aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/contiguous-memory.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/contiguous-memory.txt')
-rw-r--r--Documentation/contiguous-memory.txt623
1 files changed, 623 insertions, 0 deletions
diff --git a/Documentation/contiguous-memory.txt b/Documentation/contiguous-memory.txt
new file mode 100644
index 00000000000..3d9d42c3085
--- /dev/null
+++ b/Documentation/contiguous-memory.txt
@@ -0,0 +1,623 @@
+ -*- org -*-
+
+* Contiguous Memory Allocator
+
+ The Contiguous Memory Allocator (CMA) is a framework, which allows
+ setting up a machine-specific configuration for physically-contiguous
+ memory management. Memory for devices is then allocated according
+ to that configuration.
+
+ The main role of the framework is not to allocate memory, but to
+ parse and manage memory configurations, as well as to act as an
+ in-between between device drivers and pluggable allocators. It is
+ thus not tied to any memory allocation method or strategy.
+
+** Why is it needed?
+
+ Various devices on embedded systems have no scatter-getter and/or
+ IO map support and as such require contiguous blocks of memory to
+ operate. They include devices such as cameras, hardware video
+ decoders and encoders, etc.
+
+ Such devices often require big memory buffers (a full HD frame is,
+ for instance, more then 2 mega pixels large, i.e. more than 6 MB
+ of memory), which makes mechanisms such as kmalloc() ineffective.
+
+ Some embedded devices impose additional requirements on the
+ buffers, e.g. they can operate only on buffers allocated in
+ particular location/memory bank (if system has more than one
+ memory bank) or buffers aligned to a particular memory boundary.
+
+ Development of embedded devices have seen a big rise recently
+ (especially in the V4L area) and many such drivers include their
+ own memory allocation code. Most of them use bootmem-based methods.
+ CMA framework is an attempt to unify contiguous memory allocation
+ mechanisms and provide a simple API for device drivers, while
+ staying as customisable and modular as possible.
+
+** Design
+
+ The main design goal for the CMA was to provide a customisable and
+ modular framework, which could be configured to suit the needs of
+ individual systems. Configuration specifies a list of memory
+ regions, which then are assigned to devices. Memory regions can
+ be shared among many device drivers or assigned exclusively to
+ one. This has been achieved in the following ways:
+
+ 1. The core of the CMA does not handle allocation of memory and
+ management of free space. Dedicated allocators are used for
+ that purpose.
+
+ This way, if the provided solution does not match demands
+ imposed on a given system, one can develop a new algorithm and
+ easily plug it into the CMA framework.
+
+ The presented solution includes an implementation of a best-fit
+ algorithm.
+
+ 2. When requesting memory, devices have to introduce themselves.
+ This way CMA knows who the memory is allocated for. This
+ allows for the system architect to specify which memory regions
+ each device should use.
+
+ 3. Memory regions are grouped in various "types". When device
+ requests a chunk of memory, it can specify what type of memory
+ it needs. If no type is specified, "common" is assumed.
+
+ This makes it possible to configure the system in such a way,
+ that a single device may get memory from different memory
+ regions, depending on the "type" of memory it requested. For
+ example, a video codec driver might want to allocate some
+ shared buffers from the first memory bank and the other from
+ the second to get the highest possible memory throughput.
+
+ 4. For greater flexibility and extensibility, the framework allows
+ device drivers to register private regions of reserved memory
+ which then may be used only by them.
+
+ As an effect, if a driver would not use the rest of the CMA
+ interface, it can still use CMA allocators and other
+ mechanisms.
+
+ 4a. Early in boot process, device drivers can also request the
+ CMA framework to a reserve a region of memory for them
+ which then will be used as a private region.
+
+ This way, drivers do not need to directly call bootmem,
+ memblock or similar early allocator but merely register an
+ early region and the framework will handle the rest
+ including choosing the right early allocator.
+
+ 4. CMA allows a run-time configuration of the memory regions it
+ will use to allocate chunks of memory from. The set of memory
+ regions is given on command line so it can be easily changed
+ without the need for recompiling the kernel.
+
+ Each region has it's own size, alignment demand, a start
+ address (physical address where it should be placed) and an
+ allocator algorithm assigned to the region.
+
+ This means that there can be different algorithms running at
+ the same time, if different devices on the platform have
+ distinct memory usage characteristics and different algorithm
+ match those the best way.
+
+** Use cases
+
+ Let's analyse some imaginary system that uses the CMA to see how
+ the framework can be used and configured.
+
+
+ We have a platform with a hardware video decoder and a camera each
+ needing 20 MiB of memory in the worst case. Our system is written
+ in such a way though that the two devices are never used at the
+ same time and memory for them may be shared. In such a system the
+ following configuration would be used in the platform
+ initialisation code:
+
+ static struct cma_region regions[] = {
+ { .name = "region", .size = 20 << 20 },
+ { }
+ }
+ static const char map[] __initconst = "video,camera=region";
+
+ cma_set_defaults(regions, map);
+
+ The regions array defines a single 20-MiB region named "region".
+ The map says that drivers named "video" and "camera" are to be
+ granted memory from the previously defined region.
+
+ A shorter map can be used as well:
+
+ static const char map[] __initconst = "*=region";
+
+ The asterisk ("*") matches all devices thus all devices will use
+ the region named "region".
+
+ We can see, that because the devices share the same memory region,
+ we save 20 MiB, compared to the situation when each of the devices
+ would reserve 20 MiB of memory for itself.
+
+
+ Now, let's say that we have also many other smaller devices and we
+ want them to share some smaller pool of memory. For instance 5
+ MiB. This can be achieved in the following way:
+
+ static struct cma_region regions[] = {
+ { .name = "region", .size = 20 << 20 },
+ { .name = "common", .size = 5 << 20 },
+ { }
+ }
+ static const char map[] __initconst =
+ "video,camera=region;*=common";
+
+ cma_set_defaults(regions, map);
+
+ This instructs CMA to reserve two regions and let video and camera
+ use region "region" whereas all other devices should use region
+ "common".
+
+
+ Later on, after some development of the system, it can now run
+ video decoder and camera at the same time. The 20 MiB region is
+ no longer enough for the two to share. A quick fix can be made to
+ grant each of those devices separate regions:
+
+ static struct cma_region regions[] = {
+ { .name = "v", .size = 20 << 20 },
+ { .name = "c", .size = 20 << 20 },
+ { .name = "common", .size = 5 << 20 },
+ { }
+ }
+ static const char map[] __initconst = "video=v;camera=c;*=common";
+
+ cma_set_defaults(regions, map);
+
+ This solution also shows how with CMA you can assign private pools
+ of memory to each device if that is required.
+
+ Allocation mechanisms can be replaced dynamically in a similar
+ manner as well. Let's say that during testing, it has been
+ discovered that, for a given shared region of 40 MiB,
+ fragmentation has become a problem. It has been observed that,
+ after some time, it becomes impossible to allocate buffers of the
+ required sizes. So to satisfy our requirements, we would have to
+ reserve a larger shared region beforehand.
+
+ But fortunately, you have also managed to develop a new allocation
+ algorithm -- Neat Allocation Algorithm or "na" for short -- which
+ satisfies the needs for both devices even on a 30 MiB region. The
+ configuration can be then quickly changed to:
+
+ static struct cma_region regions[] = {
+ { .name = "region", .size = 30 << 20, .alloc_name = "na" },
+ { .name = "common", .size = 5 << 20 },
+ { }
+ }
+ static const char map[] __initconst = "video,camera=region;*=common";
+
+ cma_set_defaults(regions, map);
+
+ This shows how you can develop your own allocation algorithms if
+ the ones provided with CMA do not suit your needs and easily
+ replace them, without the need to modify CMA core or even
+ recompiling the kernel.
+
+** Technical Details
+
+*** The attributes
+
+ As shown above, CMA is configured by a two attributes: list
+ regions and map. The first one specifies regions that are to be
+ reserved for CMA. The second one specifies what regions each
+ device is assigned to.
+
+**** Regions
+
+ Regions is a list of regions terminated by a region with size
+ equal zero. The following fields may be set:
+
+ - size -- size of the region (required, must not be zero)
+ - alignment -- alignment of the region; must be power of two or
+ zero (optional)
+ - start -- where the region has to start (optional)
+ - alloc_name -- the name of allocator to use (optional)
+ - alloc -- allocator to use (optional; and besides
+ alloc_name is probably is what you want)
+
+ size, alignment and start is specified in bytes. Size will be
+ aligned up to a PAGE_SIZE. If alignment is less then a PAGE_SIZE
+ it will be set to a PAGE_SIZE. start will be aligned to
+ alignment.
+
+ If command line parameter support is enabled, this attribute can
+ also be overriden by a command line "cma" parameter. When given
+ on command line its forrmat is as follows:
+
+ regions-attr ::= [ regions [ ';' ] ]
+ regions ::= region [ ';' regions ]
+
+ region ::= REG-NAME
+ '=' size
+ [ '@' start ]
+ [ '/' alignment ]
+ [ ':' ALLOC-NAME ]
+
+ size ::= MEMSIZE // size of the region
+ start ::= MEMSIZE // desired start address of
+ // the region
+ alignment ::= MEMSIZE // alignment of the start
+ // address of the region
+
+ REG-NAME specifies the name of the region. All regions given at
+ via the regions attribute need to have a name. Moreover, all
+ regions need to have a unique name. If two regions have the same
+ name it is unspecified which will be used when requesting to
+ allocate memory from region with given name.
+
+ ALLOC-NAME specifies the name of allocator to be used with the
+ region. If no allocator name is provided, the "default"
+ allocator will be used with the region. The "default" allocator
+ is, of course, the first allocator that has been registered. ;)
+
+ size, start and alignment are specified in bytes with suffixes
+ that memparse() accept. If start is given, the region will be
+ reserved on given starting address (or at close to it as
+ possible). If alignment is specified, the region will be aligned
+ to given value.
+
+**** Map
+
+ The format of the "map" attribute is as follows:
+
+ map-attr ::= [ rules [ ';' ] ]
+ rules ::= rule [ ';' rules ]
+ rule ::= patterns '=' regions
+
+ patterns ::= pattern [ ',' patterns ]
+
+ regions ::= REG-NAME [ ',' regions ]
+ // list of regions to try to allocate memory
+ // from
+
+ pattern ::= dev-pattern [ '/' TYPE-NAME ] | '/' TYPE-NAME
+ // pattern request must match for the rule to
+ // apply; the first rule that matches is
+ // applied; if dev-pattern part is omitted
+ // value identical to the one used in previous
+ // pattern is assumed.
+
+ dev-pattern ::= PATTERN
+ // pattern that device name must match for the
+ // rule to apply; may contain question marks
+ // which mach any characters and end with an
+ // asterisk which match the rest of the string
+ // (including nothing).
+
+ It is a sequence of rules which specify what regions should given
+ (device, type) pair use. The first rule that matches is applied.
+
+ For rule to match, the pattern must match (dev, type) pair.
+ Pattern consist of the part before and after slash. The first
+ part must match device name and the second part must match kind.
+
+ If the first part is empty, the device name is assumed to match
+ iff it matched in previous pattern. If the second part is
+ omitted it will mach any type of memory requested by device.
+
+ If SysFS support is enabled, this attribute is accessible via
+ SysFS and can be changed at run-time by writing to
+ /sys/kernel/mm/contiguous/map.
+
+ If command line parameter support is enabled, this attribute can
+ also be overriden by a command line "cma.map" parameter.
+
+**** Examples
+
+ Some examples (whitespace added for better readability):
+
+ cma = r1 = 64M // 64M region
+ @512M // starting at address 512M
+ // (or at least as near as possible)
+ /1M // make sure it's aligned to 1M
+ :foo(bar); // uses allocator "foo" with "bar"
+ // as parameters for it
+ r2 = 64M // 64M region
+ /1M; // make sure it's aligned to 1M
+ // uses the first available allocator
+ r3 = 64M // 64M region
+ @512M // starting at address 512M
+ :foo; // uses allocator "foo" with no parameters
+
+ cma_map = foo = r1;
+ // device foo with kind==NULL uses region r1
+
+ foo/quaz = r2; // OR:
+ /quaz = r2;
+ // device foo with kind == "quaz" uses region r2
+
+ cma_map = foo/quaz = r1;
+ // device foo with type == "quaz" uses region r1
+
+ foo/* = r2; // OR:
+ /* = r2;
+ // device foo with any other kind uses region r2
+
+ bar = r1,r2;
+ // device bar uses region r1 or r2
+
+ baz?/a , baz?/b = r3;
+ // devices named baz? where ? is any character
+ // with type being "a" or "b" use r3
+
+*** The device and types of memory
+
+ The name of the device is taken from the device structure. It is
+ not possible to use CMA if driver does not register a device
+ (actually this can be overcome if a fake device structure is
+ provided with at least the name set).
+
+ The type of memory is an optional argument provided by the device
+ whenever it requests memory chunk. In many cases this can be
+ ignored but sometimes it may be required for some devices.
+
+ For instance, let's say that there are two memory banks and for
+ performance reasons a device uses buffers in both of them.
+ Platform defines a memory types "a" and "b" for regions in both
+ banks. The device driver would use those two types then to
+ request memory chunks from different banks. CMA attributes could
+ look as follows:
+
+ static struct cma_region regions[] = {
+ { .name = "a", .size = 32 << 20 },
+ { .name = "b", .size = 32 << 20, .start = 512 << 20 },
+ { }
+ }
+ static const char map[] __initconst = "foo/a=a;foo/b=b;*=a,b";
+
+ And whenever the driver allocated the memory it would specify the
+ kind of memory:
+
+ buffer1 = cma_alloc(dev, "a", 1 << 20, 0);
+ buffer2 = cma_alloc(dev, "b", 1 << 20, 0);
+
+ If it was needed to try to allocate from the other bank as well if
+ the dedicated one is full, the map attributes could be changed to:
+
+ static const char map[] __initconst = "foo/a=a,b;foo/b=b,a;*=a,b";
+
+ On the other hand, if the same driver was used on a system with
+ only one bank, the configuration could be changed just to:
+
+ static struct cma_region regions[] = {
+ { .name = "r", .size = 64 << 20 },
+ { }
+ }
+ static const char map[] __initconst = "*=r";
+
+ without the need to change the driver at all.
+
+*** Device API
+
+ There are three basic calls provided by the CMA framework to
+ devices. To allocate a chunk of memory cma_alloc() function needs
+ to be used:
+
+ dma_addr_t cma_alloc(const struct device *dev, const char *type,
+ size_t size, dma_addr_t alignment);
+
+ If required, device may specify alignment in bytes that the chunk
+ need to satisfy. It have to be a power of two or zero. The
+ chunks are always aligned at least to a page.
+
+ The type specifies the type of memory as described to in the
+ previous subsection. If device driver does not care about memory
+ type it can safely pass NULL as the type which is the same as
+ possing "common".
+
+ The basic usage of the function is just a:
+
+ addr = cma_alloc(dev, NULL, size, 0);
+
+ The function returns bus address of allocated chunk or a value
+ that evaluates to true if checked with IS_ERR_VALUE(), so the
+ correct way for checking for errors is:
+
+ unsigned long addr = cma_alloc(dev, NULL, size, 0);
+ if (IS_ERR_VALUE(addr))
+ /* Error */
+ return (int)addr;
+ /* Allocated */
+
+ (Make sure to include <linux/err.h> which contains the definition
+ of the IS_ERR_VALUE() macro.)
+
+
+ Allocated chunk is freed via a cma_free() function:
+
+ int cma_free(dma_addr_t addr);
+
+ It takes bus address of the chunk as an argument frees it.
+
+
+ The last function is the cma_info() which returns information
+ about regions assigned to given (dev, type) pair. Its syntax is:
+
+ int cma_info(struct cma_info *info,
+ const struct device *dev,
+ const char *type);
+
+ On successful exit it fills the info structure with lower and
+ upper bound of regions, total size and number of regions assigned
+ to given (dev, type) pair.
+
+**** Dynamic and private regions
+
+ In the basic setup, regions are provided and initialised by
+ platform initialisation code (which usually use
+ cma_set_defaults() for that purpose).
+
+ It is, however, possible to create and add regions dynamically
+ using cma_region_register() function.
+
+ int cma_region_register(struct cma_region *reg);
+
+ The region does not have to have name. If it does not, it won't
+ be accessed via standard mapping (the one provided with map
+ attribute). Such regions are private and to allocate chunk from
+ them, one needs to call:
+
+ dma_addr_t cma_alloc_from_region(struct cma_region *reg,
+ size_t size, dma_addr_t alignment);
+
+ It is just like cma_alloc() expect one specifies what region to
+ allocate memory from. The region must have been registered.
+
+**** Allocating from region specified by name
+
+ If a driver preferred allocating from a region or list of regions
+ it knows name of it can use a different call simmilar to the
+ previous:
+
+ dma_addr_t cma_alloc_from(const char *regions,
+ size_t size, dma_addr_t alignment);
+
+ The first argument is a comma-separated list of regions the
+ driver desires CMA to try and allocate from. The list is
+ terminated by a NUL byte or a semicolon.
+
+ Similarly, there is a call for requesting information about named
+ regions:
+
+ int cma_info_about(struct cma_info *info, const char *regions);
+
+ Generally, it should not be needed to use those interfaces but
+ they are provided nevertheless.
+
+**** Registering early regions
+
+ An early region is a region that is managed by CMA early during
+ boot process. It's platforms responsibility to reserve memory
+ for early regions. Later on, when CMA initialises, early regions
+ with reserved memory are registered as normal regions.
+ Registering an early region may be a way for a device to request
+ a private pool of memory without worrying about actually
+ reserving the memory:
+
+ int cma_early_region_register(struct cma_region *reg);
+
+ This needs to be done quite early on in boot process, before
+ platform traverses the cma_early_regions list to reserve memory.
+
+ When boot process ends, device driver may see whether the region
+ was reserved (by checking reg->reserved flag) and if so, whether
+ it was successfully registered as a normal region (by checking
+ the reg->registered flag). If that is the case, device driver
+ can use normal API calls to use the region.
+
+*** Allocator operations
+
+ Creating an allocator for CMA needs four functions to be
+ implemented.
+
+
+ The first two are used to initialise an allocator for given driver
+ and clean up afterwards:
+
+ int cma_foo_init(struct cma_region *reg);
+ void cma_foo_cleanup(struct cma_region *reg);
+
+ The first is called when allocator is attached to region. When
+ the function is called, the cma_region structure is fully
+ initialised (ie. starting address and size have correct values).
+ As a meter of fact, allocator should never modify the cma_region
+ structure other then the private_data field which it may use to
+ point to it's private data.
+
+ The second call cleans up and frees all resources the allocator
+ has allocated for the region. The function can assume that all
+ chunks allocated form this region have been freed thus the whole
+ region is free.
+
+
+ The two other calls are used for allocating and freeing chunks.
+ They are:
+
+ struct cma_chunk *cma_foo_alloc(struct cma_region *reg,
+ size_t size, dma_addr_t alignment);
+ void cma_foo_free(struct cma_chunk *chunk);
+
+ As names imply the first allocates a chunk and the other frees
+ a chunk of memory. It also manages a cma_chunk object
+ representing the chunk in physical memory.
+
+ Either of those function can assume that they are the only thread
+ accessing the region. Therefore, allocator does not need to worry
+ about concurrency. Moreover, all arguments are guaranteed to be
+ valid (i.e. page aligned size, a power of two alignment no lower
+ the a page size).
+
+
+ When allocator is ready, all that is left is to register it by
+ calling cma_allocator_register() function:
+
+ int cma_allocator_register(struct cma_allocator *alloc);
+
+ The argument is an structure with pointers to the above functions
+ and allocator's name. The whole call may look something like
+ this:
+
+ static struct cma_allocator alloc = {
+ .name = "foo",
+ .init = cma_foo_init,
+ .cleanup = cma_foo_cleanup,
+ .alloc = cma_foo_alloc,
+ .free = cma_foo_free,
+ };
+ return cma_allocator_register(&alloc);
+
+ The name ("foo") will be used when a this particular allocator is
+ requested as an allocator for given region.
+
+*** Integration with platform
+
+ There is one function that needs to be called form platform
+ initialisation code. That is the cma_early_regions_reserve()
+ function:
+
+ void cma_early_regions_reserve(int (*reserve)(struct cma_region *reg));
+
+ It traverses list of all of the early regions provided by platform
+ and registered by drivers and reserves memory for them. The only
+ argument is a callback function used to reserve the region.
+ Passing NULL as the argument is the same as passing
+ cma_early_region_reserve() function which uses bootmem and
+ memblock for allocating.
+
+ Alternatively, platform code could traverse the cma_early_regions
+ list by itself but this should never be necessary.
+
+
+ Platform has also a way of providing default attributes for CMA,
+ cma_set_defaults() function is used for that purpose:
+
+ int cma_set_defaults(struct cma_region *regions, const char *map)
+
+ It needs to be called after early params have been parsed but
+ prior to reserving regions. It let one specify the list of
+ regions defined by platform and the map attribute. The map may
+ point to a string in __initdata. See above in this document for
+ example usage of this function.
+
+** Future work
+
+ In the future, implementation of mechanisms that would allow the
+ free space inside the regions to be used as page cache, filesystem
+ buffers or swap devices is planned. With such mechanisms, the
+ memory would not be wasted when not used.
+
+ Because all allocations and freeing of chunks pass the CMA
+ framework it can follow what parts of the reserved memory are
+ freed and what parts are allocated. Tracking the unused memory
+ would let CMA use it for other purposes such as page cache, I/O
+ buffers, swap, etc.