(0)
+#define NS_MDELAY(us) \
+ do { if (do_delays) mdelay(us); } while(0)
+
+/* Is the nandsim structure initialized ? */
+#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
+
+/* Good operation completion status */
+#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
+
+/* Operation failed completion status */
+#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
+
+/* Calculate the page offset in flash RAM image by (row, column) address */
+#define NS_RAW_OFFSET(ns) \
+ (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
+
+/* Calculate the OOB offset in flash RAM image by (row, column) address */
+#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
+
+/* After a command is input, the simulator goes to one of the following states */
+#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
+#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
+#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
+#define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
+#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
+#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
+#define STATE_CMD_STATUS 0x00000007 /* read status */
+#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
+#define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
+#define STATE_CMD_READID 0x0000000A /* read ID */
+#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
+#define STATE_CMD_RESET 0x0000000C /* reset */
+#define STATE_CMD_MASK 0x0000000F /* command states mask */
+
+/* After an addres is input, the simulator goes to one of these states */
+#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
+#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
+#define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
+#define STATE_ADDR_MASK 0x00000030 /* address states mask */
+
+/* Durind data input/output the simulator is in these states */
+#define STATE_DATAIN 0x00000100 /* waiting for data input */
+#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
+
+#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
+#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
+#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
+#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
+#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
+
+/* Previous operation is done, ready to accept new requests */
+#define STATE_READY 0x00000000
+
+/* This state is used to mark that the next state isn't known yet */
+#define STATE_UNKNOWN 0x10000000
+
+/* Simulator's actions bit masks */
+#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
+#define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
+#define ACTION_SECERASE 0x00300000 /* erase sector */
+#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
+#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
+#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
+#define ACTION_MASK 0x00700000 /* action mask */
+
+#define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
+#define NS_OPER_STATES 6 /* Maximum number of states in operation */
+
+#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
+#define OPT_PAGE256 0x00000001 /* 256-byte page chips */
+#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
+#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
+#define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
+#define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
+#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
+#define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
+#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
+
+/* Remove action bits ftom state */
+#define NS_STATE(x) ((x) & ~ACTION_MASK)
+
+/*
+ * Maximum previous states which need to be saved. Currently saving is
+ * only needed for page programm operation with preceeded read command
+ * (which is only valid for 512-byte pages).
+ */
+#define NS_MAX_PREVSTATES 1
+
+/*
+ * The structure which describes all the internal simulator data.
+ */
+struct nandsim {
+ struct mtd_partition part;
+
+ uint busw; /* flash chip bus width (8 or 16) */
+ u_char ids[4]; /* chip's ID bytes */
+ uint32_t options; /* chip's characteristic bits */
+ uint32_t state; /* current chip state */
+ uint32_t nxstate; /* next expected state */
+
+ uint32_t *op; /* current operation, NULL operations isn't known yet */
+ uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
+ uint16_t npstates; /* number of previous states saved */
+ uint16_t stateidx; /* current state index */
+
+ /* The simulated NAND flash image */
+ union flash_media {
+ u_char *byte;
+ uint16_t *word;
+ } mem;
+
+ /* Internal buffer of page + OOB size bytes */
+ union internal_buffer {
+ u_char *byte; /* for byte access */
+ uint16_t *word; /* for 16-bit word access */
+ } buf;
+
+ /* NAND flash "geometry" */
+ struct nandsin_geometry {
+ uint32_t totsz; /* total flash size, bytes */
+ uint32_t secsz; /* flash sector (erase block) size, bytes */
+ uint pgsz; /* NAND flash page size, bytes */
+ uint oobsz; /* page OOB area size, bytes */
+ uint32_t totszoob; /* total flash size including OOB, bytes */
+ uint pgszoob; /* page size including OOB , bytes*/
+ uint secszoob; /* sector size including OOB, bytes */
+ uint pgnum; /* total number of pages */
+ uint pgsec; /* number of pages per sector */
+ uint secshift; /* bits number in sector size */
+ uint pgshift; /* bits number in page size */
+ uint oobshift; /* bits number in OOB size */
+ uint pgaddrbytes; /* bytes per page address */
+ uint secaddrbytes; /* bytes per sector address */
+ uint idbytes; /* the number ID bytes that this chip outputs */
+ } geom;
+
+ /* NAND flash internal registers */
+ struct nandsim_regs {
+ unsigned command; /* the command register */
+ u_char status; /* the status register */
+ uint row; /* the page number */
+ uint column; /* the offset within page */
+ uint count; /* internal counter */
+ uint num; /* number of bytes which must be processed */
+ uint off; /* fixed page offset */
+ } regs;
+
+ /* NAND flash lines state */
+ struct ns_lines_status {
+ int ce; /* chip Enable */
+ int cle; /* command Latch Enable */
+ int ale; /* address Latch Enable */
+ int wp; /* write Protect */
+ } lines;
+};
+
+/*
+ * Operations array. To perform any operation the simulator must pass
+ * through the correspondent states chain.
+ */
+static struct nandsim_operations {
+ uint32_t reqopts; /* options which are required to perform the operation */
+ uint32_t states[NS_OPER_STATES]; /* operation's states */
+} ops[NS_OPER_NUM] = {
+ /* Read page + OOB from the beginning */
+ {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
+ STATE_DATAOUT, STATE_READY}},
+ /* Read page + OOB from the second half */
+ {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
+ STATE_DATAOUT, STATE_READY}},
+ /* Read OOB */
+ {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
+ STATE_DATAOUT, STATE_READY}},
+ /* Programm page starting from the beginning */
+ {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
+ STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+ /* Programm page starting from the beginning */
+ {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
+ STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+ /* Programm page starting from the second half */
+ {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
+ STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+ /* Programm OOB */
+ {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
+ STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
+ /* Erase sector */
+ {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
+ /* Read status */
+ {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
+ /* Read multi-plane status */
+ {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
+ /* Read ID */
+ {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
+ /* Large page devices read page */
+ {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
+ STATE_DATAOUT, STATE_READY}}
+};
+
+/* MTD structure for NAND controller */
+static struct mtd_info *nsmtd;
+
+static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
+
+/*
+ * Initialize the nandsim structure.
+ *
+ * RETURNS: 0 if success, -ERRNO if failure.
+ */
+static int
+init_nandsim(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = (struct nand_chip *)mtd->priv;
+ struct nandsim *ns = (struct nandsim *)(chip->priv);
+ int i;
+
+ if (NS_IS_INITIALIZED(ns)) {
+ NS_ERR("init_nandsim: nandsim is already initialized\n");
+ return -EIO;
+ }
+
+ /* Force mtd to not do delays */
+ chip->chip_delay = 0;
+
+ /* Initialize the NAND flash parameters */
+ ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
+ ns->geom.totsz = mtd->size;
+ ns->geom.pgsz = mtd->oobblock;
+ ns->geom.oobsz = mtd->oobsize;
+ ns->geom.secsz = mtd->erasesize;
+ ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
+ ns->geom.pgnum = ns->geom.totsz / ns->geom.pgsz;
+ ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
+ ns->geom.secshift = ffs(ns->geom.secsz) - 1;
+ ns->geom.pgshift = chip->page_shift;
+ ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
+ ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
+ ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
+ ns->options = 0;
+
+ if (ns->geom.pgsz == 256) {
+ ns->options |= OPT_PAGE256;
+ }
+ else if (ns->geom.pgsz == 512) {
+ ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
+ if (ns->busw == 8)
+ ns->options |= OPT_PAGE512_8BIT;
+ } else if (ns->geom.pgsz == 2048) {
+ ns->options |= OPT_PAGE2048;
+ } else {
+ NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
+ return -EIO;
+ }
+
+ if (ns->options & OPT_SMALLPAGE) {
+ if (ns->geom.totsz < (64 << 20)) {
+ ns->geom.pgaddrbytes = 3;
+ ns->geom.secaddrbytes = 2;
+ } else {
+ ns->geom.pgaddrbytes = 4;
+ ns->geom.secaddrbytes = 3;
+ }
+ } else {
+ if (ns->geom.totsz <= (128 << 20)) {
+ ns->geom.pgaddrbytes = 5;
+ ns->geom.secaddrbytes = 2;
+ } else {
+ ns->geom.pgaddrbytes = 5;
+ ns->geom.secaddrbytes = 3;
+ }
+ }
+
+ /* Detect how many ID bytes the NAND chip outputs */
+ for (i = 0; nand_flash_ids[i].name != NULL; i++) {
+ if (second_id_byte != nand_flash_ids[i].id)
+ continue;
+ if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
+ ns->options |= OPT_AUTOINCR;
+ }
+
+ if (ns->busw == 16)
+ NS_WARN("16-bit flashes support wasn't tested\n");
+
+ printk("flash size: %u MiB\n", ns->geom.totsz >> 20);
+ printk("page size: %u bytes\n", ns->geom.pgsz);
+ printk("OOB area size: %u bytes\n", ns->geom.oobsz);
+ printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
+ printk("pages number: %u\n", ns->geom.pgnum);
+ printk("pages per sector: %u\n", ns->geom.pgsec);
+ printk("bus width: %u\n", ns->busw);
+ printk("bits in sector size: %u\n", ns->geom.secshift);
+ printk("bits in page size: %u\n", ns->geom.pgshift);
+ printk("bits in OOB size: %u\n", ns->geom.oobshift);
+ printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
+ printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
+ printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
+ printk("options: %#x\n", ns->options);
+
+ /* Map / allocate and initialize the flash image */
+#ifdef CONFIG_NS_ABS_POS
+ ns->mem.byte = ioremap(CONFIG_NS_ABS_POS, ns->geom.totszoob);
+ if (!ns->mem.byte) {
+ NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n",
+ (void *)CONFIG_NS_ABS_POS);
+ return -ENOMEM;
+ }
+#else
+ ns->mem.byte = vmalloc(ns->geom.totszoob);
+ if (!ns->mem.byte) {
+ NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n",
+ ns->geom.totszoob);
+ return -ENOMEM;
+ }
+ memset(ns->mem.byte, 0xFF, ns->geom.totszoob);
+#endif
+
+ /* Allocate / initialize the internal buffer */
+ ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
+ if (!ns->buf.byte) {
+ NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
+ ns->geom.pgszoob);
+ goto error;
+ }
+ memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
+
+ /* Fill the partition_info structure */
+ ns->part.name = "NAND simulator partition";
+ ns->part.offset = 0;
+ ns->part.size = ns->geom.totsz;
+
+ return 0;
+
+error:
+#ifdef CONFIG_NS_ABS_POS
+ iounmap(ns->mem.byte);
+#else
+ vfree(ns->mem.byte);
+#endif
+
+ return -ENOMEM;
+}
+
+/*
+ * Free the nandsim structure.
+ */
+static void
+free_nandsim(struct nandsim *ns)
+{
+ kfree(ns->buf.byte);
+
+#ifdef CONFIG_NS_ABS_POS
+ iounmap(ns->mem.byte);
+#else
+ vfree(ns->mem.byte);
+#endif
+
+ return;
+}
+
+/*
+ * Returns the string representation of 'state' state.
+ */
+static char *
+get_state_name(uint32_t state)
+{
+ switch (NS_STATE(state)) {
+ case STATE_CMD_READ0:
+ return "STATE_CMD_READ0";
+ case STATE_CMD_READ1:
+ return "STATE_CMD_READ1";
+ case STATE_CMD_PAGEPROG:
+ return "STATE_CMD_PAGEPROG";
+ case STATE_CMD_READOOB:
+ return "STATE_CMD_READOOB";
+ case STATE_CMD_READSTART:
+ return "STATE_CMD_READSTART";
+ case STATE_CMD_ERASE1:
+ return "STATE_CMD_ERASE1";
+ case STATE_CMD_STATUS:
+ return "STATE_CMD_STATUS";
+ case STATE_CMD_STATUS_M:
+ return "STATE_CMD_STATUS_M";
+ case STATE_CMD_SEQIN:
+ return "STATE_CMD_SEQIN";
+ case STATE_CMD_READID:
+ return "STATE_CMD_READID";
+ case STATE_CMD_ERASE2:
+ return "STATE_CMD_ERASE2";
+ case STATE_CMD_RESET:
+ return "STATE_CMD_RESET";
+ case STATE_ADDR_PAGE:
+ return "STATE_ADDR_PAGE";
+ case STATE_ADDR_SEC:
+ return "STATE_ADDR_SEC";
+ case STATE_ADDR_ZERO:
+ return "STATE_ADDR_ZERO";
+ case STATE_DATAIN:
+ return "STATE_DATAIN";
+ case STATE_DATAOUT:
+ return "STATE_DATAOUT";
+ case STATE_DATAOUT_ID:
+ return "STATE_DATAOUT_ID";
+ case STATE_DATAOUT_STATUS:
+ return "STATE_DATAOUT_STATUS";
+ case STATE_DATAOUT_STATUS_M:
+ return "STATE_DATAOUT_STATUS_M";
+ case STATE_READY:
+ return "STATE_READY";
+ case STATE_UNKNOWN:
+ return "STATE_UNKNOWN";
+ }
+
+ NS_ERR("get_state_name: unknown state, BUG\n");
+ return NULL;
+}
+
+/*
+ * Check if command is valid.
+ *
+ * RETURNS: 1 if wrong command, 0 if right.
+ */
+static int
+check_command(int cmd)
+{
+ switch (cmd) {
+
+ case NAND_CMD_READ0:
+ case NAND_CMD_READSTART:
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_READOOB:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_STATUS:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_READID:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_RESET:
+ case NAND_CMD_READ1:
+ return 0;
+
+ case NAND_CMD_STATUS_MULTI:
+ default:
+ return 1;
+ }
+}
+
+/*
+ * Returns state after command is accepted by command number.
+ */
+static uint32_t
+get_state_by_command(unsigned command)
+{
+ switch (command) {
+ case NAND_CMD_READ0:
+ return STATE_CMD_READ0;
+ case NAND_CMD_READ1:
+ return STATE_CMD_READ1;
+ case NAND_CMD_PAGEPROG:
+ return STATE_CMD_PAGEPROG;
+ case NAND_CMD_READSTART:
+ return STATE_CMD_READSTART;
+ case NAND_CMD_READOOB:
+ return STATE_CMD_READOOB;
+ case NAND_CMD_ERASE1:
+ return STATE_CMD_ERASE1;
+ case NAND_CMD_STATUS:
+ return STATE_CMD_STATUS;
+ case NAND_CMD_STATUS_MULTI:
+ return STATE_CMD_STATUS_M;
+ case NAND_CMD_SEQIN:
+ return STATE_CMD_SEQIN;
+ case NAND_CMD_READID:
+ return STATE_CMD_READID;
+ case NAND_CMD_ERASE2:
+ return STATE_CMD_ERASE2;
+ case NAND_CMD_RESET:
+ return STATE_CMD_RESET;
+ }
+
+ NS_ERR("get_state_by_command: unknown command, BUG\n");
+ return 0;
+}
+
+/*
+ * Move an address byte to the correspondent internal register.
+ */
+static inline void
+accept_addr_byte(struct nandsim *ns, u_char bt)
+{
+ uint byte = (uint)bt;
+
+ if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
+ ns->regs.column |= (byte << 8 * ns->regs.count);
+ else {
+ ns->regs.row |= (byte << 8 * (ns->regs.count -
+ ns->geom.pgaddrbytes +
+ ns->geom.secaddrbytes));
+ }
+
+ return;
+}
+
+/*
+ * Switch to STATE_READY state.
+ */
+static inline void
+switch_to_ready_state(struct nandsim *ns, u_char status)
+{
+ NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
+
+ ns->state = STATE_READY;
+ ns->nxstate = STATE_UNKNOWN;
+ ns->op = NULL;
+ ns->npstates = 0;
+ ns->stateidx = 0;
+ ns->regs.num = 0;
+ ns->regs.count = 0;
+ ns->regs.off = 0;
+ ns->regs.row = 0;
+ ns->regs.column = 0;
+ ns->regs.status = status;
+}
+
+/*
+ * If the operation isn't known yet, try to find it in the global array
+ * of supported operations.
+ *
+ * Operation can be unknown because of the following.
+ * 1. New command was accepted and this is the firs call to find the
+ * correspondent states chain. In this case ns->npstates = 0;
+ * 2. There is several operations which begin with the same command(s)
+ * (for example program from the second half and read from the
+ * second half operations both begin with the READ1 command). In this
+ * case the ns->pstates[] array contains previous states.
+ *
+ * Thus, the function tries to find operation containing the following
+ * states (if the 'flag' parameter is 0):
+ * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
+ *
+ * If (one and only one) matching operation is found, it is accepted (
+ * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
+ * zeroed).
+ *
+ * If there are several maches, the current state is pushed to the
+ * ns->pstates.
+ *
+ * The operation can be unknown only while commands are input to the chip.
+ * As soon as address command is accepted, the operation must be known.
+ * In such situation the function is called with 'flag' != 0, and the
+ * operation is searched using the following pattern:
+ * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
+ *
+ * It is supposed that this pattern must either match one operation on
+ * none. There can't be ambiguity in that case.
+ *
+ * If no matches found, the functions does the following:
+ * 1. if there are saved states present, try to ignore them and search
+ * again only using the last command. If nothing was found, switch
+ * to the STATE_READY state.
+ * 2. if there are no saved states, switch to the STATE_READY state.
+ *
+ * RETURNS: -2 - no matched operations found.
+ * -1 - several matches.
+ * 0 - operation is found.
+ */
+static int
+find_operation(struct nandsim *ns, uint32_t flag)
+{
+ int opsfound = 0;
+ int i, j, idx = 0;
+
+ for (i = 0; i < NS_OPER_NUM; i++) {
+
+ int found = 1;
+
+ if (!(ns->options & ops[i].reqopts))
+ /* Ignore operations we can't perform */
+ continue;
+
+ if (flag) {
+ if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
+ continue;
+ } else {
+ if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
+ continue;
+ }
+
+ for (j = 0; j < ns->npstates; j++)
+ if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
+ && (ns->options & ops[idx].reqopts)) {
+ found = 0;
+ break;
+ }
+
+ if (found) {
+ idx = i;
+ opsfound += 1;
+ }
+ }
+
+ if (opsfound == 1) {
+ /* Exact match */
+ ns->op = &ops[idx].states[0];
+ if (flag) {
+ /*
+ * In this case the find_operation function was
+ * called when address has just began input. But it isn't
+ * yet fully input and the current state must
+ * not be one of STATE_ADDR_*, but the STATE_ADDR_*
+ * state must be the next state (ns->nxstate).
+ */
+ ns->stateidx = ns->npstates - 1;
+ } else {
+ ns->stateidx = ns->npstates;
+ }
+ ns->npstates = 0;
+ ns->state = ns->op[ns->stateidx];
+ ns->nxstate = ns->op[ns->stateidx + 1];
+ NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
+ idx, get_state_name(ns->state), get_state_name(ns->nxstate));
+ return 0;
+ }
+
+ if (opsfound == 0) {
+ /* Nothing was found. Try to ignore previous commands (if any) and search again */
+ if (ns->npstates != 0) {
+ NS_DBG("find_operation: no operation found, try again with state %s\n",
+ get_state_name(ns->state));
+ ns->npstates = 0;
+ return find_operation(ns, 0);
+
+ }
+ NS_DBG("find_operation: no operations found\n");
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return -2;
+ }
+
+ if (flag) {
+ /* This shouldn't happen */
+ NS_DBG("find_operation: BUG, operation must be known if address is input\n");
+ return -2;
+ }
+
+ NS_DBG("find_operation: there is still ambiguity\n");
+
+ ns->pstates[ns->npstates++] = ns->state;
+
+ return -1;
+}
+
+/*
+ * If state has any action bit, perform this action.
+ *
+ * RETURNS: 0 if success, -1 if error.
+ */
+static int
+do_state_action(struct nandsim *ns, uint32_t action)
+{
+ int i, num;
+ int busdiv = ns->busw == 8 ? 1 : 2;
+
+ action &= ACTION_MASK;
+
+ /* Check that page address input is correct */
+ if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
+ NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
+ return -1;
+ }
+
+ switch (action) {
+
+ case ACTION_CPY:
+ /*
+ * Copy page data to the internal buffer.
+ */
+
+ /* Column shouldn't be very large */
+ if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
+ NS_ERR("do_state_action: column number is too large\n");
+ break;
+ }
+ num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
+ memcpy(ns->buf.byte, ns->mem.byte + NS_RAW_OFFSET(ns) + ns->regs.off, num);
+
+ NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
+ num, NS_RAW_OFFSET(ns) + ns->regs.off);
+
+ if (ns->regs.off == 0)
+ NS_LOG("read page %d\n", ns->regs.row);
+ else if (ns->regs.off < ns->geom.pgsz)
+ NS_LOG("read page %d (second half)\n", ns->regs.row);
+ else
+ NS_LOG("read OOB of page %d\n", ns->regs.row);
+
+ NS_UDELAY(access_delay);
+ NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
+
+ break;
+
+ case ACTION_SECERASE:
+ /*
+ * Erase sector.
+ */
+
+ if (ns->lines.wp) {
+ NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
+ return -1;
+ }
+
+ if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
+ || (ns->regs.row & ~(ns->geom.secsz - 1))) {
+ NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
+ return -1;
+ }
+
+ ns->regs.row = (ns->regs.row <<
+ 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
+ ns->regs.column = 0;
+
+ NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
+ ns->regs.row, NS_RAW_OFFSET(ns));
+ NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift));
+
+ memset(ns->mem.byte + NS_RAW_OFFSET(ns), 0xFF, ns->geom.secszoob);
+
+ NS_MDELAY(erase_delay);
+
+ break;
+
+ case ACTION_PRGPAGE:
+ /*
+ * Programm page - move internal buffer data to the page.
+ */
+
+ if (ns->lines.wp) {
+ NS_WARN("do_state_action: device is write-protected, programm\n");
+ return -1;
+ }
+
+ num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
+ if (num != ns->regs.count) {
+ NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
+ ns->regs.count, num);
+ return -1;
+ }
+
+ for (i = 0; i < num; i++)
+ ns->mem.byte[NS_RAW_OFFSET(ns) + ns->regs.off + i] &= ns->buf.byte[i];
+
+ NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
+ num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
+ NS_LOG("programm page %d\n", ns->regs.row);
+
+ NS_UDELAY(programm_delay);
+ NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
+
+ break;
+
+ case ACTION_ZEROOFF:
+ NS_DBG("do_state_action: set internal offset to 0\n");
+ ns->regs.off = 0;
+ break;
+
+ case ACTION_HALFOFF:
+ if (!(ns->options & OPT_PAGE512_8BIT)) {
+ NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
+ "byte page size 8x chips\n");
+ return -1;
+ }
+ NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
+ ns->regs.off = ns->geom.pgsz/2;
+ break;
+
+ case ACTION_OOBOFF:
+ NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
+ ns->regs.off = ns->geom.pgsz;
+ break;
+
+ default:
+ NS_DBG("do_state_action: BUG! unknown action\n");
+ }
+
+ return 0;
+}
+
+/*
+ * Switch simulator's state.
+ */
+static void
+switch_state(struct nandsim *ns)
+{
+ if (ns->op) {
+ /*
+ * The current operation have already been identified.
+ * Just follow the states chain.
+ */
+
+ ns->stateidx += 1;
+ ns->state = ns->nxstate;
+ ns->nxstate = ns->op[ns->stateidx + 1];
+
+ NS_DBG("switch_state: operation is known, switch to the next state, "
+ "state: %s, nxstate: %s\n",
+ get_state_name(ns->state), get_state_name(ns->nxstate));
+
+ /* See, whether we need to do some action */
+ if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return;
+ }
+
+ } else {
+ /*
+ * We don't yet know which operation we perform.
+ * Try to identify it.
+ */
+
+ /*
+ * The only event causing the switch_state function to
+ * be called with yet unknown operation is new command.
+ */
+ ns->state = get_state_by_command(ns->regs.command);
+
+ NS_DBG("switch_state: operation is unknown, try to find it\n");
+
+ if (find_operation(ns, 0) != 0)
+ return;
+
+ if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return;
+ }
+ }
+
+ /* For 16x devices column means the page offset in words */
+ if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
+ NS_DBG("switch_state: double the column number for 16x device\n");
+ ns->regs.column <<= 1;
+ }
+
+ if (NS_STATE(ns->nxstate) == STATE_READY) {
+ /*
+ * The current state is the last. Return to STATE_READY
+ */
+
+ u_char status = NS_STATUS_OK(ns);
+
+ /* In case of data states, see if all bytes were input/output */
+ if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
+ && ns->regs.count != ns->regs.num) {
+ NS_WARN("switch_state: not all bytes were processed, %d left\n",
+ ns->regs.num - ns->regs.count);
+ status = NS_STATUS_FAILED(ns);
+ }
+
+ NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
+
+ switch_to_ready_state(ns, status);
+
+ return;
+ } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
+ /*
+ * If the next state is data input/output, switch to it now
+ */
+
+ ns->state = ns->nxstate;
+ ns->nxstate = ns->op[++ns->stateidx + 1];
+ ns->regs.num = ns->regs.count = 0;
+
+ NS_DBG("switch_state: the next state is data I/O, switch, "
+ "state: %s, nxstate: %s\n",
+ get_state_name(ns->state), get_state_name(ns->nxstate));
+
+ /*
+ * Set the internal register to the count of bytes which
+ * are expected to be input or output
+ */
+ switch (NS_STATE(ns->state)) {
+ case STATE_DATAIN:
+ case STATE_DATAOUT:
+ ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
+ break;
+
+ case STATE_DATAOUT_ID:
+ ns->regs.num = ns->geom.idbytes;
+ break;
+
+ case STATE_DATAOUT_STATUS:
+ case STATE_DATAOUT_STATUS_M:
+ ns->regs.count = ns->regs.num = 0;
+ break;
+
+ default:
+ NS_ERR("switch_state: BUG! unknown data state\n");
+ }
+
+ } else if (ns->nxstate & STATE_ADDR_MASK) {
+ /*
+ * If the next state is address input, set the internal
+ * register to the number of expected address bytes
+ */
+
+ ns->regs.count = 0;
+
+ switch (NS_STATE(ns->nxstate)) {
+ case STATE_ADDR_PAGE:
+ ns->regs.num = ns->geom.pgaddrbytes;
+
+ break;
+ case STATE_ADDR_SEC:
+ ns->regs.num = ns->geom.secaddrbytes;
+ break;
+
+ case STATE_ADDR_ZERO:
+ ns->regs.num = 1;
+ break;
+
+ default:
+ NS_ERR("switch_state: BUG! unknown address state\n");
+ }
+ } else {
+ /*
+ * Just reset internal counters.
+ */
+
+ ns->regs.num = 0;
+ ns->regs.count = 0;
+ }
+}
+
+static void
+ns_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+
+ switch (cmd) {
+
+ /* set CLE line high */
+ case NAND_CTL_SETCLE:
+ NS_DBG("ns_hwcontrol: start command latch cycles\n");
+ ns->lines.cle = 1;
+ break;
+
+ /* set CLE line low */
+ case NAND_CTL_CLRCLE:
+ NS_DBG("ns_hwcontrol: stop command latch cycles\n");
+ ns->lines.cle = 0;
+ break;
+
+ /* set ALE line high */
+ case NAND_CTL_SETALE:
+ NS_DBG("ns_hwcontrol: start address latch cycles\n");
+ ns->lines.ale = 1;
+ break;
+
+ /* set ALE line low */
+ case NAND_CTL_CLRALE:
+ NS_DBG("ns_hwcontrol: stop address latch cycles\n");
+ ns->lines.ale = 0;
+ break;
+
+ /* set WP line high */
+ case NAND_CTL_SETWP:
+ NS_DBG("ns_hwcontrol: enable write protection\n");
+ ns->lines.wp = 1;
+ break;
+
+ /* set WP line low */
+ case NAND_CTL_CLRWP:
+ NS_DBG("ns_hwcontrol: disable write protection\n");
+ ns->lines.wp = 0;
+ break;
+
+ /* set CE line low */
+ case NAND_CTL_SETNCE:
+ NS_DBG("ns_hwcontrol: enable chip\n");
+ ns->lines.ce = 1;
+ break;
+
+ /* set CE line high */
+ case NAND_CTL_CLRNCE:
+ NS_DBG("ns_hwcontrol: disable chip\n");
+ ns->lines.ce = 0;
+ break;
+
+ default:
+ NS_ERR("hwcontrol: unknown command\n");
+ }
+
+ return;
+}
+
+static u_char
+ns_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+ u_char outb = 0x00;
+
+ /* Sanity and correctness checks */
+ if (!ns->lines.ce) {
+ NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
+ return outb;
+ }
+ if (ns->lines.ale || ns->lines.cle) {
+ NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
+ return outb;
+ }
+ if (!(ns->state & STATE_DATAOUT_MASK)) {
+ NS_WARN("read_byte: unexpected data output cycle, state is %s "
+ "return %#x\n", get_state_name(ns->state), (uint)outb);
+ return outb;
+ }
+
+ /* Status register may be read as many times as it is wanted */
+ if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
+ NS_DBG("read_byte: return %#x status\n", ns->regs.status);
+ return ns->regs.status;
+ }
+
+ /* Check if there is any data in the internal buffer which may be read */
+ if (ns->regs.count == ns->regs.num) {
+ NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
+ return outb;
+ }
+
+ switch (NS_STATE(ns->state)) {
+ case STATE_DATAOUT:
+ if (ns->busw == 8) {
+ outb = ns->buf.byte[ns->regs.count];
+ ns->regs.count += 1;
+ } else {
+ outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
+ ns->regs.count += 2;
+ }
+ break;
+ case STATE_DATAOUT_ID:
+ NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
+ outb = ns->ids[ns->regs.count];
+ ns->regs.count += 1;
+ break;
+ default:
+ BUG();
+ }
+
+ if (ns->regs.count == ns->regs.num) {
+ NS_DBG("read_byte: all bytes were read\n");
+
+ /*
+ * The OPT_AUTOINCR allows to read next conseqitive pages without
+ * new read operation cycle.
+ */
+ if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
+ ns->regs.count = 0;
+ if (ns->regs.row + 1 < ns->geom.pgnum)
+ ns->regs.row += 1;
+ NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
+ do_state_action(ns, ACTION_CPY);
+ }
+ else if (NS_STATE(ns->nxstate) == STATE_READY)
+ switch_state(ns);
+
+ }
+
+ return outb;
+}
+
+static void
+ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+ struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+
+ /* Sanity and correctness checks */
+ if (!ns->lines.ce) {
+ NS_ERR("write_byte: chip is disabled, ignore write\n");
+ return;
+ }
+ if (ns->lines.ale && ns->lines.cle) {
+ NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
+ return;
+ }
+
+ if (ns->lines.cle == 1) {
+ /*
+ * The byte written is a command.
+ */
+
+ if (byte == NAND_CMD_RESET) {
+ NS_LOG("reset chip\n");
+ switch_to_ready_state(ns, NS_STATUS_OK(ns));
+ return;
+ }
+
+ /*
+ * Chip might still be in STATE_DATAOUT
+ * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
+ * STATE_DATAOUT_STATUS_M state. If so, switch state.
+ */
+ if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
+ || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
+ || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
+ switch_state(ns);
+
+ /* Check if chip is expecting command */
+ if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
+ /*
+ * We are in situation when something else (not command)
+ * was expected but command was input. In this case ignore
+ * previous command(s)/state(s) and accept the last one.
+ */
+ NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
+ "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ }
+
+ /* Check that the command byte is correct */
+ if (check_command(byte)) {
+ NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
+ return;
+ }
+
+ NS_DBG("command byte corresponding to %s state accepted\n",
+ get_state_name(get_state_by_command(byte)));
+ ns->regs.command = byte;
+ switch_state(ns);
+
+ } else if (ns->lines.ale == 1) {
+ /*
+ * The byte written is an address.
+ */
+
+ if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
+
+ NS_DBG("write_byte: operation isn't known yet, identify it\n");
+
+ if (find_operation(ns, 1) < 0)
+ return;
+
+ if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return;
+ }
+
+ ns->regs.count = 0;
+ switch (NS_STATE(ns->nxstate)) {
+ case STATE_ADDR_PAGE:
+ ns->regs.num = ns->geom.pgaddrbytes;
+ break;
+ case STATE_ADDR_SEC:
+ ns->regs.num = ns->geom.secaddrbytes;
+ break;
+ case STATE_ADDR_ZERO:
+ ns->regs.num = 1;
+ break;
+ default:
+ BUG();
+ }
+ }
+
+ /* Check that chip is expecting address */
+ if (!(ns->nxstate & STATE_ADDR_MASK)) {
+ NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
+ "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return;
+ }
+
+ /* Check if this is expected byte */
+ if (ns->regs.count == ns->regs.num) {
+ NS_ERR("write_byte: no more address bytes expected\n");
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return;
+ }
+
+ accept_addr_byte(ns, byte);
+
+ ns->regs.count += 1;
+
+ NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
+ (uint)byte, ns->regs.count, ns->regs.num);
+
+ if (ns->regs.count == ns->regs.num) {
+ NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
+ switch_state(ns);
+ }
+
+ } else {
+ /*
+ * The byte written is an input data.
+ */
+
+ /* Check that chip is expecting data input */
+ if (!(ns->state & STATE_DATAIN_MASK)) {
+ NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
+ "switch to %s\n", (uint)byte,
+ get_state_name(ns->state), get_state_name(STATE_READY));
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return;
+ }
+
+ /* Check if this is expected byte */
+ if (ns->regs.count == ns->regs.num) {
+ NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
+ ns->regs.num);
+ return;
+ }
+
+ if (ns->busw == 8) {
+ ns->buf.byte[ns->regs.count] = byte;
+ ns->regs.count += 1;
+ } else {
+ ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
+ ns->regs.count += 2;
+ }
+ }
+
+ return;
+}
+
+static int
+ns_device_ready(struct mtd_info *mtd)
+{
+ NS_DBG("device_ready\n");
+ return 1;
+}
+
+static uint16_t
+ns_nand_read_word(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = (struct nand_chip *)mtd->priv;
+
+ NS_DBG("read_word\n");
+
+ return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
+}
+
+static void
+ns_nand_write_word(struct mtd_info *mtd, uint16_t word)
+{
+ struct nand_chip *chip = (struct nand_chip *)mtd->priv;
+
+ NS_DBG("write_word\n");
+
+ chip->write_byte(mtd, word & 0xFF);
+ chip->write_byte(mtd, word >> 8);
+}
+
+static void
+ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+
+ /* Check that chip is expecting data input */
+ if (!(ns->state & STATE_DATAIN_MASK)) {
+ NS_ERR("write_buf: data input isn't expected, state is %s, "
+ "switch to STATE_READY\n", get_state_name(ns->state));
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return;
+ }
+
+ /* Check if these are expected bytes */
+ if (ns->regs.count + len > ns->regs.num) {
+ NS_ERR("write_buf: too many input bytes\n");
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return;
+ }
+
+ memcpy(ns->buf.byte + ns->regs.count, buf, len);
+ ns->regs.count += len;
+
+ if (ns->regs.count == ns->regs.num) {
+ NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
+ }
+}
+
+static void
+ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
+
+ /* Sanity and correctness checks */
+ if (!ns->lines.ce) {
+ NS_ERR("read_buf: chip is disabled\n");
+ return;
+ }
+ if (ns->lines.ale || ns->lines.cle) {
+ NS_ERR("read_buf: ALE or CLE pin is high\n");
+ return;
+ }
+ if (!(ns->state & STATE_DATAOUT_MASK)) {
+ NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
+ get_state_name(ns->state));
+ return;
+ }
+
+ if (NS_STATE(ns->state) != STATE_DATAOUT) {
+ int i;
+
+ for (i = 0; i < len; i++)
+ buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
+
+ return;
+ }
+
+ /* Check if these are expected bytes */
+ if (ns->regs.count + len > ns->regs.num) {
+ NS_ERR("read_buf: too many bytes to read\n");
+ switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
+ return;
+ }
+
+ memcpy(buf, ns->buf.byte + ns->regs.count, len);
+ ns->regs.count += len;
+
+ if (ns->regs.count == ns->regs.num) {
+ if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
+ ns->regs.count = 0;
+ if (ns->regs.row + 1 < ns->geom.pgnum)
+ ns->regs.row += 1;
+ NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
+ do_state_action(ns, ACTION_CPY);
+ }
+ else if (NS_STATE(ns->nxstate) == STATE_READY)
+ switch_state(ns);
+ }
+
+ return;
+}
+
+static int
+ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
+
+ if (!memcmp(buf, &ns_verify_buf[0], len)) {
+ NS_DBG("verify_buf: the buffer is OK\n");
+ return 0;
+ } else {
+ NS_DBG("verify_buf: the buffer is wrong\n");
+ return -EFAULT;
+ }
+}
+
+/*
+ * Having only NAND chip IDs we call nand_scan which detects NAND flash
+ * parameters and then calls scan_bbt in order to scan/find/build the
+ * NAND flash bad block table. But since at that moment the NAND flash
+ * image isn't allocated in the simulator, errors arise. To avoid this
+ * we redefine the scan_bbt callback and initialize the nandsim structure
+ * before the flash media scanning.
+ */
+int ns_scan_bbt(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = (struct nand_chip *)mtd->priv;
+ struct nandsim *ns = (struct nandsim *)(chip->priv);
+ int retval;
+
+ if (!NS_IS_INITIALIZED(ns))
+ if ((retval = init_nandsim(mtd)) != 0) {
+ NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
+ return retval;
+ }
+ if ((retval = nand_default_bbt(mtd)) != 0) {
+ free_nandsim(ns);
+ return retval;
+ }
+
+ return 0;
+}
+
+/*
+ * Module initialization function
+ */
+int __init ns_init_module(void)
+{
+ struct nand_chip *chip;
+ struct nandsim *nand;
+ int retval = -ENOMEM;
+
+ if (bus_width != 8 && bus_width != 16) {
+ NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
+ return -EINVAL;
+ }
+
+ /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
+ nsmtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
+ + sizeof(struct nandsim), GFP_KERNEL);
+ if (!nsmtd) {
+ NS_ERR("unable to allocate core structures.\n");
+ return -ENOMEM;
+ }
+ memset(nsmtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip) +
+ sizeof(struct nandsim));
+ chip = (struct nand_chip *)(nsmtd + 1);
+ nsmtd->priv = (void *)chip;
+ nand = (struct nandsim *)(chip + 1);
+ chip->priv = (void *)nand;
+
+ /*
+ * Register simulator's callbacks.
+ */
+ chip->hwcontrol = ns_hwcontrol;
+ chip->read_byte = ns_nand_read_byte;
+ chip->dev_ready = ns_device_ready;
+ chip->scan_bbt = ns_scan_bbt;
+ chip->write_byte = ns_nand_write_byte;
+ chip->write_buf = ns_nand_write_buf;
+ chip->read_buf = ns_nand_read_buf;
+ chip->verify_buf = ns_nand_verify_buf;
+ chip->write_word = ns_nand_write_word;
+ chip->read_word = ns_nand_read_word;
+ chip->eccmode = NAND_ECC_SOFT;
+
+ /*
+ * Perform minimum nandsim structure initialization to handle
+ * the initial ID read command correctly
+ */
+ if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
+ nand->geom.idbytes = 4;
+ else
+ nand->geom.idbytes = 2;
+ nand->regs.status = NS_STATUS_OK(nand);
+ nand->nxstate = STATE_UNKNOWN;
+ nand->options |= OPT_PAGE256; /* temporary value */
+ nand->ids[0] = first_id_byte;
+ nand->ids[1] = second_id_byte;
+ nand->ids[2] = third_id_byte;
+ nand->ids[3] = fourth_id_byte;
+ if (bus_width == 16) {
+ nand->busw = 16;
+ chip->options |= NAND_BUSWIDTH_16;
+ }
+
+ if ((retval = nand_scan(nsmtd, 1)) != 0) {
+ NS_ERR("can't register NAND Simulator\n");
+ if (retval > 0)
+ retval = -ENXIO;
+ goto error;
+ }
+
+ /* Register NAND as one big partition */
+ add_mtd_partitions(nsmtd, &nand->part, 1);
+
+ return 0;
+
+error:
+ kfree(nsmtd);
+
+ return retval;
+}
+
+module_init(ns_init_module);
+
+/*
+ * Module clean-up function
+ */
+static void __exit ns_cleanup_module(void)
+{
+ struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
+
+ free_nandsim(ns); /* Free nandsim private resources */
+ nand_release(nsmtd); /* Unregisterd drived */
+ kfree(nsmtd); /* Free other structures */
+}
+
+module_exit(ns_cleanup_module);
+
+MODULE_LICENSE ("GPL");
+MODULE_AUTHOR ("Artem B. Bityuckiy");
+MODULE_DESCRIPTION ("The NAND flash simulator");
+
diff --git a/drivers/mtd/nand/ppchameleonevb.c b/drivers/mtd/nand/ppchameleonevb.c
new file mode 100644
index 00000000000..e510a83d7bd
--- /dev/null
+++ b/drivers/mtd/nand/ppchameleonevb.c
@@ -0,0 +1,420 @@
+/*
+ * drivers/mtd/nand/ppchameleonevb.c
+ *
+ * Copyright (C) 2003 DAVE Srl (info@wawnet.biz)
+ *
+ * Derived from drivers/mtd/nand/edb7312.c
+ *
+ *
+ * $Id: ppchameleonevb.c,v 1.6 2004/11/05 16:07:16 kalev Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the NAND flash devices found on the
+ * PPChameleon/PPChameleonEVB system.
+ * PPChameleon options (autodetected):
+ * - BA model: no NAND
+ * - ME model: 32MB (Samsung K9F5608U0B)
+ * - HI model: 128MB (Samsung K9F1G08UOM)
+ * PPChameleonEVB options:
+ * - 32MB (Samsung K9F5608U0B)
+ */
+
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <platforms/PPChameleonEVB.h>
+
+#undef USE_READY_BUSY_PIN
+#define USE_READY_BUSY_PIN
+/* see datasheets (tR) */
+#define NAND_BIG_DELAY_US 25
+#define NAND_SMALL_DELAY_US 10
+
+/* handy sizes */
+#define SZ_4M 0x00400000
+#define NAND_SMALL_SIZE 0x02000000
+#define NAND_MTD_NAME "ppchameleon-nand"
+#define NAND_EVB_MTD_NAME "ppchameleonevb-nand"
+
+/* GPIO pins used to drive NAND chip mounted on processor module */
+#define NAND_nCE_GPIO_PIN (0x80000000 >> 1)
+#define NAND_CLE_GPIO_PIN (0x80000000 >> 2)
+#define NAND_ALE_GPIO_PIN (0x80000000 >> 3)
+#define NAND_RB_GPIO_PIN (0x80000000 >> 4)
+/* GPIO pins used to drive NAND chip mounted on EVB */
+#define NAND_EVB_nCE_GPIO_PIN (0x80000000 >> 14)
+#define NAND_EVB_CLE_GPIO_PIN (0x80000000 >> 15)
+#define NAND_EVB_ALE_GPIO_PIN (0x80000000 >> 16)
+#define NAND_EVB_RB_GPIO_PIN (0x80000000 >> 31)
+
+/*
+ * MTD structure for PPChameleonEVB board
+ */
+static struct mtd_info *ppchameleon_mtd = NULL;
+static struct mtd_info *ppchameleonevb_mtd = NULL;
+
+/*
+ * Module stuff
+ */
+static unsigned long ppchameleon_fio_pbase = CFG_NAND0_PADDR;
+static unsigned long ppchameleonevb_fio_pbase = CFG_NAND1_PADDR;
+
+#ifdef MODULE
+module_param(ppchameleon_fio_pbase, ulong, 0);
+module_param(ppchameleonevb_fio_pbase, ulong, 0);
+#else
+__setup("ppchameleon_fio_pbase=",ppchameleon_fio_pbase);
+__setup("ppchameleonevb_fio_pbase=",ppchameleonevb_fio_pbase);
+#endif
+
+#ifdef CONFIG_MTD_PARTITIONS
+/*
+ * Define static partitions for flash devices
+ */
+static struct mtd_partition partition_info_hi[] = {
+ { name: "PPChameleon HI Nand Flash",
+ offset: 0,
+ size: 128*1024*1024 }
+};
+
+static struct mtd_partition partition_info_me[] = {
+ { name: "PPChameleon ME Nand Flash",
+ offset: 0,
+ size: 32*1024*1024 }
+};
+
+static struct mtd_partition partition_info_evb[] = {
+ { name: "PPChameleonEVB Nand Flash",
+ offset: 0,
+ size: 32*1024*1024 }
+};
+
+#define NUM_PARTITIONS 1
+
+extern int parse_cmdline_partitions(struct mtd_info *master,
+ struct mtd_partition **pparts,
+ const char *mtd_id);
+#endif
+
+
+/*
+ * hardware specific access to control-lines
+ */
+static void ppchameleon_hwcontrol(struct mtd_info *mtdinfo, int cmd)
+{
+ switch(cmd) {
+
+ case NAND_CTL_SETCLE:
+ MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND0_PADDR);
+ break;
+ case NAND_CTL_CLRCLE:
+ MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND0_PADDR);
+ break;
+ case NAND_CTL_SETALE:
+ MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND0_PADDR);
+ break;
+ case NAND_CTL_CLRALE:
+ MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND0_PADDR);
+ break;
+ case NAND_CTL_SETNCE:
+ MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND0_PADDR);
+ break;
+ case NAND_CTL_CLRNCE:
+ MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND0_PADDR);
+ break;
+ }
+}
+
+static void ppchameleonevb_hwcontrol(struct mtd_info *mtdinfo, int cmd)
+{
+ switch(cmd) {
+
+ case NAND_CTL_SETCLE:
+ MACRO_NAND_CTL_SETCLE((unsigned long)CFG_NAND1_PADDR);
+ break;
+ case NAND_CTL_CLRCLE:
+ MACRO_NAND_CTL_CLRCLE((unsigned long)CFG_NAND1_PADDR);
+ break;
+ case NAND_CTL_SETALE:
+ MACRO_NAND_CTL_SETALE((unsigned long)CFG_NAND1_PADDR);
+ break;
+ case NAND_CTL_CLRALE:
+ MACRO_NAND_CTL_CLRALE((unsigned long)CFG_NAND1_PADDR);
+ break;
+ case NAND_CTL_SETNCE:
+ MACRO_NAND_ENABLE_CE((unsigned long)CFG_NAND1_PADDR);
+ break;
+ case NAND_CTL_CLRNCE:
+ MACRO_NAND_DISABLE_CE((unsigned long)CFG_NAND1_PADDR);
+ break;
+ }
+}
+
+#ifdef USE_READY_BUSY_PIN
+/*
+ * read device ready pin
+ */
+static int ppchameleon_device_ready(struct mtd_info *minfo)
+{
+ if (in_be32((volatile unsigned*)GPIO0_IR) & NAND_RB_GPIO_PIN)
+ return 1;
+ return 0;
+}
+
+static int ppchameleonevb_device_ready(struct mtd_info *minfo)
+{
+ if (in_be32((volatile unsigned*)GPIO0_IR) & NAND_EVB_RB_GPIO_PIN)
+ return 1;
+ return 0;
+}
+#endif
+
+#ifdef CONFIG_MTD_PARTITIONS
+const char *part_probes[] = { "cmdlinepart", NULL };
+const char *part_probes_evb[] = { "cmdlinepart", NULL };
+#endif
+
+/*
+ * Main initialization routine
+ */
+static int __init ppchameleonevb_init (void)
+{
+ struct nand_chip *this;
+ const char *part_type = 0;
+ int mtd_parts_nb = 0;
+ struct mtd_partition *mtd_parts = 0;
+ void __iomem *ppchameleon_fio_base;
+ void __iomem *ppchameleonevb_fio_base;
+
+
+ /*********************************
+ * Processor module NAND (if any) *
+ *********************************/
+ /* Allocate memory for MTD device structure and private data */
+ ppchameleon_mtd = kmalloc(sizeof(struct mtd_info) +
+ sizeof(struct nand_chip), GFP_KERNEL);
+ if (!ppchameleon_mtd) {
+ printk("Unable to allocate PPChameleon NAND MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* map physical address */
+ ppchameleon_fio_base = ioremap(ppchameleon_fio_pbase, SZ_4M);
+ if(!ppchameleon_fio_base) {
+ printk("ioremap PPChameleon NAND flash failed\n");
+ kfree(ppchameleon_mtd);
+ return -EIO;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&ppchameleon_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) ppchameleon_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ ppchameleon_mtd->priv = this;
+
+ /* Initialize GPIOs */
+ /* Pin mapping for NAND chip */
+ /*
+ CE GPIO_01
+ CLE GPIO_02
+ ALE GPIO_03
+ R/B GPIO_04
+ */
+ /* output select */
+ out_be32((volatile unsigned*)GPIO0_OSRH, in_be32((volatile unsigned*)GPIO0_OSRH) & 0xC0FFFFFF);
+ /* three-state select */
+ out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xC0FFFFFF);
+ /* enable output driver */
+ out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_nCE_GPIO_PIN | NAND_CLE_GPIO_PIN | NAND_ALE_GPIO_PIN);
+#ifdef USE_READY_BUSY_PIN
+ /* three-state select */
+ out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xFF3FFFFF);
+ /* high-impedecence */
+ out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) & (~NAND_RB_GPIO_PIN));
+ /* input select */
+ out_be32((volatile unsigned*)GPIO0_ISR1H, (in_be32((volatile unsigned*)GPIO0_ISR1H) & 0xFF3FFFFF) | 0x00400000);
+#endif
+
+ /* insert callbacks */
+ this->IO_ADDR_R = ppchameleon_fio_base;
+ this->IO_ADDR_W = ppchameleon_fio_base;
+ this->hwcontrol = ppchameleon_hwcontrol;
+#ifdef USE_READY_BUSY_PIN
+ this->dev_ready = ppchameleon_device_ready;
+#endif
+ this->chip_delay = NAND_BIG_DELAY_US;
+ /* ECC mode */
+ this->eccmode = NAND_ECC_SOFT;
+
+ /* Scan to find existence of the device (it could not be mounted) */
+ if (nand_scan (ppchameleon_mtd, 1)) {
+ iounmap((void *)ppchameleon_fio_base);
+ kfree (ppchameleon_mtd);
+ goto nand_evb_init;
+ }
+
+#ifndef USE_READY_BUSY_PIN
+ /* Adjust delay if necessary */
+ if (ppchameleon_mtd->size == NAND_SMALL_SIZE)
+ this->chip_delay = NAND_SMALL_DELAY_US;
+#endif
+
+#ifdef CONFIG_MTD_PARTITIONS
+ ppchameleon_mtd->name = "ppchameleon-nand";
+ mtd_parts_nb = parse_mtd_partitions(ppchameleon_mtd, part_probes, &mtd_parts, 0);
+ if (mtd_parts_nb > 0)
+ part_type = "command line";
+ else
+ mtd_parts_nb = 0;
+#endif
+ if (mtd_parts_nb == 0)
+ {
+ if (ppchameleon_mtd->size == NAND_SMALL_SIZE)
+ mtd_parts = partition_info_me;
+ else
+ mtd_parts = partition_info_hi;
+ mtd_parts_nb = NUM_PARTITIONS;
+ part_type = "static";
+ }
+
+ /* Register the partitions */
+ printk(KERN_NOTICE "Using %s partition definition\n", part_type);
+ add_mtd_partitions(ppchameleon_mtd, mtd_parts, mtd_parts_nb);
+
+nand_evb_init:
+ /****************************
+ * EVB NAND (always present) *
+ ****************************/
+ /* Allocate memory for MTD device structure and private data */
+ ppchameleonevb_mtd = kmalloc(sizeof(struct mtd_info) +
+ sizeof(struct nand_chip), GFP_KERNEL);
+ if (!ppchameleonevb_mtd) {
+ printk("Unable to allocate PPChameleonEVB NAND MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* map physical address */
+ ppchameleonevb_fio_base = ioremap(ppchameleonevb_fio_pbase, SZ_4M);
+ if(!ppchameleonevb_fio_base) {
+ printk("ioremap PPChameleonEVB NAND flash failed\n");
+ kfree(ppchameleonevb_mtd);
+ return -EIO;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&ppchameleonevb_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) ppchameleonevb_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ ppchameleonevb_mtd->priv = this;
+
+ /* Initialize GPIOs */
+ /* Pin mapping for NAND chip */
+ /*
+ CE GPIO_14
+ CLE GPIO_15
+ ALE GPIO_16
+ R/B GPIO_31
+ */
+ /* output select */
+ out_be32((volatile unsigned*)GPIO0_OSRH, in_be32((volatile unsigned*)GPIO0_OSRH) & 0xFFFFFFF0);
+ out_be32((volatile unsigned*)GPIO0_OSRL, in_be32((volatile unsigned*)GPIO0_OSRL) & 0x3FFFFFFF);
+ /* three-state select */
+ out_be32((volatile unsigned*)GPIO0_TSRH, in_be32((volatile unsigned*)GPIO0_TSRH) & 0xFFFFFFF0);
+ out_be32((volatile unsigned*)GPIO0_TSRL, in_be32((volatile unsigned*)GPIO0_TSRL) & 0x3FFFFFFF);
+ /* enable output driver */
+ out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) | NAND_EVB_nCE_GPIO_PIN |
+ NAND_EVB_CLE_GPIO_PIN | NAND_EVB_ALE_GPIO_PIN);
+#ifdef USE_READY_BUSY_PIN
+ /* three-state select */
+ out_be32((volatile unsigned*)GPIO0_TSRL, in_be32((volatile unsigned*)GPIO0_TSRL) & 0xFFFFFFFC);
+ /* high-impedecence */
+ out_be32((volatile unsigned*)GPIO0_TCR, in_be32((volatile unsigned*)GPIO0_TCR) & (~NAND_EVB_RB_GPIO_PIN));
+ /* input select */
+ out_be32((volatile unsigned*)GPIO0_ISR1L, (in_be32((volatile unsigned*)GPIO0_ISR1L) & 0xFFFFFFFC) | 0x00000001);
+#endif
+
+ /* insert callbacks */
+ this->IO_ADDR_R = ppchameleonevb_fio_base;
+ this->IO_ADDR_W = ppchameleonevb_fio_base;
+ this->hwcontrol = ppchameleonevb_hwcontrol;
+#ifdef USE_READY_BUSY_PIN
+ this->dev_ready = ppchameleonevb_device_ready;
+#endif
+ this->chip_delay = NAND_SMALL_DELAY_US;
+
+ /* ECC mode */
+ this->eccmode = NAND_ECC_SOFT;
+
+ /* Scan to find existence of the device */
+ if (nand_scan (ppchameleonevb_mtd, 1)) {
+ iounmap((void *)ppchameleonevb_fio_base);
+ kfree (ppchameleonevb_mtd);
+ return -ENXIO;
+ }
+
+#ifdef CONFIG_MTD_PARTITIONS
+ ppchameleonevb_mtd->name = NAND_EVB_MTD_NAME;
+ mtd_parts_nb = parse_mtd_partitions(ppchameleonevb_mtd, part_probes_evb, &mtd_parts, 0);
+ if (mtd_parts_nb > 0)
+ part_type = "command line";
+ else
+ mtd_parts_nb = 0;
+#endif
+ if (mtd_parts_nb == 0)
+ {
+ mtd_parts = partition_info_evb;
+ mtd_parts_nb = NUM_PARTITIONS;
+ part_type = "static";
+ }
+
+ /* Register the partitions */
+ printk(KERN_NOTICE "Using %s partition definition\n", part_type);
+ add_mtd_partitions(ppchameleonevb_mtd, mtd_parts, mtd_parts_nb);
+
+ /* Return happy */
+ return 0;
+}
+module_init(ppchameleonevb_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit ppchameleonevb_cleanup (void)
+{
+ struct nand_chip *this;
+
+ /* Release resources, unregister device(s) */
+ nand_release (ppchameleon_mtd);
+ nand_release (ppchameleonevb_mtd);
+
+ /* Release iomaps */
+ this = (struct nand_chip *) &ppchameleon_mtd[1];
+ iounmap((void *) this->IO_ADDR_R;
+ this = (struct nand_chip *) &ppchameleonevb_mtd[1];
+ iounmap((void *) this->IO_ADDR_R;
+
+ /* Free the MTD device structure */
+ kfree (ppchameleon_mtd);
+ kfree (ppchameleonevb_mtd);
+}
+module_exit(ppchameleonevb_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("DAVE Srl <support-ppchameleon@dave-tech.it>");
+MODULE_DESCRIPTION("MTD map driver for DAVE Srl PPChameleonEVB board");
diff --git a/drivers/mtd/nand/rtc_from4.c b/drivers/mtd/nand/rtc_from4.c
new file mode 100644
index 00000000000..02305a2adca
--- /dev/null
+++ b/drivers/mtd/nand/rtc_from4.c
@@ -0,0 +1,559 @@
+/*
+ * drivers/mtd/nand/rtc_from4.c
+ *
+ * Copyright (C) 2004 Red Hat, Inc.
+ *
+ * Derived from drivers/mtd/nand/spia.c
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *
+ * $Id: rtc_from4.c,v 1.7 2004/11/04 12:53:10 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the AG-AND flash device found on the
+ * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
+ * which utilizes the Renesas HN29V1G91T-30 part.
+ * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
+ */
+
+#include <linux/delay.h>
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/rslib.h>
+#include <linux/module.h>
+#include <linux/mtd/compatmac.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+
+/*
+ * MTD structure for Renesas board
+ */
+static struct mtd_info *rtc_from4_mtd = NULL;
+
+#define RTC_FROM4_MAX_CHIPS 2
+
+/* HS77x9 processor register defines */
+#define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
+#define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
+#define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
+#define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
+#define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
+#define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
+#define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
+
+/*
+ * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
+ */
+/* Address where flash is mapped */
+#define RTC_FROM4_FIO_BASE 0x14000000
+
+/* CLE and ALE are tied to address lines 5 & 4, respectively */
+#define RTC_FROM4_CLE (1 << 5)
+#define RTC_FROM4_ALE (1 << 4)
+
+/* address lines A24-A22 used for chip selection */
+#define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
+#define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
+#define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
+/* mask address lines A24-A22 used for chip selection */
+#define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
+
+/* FPGA status register for checking device ready (bit zero) */
+#define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
+#define RTC_FROM4_DEVICE_READY 0x0001
+
+/* FPGA Reed-Solomon ECC Control register */
+
+#define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
+#define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
+#define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
+#define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
+
+/* FPGA Reed-Solomon ECC code base */
+#define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
+#define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
+
+/* FPGA Reed-Solomon ECC check register */
+#define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
+#define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
+
+/* Undefine for software ECC */
+#define RTC_FROM4_HWECC 1
+
+/*
+ * Module stuff
+ */
+static void __iomem *rtc_from4_fio_base = P2SEGADDR(RTC_FROM4_FIO_BASE);
+
+const static struct mtd_partition partition_info[] = {
+ {
+ .name = "Renesas flash partition 1",
+ .offset = 0,
+ .size = MTDPART_SIZ_FULL
+ },
+};
+#define NUM_PARTITIONS 1
+
+/*
+ * hardware specific flash bbt decriptors
+ * Note: this is to allow debugging by disabling
+ * NAND_BBT_CREATE and/or NAND_BBT_WRITE
+ *
+ */
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 40,
+ .len = 4,
+ .veroffs = 44,
+ .maxblocks = 4,
+ .pattern = bbt_pattern
+};
+
+static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+ | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+ .offs = 40,
+ .len = 4,
+ .veroffs = 44,
+ .maxblocks = 4,
+ .pattern = mirror_pattern
+};
+
+
+
+#ifdef RTC_FROM4_HWECC
+
+/* the Reed Solomon control structure */
+static struct rs_control *rs_decoder;
+
+/*
+ * hardware specific Out Of Band information
+ */
+static struct nand_oobinfo rtc_from4_nand_oobinfo = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 32,
+ .eccpos = {
+ 0, 1, 2, 3, 4, 5, 6, 7,
+ 8, 9, 10, 11, 12, 13, 14, 15,
+ 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31},
+ .oobfree = { {32, 32} }
+};
+
+/* Aargh. I missed the reversed bit order, when I
+ * was talking to Renesas about the FPGA.
+ *
+ * The table is used for bit reordering and inversion
+ * of the ecc byte which we get from the FPGA
+ */
+static uint8_t revbits[256] = {
+ 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
+ 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
+ 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
+ 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
+ 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
+ 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
+ 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
+ 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
+ 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
+ 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
+ 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
+ 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
+ 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
+ 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
+ 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
+ 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
+ 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
+ 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
+ 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
+ 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
+ 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
+ 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
+ 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
+ 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
+ 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
+ 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
+ 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
+ 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
+ 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
+ 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
+ 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
+ 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
+};
+
+#endif
+
+
+
+/*
+ * rtc_from4_hwcontrol - hardware specific access to control-lines
+ * @mtd: MTD device structure
+ * @cmd: hardware control command
+ *
+ * Address lines (A5 and A4) are used to control Command and Address Latch
+ * Enable on this board, so set the read/write address appropriately.
+ *
+ * Chip Enable is also controlled by the Chip Select (CS5) and
+ * Address lines (A24-A22), so no action is required here.
+ *
+ */
+static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ struct nand_chip* this = (struct nand_chip *) (mtd->priv);
+
+ switch(cmd) {
+
+ case NAND_CTL_SETCLE:
+ this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE);
+ break;
+ case NAND_CTL_CLRCLE:
+ this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE);
+ break;
+
+ case NAND_CTL_SETALE:
+ this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE);
+ break;
+ case NAND_CTL_CLRALE:
+ this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE);
+ break;
+
+ case NAND_CTL_SETNCE:
+ break;
+ case NAND_CTL_CLRNCE:
+ break;
+
+ }
+}
+
+
+/*
+ * rtc_from4_nand_select_chip - hardware specific chip select
+ * @mtd: MTD device structure
+ * @chip: Chip to select (0 == slot 3, 1 == slot 4)
+ *
+ * The chip select is based on address lines A24-A22.
+ * This driver uses flash slots 3 and 4 (A23-A22).
+ *
+ */
+static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct nand_chip *this = mtd->priv;
+
+ this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
+ this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
+
+ switch(chip) {
+
+ case 0: /* select slot 3 chip */
+ this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
+ this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
+ break;
+ case 1: /* select slot 4 chip */
+ this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
+ this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
+ break;
+
+ }
+}
+
+
+
+/*
+ * rtc_from4_nand_device_ready - hardware specific ready/busy check
+ * @mtd: MTD device structure
+ *
+ * This board provides the Ready/Busy state in the status register
+ * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
+ *
+ */
+static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
+{
+ unsigned short status;
+
+ status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
+
+ return (status & RTC_FROM4_DEVICE_READY);
+
+}
+
+#ifdef RTC_FROM4_HWECC
+/*
+ * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
+ * @mtd: MTD device structure
+ * @mode: I/O mode; read or write
+ *
+ * enable hardware ECC for data read or write
+ *
+ */
+static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ volatile unsigned short * rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
+ unsigned short status;
+
+ switch (mode) {
+ case NAND_ECC_READ :
+ status = RTC_FROM4_RS_ECC_CTL_CLR
+ | RTC_FROM4_RS_ECC_CTL_FD_E;
+
+ *rs_ecc_ctl = status;
+ break;
+
+ case NAND_ECC_READSYN :
+ status = 0x00;
+
+ *rs_ecc_ctl = status;
+ break;
+
+ case NAND_ECC_WRITE :
+ status = RTC_FROM4_RS_ECC_CTL_CLR
+ | RTC_FROM4_RS_ECC_CTL_GEN
+ | RTC_FROM4_RS_ECC_CTL_FD_E;
+
+ *rs_ecc_ctl = status;
+ break;
+
+ default:
+ BUG();
+ break;
+ }
+
+}
+
+/*
+ * rtc_from4_calculate_ecc - hardware specific code to read ECC code
+ * @mtd: MTD device structure
+ * @dat: buffer containing the data to generate ECC codes
+ * @ecc_code ECC codes calculated
+ *
+ * The ECC code is calculated by the FPGA. All we have to do is read the values
+ * from the FPGA registers.
+ *
+ * Note: We read from the inverted registers, since data is inverted before
+ * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
+ *
+ */
+static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+ volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
+ unsigned short value;
+ int i;
+
+ for (i = 0; i < 8; i++) {
+ value = *rs_eccn;
+ ecc_code[i] = (unsigned char)value;
+ rs_eccn++;
+ }
+ ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
+}
+
+/*
+ * rtc_from4_correct_data - hardware specific code to correct data using ECC code
+ * @mtd: MTD device structure
+ * @buf: buffer containing the data to generate ECC codes
+ * @ecc1 ECC codes read
+ * @ecc2 ECC codes calculated
+ *
+ * The FPGA tells us fast, if there's an error or not. If no, we go back happy
+ * else we read the ecc results from the fpga and call the rs library to decode
+ * and hopefully correct the error
+ *
+ * For now I use the code, which we read from the FLASH to use the RS lib,
+ * as the syndrom conversion has a unresolved issue.
+ */
+static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
+{
+ int i, j, res;
+ unsigned short status;
+ uint16_t par[6], syn[6], tmp;
+ uint8_t ecc[8];
+ volatile unsigned short *rs_ecc;
+
+ status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
+
+ if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
+ return 0;
+ }
+
+ /* Read the syndrom pattern from the FPGA and correct the bitorder */
+ rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
+ for (i = 0; i < 8; i++) {
+ ecc[i] = revbits[(*rs_ecc) & 0xFF];
+ rs_ecc++;
+ }
+
+ /* convert into 6 10bit syndrome fields */
+ par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) |
+ (((uint16_t)ecc[1] << 8) & 0x300)];
+ par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) |
+ (((uint16_t)ecc[2] << 6) & 0x3c0)];
+ par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) |
+ (((uint16_t)ecc[3] << 4) & 0x3f0)];
+ par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) |
+ (((uint16_t)ecc[4] << 2) & 0x3fc)];
+ par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) |
+ (((uint16_t)ecc[6] << 8) & 0x300)];
+ par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0);
+
+ /* Convert to computable syndrome */
+ for (i = 0; i < 6; i++) {
+ syn[i] = par[0];
+ for (j = 1; j < 6; j++)
+ if (par[j] != rs_decoder->nn)
+ syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
+
+ /* Convert to index form */
+ syn[i] = rs_decoder->index_of[syn[i]];
+ }
+
+ /* Let the library code do its magic.*/
+ res = decode_rs8(rs_decoder, buf, par, 512, syn, 0, NULL, 0xff, NULL);
+ if (res > 0) {
+ DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: "
+ "ECC corrected %d errors on read\n", res);
+ }
+ return res;
+}
+#endif
+
+/*
+ * Main initialization routine
+ */
+int __init rtc_from4_init (void)
+{
+ struct nand_chip *this;
+ unsigned short bcr1, bcr2, wcr2;
+
+ /* Allocate memory for MTD device structure and private data */
+ rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip),
+ GFP_KERNEL);
+ if (!rtc_from4_mtd) {
+ printk ("Unable to allocate Renesas NAND MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&rtc_from4_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ rtc_from4_mtd->priv = this;
+
+ /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
+ bcr1 = *SH77X9_BCR1 & ~0x0002;
+ bcr1 |= 0x0002;
+ *SH77X9_BCR1 = bcr1;
+
+ /* set */
+ bcr2 = *SH77X9_BCR2 & ~0x0c00;
+ bcr2 |= 0x0800;
+ *SH77X9_BCR2 = bcr2;
+
+ /* set area 5 wait states */
+ wcr2 = *SH77X9_WCR2 & ~0x1c00;
+ wcr2 |= 0x1c00;
+ *SH77X9_WCR2 = wcr2;
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_R = rtc_from4_fio_base;
+ this->IO_ADDR_W = rtc_from4_fio_base;
+ /* Set address of hardware control function */
+ this->hwcontrol = rtc_from4_hwcontrol;
+ /* Set address of chip select function */
+ this->select_chip = rtc_from4_nand_select_chip;
+ /* command delay time (in us) */
+ this->chip_delay = 100;
+ /* return the status of the Ready/Busy line */
+ this->dev_ready = rtc_from4_nand_device_ready;
+
+#ifdef RTC_FROM4_HWECC
+ printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
+
+ this->eccmode = NAND_ECC_HW8_512;
+ this->options |= NAND_HWECC_SYNDROME;
+ /* set the nand_oobinfo to support FPGA H/W error detection */
+ this->autooob = &rtc_from4_nand_oobinfo;
+ this->enable_hwecc = rtc_from4_enable_hwecc;
+ this->calculate_ecc = rtc_from4_calculate_ecc;
+ this->correct_data = rtc_from4_correct_data;
+#else
+ printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
+
+ this->eccmode = NAND_ECC_SOFT;
+#endif
+
+ /* set the bad block tables to support debugging */
+ this->bbt_td = &rtc_from4_bbt_main_descr;
+ this->bbt_md = &rtc_from4_bbt_mirror_descr;
+
+ /* Scan to find existence of the device */
+ if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
+ kfree(rtc_from4_mtd);
+ return -ENXIO;
+ }
+
+ /* Register the partitions */
+ add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
+
+#ifdef RTC_FROM4_HWECC
+ /* We could create the decoder on demand, if memory is a concern.
+ * This way we have it handy, if an error happens
+ *
+ * Symbolsize is 10 (bits)
+ * Primitve polynomial is x^10+x^3+1
+ * first consecutive root is 0
+ * primitve element to generate roots = 1
+ * generator polinomial degree = 6
+ */
+ rs_decoder = init_rs(10, 0x409, 0, 1, 6);
+ if (!rs_decoder) {
+ printk (KERN_ERR "Could not create a RS decoder\n");
+ nand_release(rtc_from4_mtd);
+ kfree(rtc_from4_mtd);
+ return -ENOMEM;
+ }
+#endif
+ /* Return happy */
+ return 0;
+}
+module_init(rtc_from4_init);
+
+
+/*
+ * Clean up routine
+ */
+#ifdef MODULE
+static void __exit rtc_from4_cleanup (void)
+{
+ /* Release resource, unregister partitions */
+ nand_release(rtc_from4_mtd);
+
+ /* Free the MTD device structure */
+ kfree (rtc_from4_mtd);
+
+#ifdef RTC_FROM4_HWECC
+ /* Free the reed solomon resources */
+ if (rs_decoder) {
+ free_rs(rs_decoder);
+ }
+#endif
+}
+module_exit(rtc_from4_cleanup);
+#endif
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
+MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
+
diff --git a/drivers/mtd/nand/s3c2410.c b/drivers/mtd/nand/s3c2410.c
new file mode 100644
index 00000000000..d05e9b97947
--- /dev/null
+++ b/drivers/mtd/nand/s3c2410.c
@@ -0,0 +1,704 @@
+/* linux/drivers/mtd/nand/s3c2410.c
+ *
+ * Copyright (c) 2004 Simtec Electronics
+ * Ben Dooks <ben@simtec.co.uk>
+ *
+ * Samsung S3C2410 NAND driver
+ *
+ * Changelog:
+ * 21-Sep-2004 BJD Initial version
+ * 23-Sep-2004 BJD Mulitple device support
+ * 28-Sep-2004 BJD Fixed ECC placement for Hardware mode
+ * 12-Oct-2004 BJD Fixed errors in use of platform data
+ *
+ * $Id: s3c2410.c,v 1.7 2005/01/05 18:05:14 dwmw2 Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+*/
+
+#include <config/mtd/nand/s3c2410/hwecc.h>
+#include <config/mtd/nand/s3c2410/debug.h>
+
+#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
+#define DEBUG
+#endif
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ioport.h>
+#include <linux/device.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+#include <asm/mach-types.h>
+#include <asm/hardware/clock.h>
+
+#include <asm/arch/regs-nand.h>
+#include <asm/arch/nand.h>
+
+#define PFX "s3c2410-nand: "
+
+#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
+static int hardware_ecc = 1;
+#else
+static int hardware_ecc = 0;
+#endif
+
+/* new oob placement block for use with hardware ecc generation
+ */
+
+static struct nand_oobinfo nand_hw_eccoob = {
+ .useecc = MTD_NANDECC_AUTOPLACE,
+ .eccbytes = 3,
+ .eccpos = {0, 1, 2 },
+ .oobfree = { {8, 8} }
+};
+
+/* controller and mtd information */
+
+struct s3c2410_nand_info;
+
+struct s3c2410_nand_mtd {
+ struct mtd_info mtd;
+ struct nand_chip chip;
+ struct s3c2410_nand_set *set;
+ struct s3c2410_nand_info *info;
+ int scan_res;
+};
+
+/* overview of the s3c2410 nand state */
+
+struct s3c2410_nand_info {
+ /* mtd info */
+ struct nand_hw_control controller;
+ struct s3c2410_nand_mtd *mtds;
+ struct s3c2410_platform_nand *platform;
+
+ /* device info */
+ struct device *device;
+ struct resource *area;
+ struct clk *clk;
+ void *regs;
+ int mtd_count;
+};
+
+/* conversion functions */
+
+static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
+{
+ return container_of(mtd, struct s3c2410_nand_mtd, mtd);
+}
+
+static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
+{
+ return s3c2410_nand_mtd_toours(mtd)->info;
+}
+
+static struct s3c2410_nand_info *to_nand_info(struct device *dev)
+{
+ return dev_get_drvdata(dev);
+}
+
+static struct s3c2410_platform_nand *to_nand_plat(struct device *dev)
+{
+ return dev->platform_data;
+}
+
+/* timing calculations */
+
+#define NS_IN_KHZ 10000000
+
+static int s3c2410_nand_calc_rate(int wanted, unsigned long clk, int max)
+{
+ int result;
+
+ result = (wanted * NS_IN_KHZ) / clk;
+ result++;
+
+ pr_debug("result %d from %ld, %d\n", result, clk, wanted);
+
+ if (result > max) {
+ printk("%d ns is too big for current clock rate %ld\n",
+ wanted, clk);
+ return -1;
+ }
+
+ if (result < 1)
+ result = 1;
+
+ return result;
+}
+
+#define to_ns(ticks,clk) (((clk) * (ticks)) / NS_IN_KHZ)
+
+/* controller setup */
+
+static int s3c2410_nand_inithw(struct s3c2410_nand_info *info,
+ struct device *dev)
+{
+ struct s3c2410_platform_nand *plat = to_nand_plat(dev);
+ unsigned int tacls, twrph0, twrph1;
+ unsigned long clkrate = clk_get_rate(info->clk);
+ unsigned long cfg;
+
+ /* calculate the timing information for the controller */
+
+ if (plat != NULL) {
+ tacls = s3c2410_nand_calc_rate(plat->tacls, clkrate, 8);
+ twrph0 = s3c2410_nand_calc_rate(plat->twrph0, clkrate, 8);
+ twrph1 = s3c2410_nand_calc_rate(plat->twrph1, clkrate, 8);
+ } else {
+ /* default timings */
+ tacls = 8;
+ twrph0 = 8;
+ twrph1 = 8;
+ }
+
+ if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
+ printk(KERN_ERR PFX "cannot get timings suitable for board\n");
+ return -EINVAL;
+ }
+
+ printk(KERN_INFO PFX "timing: Tacls %ldns, Twrph0 %ldns, Twrph1 %ldns\n",
+ to_ns(tacls, clkrate),
+ to_ns(twrph0, clkrate),
+ to_ns(twrph1, clkrate));
+
+ cfg = S3C2410_NFCONF_EN;
+ cfg |= S3C2410_NFCONF_TACLS(tacls-1);
+ cfg |= S3C2410_NFCONF_TWRPH0(twrph0-1);
+ cfg |= S3C2410_NFCONF_TWRPH1(twrph1-1);
+
+ pr_debug(PFX "NF_CONF is 0x%lx\n", cfg);
+
+ writel(cfg, info->regs + S3C2410_NFCONF);
+ return 0;
+}
+
+/* select chip */
+
+static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+ struct s3c2410_nand_info *info;
+ struct s3c2410_nand_mtd *nmtd;
+ struct nand_chip *this = mtd->priv;
+ unsigned long cur;
+
+ nmtd = this->priv;
+ info = nmtd->info;
+
+ cur = readl(info->regs + S3C2410_NFCONF);
+
+ if (chip == -1) {
+ cur |= S3C2410_NFCONF_nFCE;
+ } else {
+ if (chip > nmtd->set->nr_chips) {
+ printk(KERN_ERR PFX "chip %d out of range\n", chip);
+ return;
+ }
+
+ if (info->platform != NULL) {
+ if (info->platform->select_chip != NULL)
+ (info->platform->select_chip)(nmtd->set, chip);
+ }
+
+ cur &= ~S3C2410_NFCONF_nFCE;
+ }
+
+ writel(cur, info->regs + S3C2410_NFCONF);
+}
+
+/* command and control functions */
+
+static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ unsigned long cur;
+
+ switch (cmd) {
+ case NAND_CTL_SETNCE:
+ cur = readl(info->regs + S3C2410_NFCONF);
+ cur &= ~S3C2410_NFCONF_nFCE;
+ writel(cur, info->regs + S3C2410_NFCONF);
+ break;
+
+ case NAND_CTL_CLRNCE:
+ cur = readl(info->regs + S3C2410_NFCONF);
+ cur |= S3C2410_NFCONF_nFCE;
+ writel(cur, info->regs + S3C2410_NFCONF);
+ break;
+
+ /* we don't need to implement these */
+ case NAND_CTL_SETCLE:
+ case NAND_CTL_CLRCLE:
+ case NAND_CTL_SETALE:
+ case NAND_CTL_CLRALE:
+ pr_debug(PFX "s3c2410_nand_hwcontrol(%d) unusedn", cmd);
+ break;
+ }
+}
+
+/* s3c2410_nand_command
+ *
+ * This function implements sending commands and the relevant address
+ * information to the chip, via the hardware controller. Since the
+ * S3C2410 generates the correct ALE/CLE signaling automatically, we
+ * do not need to use hwcontrol.
+*/
+
+static void s3c2410_nand_command (struct mtd_info *mtd, unsigned command,
+ int column, int page_addr)
+{
+ register struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ register struct nand_chip *this = mtd->priv;
+
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+
+ writeb(readcmd, info->regs + S3C2410_NFCMD);
+ }
+ writeb(command, info->regs + S3C2410_NFCMD);
+
+ /* Set ALE and clear CLE to start address cycle */
+
+ if (column != -1 || page_addr != -1) {
+
+ /* Serially input address */
+ if (column != -1) {
+ /* Adjust columns for 16 bit buswidth */
+ if (this->options & NAND_BUSWIDTH_16)
+ column >>= 1;
+ writeb(column, info->regs + S3C2410_NFADDR);
+ }
+ if (page_addr != -1) {
+ writeb((unsigned char) (page_addr), info->regs + S3C2410_NFADDR);
+ writeb((unsigned char) (page_addr >> 8), info->regs + S3C2410_NFADDR);
+ /* One more address cycle for higher density devices */
+ if (this->chipsize & 0x0c000000)
+ writeb((unsigned char) ((page_addr >> 16) & 0x0f),
+ info->regs + S3C2410_NFADDR);
+ }
+ /* Latch in address */
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_SEQIN:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+
+ udelay(this->chip_delay);
+ writeb(NAND_CMD_STATUS, info->regs + S3C2410_NFCMD);
+
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* Apply this short delay always to ensure that we do wait tWB in
+ * any case on any machine. */
+ ndelay (100);
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+
+/* s3c2410_nand_devready()
+ *
+ * returns 0 if the nand is busy, 1 if it is ready
+*/
+
+static int s3c2410_nand_devready(struct mtd_info *mtd)
+{
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+ return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
+}
+
+/* ECC handling functions */
+
+static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+ u_char *read_ecc, u_char *calc_ecc)
+{
+ pr_debug("s3c2410_nand_correct_data(%p,%p,%p,%p)\n",
+ mtd, dat, read_ecc, calc_ecc);
+
+ pr_debug("eccs: read %02x,%02x,%02x vs calc %02x,%02x,%02x\n",
+ read_ecc[0], read_ecc[1], read_ecc[2],
+ calc_ecc[0], calc_ecc[1], calc_ecc[2]);
+
+ if (read_ecc[0] == calc_ecc[0] &&
+ read_ecc[1] == calc_ecc[1] &&
+ read_ecc[2] == calc_ecc[2])
+ return 0;
+
+ /* we curently have no method for correcting the error */
+
+ return -1;
+}
+
+static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+ unsigned long ctrl;
+
+ ctrl = readl(info->regs + S3C2410_NFCONF);
+ ctrl |= S3C2410_NFCONF_INITECC;
+ writel(ctrl, info->regs + S3C2410_NFCONF);
+}
+
+static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd,
+ const u_char *dat, u_char *ecc_code)
+{
+ struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+ ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
+ ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
+ ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
+
+ pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n",
+ ecc_code[0], ecc_code[1], ecc_code[2]);
+
+ return 0;
+}
+
+
+/* over-ride the standard functions for a little more speed? */
+
+static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ readsb(this->IO_ADDR_R, buf, len);
+}
+
+static void s3c2410_nand_write_buf(struct mtd_info *mtd,
+ const u_char *buf, int len)
+{
+ struct nand_chip *this = mtd->priv;
+ writesb(this->IO_ADDR_W, buf, len);
+}
+
+/* device management functions */
+
+static int s3c2410_nand_remove(struct device *dev)
+{
+ struct s3c2410_nand_info *info = to_nand_info(dev);
+
+ dev_set_drvdata(dev, NULL);
+
+ if (info == NULL)
+ return 0;
+
+ /* first thing we need to do is release all our mtds
+ * and their partitions, then go through freeing the
+ * resources used
+ */
+
+ if (info->mtds != NULL) {
+ struct s3c2410_nand_mtd *ptr = info->mtds;
+ int mtdno;
+
+ for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
+ pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
+ nand_release(&ptr->mtd);
+ }
+
+ kfree(info->mtds);
+ }
+
+ /* free the common resources */
+
+ if (info->clk != NULL && !IS_ERR(info->clk)) {
+ clk_disable(info->clk);
+ clk_unuse(info->clk);
+ clk_put(info->clk);
+ }
+
+ if (info->regs != NULL) {
+ iounmap(info->regs);
+ info->regs = NULL;
+ }
+
+ if (info->area != NULL) {
+ release_resource(info->area);
+ kfree(info->area);
+ info->area = NULL;
+ }
+
+ kfree(info);
+
+ return 0;
+}
+
+#ifdef CONFIG_MTD_PARTITIONS
+static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
+ struct s3c2410_nand_mtd *mtd,
+ struct s3c2410_nand_set *set)
+{
+ if (set == NULL)
+ return add_mtd_device(&mtd->mtd);
+
+ if (set->nr_partitions > 0 && set->partitions != NULL) {
+ return add_mtd_partitions(&mtd->mtd,
+ set->partitions,
+ set->nr_partitions);
+ }
+
+ return add_mtd_device(&mtd->mtd);
+}
+#else
+static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
+ struct s3c2410_nand_mtd *mtd,
+ struct s3c2410_nand_set *set)
+{
+ return add_mtd_device(&mtd->mtd);
+}
+#endif
+
+/* s3c2410_nand_init_chip
+ *
+ * init a single instance of an chip
+*/
+
+static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
+ struct s3c2410_nand_mtd *nmtd,
+ struct s3c2410_nand_set *set)
+{
+ struct nand_chip *chip = &nmtd->chip;
+
+ chip->IO_ADDR_R = (char *)info->regs + S3C2410_NFDATA;
+ chip->IO_ADDR_W = (char *)info->regs + S3C2410_NFDATA;
+ chip->hwcontrol = s3c2410_nand_hwcontrol;
+ chip->dev_ready = s3c2410_nand_devready;
+ chip->cmdfunc = s3c2410_nand_command;
+ chip->write_buf = s3c2410_nand_write_buf;
+ chip->read_buf = s3c2410_nand_read_buf;
+ chip->select_chip = s3c2410_nand_select_chip;
+ chip->chip_delay = 50;
+ chip->priv = nmtd;
+ chip->options = 0;
+ chip->controller = &info->controller;
+
+ nmtd->info = info;
+ nmtd->mtd.priv = chip;
+ nmtd->set = set;
+
+ if (hardware_ecc) {
+ chip->correct_data = s3c2410_nand_correct_data;
+ chip->enable_hwecc = s3c2410_nand_enable_hwecc;
+ chip->calculate_ecc = s3c2410_nand_calculate_ecc;
+ chip->eccmode = NAND_ECC_HW3_512;
+ chip->autooob = &nand_hw_eccoob;
+ } else {
+ chip->eccmode = NAND_ECC_SOFT;
+ }
+}
+
+/* s3c2410_nand_probe
+ *
+ * called by device layer when it finds a device matching
+ * one our driver can handled. This code checks to see if
+ * it can allocate all necessary resources then calls the
+ * nand layer to look for devices
+*/
+
+static int s3c2410_nand_probe(struct device *dev)
+{
+ struct platform_device *pdev = to_platform_device(dev);
+ struct s3c2410_platform_nand *plat = to_nand_plat(dev);
+ struct s3c2410_nand_info *info;
+ struct s3c2410_nand_mtd *nmtd;
+ struct s3c2410_nand_set *sets;
+ struct resource *res;
+ int err = 0;
+ int size;
+ int nr_sets;
+ int setno;
+
+ pr_debug("s3c2410_nand_probe(%p)\n", dev);
+
+ info = kmalloc(sizeof(*info), GFP_KERNEL);
+ if (info == NULL) {
+ printk(KERN_ERR PFX "no memory for flash info\n");
+ err = -ENOMEM;
+ goto exit_error;
+ }
+
+ memzero(info, sizeof(*info));
+ dev_set_drvdata(dev, info);
+
+ spin_lock_init(&info->controller.lock);
+
+ /* get the clock source and enable it */
+
+ info->clk = clk_get(dev, "nand");
+ if (IS_ERR(info->clk)) {
+ printk(KERN_ERR PFX "failed to get clock");
+ err = -ENOENT;
+ goto exit_error;
+ }
+
+ clk_use(info->clk);
+ clk_enable(info->clk);
+
+ /* allocate and map the resource */
+
+ res = pdev->resource; /* assume that the flash has one resource */
+ size = res->end - res->start + 1;
+
+ info->area = request_mem_region(res->start, size, pdev->name);
+
+ if (info->area == NULL) {
+ printk(KERN_ERR PFX "cannot reserve register region\n");
+ err = -ENOENT;
+ goto exit_error;
+ }
+
+ info->device = dev;
+ info->platform = plat;
+ info->regs = ioremap(res->start, size);
+
+ if (info->regs == NULL) {
+ printk(KERN_ERR PFX "cannot reserve register region\n");
+ err = -EIO;
+ goto exit_error;
+ }
+
+ printk(KERN_INFO PFX "mapped registers at %p\n", info->regs);
+
+ /* initialise the hardware */
+
+ err = s3c2410_nand_inithw(info, dev);
+ if (err != 0)
+ goto exit_error;
+
+ sets = (plat != NULL) ? plat->sets : NULL;
+ nr_sets = (plat != NULL) ? plat->nr_sets : 1;
+
+ info->mtd_count = nr_sets;
+
+ /* allocate our information */
+
+ size = nr_sets * sizeof(*info->mtds);
+ info->mtds = kmalloc(size, GFP_KERNEL);
+ if (info->mtds == NULL) {
+ printk(KERN_ERR PFX "failed to allocate mtd storage\n");
+ err = -ENOMEM;
+ goto exit_error;
+ }
+
+ memzero(info->mtds, size);
+
+ /* initialise all possible chips */
+
+ nmtd = info->mtds;
+
+ for (setno = 0; setno < nr_sets; setno++, nmtd++) {
+ pr_debug("initialising set %d (%p, info %p)\n",
+ setno, nmtd, info);
+
+ s3c2410_nand_init_chip(info, nmtd, sets);
+
+ nmtd->scan_res = nand_scan(&nmtd->mtd,
+ (sets) ? sets->nr_chips : 1);
+
+ if (nmtd->scan_res == 0) {
+ s3c2410_nand_add_partition(info, nmtd, sets);
+ }
+
+ if (sets != NULL)
+ sets++;
+ }
+
+ pr_debug("initialised ok\n");
+ return 0;
+
+ exit_error:
+ s3c2410_nand_remove(dev);
+
+ if (err == 0)
+ err = -EINVAL;
+ return err;
+}
+
+static struct device_driver s3c2410_nand_driver = {
+ .name = "s3c2410-nand",
+ .bus = &platform_bus_type,
+ .probe = s3c2410_nand_probe,
+ .remove = s3c2410_nand_remove,
+};
+
+static int __init s3c2410_nand_init(void)
+{
+ printk("S3C2410 NAND Driver, (c) 2004 Simtec Electronics\n");
+ return driver_register(&s3c2410_nand_driver);
+}
+
+static void __exit s3c2410_nand_exit(void)
+{
+ driver_unregister(&s3c2410_nand_driver);
+}
+
+module_init(s3c2410_nand_init);
+module_exit(s3c2410_nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
+MODULE_DESCRIPTION("S3C2410 MTD NAND driver");
diff --git a/drivers/mtd/nand/sharpsl.c b/drivers/mtd/nand/sharpsl.c
new file mode 100755
index 00000000000..29572793334
--- /dev/null
+++ b/drivers/mtd/nand/sharpsl.c
@@ -0,0 +1,260 @@
+/*
+ * drivers/mtd/nand/sharpsl.c
+ *
+ * Copyright (C) 2004 Richard Purdie
+ *
+ * $Id: sharpsl.c,v 1.3 2005/01/03 14:53:50 rpurdie Exp $
+ *
+ * Based on Sharp's NAND driver sharp_sl.c
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/genhd.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <linux/interrupt.h>
+#include <asm/io.h>
+#include <asm/hardware.h>
+#include <asm/mach-types.h>
+
+static void __iomem *sharpsl_io_base;
+static int sharpsl_phys_base = 0x0C000000;
+
+/* register offset */
+#define ECCLPLB sharpsl_io_base+0x00 /* line parity 7 - 0 bit */
+#define ECCLPUB sharpsl_io_base+0x04 /* line parity 15 - 8 bit */
+#define ECCCP sharpsl_io_base+0x08 /* column parity 5 - 0 bit */
+#define ECCCNTR sharpsl_io_base+0x0C /* ECC byte counter */
+#define ECCCLRR sharpsl_io_base+0x10 /* cleare ECC */
+#define FLASHIO sharpsl_io_base+0x14 /* Flash I/O */
+#define FLASHCTL sharpsl_io_base+0x18 /* Flash Control */
+
+/* Flash control bit */
+#define FLRYBY (1 << 5)
+#define FLCE1 (1 << 4)
+#define FLWP (1 << 3)
+#define FLALE (1 << 2)
+#define FLCLE (1 << 1)
+#define FLCE0 (1 << 0)
+
+
+/*
+ * MTD structure for SharpSL
+ */
+static struct mtd_info *sharpsl_mtd = NULL;
+
+/*
+ * Define partitions for flash device
+ */
+#define DEFAULT_NUM_PARTITIONS 3
+
+static int nr_partitions;
+static struct mtd_partition sharpsl_nand_default_partition_info[] = {
+ {
+ .name = "System Area",
+ .offset = 0,
+ .size = 7 * 1024 * 1024,
+ },
+ {
+ .name = "Root Filesystem",
+ .offset = 7 * 1024 * 1024,
+ .size = 30 * 1024 * 1024,
+ },
+ {
+ .name = "Home Filesystem",
+ .offset = MTDPART_OFS_APPEND ,
+ .size = MTDPART_SIZ_FULL ,
+ },
+};
+
+/*
+ * hardware specific access to control-lines
+ */
+static void
+sharpsl_nand_hwcontrol(struct mtd_info* mtd, int cmd)
+{
+ switch (cmd) {
+ case NAND_CTL_SETCLE:
+ writeb(readb(FLASHCTL) | FLCLE, FLASHCTL);
+ break;
+ case NAND_CTL_CLRCLE:
+ writeb(readb(FLASHCTL) & ~FLCLE, FLASHCTL);
+ break;
+
+ case NAND_CTL_SETALE:
+ writeb(readb(FLASHCTL) | FLALE, FLASHCTL);
+ break;
+ case NAND_CTL_CLRALE:
+ writeb(readb(FLASHCTL) & ~FLALE, FLASHCTL);
+ break;
+
+ case NAND_CTL_SETNCE:
+ writeb(readb(FLASHCTL) & ~(FLCE0|FLCE1), FLASHCTL);
+ break;
+ case NAND_CTL_CLRNCE:
+ writeb(readb(FLASHCTL) | (FLCE0|FLCE1), FLASHCTL);
+ break;
+ }
+}
+
+static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
+
+static struct nand_bbt_descr sharpsl_bbt = {
+ .options = 0,
+ .offs = 4,
+ .len = 2,
+ .pattern = scan_ff_pattern
+};
+
+static int
+sharpsl_nand_dev_ready(struct mtd_info* mtd)
+{
+ return !((readb(FLASHCTL) & FLRYBY) == 0);
+}
+
+static void
+sharpsl_nand_enable_hwecc(struct mtd_info* mtd, int mode)
+{
+ writeb(0 ,ECCCLRR);
+}
+
+static int
+sharpsl_nand_calculate_ecc(struct mtd_info* mtd, const u_char* dat,
+ u_char* ecc_code)
+{
+ ecc_code[0] = ~readb(ECCLPUB);
+ ecc_code[1] = ~readb(ECCLPLB);
+ ecc_code[2] = (~readb(ECCCP) << 2) | 0x03;
+ return readb(ECCCNTR) != 0;
+}
+
+
+#ifdef CONFIG_MTD_PARTITIONS
+const char *part_probes[] = { "cmdlinepart", NULL };
+#endif
+
+
+/*
+ * Main initialization routine
+ */
+int __init
+sharpsl_nand_init(void)
+{
+ struct nand_chip *this;
+ struct mtd_partition* sharpsl_partition_info;
+ int err = 0;
+
+ /* Allocate memory for MTD device structure and private data */
+ sharpsl_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip),
+ GFP_KERNEL);
+ if (!sharpsl_mtd) {
+ printk ("Unable to allocate SharpSL NAND MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* map physical adress */
+ sharpsl_io_base = ioremap(sharpsl_phys_base, 0x1000);
+ if(!sharpsl_io_base){
+ printk("ioremap to access Sharp SL NAND chip failed\n");
+ kfree(sharpsl_mtd);
+ return -EIO;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&sharpsl_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) sharpsl_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ sharpsl_mtd->priv = this;
+
+ /*
+ * PXA initialize
+ */
+ writeb(readb(FLASHCTL) | FLWP, FLASHCTL);
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_R = FLASHIO;
+ this->IO_ADDR_W = FLASHIO;
+ /* Set address of hardware control function */
+ this->hwcontrol = sharpsl_nand_hwcontrol;
+ this->dev_ready = sharpsl_nand_dev_ready;
+ /* 15 us command delay time */
+ this->chip_delay = 15;
+ /* set eccmode using hardware ECC */
+ this->eccmode = NAND_ECC_HW3_256;
+ this->enable_hwecc = sharpsl_nand_enable_hwecc;
+ this->calculate_ecc = sharpsl_nand_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ this->badblock_pattern = &sharpsl_bbt;
+
+ /* Scan to find existence of the device */
+ err=nand_scan(sharpsl_mtd,1);
+ if (err) {
+ iounmap(sharpsl_io_base);
+ kfree(sharpsl_mtd);
+ return err;
+ }
+
+ /* Register the partitions */
+ sharpsl_mtd->name = "sharpsl-nand";
+ nr_partitions = parse_mtd_partitions(sharpsl_mtd, part_probes,
+ &sharpsl_partition_info, 0);
+
+ if (nr_partitions <= 0) {
+ nr_partitions = DEFAULT_NUM_PARTITIONS;
+ sharpsl_partition_info = sharpsl_nand_default_partition_info;
+ if (machine_is_poodle()) {
+ sharpsl_partition_info[1].size=22 * 1024 * 1024;
+ } else if (machine_is_corgi() || machine_is_shepherd()) {
+ sharpsl_partition_info[1].size=25 * 1024 * 1024;
+ } else if (machine_is_husky()) {
+ sharpsl_partition_info[1].size=53 * 1024 * 1024;
+ }
+ }
+
+ if (machine_is_husky()) {
+ /* Need to use small eraseblock size for backward compatibility */
+ sharpsl_mtd->flags |= MTD_NO_VIRTBLOCKS;
+ }
+
+ add_mtd_partitions(sharpsl_mtd, sharpsl_partition_info, nr_partitions);
+
+ /* Return happy */
+ return 0;
+}
+module_init(sharpsl_nand_init);
+
+/*
+ * Clean up routine
+ */
+#ifdef MODULE
+static void __exit sharpsl_nand_cleanup(void)
+{
+ struct nand_chip *this = (struct nand_chip *) &sharpsl_mtd[1];
+
+ /* Release resources, unregister device */
+ nand_release(sharpsl_mtd);
+
+ iounmap(sharpsl_io_base);
+
+ /* Free the MTD device structure */
+ kfree(sharpsl_mtd);
+}
+module_exit(sharpsl_nand_cleanup);
+#endif
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Richard Purdie <rpurdie@rpsys.net>");
+MODULE_DESCRIPTION("Device specific logic for NAND flash on Sharp SL-C7xx Series");
diff --git a/drivers/mtd/nand/spia.c b/drivers/mtd/nand/spia.c
new file mode 100644
index 00000000000..b777c412b75
--- /dev/null
+++ b/drivers/mtd/nand/spia.c
@@ -0,0 +1,173 @@
+/*
+ * drivers/mtd/nand/spia.c
+ *
+ * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
+ *
+ *
+ * 10-29-2001 TG change to support hardwarespecific access
+ * to controllines (due to change in nand.c)
+ * page_cache added
+ *
+ * $Id: spia.c,v 1.24 2004/11/04 12:53:10 gleixner Exp $
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the NAND flash device found on the
+ * SPIA board which utilizes the Toshiba TC58V64AFT part. This is
+ * a 64Mibit (8MiB x 8 bits) NAND flash device.
+ */
+
+#include <linux/kernel.h>
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+
+/*
+ * MTD structure for SPIA board
+ */
+static struct mtd_info *spia_mtd = NULL;
+
+/*
+ * Values specific to the SPIA board (used with EP7212 processor)
+ */
+#define SPIA_IO_BASE 0xd0000000 /* Start of EP7212 IO address space */
+#define SPIA_FIO_BASE 0xf0000000 /* Address where flash is mapped */
+#define SPIA_PEDR 0x0080 /*
+ * IO offset to Port E data register
+ * where the CLE, ALE and NCE pins
+ * are wired to.
+ */
+#define SPIA_PEDDR 0x00c0 /*
+ * IO offset to Port E data direction
+ * register so we can control the IO
+ * lines.
+ */
+
+/*
+ * Module stuff
+ */
+
+static int spia_io_base = SPIA_IO_BASE;
+static int spia_fio_base = SPIA_FIO_BASE;
+static int spia_pedr = SPIA_PEDR;
+static int spia_peddr = SPIA_PEDDR;
+
+module_param(spia_io_base, int, 0);
+module_param(spia_fio_base, int, 0);
+module_param(spia_pedr, int, 0);
+module_param(spia_peddr, int, 0);
+
+/*
+ * Define partitions for flash device
+ */
+const static struct mtd_partition partition_info[] = {
+ {
+ .name = "SPIA flash partition 1",
+ .offset = 0,
+ .size = 2*1024*1024
+ },
+ {
+ .name = "SPIA flash partition 2",
+ .offset = 2*1024*1024,
+ .size = 6*1024*1024
+ }
+};
+#define NUM_PARTITIONS 2
+
+
+/*
+ * hardware specific access to control-lines
+*/
+static void spia_hwcontrol(struct mtd_info *mtd, int cmd){
+
+ switch(cmd){
+
+ case NAND_CTL_SETCLE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) |= 0x01; break;
+ case NAND_CTL_CLRCLE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) &= ~0x01; break;
+
+ case NAND_CTL_SETALE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) |= 0x02; break;
+ case NAND_CTL_CLRALE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) &= ~0x02; break;
+
+ case NAND_CTL_SETNCE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) &= ~0x04; break;
+ case NAND_CTL_CLRNCE: (*(volatile unsigned char *) (spia_io_base + spia_pedr)) |= 0x04; break;
+ }
+}
+
+/*
+ * Main initialization routine
+ */
+int __init spia_init (void)
+{
+ struct nand_chip *this;
+
+ /* Allocate memory for MTD device structure and private data */
+ spia_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
+ GFP_KERNEL);
+ if (!spia_mtd) {
+ printk ("Unable to allocate SPIA NAND MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&spia_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) spia_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ spia_mtd->priv = this;
+
+ /*
+ * Set GPIO Port E control register so that the pins are configured
+ * to be outputs for controlling the NAND flash.
+ */
+ (*(volatile unsigned char *) (spia_io_base + spia_peddr)) = 0x07;
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_R = (void __iomem *) spia_fio_base;
+ this->IO_ADDR_W = (void __iomem *) spia_fio_base;
+ /* Set address of hardware control function */
+ this->hwcontrol = spia_hwcontrol;
+ /* 15 us command delay time */
+ this->chip_delay = 15;
+
+ /* Scan to find existence of the device */
+ if (nand_scan (spia_mtd, 1)) {
+ kfree (spia_mtd);
+ return -ENXIO;
+ }
+
+ /* Register the partitions */
+ add_mtd_partitions(spia_mtd, partition_info, NUM_PARTITIONS);
+
+ /* Return happy */
+ return 0;
+}
+module_init(spia_init);
+
+/*
+ * Clean up routine
+ */
+#ifdef MODULE
+static void __exit spia_cleanup (void)
+{
+ /* Release resources, unregister device */
+ nand_release (spia_mtd);
+
+ /* Free the MTD device structure */
+ kfree (spia_mtd);
+}
+module_exit(spia_cleanup);
+#endif
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com");
+MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on SPIA board");
diff --git a/drivers/mtd/nand/toto.c b/drivers/mtd/nand/toto.c
new file mode 100644
index 00000000000..52c808fb5fa
--- /dev/null
+++ b/drivers/mtd/nand/toto.c
@@ -0,0 +1,205 @@
+/*
+ * drivers/mtd/nand/toto.c
+ *
+ * Copyright (c) 2003 Texas Instruments
+ *
+ * Derived from drivers/mtd/autcpu12.c
+ *
+ * Copyright (c) 2002 Thomas Gleixner <tgxl@linutronix.de>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ * Overview:
+ * This is a device driver for the NAND flash device found on the
+ * TI fido board. It supports 32MiB and 64MiB cards
+ *
+ * $Id: toto.c,v 1.4 2004/10/05 13:50:20 gleixner Exp $
+ */
+
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/delay.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <asm/arch/hardware.h>
+#include <asm/sizes.h>
+#include <asm/arch/toto.h>
+#include <asm/arch-omap1510/hardware.h>
+#include <asm/arch/gpio.h>
+
+/*
+ * MTD structure for TOTO board
+ */
+static struct mtd_info *toto_mtd = NULL;
+
+static unsigned long toto_io_base = OMAP_FLASH_1_BASE;
+
+#define CONFIG_NAND_WORKAROUND 1
+
+#define NAND_NCE 0x4000
+#define NAND_CLE 0x1000
+#define NAND_ALE 0x0002
+#define NAND_MASK (NAND_CLE | NAND_ALE | NAND_NCE)
+
+#define T_NAND_CTL_CLRALE(iob) gpiosetout(NAND_ALE, 0)
+#define T_NAND_CTL_SETALE(iob) gpiosetout(NAND_ALE, NAND_ALE)
+#ifdef CONFIG_NAND_WORKAROUND /* "some" dev boards busted, blue wired to rts2 :( */
+#define T_NAND_CTL_CLRCLE(iob) gpiosetout(NAND_CLE, 0); rts2setout(2, 2)
+#define T_NAND_CTL_SETCLE(iob) gpiosetout(NAND_CLE, NAND_CLE); rts2setout(2, 0)
+#else
+#define T_NAND_CTL_CLRCLE(iob) gpiosetout(NAND_CLE, 0)
+#define T_NAND_CTL_SETCLE(iob) gpiosetout(NAND_CLE, NAND_CLE)
+#endif
+#define T_NAND_CTL_SETNCE(iob) gpiosetout(NAND_NCE, 0)
+#define T_NAND_CTL_CLRNCE(iob) gpiosetout(NAND_NCE, NAND_NCE)
+
+/*
+ * Define partitions for flash devices
+ */
+
+static struct mtd_partition partition_info64M[] = {
+ { .name = "toto kernel partition 1",
+ .offset = 0,
+ .size = 2 * SZ_1M },
+ { .name = "toto file sys partition 2",
+ .offset = 2 * SZ_1M,
+ .size = 14 * SZ_1M },
+ { .name = "toto user partition 3",
+ .offset = 16 * SZ_1M,
+ .size = 16 * SZ_1M },
+ { .name = "toto devboard extra partition 4",
+ .offset = 32 * SZ_1M,
+ .size = 32 * SZ_1M },
+};
+
+static struct mtd_partition partition_info32M[] = {
+ { .name = "toto kernel partition 1",
+ .offset = 0,
+ .size = 2 * SZ_1M },
+ { .name = "toto file sys partition 2",
+ .offset = 2 * SZ_1M,
+ .size = 14 * SZ_1M },
+ { .name = "toto user partition 3",
+ .offset = 16 * SZ_1M,
+ .size = 16 * SZ_1M },
+};
+
+#define NUM_PARTITIONS32M 3
+#define NUM_PARTITIONS64M 4
+/*
+ * hardware specific access to control-lines
+*/
+
+static void toto_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+
+ udelay(1); /* hopefully enough time for tc make proceding write to clear */
+ switch(cmd){
+
+ case NAND_CTL_SETCLE: T_NAND_CTL_SETCLE(cmd); break;
+ case NAND_CTL_CLRCLE: T_NAND_CTL_CLRCLE(cmd); break;
+
+ case NAND_CTL_SETALE: T_NAND_CTL_SETALE(cmd); break;
+ case NAND_CTL_CLRALE: T_NAND_CTL_CLRALE(cmd); break;
+
+ case NAND_CTL_SETNCE: T_NAND_CTL_SETNCE(cmd); break;
+ case NAND_CTL_CLRNCE: T_NAND_CTL_CLRNCE(cmd); break;
+ }
+ udelay(1); /* allow time to ensure gpio state to over take memory write */
+}
+
+/*
+ * Main initialization routine
+ */
+int __init toto_init (void)
+{
+ struct nand_chip *this;
+ int err = 0;
+
+ /* Allocate memory for MTD device structure and private data */
+ toto_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
+ GFP_KERNEL);
+ if (!toto_mtd) {
+ printk (KERN_WARNING "Unable to allocate toto NAND MTD device structure.\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&toto_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) toto_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ toto_mtd->priv = this;
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_R = toto_io_base;
+ this->IO_ADDR_W = toto_io_base;
+ this->hwcontrol = toto_hwcontrol;
+ this->dev_ready = NULL;
+ /* 25 us command delay time */
+ this->chip_delay = 30;
+ this->eccmode = NAND_ECC_SOFT;
+
+ /* Scan to find existance of the device */
+ if (nand_scan (toto_mtd, 1)) {
+ err = -ENXIO;
+ goto out_mtd;
+ }
+
+ /* Register the partitions */
+ switch(toto_mtd->size){
+ case SZ_64M: add_mtd_partitions(toto_mtd, partition_info64M, NUM_PARTITIONS64M); break;
+ case SZ_32M: add_mtd_partitions(toto_mtd, partition_info32M, NUM_PARTITIONS32M); break;
+ default: {
+ printk (KERN_WARNING "Unsupported Nand device\n");
+ err = -ENXIO;
+ goto out_buf;
+ }
+ }
+
+ gpioreserve(NAND_MASK); /* claim our gpios */
+ archflashwp(0,0); /* open up flash for writing */
+
+ goto out;
+
+out_buf:
+ kfree (this->data_buf);
+out_mtd:
+ kfree (toto_mtd);
+out:
+ return err;
+}
+
+module_init(toto_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit toto_cleanup (void)
+{
+ /* Release resources, unregister device */
+ nand_release (toto_mtd);
+
+ /* Free the MTD device structure */
+ kfree (toto_mtd);
+
+ /* stop flash writes */
+ archflashwp(0,1);
+
+ /* release gpios to system */
+ gpiorelease(NAND_MASK);
+}
+module_exit(toto_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Richard Woodruff <r-woodruff2@ti.com>");
+MODULE_DESCRIPTION("Glue layer for NAND flash on toto board");
diff --git a/drivers/mtd/nand/tx4925ndfmc.c b/drivers/mtd/nand/tx4925ndfmc.c
new file mode 100644
index 00000000000..bba688830c9
--- /dev/null
+++ b/drivers/mtd/nand/tx4925ndfmc.c
@@ -0,0 +1,416 @@
+/*
+ * drivers/mtd/tx4925ndfmc.c
+ *
+ * Overview:
+ * This is a device driver for the NAND flash device found on the
+ * Toshiba RBTX4925 reference board, which is a SmartMediaCard. It supports
+ * 16MiB, 32MiB and 64MiB cards.
+ *
+ * Author: MontaVista Software, Inc. source@mvista.com
+ *
+ * Derived from drivers/mtd/autcpu12.c
+ * Copyright (c) 2001 Thomas Gleixner (gleixner@autronix.de)
+ *
+ * $Id: tx4925ndfmc.c,v 1.5 2004/10/05 13:50:20 gleixner Exp $
+ *
+ * Copyright (C) 2001 Toshiba Corporation
+ *
+ * 2003 (c) MontaVista Software, Inc. This file is licensed under
+ * the terms of the GNU General Public License version 2. This program
+ * is licensed "as is" without any warranty of any kind, whether express
+ * or implied.
+ *
+ */
+
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/partitions.h>
+#include <linux/delay.h>
+#include <asm/io.h>
+#include <asm/tx4925/tx4925_nand.h>
+
+extern struct nand_oobinfo jffs2_oobinfo;
+
+/*
+ * MTD structure for RBTX4925 board
+ */
+static struct mtd_info *tx4925ndfmc_mtd = NULL;
+
+/*
+ * Define partitions for flash devices
+ */
+
+static struct mtd_partition partition_info16k[] = {
+ { .name = "RBTX4925 flash partition 1",
+ .offset = 0,
+ .size = 8 * 0x00100000 },
+ { .name = "RBTX4925 flash partition 2",
+ .offset = 8 * 0x00100000,
+ .size = 8 * 0x00100000 },
+};
+
+static struct mtd_partition partition_info32k[] = {
+ { .name = "RBTX4925 flash partition 1",
+ .offset = 0,
+ .size = 8 * 0x00100000 },
+ { .name = "RBTX4925 flash partition 2",
+ .offset = 8 * 0x00100000,
+ .size = 24 * 0x00100000 },
+};
+
+static struct mtd_partition partition_info64k[] = {
+ { .name = "User FS",
+ .offset = 0,
+ .size = 16 * 0x00100000 },
+ { .name = "RBTX4925 flash partition 2",
+ .offset = 16 * 0x00100000,
+ .size = 48 * 0x00100000},
+};
+
+static struct mtd_partition partition_info128k[] = {
+ { .name = "Skip bad section",
+ .offset = 0,
+ .size = 16 * 0x00100000 },
+ { .name = "User FS",
+ .offset = 16 * 0x00100000,
+ .size = 112 * 0x00100000 },
+};
+#define NUM_PARTITIONS16K 2
+#define NUM_PARTITIONS32K 2
+#define NUM_PARTITIONS64K 2
+#define NUM_PARTITIONS128K 2
+
+/*
+ * hardware specific access to control-lines
+*/
+static void tx4925ndfmc_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+
+ switch(cmd){
+
+ case NAND_CTL_SETCLE:
+ tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_CLE;
+ break;
+ case NAND_CTL_CLRCLE:
+ tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_CLE;
+ break;
+ case NAND_CTL_SETALE:
+ tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ALE;
+ break;
+ case NAND_CTL_CLRALE:
+ tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ALE;
+ break;
+ case NAND_CTL_SETNCE:
+ tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_CE;
+ break;
+ case NAND_CTL_CLRNCE:
+ tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_CE;
+ break;
+ case NAND_CTL_SETWP:
+ tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_WE;
+ break;
+ case NAND_CTL_CLRWP:
+ tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_WE;
+ break;
+ }
+}
+
+/*
+* read device ready pin
+*/
+static int tx4925ndfmc_device_ready(struct mtd_info *mtd)
+{
+ int ready;
+ ready = (tx4925_ndfmcptr->sr & TX4925_NDSFR_BUSY) ? 0 : 1;
+ return ready;
+}
+void tx4925ndfmc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ /* reset first */
+ tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_MASK;
+ tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK;
+ tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_ENAB;
+}
+static void tx4925ndfmc_disable_ecc(void)
+{
+ tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK;
+}
+static void tx4925ndfmc_enable_read_ecc(void)
+{
+ tx4925_ndfmcptr->mcr &= ~TX4925_NDFMCR_ECC_CNTL_MASK;
+ tx4925_ndfmcptr->mcr |= TX4925_NDFMCR_ECC_CNTL_READ;
+}
+void tx4925ndfmc_readecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code){
+ int i;
+ u_char *ecc = ecc_code;
+ tx4925ndfmc_enable_read_ecc();
+ for (i = 0;i < 6;i++,ecc++)
+ *ecc = tx4925_read_nfmc(&(tx4925_ndfmcptr->dtr));
+ tx4925ndfmc_disable_ecc();
+}
+void tx4925ndfmc_device_setup(void)
+{
+
+ *(unsigned char *)0xbb005000 &= ~0x08;
+
+ /* reset NDFMC */
+ tx4925_ndfmcptr->rstr |= TX4925_NDFRSTR_RST;
+ while (tx4925_ndfmcptr->rstr & TX4925_NDFRSTR_RST);
+
+ /* setup BusSeparete, Hold Time, Strobe Pulse Width */
+ tx4925_ndfmcptr->mcr = TX4925_BSPRT ? TX4925_NDFMCR_BSPRT : 0;
+ tx4925_ndfmcptr->spr = TX4925_HOLD << 4 | TX4925_SPW;
+}
+static u_char tx4925ndfmc_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return tx4925_read_nfmc(this->IO_ADDR_R);
+}
+
+static void tx4925ndfmc_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ tx4925_write_nfmc(byte, this->IO_ADDR_W);
+}
+
+static void tx4925ndfmc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ tx4925_write_nfmc(buf[i], this->IO_ADDR_W);
+}
+
+static void tx4925ndfmc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ buf[i] = tx4925_read_nfmc(this->IO_ADDR_R);
+}
+
+static int tx4925ndfmc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ if (buf[i] != tx4925_read_nfmc(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/*
+ * Send command to NAND device
+ */
+static void tx4925ndfmc_nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ this->write_byte(mtd, readcmd);
+ }
+ this->write_byte(mtd, command);
+
+ /* Set ALE and clear CLE to start address cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1)
+ this->write_byte(mtd, column);
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for higher density devices */
+ if (mtd->size & 0x0c000000)
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ /* Turn off WE */
+ this->hwcontrol (mtd, NAND_CTL_CLRWP);
+ return;
+
+ case NAND_CMD_SEQIN:
+ /* Turn on WE */
+ this->hwcontrol (mtd, NAND_CTL_SETWP);
+ return;
+
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partitio
+n **pparts, char *);
+#endif
+
+/*
+ * Main initialization routine
+ */
+extern int nand_correct_data(struct mtd_info *mtd, u_char *dat, u_char *read_ecc, u_char *calc_ecc);
+int __init tx4925ndfmc_init (void)
+{
+ struct nand_chip *this;
+ int err = 0;
+
+ /* Allocate memory for MTD device structure and private data */
+ tx4925ndfmc_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
+ GFP_KERNEL);
+ if (!tx4925ndfmc_mtd) {
+ printk ("Unable to allocate RBTX4925 NAND MTD device structure.\n");
+ err = -ENOMEM;
+ goto out;
+ }
+
+ tx4925ndfmc_device_setup();
+
+ /* io is indirect via a register so don't need to ioremap address */
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&tx4925ndfmc_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) tx4925ndfmc_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ tx4925ndfmc_mtd->priv = this;
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_R = (void __iomem *)&(tx4925_ndfmcptr->dtr);
+ this->IO_ADDR_W = (void __iomem *)&(tx4925_ndfmcptr->dtr);
+ this->hwcontrol = tx4925ndfmc_hwcontrol;
+ this->enable_hwecc = tx4925ndfmc_enable_hwecc;
+ this->calculate_ecc = tx4925ndfmc_readecc;
+ this->correct_data = nand_correct_data;
+ this->eccmode = NAND_ECC_HW6_512;
+ this->dev_ready = tx4925ndfmc_device_ready;
+ /* 20 us command delay time */
+ this->chip_delay = 20;
+ this->read_byte = tx4925ndfmc_nand_read_byte;
+ this->write_byte = tx4925ndfmc_nand_write_byte;
+ this->cmdfunc = tx4925ndfmc_nand_command;
+ this->write_buf = tx4925ndfmc_nand_write_buf;
+ this->read_buf = tx4925ndfmc_nand_read_buf;
+ this->verify_buf = tx4925ndfmc_nand_verify_buf;
+
+ /* Scan to find existance of the device */
+ if (nand_scan (tx4925ndfmc_mtd, 1)) {
+ err = -ENXIO;
+ goto out_ior;
+ }
+
+ /* Register the partitions */
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+ {
+ int mtd_parts_nb = 0;
+ struct mtd_partition *mtd_parts = 0;
+ mtd_parts_nb = parse_cmdline_partitions(tx4925ndfmc_mtd, &mtd_parts, "tx4925ndfmc");
+ if (mtd_parts_nb > 0)
+ add_mtd_partitions(tx4925ndfmc_mtd, mtd_parts, mtd_parts_nb);
+ else
+ add_mtd_device(tx4925ndfmc_mtd);
+ }
+#else /* ifdef CONFIG_MTD_CMDLINE_PARTS */
+ switch(tx4925ndfmc_mtd->size){
+ case 0x01000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info16k, NUM_PARTITIONS16K); break;
+ case 0x02000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info32k, NUM_PARTITIONS32K); break;
+ case 0x04000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info64k, NUM_PARTITIONS64K); break;
+ case 0x08000000: add_mtd_partitions(tx4925ndfmc_mtd, partition_info128k, NUM_PARTITIONS128K); break;
+ default: {
+ printk ("Unsupported SmartMedia device\n");
+ err = -ENXIO;
+ goto out_ior;
+ }
+ }
+#endif /* ifdef CONFIG_MTD_CMDLINE_PARTS */
+ goto out;
+
+out_ior:
+out:
+ return err;
+}
+
+module_init(tx4925ndfmc_init);
+
+/*
+ * Clean up routine
+ */
+#ifdef MODULE
+static void __exit tx4925ndfmc_cleanup (void)
+{
+ /* Release resources, unregister device */
+ nand_release (tx4925ndfmc_mtd);
+
+ /* Free the MTD device structure */
+ kfree (tx4925ndfmc_mtd);
+}
+module_exit(tx4925ndfmc_cleanup);
+#endif
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Alice Hennessy <ahennessy@mvista.com>");
+MODULE_DESCRIPTION("Glue layer for SmartMediaCard on Toshiba RBTX4925");
diff --git a/drivers/mtd/nand/tx4938ndfmc.c b/drivers/mtd/nand/tx4938ndfmc.c
new file mode 100644
index 00000000000..df26e58820b
--- /dev/null
+++ b/drivers/mtd/nand/tx4938ndfmc.c
@@ -0,0 +1,406 @@
+/*
+ * drivers/mtd/nand/tx4938ndfmc.c
+ *
+ * Overview:
+ * This is a device driver for the NAND flash device connected to
+ * TX4938 internal NAND Memory Controller.
+ * TX4938 NDFMC is almost same as TX4925 NDFMC, but register size are 64 bit.
+ *
+ * Author: source@mvista.com
+ *
+ * Based on spia.c by Steven J. Hill
+ *
+ * $Id: tx4938ndfmc.c,v 1.4 2004/10/05 13:50:20 gleixner Exp $
+ *
+ * Copyright (C) 2000-2001 Toshiba Corporation
+ *
+ * 2003 (c) MontaVista Software, Inc. This file is licensed under the
+ * terms of the GNU General Public License version 2. This program is
+ * licensed "as is" without any warranty of any kind, whether express
+ * or implied.
+ */
+#include <linux/config.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include <asm/bootinfo.h>
+#include <linux/delay.h>
+#include <asm/tx4938/rbtx4938.h>
+
+extern struct nand_oobinfo jffs2_oobinfo;
+
+/*
+ * MTD structure for TX4938 NDFMC
+ */
+static struct mtd_info *tx4938ndfmc_mtd;
+
+/*
+ * Define partitions for flash device
+ */
+#define flush_wb() (void)tx4938_ndfmcptr->mcr;
+
+#define NUM_PARTITIONS 3
+#define NUMBER_OF_CIS_BLOCKS 24
+#define SIZE_OF_BLOCK 0x00004000
+#define NUMBER_OF_BLOCK_PER_ZONE 1024
+#define SIZE_OF_ZONE (NUMBER_OF_BLOCK_PER_ZONE * SIZE_OF_BLOCK)
+#ifndef CONFIG_MTD_CMDLINE_PARTS
+/*
+ * You can use the following sample of MTD partitions
+ * on the NAND Flash Memory 32MB or more.
+ *
+ * The following figure shows the image of the sample partition on
+ * the 32MB NAND Flash Memory.
+ *
+ * Block No.
+ * 0 +-----------------------------+ ------
+ * | CIS | ^
+ * 24 +-----------------------------+ |
+ * | kernel image | | Zone 0
+ * | | |
+ * +-----------------------------+ |
+ * 1023 | unused area | v
+ * +-----------------------------+ ------
+ * 1024 | JFFS2 | ^
+ * | | |
+ * | | | Zone 1
+ * | | |
+ * | | |
+ * | | v
+ * 2047 +-----------------------------+ ------
+ *
+ */
+static struct mtd_partition partition_info[NUM_PARTITIONS] = {
+ {
+ .name = "RBTX4938 CIS Area",
+ .offset = 0,
+ .size = (NUMBER_OF_CIS_BLOCKS * SIZE_OF_BLOCK),
+ .mask_flags = MTD_WRITEABLE /* This partition is NOT writable */
+ },
+ {
+ .name = "RBTX4938 kernel image",
+ .offset = MTDPART_OFS_APPEND,
+ .size = 8 * 0x00100000, /* 8MB (Depends on size of kernel image) */
+ .mask_flags = MTD_WRITEABLE /* This partition is NOT writable */
+ },
+ {
+ .name = "Root FS (JFFS2)",
+ .offset = (0 + SIZE_OF_ZONE), /* start address of next zone */
+ .size = MTDPART_SIZ_FULL
+ },
+};
+#endif
+
+static void tx4938ndfmc_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+ switch (cmd) {
+ case NAND_CTL_SETCLE:
+ tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_CLE;
+ break;
+ case NAND_CTL_CLRCLE:
+ tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_CLE;
+ break;
+ case NAND_CTL_SETALE:
+ tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_ALE;
+ break;
+ case NAND_CTL_CLRALE:
+ tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_ALE;
+ break;
+ /* TX4938_NDFMCR_CE bit is 0:high 1:low */
+ case NAND_CTL_SETNCE:
+ tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_CE;
+ break;
+ case NAND_CTL_CLRNCE:
+ tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_CE;
+ break;
+ case NAND_CTL_SETWP:
+ tx4938_ndfmcptr->mcr |= TX4938_NDFMCR_WE;
+ break;
+ case NAND_CTL_CLRWP:
+ tx4938_ndfmcptr->mcr &= ~TX4938_NDFMCR_WE;
+ break;
+ }
+}
+static int tx4938ndfmc_dev_ready(struct mtd_info *mtd)
+{
+ flush_wb();
+ return !(tx4938_ndfmcptr->sr & TX4938_NDFSR_BUSY);
+}
+static void tx4938ndfmc_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+ u32 mcr = tx4938_ndfmcptr->mcr;
+ mcr &= ~TX4938_NDFMCR_ECC_ALL;
+ tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF;
+ tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_READ;
+ ecc_code[1] = tx4938_ndfmcptr->dtr;
+ ecc_code[0] = tx4938_ndfmcptr->dtr;
+ ecc_code[2] = tx4938_ndfmcptr->dtr;
+ tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF;
+}
+static void tx4938ndfmc_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+ u32 mcr = tx4938_ndfmcptr->mcr;
+ mcr &= ~TX4938_NDFMCR_ECC_ALL;
+ tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_RESET;
+ tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_OFF;
+ tx4938_ndfmcptr->mcr = mcr | TX4938_NDFMCR_ECC_ON;
+}
+
+static u_char tx4938ndfmc_nand_read_byte(struct mtd_info *mtd)
+{
+ struct nand_chip *this = mtd->priv;
+ return tx4938_read_nfmc(this->IO_ADDR_R);
+}
+
+static void tx4938ndfmc_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+ struct nand_chip *this = mtd->priv;
+ tx4938_write_nfmc(byte, this->IO_ADDR_W);
+}
+
+static void tx4938ndfmc_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ tx4938_write_nfmc(buf[i], this->IO_ADDR_W);
+}
+
+static void tx4938ndfmc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ buf[i] = tx4938_read_nfmc(this->IO_ADDR_R);
+}
+
+static int tx4938ndfmc_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+ struct nand_chip *this = mtd->priv;
+
+ for (i=0; i<len; i++)
+ if (buf[i] != tx4938_read_nfmc(this->IO_ADDR_R))
+ return -EFAULT;
+
+ return 0;
+}
+
+/*
+ * Send command to NAND device
+ */
+static void tx4938ndfmc_nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr)
+{
+ register struct nand_chip *this = mtd->priv;
+
+ /* Begin command latch cycle */
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ /*
+ * Write out the command to the device.
+ */
+ if (command == NAND_CMD_SEQIN) {
+ int readcmd;
+
+ if (column >= mtd->oobblock) {
+ /* OOB area */
+ column -= mtd->oobblock;
+ readcmd = NAND_CMD_READOOB;
+ } else if (column < 256) {
+ /* First 256 bytes --> READ0 */
+ readcmd = NAND_CMD_READ0;
+ } else {
+ column -= 256;
+ readcmd = NAND_CMD_READ1;
+ }
+ this->write_byte(mtd, readcmd);
+ }
+ this->write_byte(mtd, command);
+
+ /* Set ALE and clear CLE to start address cycle */
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+
+ if (column != -1 || page_addr != -1) {
+ this->hwcontrol(mtd, NAND_CTL_SETALE);
+
+ /* Serially input address */
+ if (column != -1)
+ this->write_byte(mtd, column);
+ if (page_addr != -1) {
+ this->write_byte(mtd, (unsigned char) (page_addr & 0xff));
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff));
+ /* One more address cycle for higher density devices */
+ if (mtd->size & 0x0c000000)
+ this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f));
+ }
+ /* Latch in address */
+ this->hwcontrol(mtd, NAND_CTL_CLRALE);
+ }
+
+ /*
+ * program and erase have their own busy handlers
+ * status and sequential in needs no delay
+ */
+ switch (command) {
+
+ case NAND_CMD_PAGEPROG:
+ /* Turn off WE */
+ this->hwcontrol (mtd, NAND_CTL_CLRWP);
+ return;
+
+ case NAND_CMD_SEQIN:
+ /* Turn on WE */
+ this->hwcontrol (mtd, NAND_CTL_SETWP);
+ return;
+
+ case NAND_CMD_ERASE1:
+ case NAND_CMD_ERASE2:
+ case NAND_CMD_STATUS:
+ return;
+
+ case NAND_CMD_RESET:
+ if (this->dev_ready)
+ break;
+ this->hwcontrol(mtd, NAND_CTL_SETCLE);
+ this->write_byte(mtd, NAND_CMD_STATUS);
+ this->hwcontrol(mtd, NAND_CTL_CLRCLE);
+ while ( !(this->read_byte(mtd) & 0x40));
+ return;
+
+ /* This applies to read commands */
+ default:
+ /*
+ * If we don't have access to the busy pin, we apply the given
+ * command delay
+ */
+ if (!this->dev_ready) {
+ udelay (this->chip_delay);
+ return;
+ }
+ }
+
+ /* wait until command is processed */
+ while (!this->dev_ready(mtd));
+}
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+extern int parse_cmdline_partitions(struct mtd_info *master, struct mtd_partition **pparts, char *);
+#endif
+/*
+ * Main initialization routine
+ */
+int __init tx4938ndfmc_init (void)
+{
+ struct nand_chip *this;
+ int bsprt = 0, hold = 0xf, spw = 0xf;
+ int protected = 0;
+
+ if ((*rbtx4938_piosel_ptr & 0x0c) != 0x08) {
+ printk("TX4938 NDFMC: disabled by IOC PIOSEL\n");
+ return -ENODEV;
+ }
+ bsprt = 1;
+ hold = 2;
+ spw = 9 - 1; /* 8 GBUSCLK = 80ns (@ GBUSCLK 100MHz) */
+
+ if ((tx4938_ccfgptr->pcfg &
+ (TX4938_PCFG_ATA_SEL|TX4938_PCFG_ISA_SEL|TX4938_PCFG_NDF_SEL))
+ != TX4938_PCFG_NDF_SEL) {
+ printk("TX4938 NDFMC: disabled by PCFG.\n");
+ return -ENODEV;
+ }
+
+ /* reset NDFMC */
+ tx4938_ndfmcptr->rstr |= TX4938_NDFRSTR_RST;
+ while (tx4938_ndfmcptr->rstr & TX4938_NDFRSTR_RST)
+ ;
+ /* setup BusSeparete, Hold Time, Strobe Pulse Width */
+ tx4938_ndfmcptr->mcr = bsprt ? TX4938_NDFMCR_BSPRT : 0;
+ tx4938_ndfmcptr->spr = hold << 4 | spw;
+
+ /* Allocate memory for MTD device structure and private data */
+ tx4938ndfmc_mtd = kmalloc (sizeof(struct mtd_info) + sizeof (struct nand_chip),
+ GFP_KERNEL);
+ if (!tx4938ndfmc_mtd) {
+ printk ("Unable to allocate TX4938 NDFMC MTD device structure.\n");
+ return -ENOMEM;
+ }
+
+ /* Get pointer to private data */
+ this = (struct nand_chip *) (&tx4938ndfmc_mtd[1]);
+
+ /* Initialize structures */
+ memset((char *) tx4938ndfmc_mtd, 0, sizeof(struct mtd_info));
+ memset((char *) this, 0, sizeof(struct nand_chip));
+
+ /* Link the private data with the MTD structure */
+ tx4938ndfmc_mtd->priv = this;
+
+ /* Set address of NAND IO lines */
+ this->IO_ADDR_R = (unsigned long)&tx4938_ndfmcptr->dtr;
+ this->IO_ADDR_W = (unsigned long)&tx4938_ndfmcptr->dtr;
+ this->hwcontrol = tx4938ndfmc_hwcontrol;
+ this->dev_ready = tx4938ndfmc_dev_ready;
+ this->calculate_ecc = tx4938ndfmc_calculate_ecc;
+ this->correct_data = nand_correct_data;
+ this->enable_hwecc = tx4938ndfmc_enable_hwecc;
+ this->eccmode = NAND_ECC_HW3_256;
+ this->chip_delay = 100;
+ this->read_byte = tx4938ndfmc_nand_read_byte;
+ this->write_byte = tx4938ndfmc_nand_write_byte;
+ this->cmdfunc = tx4938ndfmc_nand_command;
+ this->write_buf = tx4938ndfmc_nand_write_buf;
+ this->read_buf = tx4938ndfmc_nand_read_buf;
+ this->verify_buf = tx4938ndfmc_nand_verify_buf;
+
+ /* Scan to find existance of the device */
+ if (nand_scan (tx4938ndfmc_mtd, 1)) {
+ kfree (tx4938ndfmc_mtd);
+ return -ENXIO;
+ }
+
+ if (protected) {
+ printk(KERN_INFO "TX4938 NDFMC: write protected.\n");
+ tx4938ndfmc_mtd->flags &= ~(MTD_WRITEABLE | MTD_ERASEABLE);
+ }
+
+#ifdef CONFIG_MTD_CMDLINE_PARTS
+ {
+ int mtd_parts_nb = 0;
+ struct mtd_partition *mtd_parts = 0;
+ mtd_parts_nb = parse_cmdline_partitions(tx4938ndfmc_mtd, &mtd_parts, "tx4938ndfmc");
+ if (mtd_parts_nb > 0)
+ add_mtd_partitions(tx4938ndfmc_mtd, mtd_parts, mtd_parts_nb);
+ else
+ add_mtd_device(tx4938ndfmc_mtd);
+ }
+#else
+ add_mtd_partitions(tx4938ndfmc_mtd, partition_info, NUM_PARTITIONS );
+#endif
+
+ return 0;
+}
+module_init(tx4938ndfmc_init);
+
+/*
+ * Clean up routine
+ */
+static void __exit tx4938ndfmc_cleanup (void)
+{
+ /* Release resources, unregister device */
+ nand_release (tx4938ndfmc_mtd);
+
+ /* Free the MTD device structure */
+ kfree (tx4938ndfmc_mtd);
+}
+module_exit(tx4938ndfmc_cleanup);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Alice Hennessy <ahennessy@mvista.com>");
+MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on TX4938 NDFMC");