aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Transforms/Vectorize
diff options
context:
space:
mode:
Diffstat (limited to 'lib/Transforms/Vectorize')
-rw-r--r--lib/Transforms/Vectorize/BBVectorize.cpp94
-rw-r--r--lib/Transforms/Vectorize/LoopVectorize.cpp443
-rw-r--r--lib/Transforms/Vectorize/SLPVectorizer.cpp257
3 files changed, 413 insertions, 381 deletions
diff --git a/lib/Transforms/Vectorize/BBVectorize.cpp b/lib/Transforms/Vectorize/BBVectorize.cpp
index 71350e7b39..28ec83bf86 100644
--- a/lib/Transforms/Vectorize/BBVectorize.cpp
+++ b/lib/Transforms/Vectorize/BBVectorize.cpp
@@ -15,7 +15,6 @@
//===----------------------------------------------------------------------===//
#define BBV_NAME "bb-vectorize"
-#define DEBUG_TYPE BBV_NAME
#include "llvm/Transforms/Vectorize.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
@@ -50,6 +49,8 @@
#include <algorithm>
using namespace llvm;
+#define DEBUG_TYPE BBV_NAME
+
static cl::opt<bool>
IgnoreTargetInfo("bb-vectorize-ignore-target-info", cl::init(false),
cl::Hidden, cl::desc("Ignore target information"));
@@ -122,6 +123,10 @@ NoMath("bb-vectorize-no-math", cl::init(false), cl::Hidden,
cl::desc("Don't try to vectorize floating-point math intrinsics"));
static cl::opt<bool>
+ NoBitManipulation("bb-vectorize-no-bitmanip", cl::init(false), cl::Hidden,
+ cl::desc("Don't try to vectorize BitManipulation intrinsics"));
+
+static cl::opt<bool>
NoFMA("bb-vectorize-no-fma", cl::init(false), cl::Hidden,
cl::desc("Don't try to vectorize the fused-multiply-add intrinsic"));
@@ -202,8 +207,8 @@ namespace {
DT = &P->getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &P->getAnalysis<ScalarEvolution>();
DataLayoutPass *DLP = P->getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
- TTI = IgnoreTargetInfo ? 0 : &P->getAnalysis<TargetTransformInfo>();
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
+ TTI = IgnoreTargetInfo ? nullptr : &P->getAnalysis<TargetTransformInfo>();
}
typedef std::pair<Value *, Value *> ValuePair;
@@ -279,7 +284,7 @@ namespace {
bool trackUsesOfI(DenseSet<Value *> &Users,
AliasSetTracker &WriteSet, Instruction *I,
Instruction *J, bool UpdateUsers = true,
- DenseSet<ValuePair> *LoadMoveSetPairs = 0);
+ DenseSet<ValuePair> *LoadMoveSetPairs = nullptr);
void computePairsConnectedTo(
DenseMap<Value *, std::vector<Value *> > &CandidatePairs,
@@ -292,8 +297,8 @@ namespace {
bool pairsConflict(ValuePair P, ValuePair Q,
DenseSet<ValuePair> &PairableInstUsers,
DenseMap<ValuePair, std::vector<ValuePair> >
- *PairableInstUserMap = 0,
- DenseSet<VPPair> *PairableInstUserPairSet = 0);
+ *PairableInstUserMap = nullptr,
+ DenseSet<VPPair> *PairableInstUserPairSet = nullptr);
bool pairWillFormCycle(ValuePair P,
DenseMap<ValuePair, std::vector<ValuePair> > &PairableInstUsers,
@@ -438,8 +443,8 @@ namespace {
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
SE = &getAnalysis<ScalarEvolution>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
- TTI = IgnoreTargetInfo ? 0 : &getAnalysis<TargetTransformInfo>();
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
+ TTI = IgnoreTargetInfo ? nullptr : &getAnalysis<TargetTransformInfo>();
return vectorizeBB(BB);
}
@@ -674,7 +679,20 @@ namespace {
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::pow:
+ case Intrinsic::round:
+ case Intrinsic::copysign:
+ case Intrinsic::ceil:
+ case Intrinsic::nearbyint:
+ case Intrinsic::rint:
+ case Intrinsic::trunc:
+ case Intrinsic::floor:
+ case Intrinsic::fabs:
return Config.VectorizeMath;
+ case Intrinsic::bswap:
+ case Intrinsic::ctpop:
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz:
+ return Config.VectorizeBitManipulations;
case Intrinsic::fma:
case Intrinsic::fmuladd:
return Config.VectorizeFMA;
@@ -878,7 +896,7 @@ namespace {
}
// We can't vectorize memory operations without target data
- if (DL == 0 && IsSimpleLoadStore)
+ if (!DL && IsSimpleLoadStore)
return false;
Type *T1, *T2;
@@ -915,7 +933,7 @@ namespace {
if (T2->isX86_FP80Ty() || T2->isPPC_FP128Ty() || T2->isX86_MMXTy())
return false;
- if ((!Config.VectorizePointers || DL == 0) &&
+ if ((!Config.VectorizePointers || !DL) &&
(T1->getScalarType()->isPointerTy() ||
T2->getScalarType()->isPointerTy()))
return false;
@@ -1049,7 +1067,7 @@ namespace {
(isa<ConstantVector>(JOp) || isa<ConstantDataVector>(JOp))) {
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
Constant *SplatValue = cast<Constant>(IOp)->getSplatValue();
- if (SplatValue != NULL &&
+ if (SplatValue != nullptr &&
SplatValue == cast<Constant>(JOp)->getSplatValue())
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
}
@@ -1079,13 +1097,14 @@ namespace {
CostSavings = ICost + JCost - VCost;
}
- // The powi intrinsic is special because only the first argument is
- // vectorized, the second arguments must be equal.
+ // The powi,ctlz,cttz intrinsics are special because only the first
+ // argument is vectorized, the second arguments must be equal.
CallInst *CI = dyn_cast<CallInst>(I);
Function *FI;
if (CI && (FI = CI->getCalledFunction())) {
Intrinsic::ID IID = (Intrinsic::ID) FI->getIntrinsicID();
- if (IID == Intrinsic::powi) {
+ if (IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
+ IID == Intrinsic::cttz) {
Value *A1I = CI->getArgOperand(1),
*A1J = cast<CallInst>(J)->getArgOperand(1);
const SCEV *A1ISCEV = SE->getSCEV(A1I),
@@ -1109,7 +1128,8 @@ namespace {
assert(CI->getNumArgOperands() == CJ->getNumArgOperands() &&
"Intrinsic argument counts differ");
for (unsigned i = 0, ie = CI->getNumArgOperands(); i != ie; ++i) {
- if (IID == Intrinsic::powi && i == 1)
+ if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
+ IID == Intrinsic::cttz) && i == 1)
Tys.push_back(CI->getArgOperand(i)->getType());
else
Tys.push_back(getVecTypeForPair(CI->getArgOperand(i)->getType(),
@@ -1665,8 +1685,9 @@ namespace {
C2->first.second == C->first.first ||
C2->first.second == C->first.second ||
pairsConflict(C2->first, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0,
- UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : nullptr,
+ UseCycleCheck ? &PairableInstUserPairSet
+ : nullptr)) {
if (C2->second >= C->second) {
CanAdd = false;
break;
@@ -1686,8 +1707,9 @@ namespace {
T->second == C->first.first ||
T->second == C->first.second ||
pairsConflict(*T, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0,
- UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : nullptr,
+ UseCycleCheck ? &PairableInstUserPairSet
+ : nullptr)) {
CanAdd = false;
break;
}
@@ -1704,8 +1726,9 @@ namespace {
C2->first.second == C->first.first ||
C2->first.second == C->first.second ||
pairsConflict(C2->first, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0,
- UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : nullptr,
+ UseCycleCheck ? &PairableInstUserPairSet
+ : nullptr)) {
CanAdd = false;
break;
}
@@ -1720,8 +1743,9 @@ namespace {
ChosenPairs.begin(), E2 = ChosenPairs.end();
C2 != E2; ++C2) {
if (pairsConflict(*C2, C->first, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0,
- UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : nullptr,
+ UseCycleCheck ? &PairableInstUserPairSet
+ : nullptr)) {
CanAdd = false;
break;
}
@@ -1802,8 +1826,8 @@ namespace {
for (DenseMap<Value *, Value *>::iterator C = ChosenPairs.begin(),
E = ChosenPairs.end(); C != E; ++C) {
if (pairsConflict(*C, IJ, PairableInstUsers,
- UseCycleCheck ? &PairableInstUserMap : 0,
- UseCycleCheck ? &PairableInstUserPairSet : 0)) {
+ UseCycleCheck ? &PairableInstUserMap : nullptr,
+ UseCycleCheck ? &PairableInstUserPairSet : nullptr)) {
DoesConflict = true;
break;
}
@@ -2373,7 +2397,7 @@ namespace {
} while ((LIENext =
dyn_cast<InsertElementInst>(LIENext->getOperand(0))));
- LIENext = 0;
+ LIENext = nullptr;
Value *LIEPrev = UndefValue::get(ArgTypeH);
for (unsigned i = 0; i < numElemL; ++i) {
if (isa<UndefValue>(VectElemts[i])) continue;
@@ -2441,14 +2465,14 @@ namespace {
if ((LEE || LSV) && (HEE || HSV) && !IsSizeChangeShuffle) {
// We can have at most two unique vector inputs.
bool CanUseInputs = true;
- Value *I1, *I2 = 0;
+ Value *I1, *I2 = nullptr;
if (LEE) {
I1 = LEE->getOperand(0);
} else {
I1 = LSV->getOperand(0);
I2 = LSV->getOperand(1);
if (I2 == I1 || isa<UndefValue>(I2))
- I2 = 0;
+ I2 = nullptr;
}
if (HEE) {
@@ -2764,10 +2788,11 @@ namespace {
ReplacedOperands[o] = Intrinsic::getDeclaration(M, IID, VArgType);
continue;
- } else if (IID == Intrinsic::powi && o == 1) {
- // The second argument of powi is a single integer and we've already
- // checked that both arguments are equal. As a result, we just keep
- // I's second argument.
+ } else if ((IID == Intrinsic::powi || IID == Intrinsic::ctlz ||
+ IID == Intrinsic::cttz) && o == 1) {
+ // The second argument of powi/ctlz/cttz is a single integer/constant
+ // and we've already checked that both arguments are equal.
+ // As a result, we just keep I's second argument.
ReplacedOperands[o] = I->getOperand(o);
continue;
}
@@ -2952,7 +2977,7 @@ namespace {
switch (Kind) {
default:
- K->setMetadata(Kind, 0); // Remove unknown metadata
+ K->setMetadata(Kind, nullptr); // Remove unknown metadata
break;
case LLVMContext::MD_tbaa:
K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD));
@@ -3123,7 +3148,7 @@ namespace {
// Instruction insertion point:
Instruction *InsertionPt = K;
- Instruction *K1 = 0, *K2 = 0;
+ Instruction *K1 = nullptr, *K2 = nullptr;
replaceOutputsOfPair(Context, L, H, K, InsertionPt, K1, K2);
// The use dag of the first original instruction must be moved to after
@@ -3213,6 +3238,7 @@ VectorizeConfig::VectorizeConfig() {
VectorizePointers = !::NoPointers;
VectorizeCasts = !::NoCasts;
VectorizeMath = !::NoMath;
+ VectorizeBitManipulations = !::NoBitManipulation;
VectorizeFMA = !::NoFMA;
VectorizeSelect = !::NoSelect;
VectorizeCmp = !::NoCmp;
diff --git a/lib/Transforms/Vectorize/LoopVectorize.cpp b/lib/Transforms/Vectorize/LoopVectorize.cpp
index 9a98c44e4e..34d8a1053f 100644
--- a/lib/Transforms/Vectorize/LoopVectorize.cpp
+++ b/lib/Transforms/Vectorize/LoopVectorize.cpp
@@ -42,9 +42,6 @@
//
//===----------------------------------------------------------------------===//
-#define LV_NAME "loop-vectorize"
-#define DEBUG_TYPE LV_NAME
-
#include "llvm/Transforms/Vectorize.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/EquivalenceClasses.h"
@@ -54,6 +51,7 @@
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
@@ -67,7 +65,9 @@
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
@@ -85,16 +85,23 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/VectorUtils.h"
#include <algorithm>
#include <map>
+#include <tuple>
using namespace llvm;
using namespace llvm::PatternMatch;
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+
+STATISTIC(LoopsVectorized, "Number of loops vectorized");
+STATISTIC(LoopsAnalyzed, "Number of loops analyzed for vectorization");
+
static cl::opt<unsigned>
VectorizationFactor("force-vector-width", cl::init(0), cl::Hidden,
cl::desc("Sets the SIMD width. Zero is autoselect."));
@@ -223,8 +230,9 @@ public:
const TargetLibraryInfo *TLI, unsigned VecWidth,
unsigned UnrollFactor)
: OrigLoop(OrigLoop), SE(SE), LI(LI), DT(DT), DL(DL), TLI(TLI),
- VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()), Induction(0),
- OldInduction(0), WidenMap(UnrollFactor), Legal(0) {}
+ VF(VecWidth), UF(UnrollFactor), Builder(SE->getContext()),
+ Induction(nullptr), OldInduction(nullptr), WidenMap(UnrollFactor),
+ Legal(nullptr) {}
// Perform the actual loop widening (vectorization).
void vectorize(LoopVectorizationLegality *L) {
@@ -469,6 +477,24 @@ static void setDebugLocFromInst(IRBuilder<> &B, const Value *Ptr) {
B.SetCurrentDebugLocation(DebugLoc());
}
+#ifndef NDEBUG
+/// \return string containing a file name and a line # for the given loop.
+static std::string getDebugLocString(const Loop *L) {
+ std::string Result;
+ if (L) {
+ raw_string_ostream OS(Result);
+ const DebugLoc LoopDbgLoc = L->getStartLoc();
+ if (!LoopDbgLoc.isUnknown())
+ LoopDbgLoc.print(L->getHeader()->getContext(), OS);
+ else
+ // Just print the module name.
+ OS << L->getHeader()->getParent()->getParent()->getModuleIdentifier();
+ OS.flush();
+ }
+ return Result;
+}
+#endif
+
/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
/// to what vectorization factor.
/// This class does not look at the profitability of vectorization, only the
@@ -491,8 +517,8 @@ public:
LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, const DataLayout *DL,
DominatorTree *DT, TargetLibraryInfo *TLI)
: NumLoads(0), NumStores(0), NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
- DT(DT), TLI(TLI), Induction(0), WidestIndTy(0), HasFunNoNaNAttr(false),
- MaxSafeDepDistBytes(-1U) {}
+ DT(DT), TLI(TLI), Induction(nullptr), WidestIndTy(nullptr),
+ HasFunNoNaNAttr(false), MaxSafeDepDistBytes(-1U) {}
/// This enum represents the kinds of reductions that we support.
enum ReductionKind {
@@ -530,7 +556,7 @@ public:
/// This struct holds information about reduction variables.
struct ReductionDescriptor {
- ReductionDescriptor() : StartValue(0), LoopExitInstr(0),
+ ReductionDescriptor() : StartValue(nullptr), LoopExitInstr(nullptr),
Kind(RK_NoReduction), MinMaxKind(MRK_Invalid) {}
ReductionDescriptor(Value *Start, Instruction *Exit, ReductionKind K,
@@ -602,7 +628,7 @@ public:
/// A struct for saving information about induction variables.
struct InductionInfo {
InductionInfo(Value *Start, InductionKind K) : StartValue(Start), IK(K) {}
- InductionInfo() : StartValue(0), IK(IK_NoInduction) {}
+ InductionInfo() : StartValue(nullptr), IK(IK_NoInduction) {}
/// Start value.
TrackingVH<Value> StartValue;
/// Induction kind.
@@ -789,7 +815,8 @@ public:
/// then this vectorization factor will be selected if vectorization is
/// possible.
VectorizationFactor selectVectorizationFactor(bool OptForSize,
- unsigned UserVF);
+ unsigned UserVF,
+ bool ForceVectorization);
/// \return The size (in bits) of the widest type in the code that
/// needs to be vectorized. We ignore values that remain scalar such as
@@ -856,35 +883,32 @@ private:
/// Utility class for getting and setting loop vectorizer hints in the form
/// of loop metadata.
-struct LoopVectorizeHints {
- /// Vectorization width.
- unsigned Width;
- /// Vectorization unroll factor.
- unsigned Unroll;
- /// Vectorization forced (-1 not selected, 0 force disabled, 1 force enabled)
- int Force;
+class LoopVectorizeHints {
+public:
+ enum ForceKind {
+ FK_Undefined = -1, ///< Not selected.
+ FK_Disabled = 0, ///< Forcing disabled.
+ FK_Enabled = 1, ///< Forcing enabled.
+ };
LoopVectorizeHints(const Loop *L, bool DisableUnrolling)
- : Width(VectorizationFactor)
- , Unroll(DisableUnrolling ? 1 : VectorizationUnroll)
- , Force(-1)
- , LoopID(L->getLoopID()) {
+ : Width(VectorizationFactor),
+ Unroll(DisableUnrolling),
+ Force(FK_Undefined),
+ LoopID(L->getLoopID()) {
getHints(L);
- // The command line options override any loop metadata except for when
- // width == 1 which is used to indicate the loop is already vectorized.
- if (VectorizationFactor.getNumOccurrences() > 0 && Width != 1)
- Width = VectorizationFactor;
+ // force-vector-unroll overrides DisableUnrolling.
if (VectorizationUnroll.getNumOccurrences() > 0)
Unroll = VectorizationUnroll;
- DEBUG(if (DisableUnrolling && Unroll == 1)
- dbgs() << "LV: Unrolling disabled by the pass manager\n");
+ DEBUG(if (DisableUnrolling && Unroll == 1) dbgs()
+ << "LV: Unrolling disabled by the pass manager\n");
}
/// Return the loop vectorizer metadata prefix.
static StringRef Prefix() { return "llvm.vectorizer."; }
- MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) {
+ MDNode *createHint(LLVMContext &Context, StringRef Name, unsigned V) const {
SmallVector<Value*, 2> Vals;
Vals.push_back(MDString::get(Context, Name));
Vals.push_back(ConstantInt::get(Type::getInt32Ty(Context), V));
@@ -918,9 +942,12 @@ struct LoopVectorizeHints {
LoopID = NewLoopID;
}
-private:
- MDNode *LoopID;
+ unsigned getWidth() const { return Width; }
+ unsigned getUnroll() const { return Unroll; }
+ enum ForceKind getForce() const { return Force; }
+ MDNode *getLoopID() const { return LoopID; }
+private:
/// Find hints specified in the loop metadata.
void getHints(const Loop *L) {
if (!LoopID)
@@ -931,7 +958,7 @@ private:
assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
- const MDString *S = 0;
+ const MDString *S = nullptr;
SmallVector<Value*, 4> Args;
// The expected hint is either a MDString or a MDNode with the first
@@ -980,13 +1007,23 @@ private:
DEBUG(dbgs() << "LV: ignoring invalid unroll hint metadata\n");
} else if (Hint == "enable") {
if (C->getBitWidth() == 1)
- Force = Val;
+ Force = Val == 1 ? LoopVectorizeHints::FK_Enabled
+ : LoopVectorizeHints::FK_Disabled;
else
DEBUG(dbgs() << "LV: ignoring invalid enable hint metadata\n");
} else {
DEBUG(dbgs() << "LV: ignoring unknown hint " << Hint << '\n');
}
}
+
+ /// Vectorization width.
+ unsigned Width;
+ /// Vectorization unroll factor.
+ unsigned Unroll;
+ /// Vectorization forced
+ enum ForceKind Force;
+
+ MDNode *LoopID;
};
static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
@@ -1024,7 +1061,7 @@ struct LoopVectorize : public FunctionPass {
bool runOnFunction(Function &F) override {
SE = &getAnalysis<ScalarEvolution>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
LI = &getAnalysis<LoopInfo>();
TTI = &getAnalysis<TargetTransformInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
@@ -1041,8 +1078,9 @@ struct LoopVectorize : public FunctionPass {
if (!TTI->getNumberOfRegisters(true))
return false;
- if (DL == NULL) {
- DEBUG(dbgs() << "LV: Not vectorizing: Missing data layout\n");
+ if (!DL) {
+ DEBUG(dbgs() << "\nLV: Not vectorizing " << F.getName()
+ << ": Missing data layout\n");
return false;
}
@@ -1054,6 +1092,8 @@ struct LoopVectorize : public FunctionPass {
for (Loop *L : *LI)
addInnerLoop(*L, Worklist);
+ LoopsAnalyzed += Worklist.size();
+
// Now walk the identified inner loops.
bool Changed = false;
while (!Worklist.empty())
@@ -1065,26 +1105,56 @@ struct LoopVectorize : public FunctionPass {
bool processLoop(Loop *L) {
assert(L->empty() && "Only process inner loops.");
- DEBUG(dbgs() << "LV: Checking a loop in \"" <<
- L->getHeader()->getParent()->getName() << "\"\n");
+
+#ifndef NDEBUG
+ const std::string DebugLocStr = getDebugLocString(L);
+#endif /* NDEBUG */
+
+ DEBUG(dbgs() << "\nLV: Checking a loop in \""
+ << L->getHeader()->getParent()->getName() << "\" from "
+ << DebugLocStr << "\n");
LoopVectorizeHints Hints(L, DisableUnrolling);
- if (Hints.Force == 0) {
+ DEBUG(dbgs() << "LV: Loop hints:"
+ << " force="
+ << (Hints.getForce() == LoopVectorizeHints::FK_Disabled
+ ? "disabled"
+ : (Hints.getForce() == LoopVectorizeHints::FK_Enabled
+ ? "enabled"
+ : "?")) << " width=" << Hints.getWidth()
+ << " unroll=" << Hints.getUnroll() << "\n");
+
+ if (Hints.getForce() == LoopVectorizeHints::FK_Disabled) {
DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
return false;
}
- if (!AlwaysVectorize && Hints.Force != 1) {
+ if (!AlwaysVectorize && Hints.getForce() != LoopVectorizeHints::FK_Enabled) {
DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
return false;
}
- if (Hints.Width == 1 && Hints.Unroll == 1) {
+ if (Hints.getWidth() == 1 && Hints.getUnroll() == 1) {
DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
return false;
}
+ // Check the loop for a trip count threshold:
+ // do not vectorize loops with a tiny trip count.
+ BasicBlock *Latch = L->getLoopLatch();
+ const unsigned TC = SE->getSmallConstantTripCount(L, Latch);
+ if (TC > 0u && TC < TinyTripCountVectorThreshold) {
+ DEBUG(dbgs() << "LV: Found a loop with a very small trip count. "
+ << "This loop is not worth vectorizing.");
+ if (Hints.getForce() == LoopVectorizeHints::FK_Enabled)
+ DEBUG(dbgs() << " But vectorizing was explicitly forced.\n");
+ else {
+ DEBUG(dbgs() << "\n");
+ return false;
+ }
+ }
+
// Check if it is legal to vectorize the loop.
LoopVectorizationLegality LVL(L, SE, DL, DT, TLI);
if (!LVL.canVectorize()) {
@@ -1098,8 +1168,8 @@ struct LoopVectorize : public FunctionPass {
// Check the function attributes to find out if this function should be
// optimized for size.
Function *F = L->getHeader()->getParent();
- bool OptForSize =
- Hints.Force != 1 && F->hasFnAttribute(Attribute::OptimizeForSize);
+ bool OptForSize = Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
+ F->hasFnAttribute(Attribute::OptimizeForSize);
// Compute the weighted frequency of this loop being executed and see if it
// is less than 20% of the function entry baseline frequency. Note that we
@@ -1108,7 +1178,8 @@ struct LoopVectorize : public FunctionPass {
// exactly what block frequency models.
if (LoopVectorizeWithBlockFrequency) {
BlockFrequency LoopEntryFreq = BFI->getBlockFreq(L->getLoopPreheader());
- if (Hints.Force != 1 && LoopEntryFreq < ColdEntryFreq)
+ if (Hints.getForce() != LoopVectorizeHints::FK_Enabled &&
+ LoopEntryFreq < ColdEntryFreq)
OptForSize = true;
}
@@ -1123,14 +1194,17 @@ struct LoopVectorize : public FunctionPass {
}
// Select the optimal vectorization factor.
- LoopVectorizationCostModel::VectorizationFactor VF;
- VF = CM.selectVectorizationFactor(OptForSize, Hints.Width);
+ const LoopVectorizationCostModel::VectorizationFactor VF =
+ CM.selectVectorizationFactor(OptForSize, Hints.getWidth(),
+ Hints.getForce() ==
+ LoopVectorizeHints::FK_Enabled);
+
// Select the unroll factor.
- unsigned UF = CM.selectUnrollFactor(OptForSize, Hints.Unroll, VF.Width,
- VF.Cost);
+ const unsigned UF =
+ CM.selectUnrollFactor(OptForSize, Hints.getUnroll(), VF.Width, VF.Cost);
- DEBUG(dbgs() << "LV: Found a vectorizable loop ("<< VF.Width << ") in "<<
- F->getParent()->getModuleIdentifier() << '\n');
+ DEBUG(dbgs() << "LV: Found a vectorizable loop (" << VF.Width << ") in "
+ << DebugLocStr << '\n');
DEBUG(dbgs() << "LV: Unroll Factor is " << UF << '\n');
if (VF.Width == 1) {
@@ -1138,6 +1212,13 @@ struct LoopVectorize : public FunctionPass {
if (UF == 1)
return false;
DEBUG(dbgs() << "LV: Trying to at least unroll the loops.\n");
+
+ // Report the unrolling decision.
+ emitOptimizationRemark(F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
+ Twine("unrolled with interleaving factor " +
+ Twine(UF) +
+ " (vectorization not beneficial)"));
+
// We decided not to vectorize, but we may want to unroll.
InnerLoopUnroller Unroller(L, SE, LI, DT, DL, TLI, UF);
Unroller.vectorize(&LVL);
@@ -1145,6 +1226,13 @@ struct LoopVectorize : public FunctionPass {
// If we decided that it is *legal* to vectorize the loop then do it.
InnerLoopVectorizer LB(L, SE, LI, DT, DL, TLI, VF.Width, UF);
LB.vectorize(&LVL);
+ ++LoopsVectorized;
+
+ // Report the vectorization decision.
+ emitOptimizationRemark(
+ F->getContext(), DEBUG_TYPE, *F, L->getStartLoc(),
+ Twine("vectorized loop (vectorization factor: ") + Twine(VF.Width) +
+ ", unrolling interleave factor: " + Twine(UF) + ")");
}
// Mark the loop as already vectorized to avoid vectorizing again.
@@ -1188,7 +1276,7 @@ static Value *stripIntegerCast(Value *V) {
/// \p Ptr.
static const SCEV *replaceSymbolicStrideSCEV(ScalarEvolution *SE,
ValueToValueMap &PtrToStride,
- Value *Ptr, Value *OrigPtr = 0) {
+ Value *Ptr, Value *OrigPtr = nullptr) {
const SCEV *OrigSCEV = SE->getSCEV(Ptr);
@@ -1355,7 +1443,7 @@ int LoopVectorizationLegality::isConsecutivePtr(Value *Ptr) {
// We can emit wide load/stores only if the last non-zero index is the
// induction variable.
- const SCEV *Last = 0;
+ const SCEV *Last = nullptr;
if (!Strides.count(Gep))
Last = SE->getSCEV(Gep->getOperand(InductionOperand));
else {
@@ -1604,17 +1692,17 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredic
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *UndefVec = IsVoidRetTy ? 0 :
+ Value *UndefVec = IsVoidRetTy ? nullptr :
UndefValue::get(VectorType::get(Instr->getType(), VF));
// Create a new entry in the WidenMap and initialize it to Undef or Null.
VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
Instruction *InsertPt = Builder.GetInsertPoint();
BasicBlock *IfBlock = Builder.GetInsertBlock();
- BasicBlock *CondBlock = 0;
+ BasicBlock *CondBlock = nullptr;
VectorParts Cond;
- Loop *VectorLp = 0;
+ Loop *VectorLp = nullptr;
if (IfPredicateStore) {
assert(Instr->getParent()->getSinglePredecessor() &&
"Only support single predecessor blocks");
@@ -1630,7 +1718,7 @@ void InnerLoopVectorizer::scalarizeInstruction(Instruction *Instr, bool IfPredic
for (unsigned Width = 0; Width < VF; ++Width) {
// Start if-block.
- Value *Cmp = 0;
+ Value *Cmp = nullptr;
if (IfPredicateStore) {
Cmp = Builder.CreateExtractElement(Cond[Part], Builder.getInt32(Width));
Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Cmp, ConstantInt::get(Cmp->getType(), 1));
@@ -1681,21 +1769,21 @@ static Instruction *getFirstInst(Instruction *FirstInst, Value *V,
if (FirstInst)
return FirstInst;
if (Instruction *I = dyn_cast<Instruction>(V))
- return I->getParent() == Loc->getParent() ? I : 0;
- return 0;
+ return I->getParent() == Loc->getParent() ? I : nullptr;
+ return nullptr;
}
std::pair<Instruction *, Instruction *>
InnerLoopVectorizer::addStrideCheck(Instruction *Loc) {
- Instruction *tnullptr = 0;
+ Instruction *tnullptr = nullptr;
if (!Legal->mustCheckStrides())
return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
IRBuilder<> ChkBuilder(Loc);
// Emit checks.
- Value *Check = 0;
- Instruction *FirstInst = 0;
+ Value *Check = nullptr;
+ Instruction *FirstInst = nullptr;
for (SmallPtrSet<Value *, 8>::iterator SI = Legal->strides_begin(),
SE = Legal->strides_end();
SI != SE; ++SI) {
@@ -1727,7 +1815,7 @@ InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
LoopVectorizationLegality::RuntimePointerCheck *PtrRtCheck =
Legal->getRuntimePointerCheck();
- Instruction *tnullptr = 0;
+ Instruction *tnullptr = nullptr;
if (!PtrRtCheck->Need)
return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
@@ -1737,7 +1825,7 @@ InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
LLVMContext &Ctx = Loc->getContext();
SCEVExpander Exp(*SE, "induction");
- Instruction *FirstInst = 0;
+ Instruction *FirstInst = nullptr;
for (unsigned i = 0; i < NumPointers; ++i) {
Value *Ptr = PtrRtCheck->Pointers[i];
@@ -1764,7 +1852,7 @@ InnerLoopVectorizer::addRuntimeCheck(Instruction *Loc) {
IRBuilder<> ChkBuilder(Loc);
// Our instructions might fold to a constant.
- Value *MemoryRuntimeCheck = 0;
+ Value *MemoryRuntimeCheck = nullptr;
for (unsigned i = 0; i < NumPointers; ++i) {
for (unsigned j = i+1; j < NumPointers; ++j) {
// No need to check if two readonly pointers intersect.
@@ -2028,7 +2116,7 @@ void InnerLoopVectorizer::createEmptyLoop() {
// start value.
// This variable saves the new starting index for the scalar loop.
- PHINode *ResumeIndex = 0;
+ PHINode *ResumeIndex = nullptr;
LoopVectorizationLegality::InductionList::iterator I, E;
LoopVectorizationLegality::InductionList *List = Legal->getInductionVars();
// Set builder to point to last bypass block.
@@ -2044,9 +2132,9 @@ void InnerLoopVectorizer::createEmptyLoop() {
// truncated version for the scalar loop.
PHINode *TruncResumeVal = (OrigPhi == OldInduction) ?
PHINode::Create(OrigPhi->getType(), 2, "trunc.resume.val",
- MiddleBlock->getTerminator()) : 0;
+ MiddleBlock->getTerminator()) : nullptr;
- Value *EndValue = 0;
+ Value *EndValue = nullptr;
switch (II.IK) {
case LoopVectorizationLegality::IK_NoInduction:
llvm_unreachable("Unknown induction");
@@ -2209,148 +2297,6 @@ LoopVectorizationLegality::getReductionIdentity(ReductionKind K, Type *Tp) {
}
}
-static Intrinsic::ID checkUnaryFloatSignature(const CallInst &I,
- Intrinsic::ID ValidIntrinsicID) {
- if (I.getNumArgOperands() != 1 ||
- !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
- I.getType() != I.getArgOperand(0)->getType() ||
- !I.onlyReadsMemory())
- return Intrinsic::not_intrinsic;
-
- return ValidIntrinsicID;
-}
-
-static Intrinsic::ID checkBinaryFloatSignature(const CallInst &I,
- Intrinsic::ID ValidIntrinsicID) {
- if (I.getNumArgOperands() != 2 ||
- !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
- !I.getArgOperand(1)->getType()->isFloatingPointTy() ||
- I.getType() != I.getArgOperand(0)->getType() ||
- I.getType() != I.getArgOperand(1)->getType() ||
- !I.onlyReadsMemory())
- return Intrinsic::not_intrinsic;
-
- return ValidIntrinsicID;
-}
-
-
-static Intrinsic::ID
-getIntrinsicIDForCall(CallInst *CI, const TargetLibraryInfo *TLI) {
- // If we have an intrinsic call, check if it is trivially vectorizable.
- if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
- switch (II->getIntrinsicID()) {
- case Intrinsic::sqrt:
- case Intrinsic::sin:
- case Intrinsic::cos:
- case Intrinsic::exp:
- case Intrinsic::exp2:
- case Intrinsic::log:
- case Intrinsic::log10:
- case Intrinsic::log2:
- case Intrinsic::fabs:
- case Intrinsic::copysign:
- case Intrinsic::floor:
- case Intrinsic::ceil:
- case Intrinsic::trunc:
- case Intrinsic::rint:
- case Intrinsic::nearbyint:
- case Intrinsic::round:
- case Intrinsic::pow:
- case Intrinsic::fma:
- case Intrinsic::fmuladd:
- case Intrinsic::lifetime_start:
- case Intrinsic::lifetime_end:
- return II->getIntrinsicID();
- default:
- return Intrinsic::not_intrinsic;
- }
- }
-
- if (!TLI)
- return Intrinsic::not_intrinsic;
-
- LibFunc::Func Func;
- Function *F = CI->getCalledFunction();
- // We're going to make assumptions on the semantics of the functions, check
- // that the target knows that it's available in this environment and it does
- // not have local linkage.
- if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(F->getName(), Func))
- return Intrinsic::not_intrinsic;
-
- // Otherwise check if we have a call to a function that can be turned into a
- // vector intrinsic.
- switch (Func) {
- default:
- break;
- case LibFunc::sin:
- case LibFunc::sinf:
- case LibFunc::sinl:
- return checkUnaryFloatSignature(*CI, Intrinsic::sin);
- case LibFunc::cos:
- case LibFunc::cosf:
- case LibFunc::cosl:
- return checkUnaryFloatSignature(*CI, Intrinsic::cos);
- case LibFunc::exp:
- case LibFunc::expf:
- case LibFunc::expl:
- return checkUnaryFloatSignature(*CI, Intrinsic::exp);
- case LibFunc::exp2:
- case LibFunc::exp2f:
- case LibFunc::exp2l:
- return checkUnaryFloatSignature(*CI, Intrinsic::exp2);
- case LibFunc::log:
- case LibFunc::logf:
- case LibFunc::logl:
- return checkUnaryFloatSignature(*CI, Intrinsic::log);
- case LibFunc::log10:
- case LibFunc::log10f:
- case LibFunc::log10l:
- return checkUnaryFloatSignature(*CI, Intrinsic::log10);
- case LibFunc::log2:
- case LibFunc::log2f:
- case LibFunc::log2l:
- return checkUnaryFloatSignature(*CI, Intrinsic::log2);
- case LibFunc::fabs:
- case LibFunc::fabsf:
- case LibFunc::fabsl:
- return checkUnaryFloatSignature(*CI, Intrinsic::fabs);
- case LibFunc::copysign:
- case LibFunc::copysignf:
- case LibFunc::copysignl:
- return checkBinaryFloatSignature(*CI, Intrinsic::copysign);
- case LibFunc::floor:
- case LibFunc::floorf:
- case LibFunc::floorl:
- return checkUnaryFloatSignature(*CI, Intrinsic::floor);
- case LibFunc::ceil:
- case LibFunc::ceilf:
- case LibFunc::ceill:
- return checkUnaryFloatSignature(*CI, Intrinsic::ceil);
- case LibFunc::trunc:
- case LibFunc::truncf:
- case LibFunc::truncl:
- return checkUnaryFloatSignature(*CI, Intrinsic::trunc);
- case LibFunc::rint:
- case LibFunc::rintf:
- case LibFunc::rintl:
- return checkUnaryFloatSignature(*CI, Intrinsic::rint);
- case LibFunc::nearbyint:
- case LibFunc::nearbyintf:
- case LibFunc::nearbyintl:
- return checkUnaryFloatSignature(*CI, Intrinsic::nearbyint);
- case LibFunc::round:
- case LibFunc::roundf:
- case LibFunc::roundl:
- return checkUnaryFloatSignature(*CI, Intrinsic::round);
- case LibFunc::pow:
- case LibFunc::powf:
- case LibFunc::powl:
- return checkBinaryFloatSignature(*CI, Intrinsic::pow);
- }
-
- return Intrinsic::not_intrinsic;
-}
-
/// This function translates the reduction kind to an LLVM binary operator.
static unsigned
getReductionBinOp(LoopVectorizationLegality::ReductionKind Kind) {
@@ -2651,7 +2597,7 @@ void InnerLoopVectorizer::vectorizeLoop() {
assert(isPowerOf2_32(VF) &&
"Reduction emission only supported for pow2 vectors!");
Value *TmpVec = ReducedPartRdx;
- SmallVector<Constant*, 32> ShuffleMask(VF, 0);
+ SmallVector<Constant*, 32> ShuffleMask(VF, nullptr);
for (unsigned i = VF; i != 1; i >>= 1) {
// Move the upper half of the vector to the lower half.
for (unsigned j = 0; j != i/2; ++j)
@@ -3049,7 +2995,7 @@ void InnerLoopVectorizer::vectorizeBlockInLoop(BasicBlock *BB, PhiVector *PV) {
VectorParts &A = getVectorValue(it->getOperand(0));
VectorParts &B = getVectorValue(it->getOperand(1));
for (unsigned Part = 0; Part < UF; ++Part) {
- Value *C = 0;
+ Value *C = nullptr;
if (FCmp)
C = Builder.CreateFCmp(Cmp->getPredicate(), A[Part], B[Part]);
else
@@ -3275,15 +3221,6 @@ bool LoopVectorizationLegality::canVectorize() {
return false;
}
- // Do not loop-vectorize loops with a tiny trip count.
- BasicBlock *Latch = TheLoop->getLoopLatch();
- unsigned TC = SE->getSmallConstantTripCount(TheLoop, Latch);
- if (TC > 0u && TC < TinyTripCountVectorThreshold) {
- DEBUG(dbgs() << "LV: Found a loop with a very small trip count. " <<
- "This loop is not worth vectorizing.\n");
- return false;
- }
-
// Check if we can vectorize the instructions and CFG in this loop.
if (!canVectorizeInstrs()) {
DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
@@ -3536,14 +3473,14 @@ static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE,
///\brief Look for a cast use of the passed value.
static Value *getUniqueCastUse(Value *Ptr, Loop *Lp, Type *Ty) {
- Value *UniqueCast = 0;
+ Value *UniqueCast = nullptr;
for (User *U : Ptr->users()) {
CastInst *CI = dyn_cast<CastInst>(U);
if (CI && CI->getType() == Ty) {
if (!UniqueCast)
UniqueCast = CI;
else
- return 0;
+ return nullptr;
}
}
return UniqueCast;
@@ -3556,7 +3493,7 @@ static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
const DataLayout *DL, Loop *Lp) {
const PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
if (!PtrTy || PtrTy->isAggregateType())
- return 0;
+ return nullptr;
// Try to remove a gep instruction to make the pointer (actually index at this
// point) easier analyzable. If OrigPtr is equal to Ptr we are analzying the
@@ -3576,11 +3513,11 @@ static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
if (!S)
- return 0;
+ return nullptr;
V = S->getStepRecurrence(*SE);
if (!V)
- return 0;
+ return nullptr;
// Strip off the size of access multiplication if we are still analyzing the
// pointer.
@@ -3588,24 +3525,24 @@ static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
DL->getTypeAllocSize(PtrTy->getElementType());
if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
if (M->getOperand(0)->getSCEVType() != scConstant)
- return 0;
+ return nullptr;
const APInt &APStepVal =
cast<SCEVConstant>(M->getOperand(0))->getValue()->getValue();
// Huge step value - give up.
if (APStepVal.getBitWidth() > 64)
- return 0;
+ return nullptr;
int64_t StepVal = APStepVal.getSExtValue();
if (PtrAccessSize != StepVal)
- return 0;
+ return nullptr;
V = M->getOperand(1);
}
}
// Strip off casts.
- Type *StripedOffRecurrenceCast = 0;
+ Type *StripedOffRecurrenceCast = nullptr;
if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(V)) {
StripedOffRecurrenceCast = C->getType();
V = C->getOperand();
@@ -3614,11 +3551,11 @@ static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
// Look for the loop invariant symbolic value.
const SCEVUnknown *U = dyn_cast<SCEVUnknown>(V);
if (!U)
- return 0;
+ return nullptr;
Value *Stride = U->getValue();
if (!Lp->isLoopInvariant(Stride))
- return 0;
+ return nullptr;
// If we have stripped off the recurrence cast we have to make sure that we
// return the value that is used in this loop so that we can replace it later.
@@ -3629,7 +3566,7 @@ static Value *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE,
}
void LoopVectorizationLegality::collectStridedAcccess(Value *MemAccess) {
- Value *Ptr = 0;
+ Value *Ptr = nullptr;
if (LoadInst *LI = dyn_cast<LoadInst>(MemAccess))
Ptr = LI->getPointerOperand();
else if (StoreInst *SI = dyn_cast<StoreInst>(MemAccess))
@@ -4628,7 +4565,7 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// We only allow for a single reduction value to be used outside the loop.
// This includes users of the reduction, variables (which form a cycle
// which ends in the phi node).
- Instruction *ExitInstruction = 0;
+ Instruction *ExitInstruction = nullptr;
// Indicates that we found a reduction operation in our scan.
bool FoundReduxOp = false;
@@ -4642,7 +4579,7 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// the number of instruction we saw from the recognized min/max pattern,
// to make sure we only see exactly the two instructions.
unsigned NumCmpSelectPatternInst = 0;
- ReductionInstDesc ReduxDesc(false, 0);
+ ReductionInstDesc ReduxDesc(false, nullptr);
SmallPtrSet<Instruction *, 8> VisitedInsts;
SmallVector<Instruction *, 8> Worklist;
@@ -4725,7 +4662,7 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// being used. In this case the user uses the value of the previous
// iteration, in which case we would loose "VF-1" iterations of the
// reduction operation if we vectorize.
- if (ExitInstruction != 0 || Cur == Phi)
+ if (ExitInstruction != nullptr || Cur == Phi)
return false;
// The instruction used by an outside user must be the last instruction
@@ -4741,7 +4678,7 @@ bool LoopVectorizationLegality::AddReductionVar(PHINode *Phi,
// Process instructions only once (termination). Each reduction cycle
// value must only be used once, except by phi nodes and min/max
// reductions which are represented as a cmp followed by a select.
- ReductionInstDesc IgnoredVal(false, 0);
+ ReductionInstDesc IgnoredVal(false, nullptr);
if (VisitedInsts.insert(UI)) {
if (isa<PHINode>(UI))
PHIs.push_back(UI);
@@ -4795,8 +4732,8 @@ LoopVectorizationLegality::isMinMaxSelectCmpPattern(Instruction *I,
assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
"Expect a select instruction");
- Instruction *Cmp = 0;
- SelectInst *Select = 0;
+ Instruction *Cmp = nullptr;
+ SelectInst *Select = nullptr;
// We must handle the select(cmp()) as a single instruction. Advance to the
// select.
@@ -4982,7 +4919,8 @@ bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,
LoopVectorizationCostModel::VectorizationFactor
LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
- unsigned UserVF) {
+ unsigned UserVF,
+ bool ForceVectorization) {
// Width 1 means no vectorize
VectorizationFactor Factor = { 1U, 0U };
if (OptForSize && Legal->getRuntimePointerCheck()->Need) {
@@ -5052,8 +4990,18 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
}
float Cost = expectedCost(1);
+#ifndef NDEBUG
+ const float ScalarCost = Cost;
+#endif /* NDEBUG */
unsigned Width = 1;
- DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)Cost << ".\n");
+ DEBUG(dbgs() << "LV: Scalar loop costs: " << (int)ScalarCost << ".\n");
+
+ // Ignore scalar width, because the user explicitly wants vectorization.
+ if (ForceVectorization && VF > 1) {
+ Width = 2;
+ Cost = expectedCost(Width) / (float)Width;
+ }
+
for (unsigned i=2; i <= VF; i*=2) {
// Notice that the vector loop needs to be executed less times, so
// we need to divide the cost of the vector loops by the width of
@@ -5067,7 +5015,10 @@ LoopVectorizationCostModel::selectVectorizationFactor(bool OptForSize,
}
}
- DEBUG(dbgs() << "LV: Selecting VF = : "<< Width << ".\n");
+ DEBUG(if (ForceVectorization && Width > 1 && Cost >= ScalarCost) dbgs()
+ << "LV: Vectorization seems to be not beneficial, "
+ << "but was forced by a user.\n");
+ DEBUG(dbgs() << "LV: Selecting VF: "<< Width << ".\n");
Factor.Width = Width;
Factor.Cost = Width * Cost;
return Factor;
@@ -5516,7 +5467,7 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I, unsigned VF) {
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
else if (isa<ConstantVector>(Op2) || isa<ConstantDataVector>(Op2)) {
Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
- if (cast<Constant>(Op2)->getSplatValue() != NULL)
+ if (cast<Constant>(Op2)->getSplatValue() != nullptr)
Op2VK = TargetTransformInfo::OK_UniformConstantValue;
}
@@ -5730,17 +5681,17 @@ void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
// Does this instruction return a value ?
bool IsVoidRetTy = Instr->getType()->isVoidTy();
- Value *UndefVec = IsVoidRetTy ? 0 :
+ Value *UndefVec = IsVoidRetTy ? nullptr :
UndefValue::get(Instr->getType());
// Create a new entry in the WidenMap and initialize it to Undef or Null.
VectorParts &VecResults = WidenMap.splat(Instr, UndefVec);
Instruction *InsertPt = Builder.GetInsertPoint();
BasicBlock *IfBlock = Builder.GetInsertBlock();
- BasicBlock *CondBlock = 0;
+ BasicBlock *CondBlock = nullptr;
VectorParts Cond;
- Loop *VectorLp = 0;
+ Loop *VectorLp = nullptr;
if (IfPredicateStore) {
assert(Instr->getParent()->getSinglePredecessor() &&
"Only support single predecessor blocks");
@@ -5755,7 +5706,7 @@ void InnerLoopUnroller::scalarizeInstruction(Instruction *Instr,
// For each scalar that we create:
// Start an "if (pred) a[i] = ..." block.
- Value *Cmp = 0;
+ Value *Cmp = nullptr;
if (IfPredicateStore) {
if (Cond[Part]->getType()->isVectorTy())
Cond[Part] =
diff --git a/lib/Transforms/Vectorize/SLPVectorizer.cpp b/lib/Transforms/Vectorize/SLPVectorizer.cpp
index ee322279df..e13ba956c3 100644
--- a/lib/Transforms/Vectorize/SLPVectorizer.cpp
+++ b/lib/Transforms/Vectorize/SLPVectorizer.cpp
@@ -15,9 +15,6 @@
// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
//
//===----------------------------------------------------------------------===//
-#define SV_NAME "slp-vectorizer"
-#define DEBUG_TYPE "SLP"
-
#include "llvm/Transforms/Vectorize.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/PostOrderIterator.h"
@@ -34,6 +31,7 @@
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
+#include "llvm/IR/NoFolder.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/Verifier.h"
@@ -41,11 +39,15 @@
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/VectorUtils.h"
#include <algorithm>
#include <map>
using namespace llvm;
+#define SV_NAME "slp-vectorizer"
+#define DEBUG_TYPE "SLP"
+
static cl::opt<int>
SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
cl::desc("Only vectorize if you gain more than this "
@@ -72,8 +74,6 @@ struct BlockNumbering {
BlockNumbering(BasicBlock *Bb) : BB(Bb), Valid(false) {}
- BlockNumbering() : BB(0), Valid(false) {}
-
void numberInstructions() {
unsigned Loc = 0;
InstrIdx.clear();
@@ -120,15 +120,15 @@ private:
static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
Instruction *I0 = dyn_cast<Instruction>(VL[0]);
if (!I0)
- return 0;
+ return nullptr;
BasicBlock *BB = I0->getParent();
for (int i = 1, e = VL.size(); i < e; i++) {
Instruction *I = dyn_cast<Instruction>(VL[i]);
if (!I)
- return 0;
+ return nullptr;
if (BB != I->getParent())
- return 0;
+ return nullptr;
}
return BB;
}
@@ -180,7 +180,7 @@ static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
switch (Kind) {
default:
- MD = 0; // Remove unknown metadata
+ MD = nullptr; // Remove unknown metadata
break;
case LLVMContext::MD_tbaa:
MD = MDNode::getMostGenericTBAA(MD, IMD);
@@ -201,7 +201,7 @@ static Type* getSameType(ArrayRef<Value *> VL) {
Type *Ty = VL[0]->getType();
for (int i = 1, e = VL.size(); i < e; i++)
if (VL[i]->getType() != Ty)
- return 0;
+ return nullptr;
return Ty;
}
@@ -345,17 +345,10 @@ public:
typedef SmallVector<StoreInst *, 8> StoreList;
BoUpSLP(Function *Func, ScalarEvolution *Se, const DataLayout *Dl,
- TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
- DominatorTree *Dt) :
- F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
- Builder(Se->getContext()) {
- // Setup the block numbering utility for all of the blocks in the
- // function.
- for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
- BasicBlock *BB = it;
- BlocksNumbers[BB] = BlockNumbering(BB);
- }
- }
+ TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa,
+ LoopInfo *Li, DominatorTree *Dt)
+ : F(Func), SE(Se), DL(Dl), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
+ Builder(Se->getContext()) {}
/// \brief Vectorize the tree that starts with the elements in \p VL.
/// Returns the vectorized root.
@@ -365,13 +358,13 @@ public:
/// A negative number means that this is profitable.
int getTreeCost();
- /// Construct a vectorizable tree that starts at \p Roots and is possibly
- /// used by a reduction of \p RdxOps.
- void buildTree(ArrayRef<Value *> Roots, ValueSet *RdxOps = 0);
+ /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
+ /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
+ void buildTree(ArrayRef<Value *> Roots,
+ ArrayRef<Value *> UserIgnoreLst = None);
/// Clear the internal data structures that are created by 'buildTree'.
void deleteTree() {
- RdxOps = 0;
VectorizableTree.clear();
ScalarToTreeEntry.clear();
MustGather.clear();
@@ -446,7 +439,7 @@ private:
bool isFullyVectorizableTinyTree();
struct TreeEntry {
- TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
+ TreeEntry() : Scalars(), VectorizedValue(nullptr), LastScalarIndex(0),
NeedToGather(0) {}
/// \returns true if the scalars in VL are equal to this entry.
@@ -527,14 +520,22 @@ private:
/// Numbers instructions in different blocks.
DenseMap<BasicBlock *, BlockNumbering> BlocksNumbers;
- /// Reduction operators.
- ValueSet *RdxOps;
+ /// \brief Get the corresponding instruction numbering list for a given
+ /// BasicBlock. The list is allocated lazily.
+ BlockNumbering &getBlockNumbering(BasicBlock *BB) {
+ auto I = BlocksNumbers.insert(std::make_pair(BB, BlockNumbering(BB)));
+ return I.first->second;
+ }
+
+ /// List of users to ignore during scheduling and that don't need extracting.
+ ArrayRef<Value *> UserIgnoreList;
// Analysis and block reference.
Function *F;
ScalarEvolution *SE;
const DataLayout *DL;
TargetTransformInfo *TTI;
+ TargetLibraryInfo *TLI;
AliasAnalysis *AA;
LoopInfo *LI;
DominatorTree *DT;
@@ -542,9 +543,10 @@ private:
IRBuilder<> Builder;
};
-void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
+void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
+ ArrayRef<Value *> UserIgnoreLst) {
deleteTree();
- RdxOps = Rdx;
+ UserIgnoreList = UserIgnoreLst;
if (!getSameType(Roots))
return;
buildTree_rec(Roots, 0);
@@ -576,8 +578,9 @@ void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ValueSet *Rdx) {
if (!UserInst)
continue;
- // Ignore uses that are part of the reduction.
- if (Rdx && std::find(Rdx->begin(), Rdx->end(), UserInst) != Rdx->end())
+ // Ignore users in the user ignore list.
+ if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
+ UserIgnoreList.end())
continue;
DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<
@@ -708,12 +711,13 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
continue;
}
- // This user is part of the reduction.
- if (RdxOps && RdxOps->count(UI))
+ // Ignore users in the user ignore list.
+ if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UI) !=
+ UserIgnoreList.end())
continue;
// Make sure that we can schedule this unknown user.
- BlockNumbering &BN = BlocksNumbers[BB];
+ BlockNumbering &BN = getBlockNumbering(BB);
int UserIndex = BN.getIndex(UI);
if (UserIndex < MyLastIndex) {
@@ -948,32 +952,36 @@ void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
}
case Instruction::Call: {
// Check if the calls are all to the same vectorizable intrinsic.
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(VL[0]);
- if (II==NULL) {
+ CallInst *CI = cast<CallInst>(VL[0]);
+ // Check if this is an Intrinsic call or something that can be
+ // represented by an intrinsic call
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
+ if (!isTriviallyVectorizable(ID)) {
newTreeEntry(VL, false);
DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
return;
}
- Function *Int = II->getCalledFunction();
+ Function *Int = CI->getCalledFunction();
for (unsigned i = 1, e = VL.size(); i != e; ++i) {
- IntrinsicInst *II2 = dyn_cast<IntrinsicInst>(VL[i]);
- if (!II2 || II2->getCalledFunction() != Int) {
+ CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
+ if (!CI2 || CI2->getCalledFunction() != Int ||
+ getIntrinsicIDForCall(CI2, TLI) != ID) {
newTreeEntry(VL, false);
- DEBUG(dbgs() << "SLP: mismatched calls:" << *II << "!=" << *VL[i]
+ DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]
<< "\n");
return;
}
}
newTreeEntry(VL, true);
- for (unsigned i = 0, e = II->getNumArgOperands(); i != e; ++i) {
+ for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
ValueList Operands;
// Prepare the operand vector.
for (unsigned j = 0; j < VL.size(); ++j) {
- IntrinsicInst *II2 = dyn_cast<IntrinsicInst>(VL[j]);
- Operands.push_back(II2->getArgOperand(i));
+ CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
+ Operands.push_back(CI2->getArgOperand(i));
}
buildTree_rec(Operands, Depth + 1);
}
@@ -1090,7 +1098,7 @@ int BoUpSLP::getEntryCost(TreeEntry *E) {
// If instead not all operands are constants, then set the operand kind
// to OK_AnyValue. If all operands are constants but not the same,
// then set the operand kind to OK_NonUniformConstantValue.
- ConstantInt *CInt = NULL;
+ ConstantInt *CInt = nullptr;
for (unsigned i = 0; i < VL.size(); ++i) {
const Instruction *I = cast<Instruction>(VL[i]);
if (!isa<ConstantInt>(I->getOperand(1))) {
@@ -1129,12 +1137,11 @@ int BoUpSLP::getEntryCost(TreeEntry *E) {
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(VL0);
- IntrinsicInst *II = cast<IntrinsicInst>(CI);
- Intrinsic::ID ID = II->getIntrinsicID();
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
// Calculate the cost of the scalar and vector calls.
SmallVector<Type*, 4> ScalarTys, VecTys;
- for (unsigned op = 0, opc = II->getNumArgOperands(); op!= opc; ++op) {
+ for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
ScalarTys.push_back(CI->getArgOperand(op)->getType());
VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
VecTy->getNumElements()));
@@ -1147,7 +1154,7 @@ int BoUpSLP::getEntryCost(TreeEntry *E) {
DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost
<< " (" << VecCallCost << "-" << ScalarCallCost << ")"
- << " for " << *II << "\n");
+ << " for " << *CI << "\n");
return VecCallCost - ScalarCallCost;
}
@@ -1244,7 +1251,7 @@ Value *BoUpSLP::getPointerOperand(Value *I) {
return LI->getPointerOperand();
if (StoreInst *SI = dyn_cast<StoreInst>(I))
return SI->getPointerOperand();
- return 0;
+ return nullptr;
}
unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
@@ -1318,13 +1325,13 @@ Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
if (!A.Ptr || !B.Ptr || AA->alias(A, B))
return I;
}
- return 0;
+ return nullptr;
}
int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
- assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
- BlockNumbering &BN = BlocksNumbers[BB];
+ assert(BB == getSameBlock(VL) && "Invalid block");
+ BlockNumbering &BN = getBlockNumbering(BB);
int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
for (unsigned i = 0, e = VL.size(); i < e; ++i)
@@ -1334,8 +1341,8 @@ int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
- assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
- BlockNumbering &BN = BlocksNumbers[BB];
+ assert(BB == getSameBlock(VL) && "Invalid block");
+ BlockNumbering &BN = getBlockNumbering(BB);
int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
for (unsigned i = 1, e = VL.size(); i < e; ++i)
@@ -1394,7 +1401,7 @@ Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
if (En->isSame(VL) && En->VectorizedValue)
return En->VectorizedValue;
}
- return 0;
+ return nullptr;
}
Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
@@ -1615,6 +1622,8 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
VecTy->getPointerTo(AS));
unsigned Alignment = LI->getAlignment();
LI = Builder.CreateLoad(VecPtr);
+ if (!Alignment)
+ Alignment = DL->getABITypeAlignment(LI->getPointerOperand()->getType());
LI->setAlignment(Alignment);
E->VectorizedValue = LI;
return propagateMetadata(LI, E->Scalars);
@@ -1634,13 +1643,14 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
VecTy->getPointerTo(AS));
StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
+ if (!Alignment)
+ Alignment = DL->getABITypeAlignment(SI->getPointerOperand()->getType());
S->setAlignment(Alignment);
E->VectorizedValue = S;
return propagateMetadata(S, E->Scalars);
}
case Instruction::Call: {
CallInst *CI = cast<CallInst>(VL0);
-
setInsertPointAfterBundle(E->Scalars);
std::vector<Value *> OpVecs;
for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
@@ -1656,8 +1666,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
}
Module *M = F->getParent();
- IntrinsicInst *II = cast<IntrinsicInst>(CI);
- Intrinsic::ID ID = II->getIntrinsicID();
+ Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
Value *V = Builder.CreateCall(CF, OpVecs);
@@ -1667,7 +1676,7 @@ Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
default:
llvm_unreachable("unknown inst");
}
- return 0;
+ return nullptr;
}
Value *BoUpSLP::vectorizeTree() {
@@ -1746,8 +1755,9 @@ Value *BoUpSLP::vectorizeTree() {
DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
assert((ScalarToTreeEntry.count(U) ||
- // It is legal to replace the reduction users by undef.
- (RdxOps && RdxOps->count(U))) &&
+ // It is legal to replace users in the ignorelist by undef.
+ (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=
+ UserIgnoreList.end())) &&
"Replacing out-of-tree value with undef");
}
#endif
@@ -1759,9 +1769,9 @@ Value *BoUpSLP::vectorizeTree() {
}
}
- for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
- BlocksNumbers[it].forget();
- }
+ for (auto &BN : BlocksNumbers)
+ BN.second.forget();
+
Builder.ClearInsertionPoint();
return VectorizableTree[0].VectorizedValue;
@@ -1802,11 +1812,19 @@ void BoUpSLP::optimizeGatherSequence() {
Insert->moveBefore(PreHeader->getTerminator());
}
+ // Make a list of all reachable blocks in our CSE queue.
+ SmallVector<const DomTreeNode *, 8> CSEWorkList;
+ CSEWorkList.reserve(CSEBlocks.size());
+ for (BasicBlock *BB : CSEBlocks)
+ if (DomTreeNode *N = DT->getNode(BB)) {
+ assert(DT->isReachableFromEntry(N));
+ CSEWorkList.push_back(N);
+ }
+
// Sort blocks by domination. This ensures we visit a block after all blocks
// dominating it are visited.
- SmallVector<BasicBlock *, 8> CSEWorkList(CSEBlocks.begin(), CSEBlocks.end());
std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
- [this](const BasicBlock *A, const BasicBlock *B) {
+ [this](const DomTreeNode *A, const DomTreeNode *B) {
return DT->properlyDominates(A, B);
});
@@ -1814,12 +1832,10 @@ void BoUpSLP::optimizeGatherSequence() {
// instructions. TODO: We can further optimize this scan if we split the
// instructions into different buckets based on the insert lane.
SmallVector<Instruction *, 16> Visited;
- for (SmallVectorImpl<BasicBlock *>::iterator I = CSEWorkList.begin(),
- E = CSEWorkList.end();
- I != E; ++I) {
+ for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
"Worklist not sorted properly!");
- BasicBlock *BB = *I;
+ BasicBlock *BB = (*I)->getBlock();
// For all instructions in blocks containing gather sequences:
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
Instruction *In = it++;
@@ -1835,7 +1851,7 @@ void BoUpSLP::optimizeGatherSequence() {
DT->dominates((*v)->getParent(), In->getParent())) {
In->replaceAllUsesWith(*v);
In->eraseFromParent();
- In = 0;
+ In = nullptr;
break;
}
}
@@ -1864,6 +1880,7 @@ struct SLPVectorizer : public FunctionPass {
ScalarEvolution *SE;
const DataLayout *DL;
TargetTransformInfo *TTI;
+ TargetLibraryInfo *TLI;
AliasAnalysis *AA;
LoopInfo *LI;
DominatorTree *DT;
@@ -1874,8 +1891,9 @@ struct SLPVectorizer : public FunctionPass {
SE = &getAnalysis<ScalarEvolution>();
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
- DL = DLP ? &DLP->getDataLayout() : 0;
+ DL = DLP ? &DLP->getDataLayout() : nullptr;
TTI = &getAnalysis<TargetTransformInfo>();
+ TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
AA = &getAnalysis<AliasAnalysis>();
LI = &getAnalysis<LoopInfo>();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
@@ -1900,8 +1918,8 @@ struct SLPVectorizer : public FunctionPass {
DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
// Use the bottom up slp vectorizer to construct chains that start with
- // he store instructions.
- BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
+ // store instructions.
+ BoUpSLP R(&F, SE, DL, TTI, TLI, AA, LI, DT);
// Scan the blocks in the function in post order.
for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
@@ -1951,8 +1969,11 @@ private:
bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
/// \brief Try to vectorize a list of operands.
+ /// \@param BuildVector A list of users to ignore for the purpose of
+ /// scheduling and that don't need extracting.
/// \returns true if a value was vectorized.
- bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
+ bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
+ ArrayRef<Value *> BuildVector = None);
/// \brief Try to vectorize a chain that may start at the operands of \V;
bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
@@ -2106,7 +2127,7 @@ unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
// Check that the pointer points to scalars.
Type *Ty = SI->getValueOperand()->getType();
if (Ty->isAggregateType() || Ty->isVectorTy())
- return 0;
+ continue;
// Find the base pointer.
Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
@@ -2125,7 +2146,8 @@ bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
return tryToVectorizeList(VL, R);
}
-bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
+bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
+ ArrayRef<Value *> BuildVector) {
if (VL.size() < 2)
return false;
@@ -2153,7 +2175,7 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
bool Changed = false;
- // Keep track of values that were delete by vectorizing in the loop below.
+ // Keep track of values that were deleted by vectorizing in the loop below.
SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
for (unsigned i = 0, e = VL.size(); i < e; ++i) {
@@ -2175,13 +2197,38 @@ bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
<< "\n");
ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
- R.buildTree(Ops);
+ ArrayRef<Value *> BuildVectorSlice;
+ if (!BuildVector.empty())
+ BuildVectorSlice = BuildVector.slice(i, OpsWidth);
+
+ R.buildTree(Ops, BuildVectorSlice);
int Cost = R.getTreeCost();
if (Cost < -SLPCostThreshold) {
DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
- R.vectorizeTree();
-
+ Value *VectorizedRoot = R.vectorizeTree();
+
+ // Reconstruct the build vector by extracting the vectorized root. This
+ // way we handle the case where some elements of the vector are undefined.
+ // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
+ if (!BuildVectorSlice.empty()) {
+ // The insert point is the last build vector instruction. The vectorized
+ // root will precede it. This guarantees that we get an instruction. The
+ // vectorized tree could have been constant folded.
+ Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
+ unsigned VecIdx = 0;
+ for (auto &V : BuildVectorSlice) {
+ IRBuilder<true, NoFolder> Builder(
+ ++BasicBlock::iterator(InsertAfter));
+ InsertElementInst *IE = cast<InsertElementInst>(V);
+ Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
+ VectorizedRoot, Builder.getInt32(VecIdx++)));
+ IE->setOperand(1, Extract);
+ IE->removeFromParent();
+ IE->insertAfter(Extract);
+ InsertAfter = IE;
+ }
+ }
// Move to the next bundle.
i += VF - 1;
Changed = true;
@@ -2290,7 +2337,7 @@ static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
/// *p =
///
class HorizontalReduction {
- SmallPtrSet<Value *, 16> ReductionOps;
+ SmallVector<Value *, 16> ReductionOps;
SmallVector<Value *, 32> ReducedVals;
BinaryOperator *ReductionRoot;
@@ -2308,7 +2355,7 @@ class HorizontalReduction {
public:
HorizontalReduction()
- : ReductionRoot(0), ReductionPHI(0), ReductionOpcode(0),
+ : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
/// \brief Try to find a reduction tree.
@@ -2323,10 +2370,10 @@ public:
// In such a case start looking for a tree rooted in the first '+'.
if (Phi) {
if (B->getOperand(0) == Phi) {
- Phi = 0;
+ Phi = nullptr;
B = dyn_cast<BinaryOperator>(B->getOperand(1));
} else if (B->getOperand(1) == Phi) {
- Phi = 0;
+ Phi = nullptr;
B = dyn_cast<BinaryOperator>(B->getOperand(0));
}
}
@@ -2384,7 +2431,7 @@ public:
// We need to be able to reassociate the adds.
if (!TreeN->isAssociative())
return false;
- ReductionOps.insert(TreeN);
+ ReductionOps.push_back(TreeN);
}
// Retract.
Stack.pop_back();
@@ -2412,7 +2459,7 @@ public:
if (NumReducedVals < ReduxWidth)
return false;
- Value *VectorizedTree = 0;
+ Value *VectorizedTree = nullptr;
IRBuilder<> Builder(ReductionRoot);
FastMathFlags Unsafe;
Unsafe.setUnsafeAlgebra();
@@ -2421,7 +2468,7 @@ public:
for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
ArrayRef<Value *> ValsToReduce(&ReducedVals[i], ReduxWidth);
- V.buildTree(ValsToReduce, &ReductionOps);
+ V.buildTree(ValsToReduce, ReductionOps);
// Estimate cost.
int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
@@ -2455,13 +2502,13 @@ public:
}
// Update users.
if (ReductionPHI) {
- assert(ReductionRoot != NULL && "Need a reduction operation");
+ assert(ReductionRoot && "Need a reduction operation");
ReductionRoot->setOperand(0, VectorizedTree);
ReductionRoot->setOperand(1, ReductionPHI);
} else
ReductionRoot->replaceAllUsesWith(VectorizedTree);
}
- return VectorizedTree != 0;
+ return VectorizedTree != nullptr;
}
private:
@@ -2540,13 +2587,16 @@ private:
///
/// Returns true if it matches
///
-static bool findBuildVector(InsertElementInst *IE,
- SmallVectorImpl<Value *> &Ops) {
- if (!isa<UndefValue>(IE->getOperand(0)))
+static bool findBuildVector(InsertElementInst *FirstInsertElem,
+ SmallVectorImpl<Value *> &BuildVector,
+ SmallVectorImpl<Value *> &BuildVectorOpds) {
+ if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
return false;
+ InsertElementInst *IE = FirstInsertElem;
while (true) {
- Ops.push_back(IE->getOperand(1));
+ BuildVector.push_back(IE);
+ BuildVectorOpds.push_back(IE->getOperand(1));
if (IE->use_empty())
return false;
@@ -2641,7 +2691,8 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
Value *Rdx =
(P->getIncomingBlock(0) == BB
? (P->getIncomingValue(0))
- : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1) : 0));
+ : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
+ : nullptr));
// Check if this is a Binary Operator.
BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
if (!BI)
@@ -2680,7 +2731,7 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
if (BinaryOperator *BinOp =
dyn_cast<BinaryOperator>(SI->getValueOperand())) {
HorizontalReduction HorRdx;
- if (((HorRdx.matchAssociativeReduction(0, BinOp, DL) &&
+ if (((HorRdx.matchAssociativeReduction(nullptr, BinOp, DL) &&
HorRdx.tryToReduce(R, TTI)) ||
tryToVectorize(BinOp, R))) {
Changed = true;
@@ -2716,12 +2767,16 @@ bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
}
// Try to vectorize trees that start at insertelement instructions.
- if (InsertElementInst *IE = dyn_cast<InsertElementInst>(it)) {
- SmallVector<Value *, 8> Ops;
- if (!findBuildVector(IE, Ops))
+ if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
+ SmallVector<Value *, 16> BuildVector;
+ SmallVector<Value *, 16> BuildVectorOpds;
+ if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
continue;
- if (tryToVectorizeList(Ops, R)) {
+ // Vectorize starting with the build vector operands ignoring the
+ // BuildVector instructions for the purpose of scheduling and user
+ // extraction.
+ if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
Changed = true;
it = BB->begin();
e = BB->end();