1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
|
//===-- R600LowerConstCopy.cpp - Propagate ConstCopy / lower them to MOV---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass is intended to handle remaining ConstCopy pseudo MachineInstr.
/// ISel will fold each Const Buffer read inside scalar ALU. However it cannot
/// fold them inside vector instruction, like DOT4 or Cube ; ISel emits
/// ConstCopy instead. This pass (executed after ExpandingSpecialInstr) will try
/// to fold them if possible or replace them by MOV otherwise.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "R600InstrInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/IR/GlobalValue.h"
namespace llvm {
class R600LowerConstCopy : public MachineFunctionPass {
private:
static char ID;
const R600InstrInfo *TII;
struct ConstPairs {
unsigned XYPair;
unsigned ZWPair;
};
bool canFoldInBundle(ConstPairs &UsedConst, unsigned ReadConst) const;
public:
R600LowerConstCopy(TargetMachine &tm);
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const { return "R600 Eliminate Symbolic Operand"; }
};
char R600LowerConstCopy::ID = 0;
R600LowerConstCopy::R600LowerConstCopy(TargetMachine &tm) :
MachineFunctionPass(ID),
TII (static_cast<const R600InstrInfo *>(tm.getInstrInfo()))
{
}
bool R600LowerConstCopy::canFoldInBundle(ConstPairs &UsedConst,
unsigned ReadConst) const {
unsigned ReadConstChan = ReadConst & 3;
unsigned ReadConstIndex = ReadConst & (~3);
if (ReadConstChan < 2) {
if (!UsedConst.XYPair) {
UsedConst.XYPair = ReadConstIndex;
}
return UsedConst.XYPair == ReadConstIndex;
} else {
if (!UsedConst.ZWPair) {
UsedConst.ZWPair = ReadConstIndex;
}
return UsedConst.ZWPair == ReadConstIndex;
}
}
static bool isControlFlow(const MachineInstr &MI) {
return (MI.getOpcode() == AMDGPU::IF_PREDICATE_SET) ||
(MI.getOpcode() == AMDGPU::ENDIF) ||
(MI.getOpcode() == AMDGPU::ELSE) ||
(MI.getOpcode() == AMDGPU::WHILELOOP) ||
(MI.getOpcode() == AMDGPU::BREAK);
}
bool R600LowerConstCopy::runOnMachineFunction(MachineFunction &MF) {
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
BB != BB_E; ++BB) {
MachineBasicBlock &MBB = *BB;
DenseMap<unsigned, MachineInstr *> RegToConstIndex;
for (MachineBasicBlock::instr_iterator I = MBB.instr_begin(),
E = MBB.instr_end(); I != E;) {
if (I->getOpcode() == AMDGPU::CONST_COPY) {
MachineInstr &MI = *I;
I = llvm::next(I);
unsigned DstReg = MI.getOperand(0).getReg();
DenseMap<unsigned, MachineInstr *>::iterator SrcMI =
RegToConstIndex.find(DstReg);
if (SrcMI != RegToConstIndex.end()) {
SrcMI->second->eraseFromParent();
RegToConstIndex.erase(SrcMI);
}
MachineInstr *NewMI =
TII->buildDefaultInstruction(MBB, &MI, AMDGPU::MOV,
MI.getOperand(0).getReg(), AMDGPU::ALU_CONST);
TII->setImmOperand(NewMI, R600Operands::SRC0_SEL,
MI.getOperand(1).getImm());
RegToConstIndex[DstReg] = NewMI;
MI.eraseFromParent();
continue;
}
std::vector<unsigned> Defs;
// We consider all Instructions as bundled because algorithm that handle
// const read port limitations inside an IG is still valid with single
// instructions.
std::vector<MachineInstr *> Bundle;
if (I->isBundle()) {
unsigned BundleSize = I->getBundleSize();
for (unsigned i = 0; i < BundleSize; i++) {
I = llvm::next(I);
Bundle.push_back(I);
}
} else if (TII->isALUInstr(I->getOpcode())){
Bundle.push_back(I);
} else if (isControlFlow(*I)) {
RegToConstIndex.clear();
I = llvm::next(I);
continue;
} else {
MachineInstr &MI = *I;
for (MachineInstr::mop_iterator MOp = MI.operands_begin(),
MOpE = MI.operands_end(); MOp != MOpE; ++MOp) {
MachineOperand &MO = *MOp;
if (!MO.isReg())
continue;
if (MO.isDef()) {
Defs.push_back(MO.getReg());
} else {
// Either a TEX or an Export inst, prevent from erasing def of used
// operand
RegToConstIndex.erase(MO.getReg());
for (MCSubRegIterator SR(MO.getReg(), &TII->getRegisterInfo());
SR.isValid(); ++SR) {
RegToConstIndex.erase(*SR);
}
}
}
}
R600Operands::Ops OpTable[3][2] = {
{R600Operands::SRC0, R600Operands::SRC0_SEL},
{R600Operands::SRC1, R600Operands::SRC1_SEL},
{R600Operands::SRC2, R600Operands::SRC2_SEL},
};
for(std::vector<MachineInstr *>::iterator It = Bundle.begin(),
ItE = Bundle.end(); It != ItE; ++It) {
MachineInstr *MI = *It;
if (TII->isPredicated(MI)) {
// We don't want to erase previous assignment
RegToConstIndex.erase(MI->getOperand(0).getReg());
} else {
int WriteIDX = TII->getOperandIdx(MI->getOpcode(), R600Operands::WRITE);
if (WriteIDX < 0 || MI->getOperand(WriteIDX).getImm())
Defs.push_back(MI->getOperand(0).getReg());
}
}
ConstPairs CP = {0,0};
for (unsigned SrcOp = 0; SrcOp < 3; SrcOp++) {
for(std::vector<MachineInstr *>::iterator It = Bundle.begin(),
ItE = Bundle.end(); It != ItE; ++It) {
MachineInstr *MI = *It;
int SrcIdx = TII->getOperandIdx(MI->getOpcode(), OpTable[SrcOp][0]);
if (SrcIdx < 0)
continue;
MachineOperand &MO = MI->getOperand(SrcIdx);
DenseMap<unsigned, MachineInstr *>::iterator SrcMI =
RegToConstIndex.find(MO.getReg());
if (SrcMI != RegToConstIndex.end()) {
MachineInstr *CstMov = SrcMI->second;
int ConstMovSel =
TII->getOperandIdx(CstMov->getOpcode(), R600Operands::SRC0_SEL);
unsigned ConstIndex = CstMov->getOperand(ConstMovSel).getImm();
if (MI->isInsideBundle() && canFoldInBundle(CP, ConstIndex)) {
TII->setImmOperand(MI, OpTable[SrcOp][1], ConstIndex);
MI->getOperand(SrcIdx).setReg(AMDGPU::ALU_CONST);
} else {
RegToConstIndex.erase(SrcMI);
}
}
}
}
for (std::vector<unsigned>::iterator It = Defs.begin(), ItE = Defs.end();
It != ItE; ++It) {
DenseMap<unsigned, MachineInstr *>::iterator SrcMI =
RegToConstIndex.find(*It);
if (SrcMI != RegToConstIndex.end()) {
SrcMI->second->eraseFromParent();
RegToConstIndex.erase(SrcMI);
}
}
I = llvm::next(I);
}
if (MBB.succ_empty()) {
for (DenseMap<unsigned, MachineInstr *>::iterator
DI = RegToConstIndex.begin(), DE = RegToConstIndex.end();
DI != DE; ++DI) {
DI->second->eraseFromParent();
}
}
}
return false;
}
FunctionPass *createR600LowerConstCopy(TargetMachine &tm) {
return new R600LowerConstCopy(tm);
}
}
|