aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/CodeGen/SelectionDAGNodes.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/CodeGen/SelectionDAGNodes.h')
-rw-r--r--include/llvm/CodeGen/SelectionDAGNodes.h2566
1 files changed, 2566 insertions, 0 deletions
diff --git a/include/llvm/CodeGen/SelectionDAGNodes.h b/include/llvm/CodeGen/SelectionDAGNodes.h
new file mode 100644
index 0000000000..45a9d40719
--- /dev/null
+++ b/include/llvm/CodeGen/SelectionDAGNodes.h
@@ -0,0 +1,2566 @@
+//===-- llvm/CodeGen/SelectionDAGNodes.h - SelectionDAG Nodes ---*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the SDNode class and derived classes, which are used to
+// represent the nodes and operations present in a SelectionDAG. These nodes
+// and operations are machine code level operations, with some similarities to
+// the GCC RTL representation.
+//
+// Clients should include the SelectionDAG.h file instead of this file directly.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_SELECTIONDAGNODES_H
+#define LLVM_CODEGEN_SELECTIONDAGNODES_H
+
+#include "llvm/Constants.h"
+#include "llvm/ADT/FoldingSet.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/ilist_node.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/System/DataTypes.h"
+#include "llvm/Support/DebugLoc.h"
+#include <cassert>
+
+namespace llvm {
+
+class SelectionDAG;
+class GlobalValue;
+class MachineBasicBlock;
+class MachineConstantPoolValue;
+class SDNode;
+class Value;
+template <typename T> struct DenseMapInfo;
+template <typename T> struct simplify_type;
+template <typename T> struct ilist_traits;
+
+void checkForCycles(const SDNode *N);
+
+/// SDVTList - This represents a list of ValueType's that has been intern'd by
+/// a SelectionDAG. Instances of this simple value class are returned by
+/// SelectionDAG::getVTList(...).
+///
+struct SDVTList {
+ const EVT *VTs;
+ unsigned int NumVTs;
+};
+
+/// ISD namespace - This namespace contains an enum which represents all of the
+/// SelectionDAG node types and value types.
+///
+namespace ISD {
+
+ //===--------------------------------------------------------------------===//
+ /// ISD::NodeType enum - This enum defines the target-independent operators
+ /// for a SelectionDAG.
+ ///
+ /// Targets may also define target-dependent operator codes for SDNodes. For
+ /// example, on x86, these are the enum values in the X86ISD namespace.
+ /// Targets should aim to use target-independent operators to model their
+ /// instruction sets as much as possible, and only use target-dependent
+ /// operators when they have special requirements.
+ ///
+ /// Finally, during and after selection proper, SNodes may use special
+ /// operator codes that correspond directly with MachineInstr opcodes. These
+ /// are used to represent selected instructions. See the isMachineOpcode()
+ /// and getMachineOpcode() member functions of SDNode.
+ ///
+ enum NodeType {
+ // DELETED_NODE - This is an illegal value that is used to catch
+ // errors. This opcode is not a legal opcode for any node.
+ DELETED_NODE,
+
+ // EntryToken - This is the marker used to indicate the start of the region.
+ EntryToken,
+
+ // TokenFactor - This node takes multiple tokens as input and produces a
+ // single token result. This is used to represent the fact that the operand
+ // operators are independent of each other.
+ TokenFactor,
+
+ // AssertSext, AssertZext - These nodes record if a register contains a
+ // value that has already been zero or sign extended from a narrower type.
+ // These nodes take two operands. The first is the node that has already
+ // been extended, and the second is a value type node indicating the width
+ // of the extension
+ AssertSext, AssertZext,
+
+ // Various leaf nodes.
+ BasicBlock, VALUETYPE, CONDCODE, Register,
+ Constant, ConstantFP,
+ GlobalAddress, GlobalTLSAddress, FrameIndex,
+ JumpTable, ConstantPool, ExternalSymbol, BlockAddress,
+
+ // The address of the GOT
+ GLOBAL_OFFSET_TABLE,
+
+ // FRAMEADDR, RETURNADDR - These nodes represent llvm.frameaddress and
+ // llvm.returnaddress on the DAG. These nodes take one operand, the index
+ // of the frame or return address to return. An index of zero corresponds
+ // to the current function's frame or return address, an index of one to the
+ // parent's frame or return address, and so on.
+ FRAMEADDR, RETURNADDR,
+
+ // FRAME_TO_ARGS_OFFSET - This node represents offset from frame pointer to
+ // first (possible) on-stack argument. This is needed for correct stack
+ // adjustment during unwind.
+ FRAME_TO_ARGS_OFFSET,
+
+ // RESULT, OUTCHAIN = EXCEPTIONADDR(INCHAIN) - This node represents the
+ // address of the exception block on entry to an landing pad block.
+ EXCEPTIONADDR,
+
+ // RESULT, OUTCHAIN = LSDAADDR(INCHAIN) - This node represents the
+ // address of the Language Specific Data Area for the enclosing function.
+ LSDAADDR,
+
+ // RESULT, OUTCHAIN = EHSELECTION(INCHAIN, EXCEPTION) - This node represents
+ // the selection index of the exception thrown.
+ EHSELECTION,
+
+ // OUTCHAIN = EH_RETURN(INCHAIN, OFFSET, HANDLER) - This node represents
+ // 'eh_return' gcc dwarf builtin, which is used to return from
+ // exception. The general meaning is: adjust stack by OFFSET and pass
+ // execution to HANDLER. Many platform-related details also :)
+ EH_RETURN,
+
+ // TargetConstant* - Like Constant*, but the DAG does not do any folding or
+ // simplification of the constant.
+ TargetConstant,
+ TargetConstantFP,
+
+ // TargetGlobalAddress - Like GlobalAddress, but the DAG does no folding or
+ // anything else with this node, and this is valid in the target-specific
+ // dag, turning into a GlobalAddress operand.
+ TargetGlobalAddress,
+ TargetGlobalTLSAddress,
+ TargetFrameIndex,
+ TargetJumpTable,
+ TargetConstantPool,
+ TargetExternalSymbol,
+ TargetBlockAddress,
+
+ /// RESULT = INTRINSIC_WO_CHAIN(INTRINSICID, arg1, arg2, ...)
+ /// This node represents a target intrinsic function with no side effects.
+ /// The first operand is the ID number of the intrinsic from the
+ /// llvm::Intrinsic namespace. The operands to the intrinsic follow. The
+ /// node has returns the result of the intrinsic.
+ INTRINSIC_WO_CHAIN,
+
+ /// RESULT,OUTCHAIN = INTRINSIC_W_CHAIN(INCHAIN, INTRINSICID, arg1, ...)
+ /// This node represents a target intrinsic function with side effects that
+ /// returns a result. The first operand is a chain pointer. The second is
+ /// the ID number of the intrinsic from the llvm::Intrinsic namespace. The
+ /// operands to the intrinsic follow. The node has two results, the result
+ /// of the intrinsic and an output chain.
+ INTRINSIC_W_CHAIN,
+
+ /// OUTCHAIN = INTRINSIC_VOID(INCHAIN, INTRINSICID, arg1, arg2, ...)
+ /// This node represents a target intrinsic function with side effects that
+ /// does not return a result. The first operand is a chain pointer. The
+ /// second is the ID number of the intrinsic from the llvm::Intrinsic
+ /// namespace. The operands to the intrinsic follow.
+ INTRINSIC_VOID,
+
+ // CopyToReg - This node has three operands: a chain, a register number to
+ // set to this value, and a value.
+ CopyToReg,
+
+ // CopyFromReg - This node indicates that the input value is a virtual or
+ // physical register that is defined outside of the scope of this
+ // SelectionDAG. The register is available from the RegisterSDNode object.
+ CopyFromReg,
+
+ // UNDEF - An undefined node
+ UNDEF,
+
+ // EXTRACT_ELEMENT - This is used to get the lower or upper (determined by
+ // a Constant, which is required to be operand #1) half of the integer or
+ // float value specified as operand #0. This is only for use before
+ // legalization, for values that will be broken into multiple registers.
+ EXTRACT_ELEMENT,
+
+ // BUILD_PAIR - This is the opposite of EXTRACT_ELEMENT in some ways. Given
+ // two values of the same integer value type, this produces a value twice as
+ // big. Like EXTRACT_ELEMENT, this can only be used before legalization.
+ BUILD_PAIR,
+
+ // MERGE_VALUES - This node takes multiple discrete operands and returns
+ // them all as its individual results. This nodes has exactly the same
+ // number of inputs and outputs. This node is useful for some pieces of the
+ // code generator that want to think about a single node with multiple
+ // results, not multiple nodes.
+ MERGE_VALUES,
+
+ // Simple integer binary arithmetic operators.
+ ADD, SUB, MUL, SDIV, UDIV, SREM, UREM,
+
+ // SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing
+ // a signed/unsigned value of type i[2*N], and return the full value as
+ // two results, each of type iN.
+ SMUL_LOHI, UMUL_LOHI,
+
+ // SDIVREM/UDIVREM - Divide two integers and produce both a quotient and
+ // remainder result.
+ SDIVREM, UDIVREM,
+
+ // CARRY_FALSE - This node is used when folding other nodes,
+ // like ADDC/SUBC, which indicate the carry result is always false.
+ CARRY_FALSE,
+
+ // Carry-setting nodes for multiple precision addition and subtraction.
+ // These nodes take two operands of the same value type, and produce two
+ // results. The first result is the normal add or sub result, the second
+ // result is the carry flag result.
+ ADDC, SUBC,
+
+ // Carry-using nodes for multiple precision addition and subtraction. These
+ // nodes take three operands: The first two are the normal lhs and rhs to
+ // the add or sub, and the third is the input carry flag. These nodes
+ // produce two results; the normal result of the add or sub, and the output
+ // carry flag. These nodes both read and write a carry flag to allow them
+ // to them to be chained together for add and sub of arbitrarily large
+ // values.
+ ADDE, SUBE,
+
+ // RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
+ // These nodes take two operands: the normal LHS and RHS to the add. They
+ // produce two results: the normal result of the add, and a boolean that
+ // indicates if an overflow occured (*not* a flag, because it may be stored
+ // to memory, etc.). If the type of the boolean is not i1 then the high
+ // bits conform to getBooleanContents.
+ // These nodes are generated from the llvm.[su]add.with.overflow intrinsics.
+ SADDO, UADDO,
+
+ // Same for subtraction
+ SSUBO, USUBO,
+
+ // Same for multiplication
+ SMULO, UMULO,
+
+ // Simple binary floating point operators.
+ FADD, FSUB, FMUL, FDIV, FREM,
+
+ // FCOPYSIGN(X, Y) - Return the value of X with the sign of Y. NOTE: This
+ // DAG node does not require that X and Y have the same type, just that they
+ // are both floating point. X and the result must have the same type.
+ // FCOPYSIGN(f32, f64) is allowed.
+ FCOPYSIGN,
+
+ // INT = FGETSIGN(FP) - Return the sign bit of the specified floating point
+ // value as an integer 0/1 value.
+ FGETSIGN,
+
+ /// BUILD_VECTOR(ELT0, ELT1, ELT2, ELT3,...) - Return a vector with the
+ /// specified, possibly variable, elements. The number of elements is
+ /// required to be a power of two. The types of the operands must all be
+ /// the same and must match the vector element type, except that integer
+ /// types are allowed to be larger than the element type, in which case
+ /// the operands are implicitly truncated.
+ BUILD_VECTOR,
+
+ /// INSERT_VECTOR_ELT(VECTOR, VAL, IDX) - Returns VECTOR with the element
+ /// at IDX replaced with VAL. If the type of VAL is larger than the vector
+ /// element type then VAL is truncated before replacement.
+ INSERT_VECTOR_ELT,
+
+ /// EXTRACT_VECTOR_ELT(VECTOR, IDX) - Returns a single element from VECTOR
+ /// identified by the (potentially variable) element number IDX. If the
+ /// return type is an integer type larger than the element type of the
+ /// vector, the result is extended to the width of the return type.
+ EXTRACT_VECTOR_ELT,
+
+ /// CONCAT_VECTORS(VECTOR0, VECTOR1, ...) - Given a number of values of
+ /// vector type with the same length and element type, this produces a
+ /// concatenated vector result value, with length equal to the sum of the
+ /// lengths of the input vectors.
+ CONCAT_VECTORS,
+
+ /// EXTRACT_SUBVECTOR(VECTOR, IDX) - Returns a subvector from VECTOR (an
+ /// vector value) starting with the (potentially variable) element number
+ /// IDX, which must be a multiple of the result vector length.
+ EXTRACT_SUBVECTOR,
+
+ /// VECTOR_SHUFFLE(VEC1, VEC2) - Returns a vector, of the same type as
+ /// VEC1/VEC2. A VECTOR_SHUFFLE node also contains an array of constant int
+ /// values that indicate which value (or undef) each result element will
+ /// get. These constant ints are accessible through the
+ /// ShuffleVectorSDNode class. This is quite similar to the Altivec
+ /// 'vperm' instruction, except that the indices must be constants and are
+ /// in terms of the element size of VEC1/VEC2, not in terms of bytes.
+ VECTOR_SHUFFLE,
+
+ /// SCALAR_TO_VECTOR(VAL) - This represents the operation of loading a
+ /// scalar value into element 0 of the resultant vector type. The top
+ /// elements 1 to N-1 of the N-element vector are undefined. The type
+ /// of the operand must match the vector element type, except when they
+ /// are integer types. In this case the operand is allowed to be wider
+ /// than the vector element type, and is implicitly truncated to it.
+ SCALAR_TO_VECTOR,
+
+ // MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing
+ // an unsigned/signed value of type i[2*N], then return the top part.
+ MULHU, MULHS,
+
+ // Bitwise operators - logical and, logical or, logical xor, shift left,
+ // shift right algebraic (shift in sign bits), shift right logical (shift in
+ // zeroes), rotate left, rotate right, and byteswap.
+ AND, OR, XOR, SHL, SRA, SRL, ROTL, ROTR, BSWAP,
+
+ // Counting operators
+ CTTZ, CTLZ, CTPOP,
+
+ // Select(COND, TRUEVAL, FALSEVAL). If the type of the boolean COND is not
+ // i1 then the high bits must conform to getBooleanContents.
+ SELECT,
+
+ // Select with condition operator - This selects between a true value and
+ // a false value (ops #2 and #3) based on the boolean result of comparing
+ // the lhs and rhs (ops #0 and #1) of a conditional expression with the
+ // condition code in op #4, a CondCodeSDNode.
+ SELECT_CC,
+
+ // SetCC operator - This evaluates to a true value iff the condition is
+ // true. If the result value type is not i1 then the high bits conform
+ // to getBooleanContents. The operands to this are the left and right
+ // operands to compare (ops #0, and #1) and the condition code to compare
+ // them with (op #2) as a CondCodeSDNode.
+ SETCC,
+
+ // RESULT = VSETCC(LHS, RHS, COND) operator - This evaluates to a vector of
+ // integer elements with all bits of the result elements set to true if the
+ // comparison is true or all cleared if the comparison is false. The
+ // operands to this are the left and right operands to compare (LHS/RHS) and
+ // the condition code to compare them with (COND) as a CondCodeSDNode.
+ VSETCC,
+
+ // SHL_PARTS/SRA_PARTS/SRL_PARTS - These operators are used for expanded
+ // integer shift operations, just like ADD/SUB_PARTS. The operation
+ // ordering is:
+ // [Lo,Hi] = op [LoLHS,HiLHS], Amt
+ SHL_PARTS, SRA_PARTS, SRL_PARTS,
+
+ // Conversion operators. These are all single input single output
+ // operations. For all of these, the result type must be strictly
+ // wider or narrower (depending on the operation) than the source
+ // type.
+
+ // SIGN_EXTEND - Used for integer types, replicating the sign bit
+ // into new bits.
+ SIGN_EXTEND,
+
+ // ZERO_EXTEND - Used for integer types, zeroing the new bits.
+ ZERO_EXTEND,
+
+ // ANY_EXTEND - Used for integer types. The high bits are undefined.
+ ANY_EXTEND,
+
+ // TRUNCATE - Completely drop the high bits.
+ TRUNCATE,
+
+ // [SU]INT_TO_FP - These operators convert integers (whose interpreted sign
+ // depends on the first letter) to floating point.
+ SINT_TO_FP,
+ UINT_TO_FP,
+
+ // SIGN_EXTEND_INREG - This operator atomically performs a SHL/SRA pair to
+ // sign extend a small value in a large integer register (e.g. sign
+ // extending the low 8 bits of a 32-bit register to fill the top 24 bits
+ // with the 7th bit). The size of the smaller type is indicated by the 1th
+ // operand, a ValueType node.
+ SIGN_EXTEND_INREG,
+
+ /// FP_TO_[US]INT - Convert a floating point value to a signed or unsigned
+ /// integer.
+ FP_TO_SINT,
+ FP_TO_UINT,
+
+ /// X = FP_ROUND(Y, TRUNC) - Rounding 'Y' from a larger floating point type
+ /// down to the precision of the destination VT. TRUNC is a flag, which is
+ /// always an integer that is zero or one. If TRUNC is 0, this is a
+ /// normal rounding, if it is 1, this FP_ROUND is known to not change the
+ /// value of Y.
+ ///
+ /// The TRUNC = 1 case is used in cases where we know that the value will
+ /// not be modified by the node, because Y is not using any of the extra
+ /// precision of source type. This allows certain transformations like
+ /// FP_EXTEND(FP_ROUND(X,1)) -> X which are not safe for
+ /// FP_EXTEND(FP_ROUND(X,0)) because the extra bits aren't removed.
+ FP_ROUND,
+
+ // FLT_ROUNDS_ - Returns current rounding mode:
+ // -1 Undefined
+ // 0 Round to 0
+ // 1 Round to nearest
+ // 2 Round to +inf
+ // 3 Round to -inf
+ FLT_ROUNDS_,
+
+ /// X = FP_ROUND_INREG(Y, VT) - This operator takes an FP register, and
+ /// rounds it to a floating point value. It then promotes it and returns it
+ /// in a register of the same size. This operation effectively just
+ /// discards excess precision. The type to round down to is specified by
+ /// the VT operand, a VTSDNode.
+ FP_ROUND_INREG,
+
+ /// X = FP_EXTEND(Y) - Extend a smaller FP type into a larger FP type.
+ FP_EXTEND,
+
+ // BIT_CONVERT - This operator converts between integer, vector and FP
+ // values, as if the value was stored to memory with one type and loaded
+ // from the same address with the other type (or equivalently for vector
+ // format conversions, etc). The source and result are required to have
+ // the same bit size (e.g. f32 <-> i32). This can also be used for
+ // int-to-int or fp-to-fp conversions, but that is a noop, deleted by
+ // getNode().
+ BIT_CONVERT,
+
+ // CONVERT_RNDSAT - This operator is used to support various conversions
+ // between various types (float, signed, unsigned and vectors of those
+ // types) with rounding and saturation. NOTE: Avoid using this operator as
+ // most target don't support it and the operator might be removed in the
+ // future. It takes the following arguments:
+ // 0) value
+ // 1) dest type (type to convert to)
+ // 2) src type (type to convert from)
+ // 3) rounding imm
+ // 4) saturation imm
+ // 5) ISD::CvtCode indicating the type of conversion to do
+ CONVERT_RNDSAT,
+
+ // FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
+ // FLOG, FLOG2, FLOG10, FEXP, FEXP2,
+ // FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR - Perform various unary floating
+ // point operations. These are inspired by libm.
+ FNEG, FABS, FSQRT, FSIN, FCOS, FPOWI, FPOW,
+ FLOG, FLOG2, FLOG10, FEXP, FEXP2,
+ FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR,
+
+ // LOAD and STORE have token chains as their first operand, then the same
+ // operands as an LLVM load/store instruction, then an offset node that
+ // is added / subtracted from the base pointer to form the address (for
+ // indexed memory ops).
+ LOAD, STORE,
+
+ // DYNAMIC_STACKALLOC - Allocate some number of bytes on the stack aligned
+ // to a specified boundary. This node always has two return values: a new
+ // stack pointer value and a chain. The first operand is the token chain,
+ // the second is the number of bytes to allocate, and the third is the
+ // alignment boundary. The size is guaranteed to be a multiple of the stack
+ // alignment, and the alignment is guaranteed to be bigger than the stack
+ // alignment (if required) or 0 to get standard stack alignment.
+ DYNAMIC_STACKALLOC,
+
+ // Control flow instructions. These all have token chains.
+
+ // BR - Unconditional branch. The first operand is the chain
+ // operand, the second is the MBB to branch to.
+ BR,
+
+ // BRIND - Indirect branch. The first operand is the chain, the second
+ // is the value to branch to, which must be of the same type as the target's
+ // pointer type.
+ BRIND,
+
+ // BR_JT - Jumptable branch. The first operand is the chain, the second
+ // is the jumptable index, the last one is the jumptable entry index.
+ BR_JT,
+
+ // BRCOND - Conditional branch. The first operand is the chain, the
+ // second is the condition, the third is the block to branch to if the
+ // condition is true. If the type of the condition is not i1, then the
+ // high bits must conform to getBooleanContents.
+ BRCOND,
+
+ // BR_CC - Conditional branch. The behavior is like that of SELECT_CC, in
+ // that the condition is represented as condition code, and two nodes to
+ // compare, rather than as a combined SetCC node. The operands in order are
+ // chain, cc, lhs, rhs, block to branch to if condition is true.
+ BR_CC,
+
+ // INLINEASM - Represents an inline asm block. This node always has two
+ // return values: a chain and a flag result. The inputs are as follows:
+ // Operand #0 : Input chain.
+ // Operand #1 : a ExternalSymbolSDNode with a pointer to the asm string.
+ // Operand #2n+2: A RegisterNode.
+ // Operand #2n+3: A TargetConstant, indicating if the reg is a use/def
+ // Operand #last: Optional, an incoming flag.
+ INLINEASM,
+
+ // EH_LABEL - Represents a label in mid basic block used to track
+ // locations needed for debug and exception handling tables. These nodes
+ // take a chain as input and return a chain.
+ EH_LABEL,
+
+ // STACKSAVE - STACKSAVE has one operand, an input chain. It produces a
+ // value, the same type as the pointer type for the system, and an output
+ // chain.
+ STACKSAVE,
+
+ // STACKRESTORE has two operands, an input chain and a pointer to restore to
+ // it returns an output chain.
+ STACKRESTORE,
+
+ // CALLSEQ_START/CALLSEQ_END - These operators mark the beginning and end of
+ // a call sequence, and carry arbitrary information that target might want
+ // to know. The first operand is a chain, the rest are specified by the
+ // target and not touched by the DAG optimizers.
+ // CALLSEQ_START..CALLSEQ_END pairs may not be nested.
+ CALLSEQ_START, // Beginning of a call sequence
+ CALLSEQ_END, // End of a call sequence
+
+ // VAARG - VAARG has three operands: an input chain, a pointer, and a
+ // SRCVALUE. It returns a pair of values: the vaarg value and a new chain.
+ VAARG,
+
+ // VACOPY - VACOPY has five operands: an input chain, a destination pointer,
+ // a source pointer, a SRCVALUE for the destination, and a SRCVALUE for the
+ // source.
+ VACOPY,
+
+ // VAEND, VASTART - VAEND and VASTART have three operands: an input chain, a
+ // pointer, and a SRCVALUE.
+ VAEND, VASTART,
+
+ // SRCVALUE - This is a node type that holds a Value* that is used to
+ // make reference to a value in the LLVM IR.
+ SRCVALUE,
+
+ // PCMARKER - This corresponds to the pcmarker intrinsic.
+ PCMARKER,
+
+ // READCYCLECOUNTER - This corresponds to the readcyclecounter intrinsic.
+ // The only operand is a chain and a value and a chain are produced. The
+ // value is the contents of the architecture specific cycle counter like
+ // register (or other high accuracy low latency clock source)
+ READCYCLECOUNTER,
+
+ // HANDLENODE node - Used as a handle for various purposes.
+ HANDLENODE,
+
+ // TRAMPOLINE - This corresponds to the init_trampoline intrinsic.
+ // It takes as input a token chain, the pointer to the trampoline,
+ // the pointer to the nested function, the pointer to pass for the
+ // 'nest' parameter, a SRCVALUE for the trampoline and another for
+ // the nested function (allowing targets to access the original
+ // Function*). It produces the result of the intrinsic and a token
+ // chain as output.
+ TRAMPOLINE,
+
+ // TRAP - Trapping instruction
+ TRAP,
+
+ // PREFETCH - This corresponds to a prefetch intrinsic. It takes chains are
+ // their first operand. The other operands are the address to prefetch,
+ // read / write specifier, and locality specifier.
+ PREFETCH,
+
+ // OUTCHAIN = MEMBARRIER(INCHAIN, load-load, load-store, store-load,
+ // store-store, device)
+ // This corresponds to the memory.barrier intrinsic.
+ // it takes an input chain, 4 operands to specify the type of barrier, an
+ // operand specifying if the barrier applies to device and uncached memory
+ // and produces an output chain.
+ MEMBARRIER,
+
+ // Val, OUTCHAIN = ATOMIC_CMP_SWAP(INCHAIN, ptr, cmp, swap)
+ // this corresponds to the atomic.lcs intrinsic.
+ // cmp is compared to *ptr, and if equal, swap is stored in *ptr.
+ // the return is always the original value in *ptr
+ ATOMIC_CMP_SWAP,
+
+ // Val, OUTCHAIN = ATOMIC_SWAP(INCHAIN, ptr, amt)
+ // this corresponds to the atomic.swap intrinsic.
+ // amt is stored to *ptr atomically.
+ // the return is always the original value in *ptr
+ ATOMIC_SWAP,
+
+ // Val, OUTCHAIN = ATOMIC_LOAD_[OpName](INCHAIN, ptr, amt)
+ // this corresponds to the atomic.load.[OpName] intrinsic.
+ // op(*ptr, amt) is stored to *ptr atomically.
+ // the return is always the original value in *ptr
+ ATOMIC_LOAD_ADD,
+ ATOMIC_LOAD_SUB,
+ ATOMIC_LOAD_AND,
+ ATOMIC_LOAD_OR,
+ ATOMIC_LOAD_XOR,
+ ATOMIC_LOAD_NAND,
+ ATOMIC_LOAD_MIN,
+ ATOMIC_LOAD_MAX,
+ ATOMIC_LOAD_UMIN,
+ ATOMIC_LOAD_UMAX,
+
+ /// BUILTIN_OP_END - This must be the last enum value in this list.
+ /// The target-specific pre-isel opcode values start here.
+ BUILTIN_OP_END
+ };
+
+ /// FIRST_TARGET_MEMORY_OPCODE - Target-specific pre-isel operations
+ /// which do not reference a specific memory location should be less than
+ /// this value. Those that do must not be less than this value, and can
+ /// be used with SelectionDAG::getMemIntrinsicNode.
+ static const int FIRST_TARGET_MEMORY_OPCODE = 1 << 14;
+
+ /// Node predicates
+
+ /// isBuildVectorAllOnes - Return true if the specified node is a
+ /// BUILD_VECTOR where all of the elements are ~0 or undef.
+ bool isBuildVectorAllOnes(const SDNode *N);
+
+ /// isBuildVectorAllZeros - Return true if the specified node is a
+ /// BUILD_VECTOR where all of the elements are 0 or undef.
+ bool isBuildVectorAllZeros(const SDNode *N);
+
+ /// isScalarToVector - Return true if the specified node is a
+ /// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
+ /// element is not an undef.
+ bool isScalarToVector(const SDNode *N);
+
+ //===--------------------------------------------------------------------===//
+ /// MemIndexedMode enum - This enum defines the load / store indexed
+ /// addressing modes.
+ ///
+ /// UNINDEXED "Normal" load / store. The effective address is already
+ /// computed and is available in the base pointer. The offset
+ /// operand is always undefined. In addition to producing a
+ /// chain, an unindexed load produces one value (result of the
+ /// load); an unindexed store does not produce a value.
+ ///
+ /// PRE_INC Similar to the unindexed mode where the effective address is
+ /// PRE_DEC the value of the base pointer add / subtract the offset.
+ /// It considers the computation as being folded into the load /
+ /// store operation (i.e. the load / store does the address
+ /// computation as well as performing the memory transaction).
+ /// The base operand is always undefined. In addition to
+ /// producing a chain, pre-indexed load produces two values
+ /// (result of the load and the result of the address
+ /// computation); a pre-indexed store produces one value (result
+ /// of the address computation).
+ ///
+ /// POST_INC The effective address is the value of the base pointer. The
+ /// POST_DEC value of the offset operand is then added to / subtracted
+ /// from the base after memory transaction. In addition to
+ /// producing a chain, post-indexed load produces two values
+ /// (the result of the load and the result of the base +/- offset
+ /// computation); a post-indexed store produces one value (the
+ /// the result of the base +/- offset computation).
+ ///
+ enum MemIndexedMode {
+ UNINDEXED = 0,
+ PRE_INC,
+ PRE_DEC,
+ POST_INC,
+ POST_DEC,
+ LAST_INDEXED_MODE
+ };
+
+ //===--------------------------------------------------------------------===//
+ /// LoadExtType enum - This enum defines the three variants of LOADEXT
+ /// (load with extension).
+ ///
+ /// SEXTLOAD loads the integer operand and sign extends it to a larger
+ /// integer result type.
+ /// ZEXTLOAD loads the integer operand and zero extends it to a larger
+ /// integer result type.
+ /// EXTLOAD is used for three things: floating point extending loads,
+ /// integer extending loads [the top bits are undefined], and vector
+ /// extending loads [load into low elt].
+ ///
+ enum LoadExtType {
+ NON_EXTLOAD = 0,
+ EXTLOAD,
+ SEXTLOAD,
+ ZEXTLOAD,
+ LAST_LOADEXT_TYPE
+ };
+
+ //===--------------------------------------------------------------------===//
+ /// ISD::CondCode enum - These are ordered carefully to make the bitfields
+ /// below work out, when considering SETFALSE (something that never exists
+ /// dynamically) as 0. "U" -> Unsigned (for integer operands) or Unordered
+ /// (for floating point), "L" -> Less than, "G" -> Greater than, "E" -> Equal
+ /// to. If the "N" column is 1, the result of the comparison is undefined if
+ /// the input is a NAN.
+ ///
+ /// All of these (except for the 'always folded ops') should be handled for
+ /// floating point. For integer, only the SETEQ,SETNE,SETLT,SETLE,SETGT,
+ /// SETGE,SETULT,SETULE,SETUGT, and SETUGE opcodes are used.
+ ///
+ /// Note that these are laid out in a specific order to allow bit-twiddling
+ /// to transform conditions.
+ enum CondCode {
+ // Opcode N U L G E Intuitive operation
+ SETFALSE, // 0 0 0 0 Always false (always folded)
+ SETOEQ, // 0 0 0 1 True if ordered and equal
+ SETOGT, // 0 0 1 0 True if ordered and greater than
+ SETOGE, // 0 0 1 1 True if ordered and greater than or equal
+ SETOLT, // 0 1 0 0 True if ordered and less than
+ SETOLE, // 0 1 0 1 True if ordered and less than or equal
+ SETONE, // 0 1 1 0 True if ordered and operands are unequal
+ SETO, // 0 1 1 1 True if ordered (no nans)
+ SETUO, // 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
+ SETUEQ, // 1 0 0 1 True if unordered or equal
+ SETUGT, // 1 0 1 0 True if unordered or greater than
+ SETUGE, // 1 0 1 1 True if unordered, greater than, or equal
+ SETULT, // 1 1 0 0 True if unordered or less than
+ SETULE, // 1 1 0 1 True if unordered, less than, or equal
+ SETUNE, // 1 1 1 0 True if unordered or not equal
+ SETTRUE, // 1 1 1 1 Always true (always folded)
+ // Don't care operations: undefined if the input is a nan.
+ SETFALSE2, // 1 X 0 0 0 Always false (always folded)
+ SETEQ, // 1 X 0 0 1 True if equal
+ SETGT, // 1 X 0 1 0 True if greater than
+ SETGE, // 1 X 0 1 1 True if greater than or equal
+ SETLT, // 1 X 1 0 0 True if less than
+ SETLE, // 1 X 1 0 1 True if less than or equal
+ SETNE, // 1 X 1 1 0 True if not equal
+ SETTRUE2, // 1 X 1 1 1 Always true (always folded)
+
+ SETCC_INVALID // Marker value.
+ };
+
+ /// isSignedIntSetCC - Return true if this is a setcc instruction that
+ /// performs a signed comparison when used with integer operands.
+ inline bool isSignedIntSetCC(CondCode Code) {
+ return Code == SETGT || Code == SETGE || Code == SETLT || Code == SETLE;
+ }
+
+ /// isUnsignedIntSetCC - Return true if this is a setcc instruction that
+ /// performs an unsigned comparison when used with integer operands.
+ inline bool isUnsignedIntSetCC(CondCode Code) {
+ return Code == SETUGT || Code == SETUGE || Code == SETULT || Code == SETULE;
+ }
+
+ /// isTrueWhenEqual - Return true if the specified condition returns true if
+ /// the two operands to the condition are equal. Note that if one of the two
+ /// operands is a NaN, this value is meaningless.
+ inline bool isTrueWhenEqual(CondCode Cond) {
+ return ((int)Cond & 1) != 0;
+ }
+
+ /// getUnorderedFlavor - This function returns 0 if the condition is always
+ /// false if an operand is a NaN, 1 if the condition is always true if the
+ /// operand is a NaN, and 2 if the condition is undefined if the operand is a
+ /// NaN.
+ inline unsigned getUnorderedFlavor(CondCode Cond) {
+ return ((int)Cond >> 3) & 3;
+ }
+
+ /// getSetCCInverse - Return the operation corresponding to !(X op Y), where
+ /// 'op' is a valid SetCC operation.
+ CondCode getSetCCInverse(CondCode Operation, bool isInteger);
+
+ /// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
+ /// when given the operation for (X op Y).
+ CondCode getSetCCSwappedOperands(CondCode Operation);
+
+ /// getSetCCOrOperation - Return the result of a logical OR between different
+ /// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This
+ /// function returns SETCC_INVALID if it is not possible to represent the
+ /// resultant comparison.
+ CondCode getSetCCOrOperation(CondCode Op1, CondCode Op2, bool isInteger);
+
+ /// getSetCCAndOperation - Return the result of a logical AND between
+ /// different comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
+ /// function returns SETCC_INVALID if it is not possible to represent the
+ /// resultant comparison.
+ CondCode getSetCCAndOperation(CondCode Op1, CondCode Op2, bool isInteger);
+
+ //===--------------------------------------------------------------------===//
+ /// CvtCode enum - This enum defines the various converts CONVERT_RNDSAT
+ /// supports.
+ enum CvtCode {
+ CVT_FF, // Float from Float
+ CVT_FS, // Float from Signed
+ CVT_FU, // Float from Unsigned
+ CVT_SF, // Signed from Float
+ CVT_UF, // Unsigned from Float
+ CVT_SS, // Signed from Signed
+ CVT_SU, // Signed from Unsigned
+ CVT_US, // Unsigned from Signed
+ CVT_UU, // Unsigned from Unsigned
+ CVT_INVALID // Marker - Invalid opcode
+ };
+} // end llvm::ISD namespace
+
+
+//===----------------------------------------------------------------------===//
+/// SDValue - Unlike LLVM values, Selection DAG nodes may return multiple
+/// values as the result of a computation. Many nodes return multiple values,
+/// from loads (which define a token and a return value) to ADDC (which returns
+/// a result and a carry value), to calls (which may return an arbitrary number
+/// of values).
+///
+/// As such, each use of a SelectionDAG computation must indicate the node that
+/// computes it as well as which return value to use from that node. This pair
+/// of information is represented with the SDValue value type.
+///
+class SDValue {
+ SDNode *Node; // The node defining the value we are using.
+ unsigned ResNo; // Which return value of the node we are using.
+public:
+ SDValue() : Node(0), ResNo(0) {}
+ SDValue(SDNode *node, unsigned resno) : Node(node), ResNo(resno) {}
+
+ /// get the index which selects a specific result in the SDNode
+ unsigned getResNo() const { return ResNo; }
+
+ /// get the SDNode which holds the desired result
+ SDNode *getNode() const { return Node; }
+
+ /// set the SDNode
+ void setNode(SDNode *N) { Node = N; }
+
+ bool operator==(const SDValue &O) const {
+ return Node == O.Node && ResNo == O.ResNo;
+ }
+ bool operator!=(const SDValue &O) const {
+ return !operator==(O);
+ }
+ bool operator<(const SDValue &O) const {
+ return Node < O.Node || (Node == O.Node && ResNo < O.ResNo);
+ }
+
+ SDValue getValue(unsigned R) const {
+ return SDValue(Node, R);
+ }
+
+ // isOperandOf - Return true if this node is an operand of N.
+ bool isOperandOf(SDNode *N) const;
+
+ /// getValueType - Return the ValueType of the referenced return value.
+ ///
+ inline EVT getValueType() const;
+
+ /// getValueSizeInBits - Returns the size of the value in bits.
+ ///
+ unsigned getValueSizeInBits() const {
+ return getValueType().getSizeInBits();
+ }
+
+ // Forwarding methods - These forward to the corresponding methods in SDNode.
+ inline unsigned getOpcode() const;
+ inline unsigned getNumOperands() const;
+ inline const SDValue &getOperand(unsigned i) const;
+ inline uint64_t getConstantOperandVal(unsigned i) const;
+ inline bool isTargetMemoryOpcode() const;
+ inline bool isTargetOpcode() const;
+ inline bool isMachineOpcode() const;
+ inline unsigned getMachineOpcode() const;
+ inline const DebugLoc getDebugLoc() const;
+
+
+ /// reachesChainWithoutSideEffects - Return true if this operand (which must
+ /// be a chain) reaches the specified operand without crossing any
+ /// side-effecting instructions. In practice, this looks through token
+ /// factors and non-volatile loads. In order to remain efficient, this only
+ /// looks a couple of nodes in, it does not do an exhaustive search.
+ bool reachesChainWithoutSideEffects(SDValue Dest,
+ unsigned Depth = 2) const;
+
+ /// use_empty - Return true if there are no nodes using value ResNo
+ /// of Node.
+ ///
+ inline bool use_empty() const;
+
+ /// hasOneUse - Return true if there is exactly one node using value
+ /// ResNo of Node.
+ ///
+ inline bool hasOneUse() const;
+};
+
+
+template<> struct DenseMapInfo<SDValue> {
+ static inline SDValue getEmptyKey() {
+ return SDValue((SDNode*)-1, -1U);
+ }
+ static inline SDValue getTombstoneKey() {
+ return SDValue((SDNode*)-1, 0);
+ }
+ static unsigned getHashValue(const SDValue &Val) {
+ return ((unsigned)((uintptr_t)Val.getNode() >> 4) ^
+ (unsigned)((uintptr_t)Val.getNode() >> 9)) + Val.getResNo();
+ }
+ static bool isEqual(const SDValue &LHS, const SDValue &RHS) {
+ return LHS == RHS;
+ }
+};
+template <> struct isPodLike<SDValue> { static const bool value = true; };
+
+
+/// simplify_type specializations - Allow casting operators to work directly on
+/// SDValues as if they were SDNode*'s.
+template<> struct simplify_type<SDValue> {
+ typedef SDNode* SimpleType;
+ static SimpleType getSimplifiedValue(const SDValue &Val) {
+ return static_cast<SimpleType>(Val.getNode());
+ }
+};
+template<> struct simplify_type<const SDValue> {
+ typedef SDNode* SimpleType;
+ static SimpleType getSimplifiedValue(const SDValue &Val) {
+ return static_cast<SimpleType>(Val.getNode());
+ }
+};
+
+/// SDUse - Represents a use of a SDNode. This class holds an SDValue,
+/// which records the SDNode being used and the result number, a
+/// pointer to the SDNode using the value, and Next and Prev pointers,
+/// which link together all the uses of an SDNode.
+///
+class SDUse {
+ /// Val - The value being used.
+ SDValue Val;
+ /// User - The user of this value.
+ SDNode *User;
+ /// Prev, Next - Pointers to the uses list of the SDNode referred by
+ /// this operand.
+ SDUse **Prev, *Next;
+
+ SDUse(const SDUse &U); // Do not implement
+ void operator=(const SDUse &U); // Do not implement
+
+public:
+ SDUse() : Val(), User(NULL), Prev(NULL), Next(NULL) {}
+
+ /// Normally SDUse will just implicitly convert to an SDValue that it holds.
+ operator const SDValue&() const { return Val; }
+
+ /// If implicit conversion to SDValue doesn't work, the get() method returns
+ /// the SDValue.
+ const SDValue &get() const { return Val; }
+
+ /// getUser - This returns the SDNode that contains this Use.
+ SDNode *getUser() { return User; }
+
+ /// getNext - Get the next SDUse in the use list.
+ SDUse *getNext() const { return Next; }
+
+ /// getNode - Convenience function for get().getNode().
+ SDNode *getNode() const { return Val.getNode(); }
+ /// getResNo - Convenience function for get().getResNo().
+ unsigned getResNo() const { return Val.getResNo(); }
+ /// getValueType - Convenience function for get().getValueType().
+ EVT getValueType() const { return Val.getValueType(); }
+
+ /// operator== - Convenience function for get().operator==
+ bool operator==(const SDValue &V) const {
+ return Val == V;
+ }
+
+ /// operator!= - Convenience function for get().operator!=
+ bool operator!=(const SDValue &V) const {
+ return Val != V;
+ }
+
+ /// operator< - Convenience function for get().operator<
+ bool operator<(const SDValue &V) const {
+ return Val < V;
+ }
+
+private:
+ friend class SelectionDAG;
+ friend class SDNode;
+
+ void setUser(SDNode *p) { User = p; }
+
+ /// set - Remove this use from its existing use list, assign it the
+ /// given value, and add it to the new value's node's use list.
+ inline void set(const SDValue &V);
+ /// setInitial - like set, but only supports initializing a newly-allocated
+ /// SDUse with a non-null value.
+ inline void setInitial(const SDValue &V);
+ /// setNode - like set, but only sets the Node portion of the value,
+ /// leaving the ResNo portion unmodified.
+ inline void setNode(SDNode *N);
+
+ void addToList(SDUse **List) {
+ Next = *List;
+ if (Next) Next->Prev = &Next;
+ Prev = List;
+ *List = this;
+ }
+
+ void removeFromList() {
+ *Prev = Next;
+ if (Next) Next->Prev = Prev;
+ }
+};
+
+/// simplify_type specializations - Allow casting operators to work directly on
+/// SDValues as if they were SDNode*'s.
+template<> struct simplify_type<SDUse> {
+ typedef SDNode* SimpleType;
+ static SimpleType getSimplifiedValue(const SDUse &Val) {
+ return static_cast<SimpleType>(Val.getNode());
+ }
+};
+template<> struct simplify_type<const SDUse> {
+ typedef SDNode* SimpleType;
+ static SimpleType getSimplifiedValue(const SDUse &Val) {
+ return static_cast<SimpleType>(Val.getNode());
+ }
+};
+
+
+/// SDNode - Represents one node in the SelectionDAG.
+///
+class SDNode : public FoldingSetNode, public ilist_node<SDNode> {
+private:
+ /// NodeType - The operation that this node performs.
+ ///
+ int16_t NodeType;
+
+ /// OperandsNeedDelete - This is true if OperandList was new[]'d. If true,
+ /// then they will be delete[]'d when the node is destroyed.
+ uint16_t OperandsNeedDelete : 1;
+
+protected:
+ /// SubclassData - This member is defined by this class, but is not used for
+ /// anything. Subclasses can use it to hold whatever state they find useful.
+ /// This field is initialized to zero by the ctor.
+ uint16_t SubclassData : 15;
+
+private:
+ /// NodeId - Unique id per SDNode in the DAG.
+ int NodeId;
+
+ /// OperandList - The values that are used by this operation.
+ ///
+ SDUse *OperandList;
+
+ /// ValueList - The types of the values this node defines. SDNode's may
+ /// define multiple values simultaneously.
+ const EVT *ValueList;
+
+ /// UseList - List of uses for this SDNode.
+ SDUse *UseList;
+
+ /// NumOperands/NumValues - The number of entries in the Operand/Value list.
+ unsigned short NumOperands, NumValues;
+
+ /// debugLoc - source line information.
+ DebugLoc debugLoc;
+
+ /// getValueTypeList - Return a pointer to the specified value type.
+ static const EVT *getValueTypeList(EVT VT);
+
+ friend class SelectionDAG;
+ friend struct ilist_traits<SDNode>;
+
+public:
+ //===--------------------------------------------------------------------===//
+ // Accessors
+ //
+
+ /// getOpcode - Return the SelectionDAG opcode value for this node. For
+ /// pre-isel nodes (those for which isMachineOpcode returns false), these
+ /// are the opcode values in the ISD and <target>ISD namespaces. For
+ /// post-isel opcodes, see getMachineOpcode.
+ unsigned getOpcode() const { return (unsigned short)NodeType; }
+
+ /// isTargetOpcode - Test if this node has a target-specific opcode (in the
+ /// \<target\>ISD namespace).
+ bool isTargetOpcode() const { return NodeType >= ISD::BUILTIN_OP_END; }
+
+ /// isTargetMemoryOpcode - Test if this node has a target-specific
+ /// memory-referencing opcode (in the \<target\>ISD namespace and
+ /// greater than FIRST_TARGET_MEMORY_OPCODE).
+ bool isTargetMemoryOpcode() const {
+ return NodeType >= ISD::FIRST_TARGET_MEMORY_OPCODE;
+ }
+
+ /// isMachineOpcode - Test if this node has a post-isel opcode, directly
+ /// corresponding to a MachineInstr opcode.
+ bool isMachineOpcode() const { return NodeType < 0; }
+
+ /// getMachineOpcode - This may only be called if isMachineOpcode returns
+ /// true. It returns the MachineInstr opcode value that the node's opcode
+ /// corresponds to.
+ unsigned getMachineOpcode() const {
+ assert(isMachineOpcode() && "Not a MachineInstr opcode!");
+ return ~NodeType;
+ }
+
+ /// use_empty - Return true if there are no uses of this node.
+ ///
+ bool use_empty() const { return UseList == NULL; }
+
+ /// hasOneUse - Return true if there is exactly one use of this node.
+ ///
+ bool hasOneUse() const {
+ return !use_empty() && llvm::next(use_begin()) == use_end();
+ }
+
+ /// use_size - Return the number of uses of this node. This method takes
+ /// time proportional to the number of uses.
+ ///
+ size_t use_size() const { return std::distance(use_begin(), use_end()); }
+
+ /// getNodeId - Return the unique node id.
+ ///
+ int getNodeId() const { return NodeId; }
+
+ /// setNodeId - Set unique node id.
+ void setNodeId(int Id) { NodeId = Id; }
+
+ /// getDebugLoc - Return the source location info.
+ const DebugLoc getDebugLoc() const { return debugLoc; }
+
+ /// setDebugLoc - Set source location info. Try to avoid this, putting
+ /// it in the constructor is preferable.
+ void setDebugLoc(const DebugLoc dl) { debugLoc = dl; }
+
+ /// use_iterator - This class provides iterator support for SDUse
+ /// operands that use a specific SDNode.
+ class use_iterator
+ : public std::iterator<std::forward_iterator_tag, SDUse, ptrdiff_t> {
+ SDUse *Op;
+ explicit use_iterator(SDUse *op) : Op(op) {
+ }
+ friend class SDNode;
+ public:
+ typedef std::iterator<std::forward_iterator_tag,
+ SDUse, ptrdiff_t>::reference reference;
+ typedef std::iterator<std::forward_iterator_tag,
+ SDUse, ptrdiff_t>::pointer pointer;
+
+ use_iterator(const use_iterator &I) : Op(I.Op) {}
+ use_iterator() : Op(0) {}
+
+ bool operator==(const use_iterator &x) const {
+ return Op == x.Op;
+ }
+ bool operator!=(const use_iterator &x) const {
+ return !operator==(x);
+ }
+
+ /// atEnd - return true if this iterator is at the end of uses list.
+ bool atEnd() const { return Op == 0; }
+
+ // Iterator traversal: forward iteration only.
+ use_iterator &operator++() { // Preincrement
+ assert(Op && "Cannot increment end iterator!");
+ Op = Op->getNext();
+ return *this;
+ }
+
+ use_iterator operator++(int) { // Postincrement
+ use_iterator tmp = *this; ++*this; return tmp;
+ }
+
+ /// Retrieve a pointer to the current user node.
+ SDNode *operator*() const {
+ assert(Op && "Cannot dereference end iterator!");
+ return Op->getUser();
+ }
+
+ SDNode *operator->() const { return operator*(); }
+
+ SDUse &getUse() const { return *Op; }
+
+ /// getOperandNo - Retrieve the operand # of this use in its user.
+ ///
+ unsigned getOperandNo() const {
+ assert(Op && "Cannot dereference end iterator!");
+ return (unsigned)(Op - Op->getUser()->OperandList);
+ }
+ };
+
+ /// use_begin/use_end - Provide iteration support to walk over all uses
+ /// of an SDNode.
+
+ use_iterator use_begin() const {
+ return use_iterator(UseList);
+ }
+
+ static use_iterator use_end() { return use_iterator(0); }
+
+
+ /// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
+ /// indicated value. This method ignores uses of other values defined by this
+ /// operation.
+ bool hasNUsesOfValue(unsigned NUses, unsigned Value) const;
+
+ /// hasAnyUseOfValue - Return true if there are any use of the indicated
+ /// value. This method ignores uses of other values defined by this operation.
+ bool hasAnyUseOfValue(unsigned Value) const;
+
+ /// isOnlyUserOf - Return true if this node is the only use of N.
+ ///
+ bool isOnlyUserOf(SDNode *N) const;
+
+ /// isOperandOf - Return true if this node is an operand of N.
+ ///
+ bool isOperandOf(SDNode *N) const;
+
+ /// isPredecessorOf - Return true if this node is a predecessor of N. This
+ /// node is either an operand of N or it can be reached by recursively
+ /// traversing up the operands.
+ /// NOTE: this is an expensive method. Use it carefully.
+ bool isPredecessorOf(SDNode *N) const;
+
+ /// getNumOperands - Return the number of values used by this operation.
+ ///
+ unsigned getNumOperands() const { return NumOperands; }
+
+ /// getConstantOperandVal - Helper method returns the integer value of a
+ /// ConstantSDNode operand.
+ uint64_t getConstantOperandVal(unsigned Num) const;
+
+ const SDValue &getOperand(unsigned Num) const {
+ assert(Num < NumOperands && "Invalid child # of SDNode!");
+ return OperandList[Num];
+ }
+
+ typedef SDUse* op_iterator;
+ op_iterator op_begin() const { return OperandList; }
+ op_iterator op_end() const { return OperandList+NumOperands; }
+
+ SDVTList getVTList() const {
+ SDVTList X = { ValueList, NumValues };
+ return X;
+ }
+
+ /// getFlaggedNode - If this node has a flag operand, return the node
+ /// to which the flag operand points. Otherwise return NULL.
+ SDNode *getFlaggedNode() const {
+ if (getNumOperands() != 0 &&
+ getOperand(getNumOperands()-1).getValueType().getSimpleVT() == MVT::Flag)
+ return getOperand(getNumOperands()-1).getNode();
+ return 0;
+ }
+
+ // If this is a pseudo op, like copyfromreg, look to see if there is a
+ // real target node flagged to it. If so, return the target node.
+ const SDNode *getFlaggedMachineNode() const {
+ const SDNode *FoundNode = this;
+
+ // Climb up flag edges until a machine-opcode node is found, or the
+ // end of the chain is reached.
+ while (!FoundNode->isMachineOpcode()) {
+ const SDNode *N = FoundNode->getFlaggedNode();
+ if (!N) break;
+ FoundNode = N;
+ }
+
+ return FoundNode;
+ }
+
+ /// getNumValues - Return the number of values defined/returned by this
+ /// operator.
+ ///
+ unsigned getNumValues() const { return NumValues; }
+
+ /// getValueType - Return the type of a specified result.
+ ///
+ EVT getValueType(unsigned ResNo) const {
+ assert(ResNo < NumValues && "Illegal result number!");
+ return ValueList[ResNo];
+ }
+
+ /// getValueSizeInBits - Returns MVT::getSizeInBits(getValueType(ResNo)).
+ ///
+ unsigned getValueSizeInBits(unsigned ResNo) const {
+ return getValueType(ResNo).getSizeInBits();
+ }
+
+ typedef const EVT* value_iterator;
+ value_iterator value_begin() const { return ValueList; }
+ value_iterator value_end() const { return ValueList+NumValues; }
+
+ /// getOperationName - Return the opcode of this operation for printing.
+ ///
+ std::string getOperationName(const SelectionDAG *G = 0) const;
+ static const char* getIndexedModeName(ISD::MemIndexedMode AM);
+ void print_types(raw_ostream &OS, const SelectionDAG *G) const;
+ void print_details(raw_ostream &OS, const SelectionDAG *G) const;
+ void print(raw_ostream &OS, const SelectionDAG *G = 0) const;
+ void printr(raw_ostream &OS, const SelectionDAG *G = 0) const;
+
+ /// printrFull - Print a SelectionDAG node and all children down to
+ /// the leaves. The given SelectionDAG allows target-specific nodes
+ /// to be printed in human-readable form. Unlike printr, this will
+ /// print the whole DAG, including children that appear multiple
+ /// times.
+ ///
+ void printrFull(raw_ostream &O, const SelectionDAG *G = 0) const;
+
+ /// printrWithDepth - Print a SelectionDAG node and children up to
+ /// depth "depth." The given SelectionDAG allows target-specific
+ /// nodes to be printed in human-readable form. Unlike printr, this
+ /// will print children that appear multiple times wherever they are
+ /// used.
+ ///
+ void printrWithDepth(raw_ostream &O, const SelectionDAG *G = 0,
+ unsigned depth = 100) const;
+
+
+ /// dump - Dump this node, for debugging.
+ void dump() const;
+
+ /// dumpr - Dump (recursively) this node and its use-def subgraph.
+ void dumpr() const;
+
+ /// dump - Dump this node, for debugging.
+ /// The given SelectionDAG allows target-specific nodes to be printed
+ /// in human-readable form.
+ void dump(const SelectionDAG *G) const;
+
+ /// dumpr - Dump (recursively) this node and its use-def subgraph.
+ /// The given SelectionDAG allows target-specific nodes to be printed
+ /// in human-readable form.
+ void dumpr(const SelectionDAG *G) const;
+
+ /// dumprFull - printrFull to dbgs(). The given SelectionDAG allows
+ /// target-specific nodes to be printed in human-readable form.
+ /// Unlike dumpr, this will print the whole DAG, including children
+ /// that appear multiple times.
+ ///
+ void dumprFull(const SelectionDAG *G = 0) const;
+
+ /// dumprWithDepth - printrWithDepth to dbgs(). The given
+ /// SelectionDAG allows target-specific nodes to be printed in
+ /// human-readable form. Unlike dumpr, this will print children
+ /// that appear multiple times wherever they are used.
+ ///
+ void dumprWithDepth(const SelectionDAG *G = 0, unsigned depth = 100) const;
+
+
+ static bool classof(const SDNode *) { return true; }
+
+ /// Profile - Gather unique data for the node.
+ ///
+ void Profile(FoldingSetNodeID &ID) const;
+
+ /// addUse - This method should only be used by the SDUse class.
+ ///
+ void addUse(SDUse &U) { U.addToList(&UseList); }
+
+protected:
+ static SDVTList getSDVTList(EVT VT) {
+ SDVTList Ret = { getValueTypeList(VT), 1 };
+ return Ret;
+ }
+
+ SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs, const SDValue *Ops,
+ unsigned NumOps)
+ : NodeType(Opc), OperandsNeedDelete(true), SubclassData(0),
+ NodeId(-1),
+ OperandList(NumOps ? new SDUse[NumOps] : 0),
+ ValueList(VTs.VTs), UseList(NULL),
+ NumOperands(NumOps), NumValues(VTs.NumVTs),
+ debugLoc(dl) {
+ for (unsigned i = 0; i != NumOps; ++i) {
+ OperandList[i].setUser(this);
+ OperandList[i].setInitial(Ops[i]);
+ }
+ checkForCycles(this);
+ }
+
+ /// This constructor adds no operands itself; operands can be
+ /// set later with InitOperands.
+ SDNode(unsigned Opc, const DebugLoc dl, SDVTList VTs)
+ : NodeType(Opc), OperandsNeedDelete(false), SubclassData(0),
+ NodeId(-1), OperandList(0), ValueList(VTs.VTs), UseList(NULL),
+ NumOperands(0), NumValues(VTs.NumVTs),
+ debugLoc(dl) {}
+
+ /// InitOperands - Initialize the operands list of this with 1 operand.
+ void InitOperands(SDUse *Ops, const SDValue &Op0) {
+ Ops[0].setUser(this);
+ Ops[0].setInitial(Op0);
+ NumOperands = 1;
+ OperandList = Ops;
+ checkForCycles(this);
+ }
+
+ /// InitOperands - Initialize the operands list of this with 2 operands.
+ void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1) {
+ Ops[0].setUser(this);
+ Ops[0].setInitial(Op0);
+ Ops[1].setUser(this);
+ Ops[1].setInitial(Op1);
+ NumOperands = 2;
+ OperandList = Ops;
+ checkForCycles(this);
+ }
+
+ /// InitOperands - Initialize the operands list of this with 3 operands.
+ void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
+ const SDValue &Op2) {
+ Ops[0].setUser(this);
+ Ops[0].setInitial(Op0);
+ Ops[1].setUser(this);
+ Ops[1].setInitial(Op1);
+ Ops[2].setUser(this);
+ Ops[2].setInitial(Op2);
+ NumOperands = 3;
+ OperandList = Ops;
+ checkForCycles(this);
+ }
+
+ /// InitOperands - Initialize the operands list of this with 4 operands.
+ void InitOperands(SDUse *Ops, const SDValue &Op0, const SDValue &Op1,
+ const SDValue &Op2, const SDValue &Op3) {
+ Ops[0].setUser(this);
+ Ops[0].setInitial(Op0);
+ Ops[1].setUser(this);
+ Ops[1].setInitial(Op1);
+ Ops[2].setUser(this);
+ Ops[2].setInitial(Op2);
+ Ops[3].setUser(this);
+ Ops[3].setInitial(Op3);
+ NumOperands = 4;
+ OperandList = Ops;
+ checkForCycles(this);
+ }
+
+ /// InitOperands - Initialize the operands list of this with N operands.
+ void InitOperands(SDUse *Ops, const SDValue *Vals, unsigned N) {
+ for (unsigned i = 0; i != N; ++i) {
+ Ops[i].setUser(this);
+ Ops[i].setInitial(Vals[i]);
+ }
+ NumOperands = N;
+ OperandList = Ops;
+ checkForCycles(this);
+ }
+
+ /// DropOperands - Release the operands and set this node to have
+ /// zero operands.
+ void DropOperands();
+};
+
+
+// Define inline functions from the SDValue class.
+
+inline unsigned SDValue::getOpcode() const {
+ return Node->getOpcode();
+}
+inline EVT SDValue::getValueType() const {
+ return Node->getValueType(ResNo);
+}
+inline unsigned SDValue::getNumOperands() const {
+ return Node->getNumOperands();
+}
+inline const SDValue &SDValue::getOperand(unsigned i) const {
+ return Node->getOperand(i);
+}
+inline uint64_t SDValue::getConstantOperandVal(unsigned i) const {
+ return Node->getConstantOperandVal(i);
+}
+inline bool SDValue::isTargetOpcode() const {
+ return Node->isTargetOpcode();
+}
+inline bool SDValue::isTargetMemoryOpcode() const {
+ return Node->isTargetMemoryOpcode();
+}
+inline bool SDValue::isMachineOpcode() const {
+ return Node->isMachineOpcode();
+}
+inline unsigned SDValue::getMachineOpcode() const {
+ return Node->getMachineOpcode();
+}
+inline bool SDValue::use_empty() const {
+ return !Node->hasAnyUseOfValue(ResNo);
+}
+inline bool SDValue::hasOneUse() const {
+ return Node->hasNUsesOfValue(1, ResNo);
+}
+inline const DebugLoc SDValue::getDebugLoc() const {
+ return Node->getDebugLoc();
+}
+
+// Define inline functions from the SDUse class.
+
+inline void SDUse::set(const SDValue &V) {
+ if (Val.getNode()) removeFromList();
+ Val = V;
+ if (V.getNode()) V.getNode()->addUse(*this);
+}
+
+inline void SDUse::setInitial(const SDValue &V) {
+ Val = V;
+ V.getNode()->addUse(*this);
+}
+
+inline void SDUse::setNode(SDNode *N) {
+ if (Val.getNode()) removeFromList();
+ Val.setNode(N);
+ if (N) N->addUse(*this);
+}
+
+/// UnarySDNode - This class is used for single-operand SDNodes. This is solely
+/// to allow co-allocation of node operands with the node itself.
+class UnarySDNode : public SDNode {
+ SDUse Op;
+public:
+ UnarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X)
+ : SDNode(Opc, dl, VTs) {
+ InitOperands(&Op, X);
+ }
+};
+
+/// BinarySDNode - This class is used for two-operand SDNodes. This is solely
+/// to allow co-allocation of node operands with the node itself.
+class BinarySDNode : public SDNode {
+ SDUse Ops[2];
+public:
+ BinarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y)
+ : SDNode(Opc, dl, VTs) {
+ InitOperands(Ops, X, Y);
+ }
+};
+
+/// TernarySDNode - This class is used for three-operand SDNodes. This is solely
+/// to allow co-allocation of node operands with the node itself.
+class TernarySDNode : public SDNode {
+ SDUse Ops[3];
+public:
+ TernarySDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, SDValue X, SDValue Y,
+ SDValue Z)
+ : SDNode(Opc, dl, VTs) {
+ InitOperands(Ops, X, Y, Z);
+ }
+};
+
+
+/// HandleSDNode - This class is used to form a handle around another node that
+/// is persistant and is updated across invocations of replaceAllUsesWith on its
+/// operand. This node should be directly created by end-users and not added to
+/// the AllNodes list.
+class HandleSDNode : public SDNode {
+ SDUse Op;
+public:
+ // FIXME: Remove the "noinline" attribute once <rdar://problem/5852746> is
+ // fixed.
+#ifdef __GNUC__
+ explicit __attribute__((__noinline__)) HandleSDNode(SDValue X)
+#else
+ explicit HandleSDNode(SDValue X)
+#endif
+ : SDNode(ISD::HANDLENODE, DebugLoc::getUnknownLoc(),
+ getSDVTList(MVT::Other)) {
+ InitOperands(&Op, X);
+ }
+ ~HandleSDNode();
+ const SDValue &getValue() const { return Op; }
+};
+
+/// Abstact virtual class for operations for memory operations
+class MemSDNode : public SDNode {
+private:
+ // MemoryVT - VT of in-memory value.
+ EVT MemoryVT;
+
+protected:
+ /// MMO - Memory reference information.
+ MachineMemOperand *MMO;
+
+public:
+ MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT MemoryVT,
+ MachineMemOperand *MMO);
+
+ MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, const SDValue *Ops,
+ unsigned NumOps, EVT MemoryVT, MachineMemOperand *MMO);
+
+ bool readMem() const { return MMO->isLoad(); }
+ bool writeMem() const { return MMO->isStore(); }
+
+ /// Returns alignment and volatility of the memory access
+ unsigned getOriginalAlignment() const {
+ return MMO->getBaseAlignment();
+ }
+ unsigned getAlignment() const {
+ return MMO->getAlignment();
+ }
+
+ /// getRawSubclassData - Return the SubclassData value, which contains an
+ /// encoding of the volatile flag, as well as bits used by subclasses. This
+ /// function should only be used to compute a FoldingSetNodeID value.
+ unsigned getRawSubclassData() const {
+ return SubclassData;
+ }
+
+ bool isVolatile() const { return (SubclassData >> 5) & 1; }
+
+ /// Returns the SrcValue and offset that describes the location of the access
+ const Value *getSrcValue() const { return MMO->getValue(); }
+ int64_t getSrcValueOffset() const { return MMO->getOffset(); }
+
+ /// getMemoryVT - Return the type of the in-memory value.
+ EVT getMemoryVT() const { return MemoryVT; }
+
+ /// getMemOperand - Return a MachineMemOperand object describing the memory
+ /// reference performed by operation.
+ MachineMemOperand *getMemOperand() const { return MMO; }
+
+ /// refineAlignment - Update this MemSDNode's MachineMemOperand information
+ /// to reflect the alignment of NewMMO, if it has a greater alignment.
+ /// This must only be used when the new alignment applies to all users of
+ /// this MachineMemOperand.
+ void refineAlignment(const MachineMemOperand *NewMMO) {
+ MMO->refineAlignment(NewMMO);
+ }
+
+ const SDValue &getChain() const { return getOperand(0); }
+ const SDValue &getBasePtr() const {
+ return getOperand(getOpcode() == ISD::STORE ? 2 : 1);
+ }
+
+ // Methods to support isa and dyn_cast
+ static bool classof(const MemSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ // For some targets, we lower some target intrinsics to a MemIntrinsicNode
+ // with either an intrinsic or a target opcode.
+ return N->getOpcode() == ISD::LOAD ||
+ N->getOpcode() == ISD::STORE ||
+ N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
+ N->getOpcode() == ISD::ATOMIC_SWAP ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_UMAX ||
+ N->isTargetMemoryOpcode();
+ }
+};
+
+/// AtomicSDNode - A SDNode reprenting atomic operations.
+///
+class AtomicSDNode : public MemSDNode {
+ SDUse Ops[4];
+
+public:
+ // Opc: opcode for atomic
+ // VTL: value type list
+ // Chain: memory chain for operaand
+ // Ptr: address to update as a SDValue
+ // Cmp: compare value
+ // Swp: swap value
+ // SrcVal: address to update as a Value (used for MemOperand)
+ // Align: alignment of memory
+ AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
+ SDValue Chain, SDValue Ptr,
+ SDValue Cmp, SDValue Swp, MachineMemOperand *MMO)
+ : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
+ assert(readMem() && "Atomic MachineMemOperand is not a load!");
+ assert(writeMem() && "Atomic MachineMemOperand is not a store!");
+ InitOperands(Ops, Chain, Ptr, Cmp, Swp);
+ }
+ AtomicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTL, EVT MemVT,
+ SDValue Chain, SDValue Ptr,
+ SDValue Val, MachineMemOperand *MMO)
+ : MemSDNode(Opc, dl, VTL, MemVT, MMO) {
+ assert(readMem() && "Atomic MachineMemOperand is not a load!");
+ assert(writeMem() && "Atomic MachineMemOperand is not a store!");
+ InitOperands(Ops, Chain, Ptr, Val);
+ }
+
+ const SDValue &getBasePtr() const { return getOperand(1); }
+ const SDValue &getVal() const { return getOperand(2); }
+
+ bool isCompareAndSwap() const {
+ unsigned Op = getOpcode();
+ return Op == ISD::ATOMIC_CMP_SWAP;
+ }
+
+ // Methods to support isa and dyn_cast
+ static bool classof(const AtomicSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::ATOMIC_CMP_SWAP ||
+ N->getOpcode() == ISD::ATOMIC_SWAP ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_ADD ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_SUB ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_AND ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_OR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_XOR ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_NAND ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_MIN ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_MAX ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_UMIN ||
+ N->getOpcode() == ISD::ATOMIC_LOAD_UMAX;
+ }
+};
+
+/// MemIntrinsicSDNode - This SDNode is used for target intrinsics that touch
+/// memory and need an associated MachineMemOperand. Its opcode may be
+/// INTRINSIC_VOID, INTRINSIC_W_CHAIN, or a target-specific opcode with a
+/// value not less than FIRST_TARGET_MEMORY_OPCODE.
+class MemIntrinsicSDNode : public MemSDNode {
+public:
+ MemIntrinsicSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
+ const SDValue *Ops, unsigned NumOps,
+ EVT MemoryVT, MachineMemOperand *MMO)
+ : MemSDNode(Opc, dl, VTs, Ops, NumOps, MemoryVT, MMO) {
+ }
+
+ // Methods to support isa and dyn_cast
+ static bool classof(const MemIntrinsicSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ // We lower some target intrinsics to their target opcode
+ // early a node with a target opcode can be of this class
+ return N->getOpcode() == ISD::INTRINSIC_W_CHAIN ||
+ N->getOpcode() == ISD::INTRINSIC_VOID ||
+ N->isTargetMemoryOpcode();
+ }
+};
+
+/// ShuffleVectorSDNode - This SDNode is used to implement the code generator
+/// support for the llvm IR shufflevector instruction. It combines elements
+/// from two input vectors into a new input vector, with the selection and
+/// ordering of elements determined by an array of integers, referred to as
+/// the shuffle mask. For input vectors of width N, mask indices of 0..N-1
+/// refer to elements from the LHS input, and indices from N to 2N-1 the RHS.
+/// An index of -1 is treated as undef, such that the code generator may put
+/// any value in the corresponding element of the result.
+class ShuffleVectorSDNode : public SDNode {
+ SDUse Ops[2];
+
+ // The memory for Mask is owned by the SelectionDAG's OperandAllocator, and
+ // is freed when the SelectionDAG object is destroyed.
+ const int *Mask;
+protected:
+ friend class SelectionDAG;
+ ShuffleVectorSDNode(EVT VT, DebugLoc dl, SDValue N1, SDValue N2,
+ const int *M)
+ : SDNode(ISD::VECTOR_SHUFFLE, dl, getSDVTList(VT)), Mask(M) {
+ InitOperands(Ops, N1, N2);
+ }
+public:
+
+ void getMask(SmallVectorImpl<int> &M) const {
+ EVT VT = getValueType(0);
+ M.clear();
+ for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i)
+ M.push_back(Mask[i]);
+ }
+ int getMaskElt(unsigned Idx) const {
+ assert(Idx < getValueType(0).getVectorNumElements() && "Idx out of range!");
+ return Mask[Idx];
+ }
+
+ bool isSplat() const { return isSplatMask(Mask, getValueType(0)); }
+ int getSplatIndex() const {
+ assert(isSplat() && "Cannot get splat index for non-splat!");
+ return Mask[0];
+ }
+ static bool isSplatMask(const int *Mask, EVT VT);
+
+ static bool classof(const ShuffleVectorSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::VECTOR_SHUFFLE;
+ }
+};
+
+class ConstantSDNode : public SDNode {
+ const ConstantInt *Value;
+ friend class SelectionDAG;
+ ConstantSDNode(bool isTarget, const ConstantInt *val, EVT VT)
+ : SDNode(isTarget ? ISD::TargetConstant : ISD::Constant,
+ DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
+ }
+public:
+
+ const ConstantInt *getConstantIntValue() const { return Value; }
+ const APInt &getAPIntValue() const { return Value->getValue(); }
+ uint64_t getZExtValue() const { return Value->getZExtValue(); }
+ int64_t getSExtValue() const { return Value->getSExtValue(); }
+
+ bool isNullValue() const { return Value->isNullValue(); }
+ bool isAllOnesValue() const { return Value->isAllOnesValue(); }
+
+ static bool classof(const ConstantSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::Constant ||
+ N->getOpcode() == ISD::TargetConstant;
+ }
+};
+
+class ConstantFPSDNode : public SDNode {
+ const ConstantFP *Value;
+ friend class SelectionDAG;
+ ConstantFPSDNode(bool isTarget, const ConstantFP *val, EVT VT)
+ : SDNode(isTarget ? ISD::TargetConstantFP : ISD::ConstantFP,
+ DebugLoc::getUnknownLoc(), getSDVTList(VT)), Value(val) {
+ }
+public:
+
+ const APFloat& getValueAPF() const { return Value->getValueAPF(); }
+ const ConstantFP *getConstantFPValue() const { return Value; }
+
+ /// isExactlyValue - We don't rely on operator== working on double values, as
+ /// it returns true for things that are clearly not equal, like -0.0 and 0.0.
+ /// As such, this method can be used to do an exact bit-for-bit comparison of
+ /// two floating point values.
+
+ /// We leave the version with the double argument here because it's just so
+ /// convenient to write "2.0" and the like. Without this function we'd
+ /// have to duplicate its logic everywhere it's called.
+ bool isExactlyValue(double V) const {
+ bool ignored;
+ // convert is not supported on this type
+ if (&Value->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble)
+ return false;
+ APFloat Tmp(V);
+ Tmp.convert(Value->getValueAPF().getSemantics(),
+ APFloat::rmNearestTiesToEven, &ignored);
+ return isExactlyValue(Tmp);
+ }
+ bool isExactlyValue(const APFloat& V) const;
+
+ bool isValueValidForType(EVT VT, const APFloat& Val);
+
+ static bool classof(const ConstantFPSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::ConstantFP ||
+ N->getOpcode() == ISD::TargetConstantFP;
+ }
+};
+
+class GlobalAddressSDNode : public SDNode {
+ GlobalValue *TheGlobal;
+ int64_t Offset;
+ unsigned char TargetFlags;
+ friend class SelectionDAG;
+ GlobalAddressSDNode(unsigned Opc, const GlobalValue *GA, EVT VT,
+ int64_t o, unsigned char TargetFlags);
+public:
+
+ GlobalValue *getGlobal() const { return TheGlobal; }
+ int64_t getOffset() const { return Offset; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+ // Return the address space this GlobalAddress belongs to.
+ unsigned getAddressSpace() const;
+
+ static bool classof(const GlobalAddressSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::GlobalAddress ||
+ N->getOpcode() == ISD::TargetGlobalAddress ||
+ N->getOpcode() == ISD::GlobalTLSAddress ||
+ N->getOpcode() == ISD::TargetGlobalTLSAddress;
+ }
+};
+
+class FrameIndexSDNode : public SDNode {
+ int FI;
+ friend class SelectionDAG;
+ FrameIndexSDNode(int fi, EVT VT, bool isTarg)
+ : SDNode(isTarg ? ISD::TargetFrameIndex : ISD::FrameIndex,
+ DebugLoc::getUnknownLoc(), getSDVTList(VT)), FI(fi) {
+ }
+public:
+
+ int getIndex() const { return FI; }
+
+ static bool classof(const FrameIndexSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::FrameIndex ||
+ N->getOpcode() == ISD::TargetFrameIndex;
+ }
+};
+
+class JumpTableSDNode : public SDNode {
+ int JTI;
+ unsigned char TargetFlags;
+ friend class SelectionDAG;
+ JumpTableSDNode(int jti, EVT VT, bool isTarg, unsigned char TF)
+ : SDNode(isTarg ? ISD::TargetJumpTable : ISD::JumpTable,
+ DebugLoc::getUnknownLoc(), getSDVTList(VT)), JTI(jti), TargetFlags(TF) {
+ }
+public:
+
+ int getIndex() const { return JTI; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+
+ static bool classof(const JumpTableSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::JumpTable ||
+ N->getOpcode() == ISD::TargetJumpTable;
+ }
+};
+
+class ConstantPoolSDNode : public SDNode {
+ union {
+ Constant *ConstVal;
+ MachineConstantPoolValue *MachineCPVal;
+ } Val;
+ int Offset; // It's a MachineConstantPoolValue if top bit is set.
+ unsigned Alignment; // Minimum alignment requirement of CP (not log2 value).
+ unsigned char TargetFlags;
+ friend class SelectionDAG;
+ ConstantPoolSDNode(bool isTarget, Constant *c, EVT VT, int o, unsigned Align,
+ unsigned char TF)
+ : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
+ DebugLoc::getUnknownLoc(),
+ getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
+ assert((int)Offset >= 0 && "Offset is too large");
+ Val.ConstVal = c;
+ }
+ ConstantPoolSDNode(bool isTarget, MachineConstantPoolValue *v,
+ EVT VT, int o, unsigned Align, unsigned char TF)
+ : SDNode(isTarget ? ISD::TargetConstantPool : ISD::ConstantPool,
+ DebugLoc::getUnknownLoc(),
+ getSDVTList(VT)), Offset(o), Alignment(Align), TargetFlags(TF) {
+ assert((int)Offset >= 0 && "Offset is too large");
+ Val.MachineCPVal = v;
+ Offset |= 1 << (sizeof(unsigned)*CHAR_BIT-1);
+ }
+public:
+
+
+ bool isMachineConstantPoolEntry() const {
+ return (int)Offset < 0;
+ }
+
+ Constant *getConstVal() const {
+ assert(!isMachineConstantPoolEntry() && "Wrong constantpool type");
+ return Val.ConstVal;
+ }
+
+ MachineConstantPoolValue *getMachineCPVal() const {
+ assert(isMachineConstantPoolEntry() && "Wrong constantpool type");
+ return Val.MachineCPVal;
+ }
+
+ int getOffset() const {
+ return Offset & ~(1 << (sizeof(unsigned)*CHAR_BIT-1));
+ }
+
+ // Return the alignment of this constant pool object, which is either 0 (for
+ // default alignment) or the desired value.
+ unsigned getAlignment() const { return Alignment; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+
+ const Type *getType() const;
+
+ static bool classof(const ConstantPoolSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::ConstantPool ||
+ N->getOpcode() == ISD::TargetConstantPool;
+ }
+};
+
+class BasicBlockSDNode : public SDNode {
+ MachineBasicBlock *MBB;
+ friend class SelectionDAG;
+ /// Debug info is meaningful and potentially useful here, but we create
+ /// blocks out of order when they're jumped to, which makes it a bit
+ /// harder. Let's see if we need it first.
+ explicit BasicBlockSDNode(MachineBasicBlock *mbb)
+ : SDNode(ISD::BasicBlock, DebugLoc::getUnknownLoc(),
+ getSDVTList(MVT::Other)), MBB(mbb) {
+ }
+public:
+
+ MachineBasicBlock *getBasicBlock() const { return MBB; }
+
+ static bool classof(const BasicBlockSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::BasicBlock;
+ }
+};
+
+/// BuildVectorSDNode - A "pseudo-class" with methods for operating on
+/// BUILD_VECTORs.
+class BuildVectorSDNode : public SDNode {
+ // These are constructed as SDNodes and then cast to BuildVectorSDNodes.
+ explicit BuildVectorSDNode(); // Do not implement
+public:
+ /// isConstantSplat - Check if this is a constant splat, and if so, find the
+ /// smallest element size that splats the vector. If MinSplatBits is
+ /// nonzero, the element size must be at least that large. Note that the
+ /// splat element may be the entire vector (i.e., a one element vector).
+ /// Returns the splat element value in SplatValue. Any undefined bits in
+ /// that value are zero, and the corresponding bits in the SplatUndef mask
+ /// are set. The SplatBitSize value is set to the splat element size in
+ /// bits. HasAnyUndefs is set to true if any bits in the vector are
+ /// undefined. isBigEndian describes the endianness of the target.
+ bool isConstantSplat(APInt &SplatValue, APInt &SplatUndef,
+ unsigned &SplatBitSize, bool &HasAnyUndefs,
+ unsigned MinSplatBits = 0, bool isBigEndian = false);
+
+ static inline bool classof(const BuildVectorSDNode *) { return true; }
+ static inline bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::BUILD_VECTOR;
+ }
+};
+
+/// SrcValueSDNode - An SDNode that holds an arbitrary LLVM IR Value. This is
+/// used when the SelectionDAG needs to make a simple reference to something
+/// in the LLVM IR representation.
+///
+class SrcValueSDNode : public SDNode {
+ const Value *V;
+ friend class SelectionDAG;
+ /// Create a SrcValue for a general value.
+ explicit SrcValueSDNode(const Value *v)
+ : SDNode(ISD::SRCVALUE, DebugLoc::getUnknownLoc(),
+ getSDVTList(MVT::Other)), V(v) {}
+
+public:
+ /// getValue - return the contained Value.
+ const Value *getValue() const { return V; }
+
+ static bool classof(const SrcValueSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::SRCVALUE;
+ }
+};
+
+
+class RegisterSDNode : public SDNode {
+ unsigned Reg;
+ friend class SelectionDAG;
+ RegisterSDNode(unsigned reg, EVT VT)
+ : SDNode(ISD::Register, DebugLoc::getUnknownLoc(),
+ getSDVTList(VT)), Reg(reg) {
+ }
+public:
+
+ unsigned getReg() const { return Reg; }
+
+ static bool classof(const RegisterSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::Register;
+ }
+};
+
+class BlockAddressSDNode : public SDNode {
+ BlockAddress *BA;
+ unsigned char TargetFlags;
+ friend class SelectionDAG;
+ BlockAddressSDNode(unsigned NodeTy, EVT VT, BlockAddress *ba,
+ unsigned char Flags)
+ : SDNode(NodeTy, DebugLoc::getUnknownLoc(), getSDVTList(VT)),
+ BA(ba), TargetFlags(Flags) {
+ }
+public:
+ BlockAddress *getBlockAddress() const { return BA; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+
+ static bool classof(const BlockAddressSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::BlockAddress ||
+ N->getOpcode() == ISD::TargetBlockAddress;
+ }
+};
+
+class LabelSDNode : public SDNode {
+ SDUse Chain;
+ unsigned LabelID;
+ friend class SelectionDAG;
+ LabelSDNode(unsigned NodeTy, DebugLoc dl, SDValue ch, unsigned id)
+ : SDNode(NodeTy, dl, getSDVTList(MVT::Other)), LabelID(id) {
+ InitOperands(&Chain, ch);
+ }
+public:
+ unsigned getLabelID() const { return LabelID; }
+
+ static bool classof(const LabelSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::EH_LABEL;
+ }
+};
+
+class ExternalSymbolSDNode : public SDNode {
+ const char *Symbol;
+ unsigned char TargetFlags;
+
+ friend class SelectionDAG;
+ ExternalSymbolSDNode(bool isTarget, const char *Sym, unsigned char TF, EVT VT)
+ : SDNode(isTarget ? ISD::TargetExternalSymbol : ISD::ExternalSymbol,
+ DebugLoc::getUnknownLoc(),
+ getSDVTList(VT)), Symbol(Sym), TargetFlags(TF) {
+ }
+public:
+
+ const char *getSymbol() const { return Symbol; }
+ unsigned char getTargetFlags() const { return TargetFlags; }
+
+ static bool classof(const ExternalSymbolSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::ExternalSymbol ||
+ N->getOpcode() == ISD::TargetExternalSymbol;
+ }
+};
+
+class CondCodeSDNode : public SDNode {
+ ISD::CondCode Condition;
+ friend class SelectionDAG;
+ explicit CondCodeSDNode(ISD::CondCode Cond)
+ : SDNode(ISD::CONDCODE, DebugLoc::getUnknownLoc(),
+ getSDVTList(MVT::Other)), Condition(Cond) {
+ }
+public:
+
+ ISD::CondCode get() const { return Condition; }
+
+ static bool classof(const CondCodeSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::CONDCODE;
+ }
+};
+
+/// CvtRndSatSDNode - NOTE: avoid using this node as this may disappear in the
+/// future and most targets don't support it.
+class CvtRndSatSDNode : public SDNode {
+ ISD::CvtCode CvtCode;
+ friend class SelectionDAG;
+ explicit CvtRndSatSDNode(EVT VT, DebugLoc dl, const SDValue *Ops,
+ unsigned NumOps, ISD::CvtCode Code)
+ : SDNode(ISD::CONVERT_RNDSAT, dl, getSDVTList(VT), Ops, NumOps),
+ CvtCode(Code) {
+ assert(NumOps == 5 && "wrong number of operations");
+ }
+public:
+ ISD::CvtCode getCvtCode() const { return CvtCode; }
+
+ static bool classof(const CvtRndSatSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::CONVERT_RNDSAT;
+ }
+};
+
+namespace ISD {
+ struct ArgFlagsTy {
+ private:
+ static const uint64_t NoFlagSet = 0ULL;
+ static const uint64_t ZExt = 1ULL<<0; ///< Zero extended
+ static const uint64_t ZExtOffs = 0;
+ static const uint64_t SExt = 1ULL<<1; ///< Sign extended
+ static const uint64_t SExtOffs = 1;
+ static const uint64_t InReg = 1ULL<<2; ///< Passed in register
+ static const uint64_t InRegOffs = 2;
+ static const uint64_t SRet = 1ULL<<3; ///< Hidden struct-ret ptr
+ static const uint64_t SRetOffs = 3;
+ static const uint64_t ByVal = 1ULL<<4; ///< Struct passed by value
+ static const uint64_t ByValOffs = 4;
+ static const uint64_t Nest = 1ULL<<5; ///< Nested fn static chain
+ static const uint64_t NestOffs = 5;
+ static const uint64_t ByValAlign = 0xFULL << 6; //< Struct alignment
+ static const uint64_t ByValAlignOffs = 6;
+ static const uint64_t Split = 1ULL << 10;
+ static const uint64_t SplitOffs = 10;
+ static const uint64_t OrigAlign = 0x1FULL<<27;
+ static const uint64_t OrigAlignOffs = 27;
+ static const uint64_t ByValSize = 0xffffffffULL << 32; //< Struct size
+ static const uint64_t ByValSizeOffs = 32;
+
+ static const uint64_t One = 1ULL; //< 1 of this type, for shifts
+
+ uint64_t Flags;
+ public:
+ ArgFlagsTy() : Flags(0) { }
+
+ bool isZExt() const { return Flags & ZExt; }
+ void setZExt() { Flags |= One << ZExtOffs; }
+
+ bool isSExt() const { return Flags & SExt; }
+ void setSExt() { Flags |= One << SExtOffs; }
+
+ bool isInReg() const { return Flags & InReg; }
+ void setInReg() { Flags |= One << InRegOffs; }
+
+ bool isSRet() const { return Flags & SRet; }
+ void setSRet() { Flags |= One << SRetOffs; }
+
+ bool isByVal() const { return Flags & ByVal; }
+ void setByVal() { Flags |= One << ByValOffs; }
+
+ bool isNest() const { return Flags & Nest; }
+ void setNest() { Flags |= One << NestOffs; }
+
+ unsigned getByValAlign() const {
+ return (unsigned)
+ ((One << ((Flags & ByValAlign) >> ByValAlignOffs)) / 2);
+ }
+ void setByValAlign(unsigned A) {
+ Flags = (Flags & ~ByValAlign) |
+ (uint64_t(Log2_32(A) + 1) << ByValAlignOffs);
+ }
+
+ bool isSplit() const { return Flags & Split; }
+ void setSplit() { Flags |= One << SplitOffs; }
+
+ unsigned getOrigAlign() const {
+ return (unsigned)
+ ((One << ((Flags & OrigAlign) >> OrigAlignOffs)) / 2);
+ }
+ void setOrigAlign(unsigned A) {
+ Flags = (Flags & ~OrigAlign) |
+ (uint64_t(Log2_32(A) + 1) << OrigAlignOffs);
+ }
+
+ unsigned getByValSize() const {
+ return (unsigned)((Flags & ByValSize) >> ByValSizeOffs);
+ }
+ void setByValSize(unsigned S) {
+ Flags = (Flags & ~ByValSize) | (uint64_t(S) << ByValSizeOffs);
+ }
+
+ /// getArgFlagsString - Returns the flags as a string, eg: "zext align:4".
+ std::string getArgFlagsString();
+
+ /// getRawBits - Represent the flags as a bunch of bits.
+ uint64_t getRawBits() const { return Flags; }
+ };
+
+ /// InputArg - This struct carries flags and type information about a
+ /// single incoming (formal) argument or incoming (from the perspective
+ /// of the caller) return value virtual register.
+ ///
+ struct InputArg {
+ ArgFlagsTy Flags;
+ EVT VT;
+ bool Used;
+
+ InputArg() : VT(MVT::Other), Used(false) {}
+ InputArg(ISD::ArgFlagsTy flags, EVT vt, bool used)
+ : Flags(flags), VT(vt), Used(used) {
+ assert(VT.isSimple() &&
+ "InputArg value type must be Simple!");
+ }
+ };
+
+ /// OutputArg - This struct carries flags and a value for a
+ /// single outgoing (actual) argument or outgoing (from the perspective
+ /// of the caller) return value virtual register.
+ ///
+ struct OutputArg {
+ ArgFlagsTy Flags;
+ SDValue Val;
+ bool IsFixed;
+
+ OutputArg() : IsFixed(false) {}
+ OutputArg(ISD::ArgFlagsTy flags, SDValue val, bool isfixed)
+ : Flags(flags), Val(val), IsFixed(isfixed) {
+ assert(Val.getValueType().isSimple() &&
+ "OutputArg value type must be Simple!");
+ }
+ };
+}
+
+/// VTSDNode - This class is used to represent EVT's, which are used
+/// to parameterize some operations.
+class VTSDNode : public SDNode {
+ EVT ValueType;
+ friend class SelectionDAG;
+ explicit VTSDNode(EVT VT)
+ : SDNode(ISD::VALUETYPE, DebugLoc::getUnknownLoc(),
+ getSDVTList(MVT::Other)), ValueType(VT) {
+ }
+public:
+
+ EVT getVT() const { return ValueType; }
+
+ static bool classof(const VTSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::VALUETYPE;
+ }
+};
+
+/// LSBaseSDNode - Base class for LoadSDNode and StoreSDNode
+///
+class LSBaseSDNode : public MemSDNode {
+ //! Operand array for load and store
+ /*!
+ \note Moving this array to the base class captures more
+ common functionality shared between LoadSDNode and
+ StoreSDNode
+ */
+ SDUse Ops[4];
+public:
+ LSBaseSDNode(ISD::NodeType NodeTy, DebugLoc dl, SDValue *Operands,
+ unsigned numOperands, SDVTList VTs, ISD::MemIndexedMode AM,
+ EVT MemVT, MachineMemOperand *MMO)
+ : MemSDNode(NodeTy, dl, VTs, MemVT, MMO) {
+ SubclassData |= AM << 2;
+ assert(getAddressingMode() == AM && "MemIndexedMode encoding error!");
+ InitOperands(Ops, Operands, numOperands);
+ assert((getOffset().getOpcode() == ISD::UNDEF || isIndexed()) &&
+ "Only indexed loads and stores have a non-undef offset operand");
+ }
+
+ const SDValue &getOffset() const {
+ return getOperand(getOpcode() == ISD::LOAD ? 2 : 3);
+ }
+
+ /// getAddressingMode - Return the addressing mode for this load or store:
+ /// unindexed, pre-inc, pre-dec, post-inc, or post-dec.
+ ISD::MemIndexedMode getAddressingMode() const {
+ return ISD::MemIndexedMode((SubclassData >> 2) & 7);
+ }
+
+ /// isIndexed - Return true if this is a pre/post inc/dec load/store.
+ bool isIndexed() const { return getAddressingMode() != ISD::UNINDEXED; }
+
+ /// isUnindexed - Return true if this is NOT a pre/post inc/dec load/store.
+ bool isUnindexed() const { return getAddressingMode() == ISD::UNINDEXED; }
+
+ static bool classof(const LSBaseSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::LOAD ||
+ N->getOpcode() == ISD::STORE;
+ }
+};
+
+/// LoadSDNode - This class is used to represent ISD::LOAD nodes.
+///
+class LoadSDNode : public LSBaseSDNode {
+ friend class SelectionDAG;
+ LoadSDNode(SDValue *ChainPtrOff, DebugLoc dl, SDVTList VTs,
+ ISD::MemIndexedMode AM, ISD::LoadExtType ETy, EVT MemVT,
+ MachineMemOperand *MMO)
+ : LSBaseSDNode(ISD::LOAD, dl, ChainPtrOff, 3,
+ VTs, AM, MemVT, MMO) {
+ SubclassData |= (unsigned short)ETy;
+ assert(getExtensionType() == ETy && "LoadExtType encoding error!");
+ assert(readMem() && "Load MachineMemOperand is not a load!");
+ assert(!writeMem() && "Load MachineMemOperand is a store!");
+ }
+public:
+
+ /// getExtensionType - Return whether this is a plain node,
+ /// or one of the varieties of value-extending loads.
+ ISD::LoadExtType getExtensionType() const {
+ return ISD::LoadExtType(SubclassData & 3);
+ }
+
+ const SDValue &getBasePtr() const { return getOperand(1); }
+ const SDValue &getOffset() const { return getOperand(2); }
+
+ static bool classof(const LoadSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::LOAD;
+ }
+};
+
+/// StoreSDNode - This class is used to represent ISD::STORE nodes.
+///
+class StoreSDNode : public LSBaseSDNode {
+ friend class SelectionDAG;
+ StoreSDNode(SDValue *ChainValuePtrOff, DebugLoc dl, SDVTList VTs,
+ ISD::MemIndexedMode AM, bool isTrunc, EVT MemVT,
+ MachineMemOperand *MMO)
+ : LSBaseSDNode(ISD::STORE, dl, ChainValuePtrOff, 4,
+ VTs, AM, MemVT, MMO) {
+ SubclassData |= (unsigned short)isTrunc;
+ assert(isTruncatingStore() == isTrunc && "isTrunc encoding error!");
+ assert(!readMem() && "Store MachineMemOperand is a load!");
+ assert(writeMem() && "Store MachineMemOperand is not a store!");
+ }
+public:
+
+ /// isTruncatingStore - Return true if the op does a truncation before store.
+ /// For integers this is the same as doing a TRUNCATE and storing the result.
+ /// For floats, it is the same as doing an FP_ROUND and storing the result.
+ bool isTruncatingStore() const { return SubclassData & 1; }
+
+ const SDValue &getValue() const { return getOperand(1); }
+ const SDValue &getBasePtr() const { return getOperand(2); }
+ const SDValue &getOffset() const { return getOperand(3); }
+
+ static bool classof(const StoreSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->getOpcode() == ISD::STORE;
+ }
+};
+
+/// MachineSDNode - An SDNode that represents everything that will be needed
+/// to construct a MachineInstr. These nodes are created during the
+/// instruction selection proper phase.
+///
+class MachineSDNode : public SDNode {
+public:
+ typedef MachineMemOperand **mmo_iterator;
+
+private:
+ friend class SelectionDAG;
+ MachineSDNode(unsigned Opc, const DebugLoc DL, SDVTList VTs)
+ : SDNode(Opc, DL, VTs), MemRefs(0), MemRefsEnd(0) {}
+
+ /// LocalOperands - Operands for this instruction, if they fit here. If
+ /// they don't, this field is unused.
+ SDUse LocalOperands[4];
+
+ /// MemRefs - Memory reference descriptions for this instruction.
+ mmo_iterator MemRefs;
+ mmo_iterator MemRefsEnd;
+
+public:
+ mmo_iterator memoperands_begin() const { return MemRefs; }
+ mmo_iterator memoperands_end() const { return MemRefsEnd; }
+ bool memoperands_empty() const { return MemRefsEnd == MemRefs; }
+
+ /// setMemRefs - Assign this MachineSDNodes's memory reference descriptor
+ /// list. This does not transfer ownership.
+ void setMemRefs(mmo_iterator NewMemRefs, mmo_iterator NewMemRefsEnd) {
+ MemRefs = NewMemRefs;
+ MemRefsEnd = NewMemRefsEnd;
+ }
+
+ static bool classof(const MachineSDNode *) { return true; }
+ static bool classof(const SDNode *N) {
+ return N->isMachineOpcode();
+ }
+};
+
+class SDNodeIterator : public std::iterator<std::forward_iterator_tag,
+ SDNode, ptrdiff_t> {
+ SDNode *Node;
+ unsigned Operand;
+
+ SDNodeIterator(SDNode *N, unsigned Op) : Node(N), Operand(Op) {}
+public:
+ bool operator==(const SDNodeIterator& x) const {
+ return Operand == x.Operand;
+ }
+ bool operator!=(const SDNodeIterator& x) const { return !operator==(x); }
+
+ const SDNodeIterator &operator=(const SDNodeIterator &I) {
+ assert(I.Node == Node && "Cannot assign iterators to two different nodes!");
+ Operand = I.Operand;
+ return *this;
+ }
+
+ pointer operator*() const {
+ return Node->getOperand(Operand).getNode();
+ }
+ pointer operator->() const { return operator*(); }
+
+ SDNodeIterator& operator++() { // Preincrement
+ ++Operand;
+ return *this;
+ }
+ SDNodeIterator operator++(int) { // Postincrement
+ SDNodeIterator tmp = *this; ++*this; return tmp;
+ }
+ size_t operator-(SDNodeIterator Other) const {
+ assert(Node == Other.Node &&
+ "Cannot compare iterators of two different nodes!");
+ return Operand - Other.Operand;
+ }
+
+ static SDNodeIterator begin(SDNode *N) { return SDNodeIterator(N, 0); }
+ static SDNodeIterator end (SDNode *N) {
+ return SDNodeIterator(N, N->getNumOperands());
+ }
+
+ unsigned getOperand() const { return Operand; }
+ const SDNode *getNode() const { return Node; }
+};
+
+template <> struct GraphTraits<SDNode*> {
+ typedef SDNode NodeType;
+ typedef SDNodeIterator ChildIteratorType;
+ static inline NodeType *getEntryNode(SDNode *N) { return N; }
+ static inline ChildIteratorType child_begin(NodeType *N) {
+ return SDNodeIterator::begin(N);
+ }
+ static inline ChildIteratorType child_end(NodeType *N) {
+ return SDNodeIterator::end(N);
+ }
+};
+
+/// LargestSDNode - The largest SDNode class.
+///
+typedef LoadSDNode LargestSDNode;
+
+/// MostAlignedSDNode - The SDNode class with the greatest alignment
+/// requirement.
+///
+typedef GlobalAddressSDNode MostAlignedSDNode;
+
+namespace ISD {
+ /// isNormalLoad - Returns true if the specified node is a non-extending
+ /// and unindexed load.
+ inline bool isNormalLoad(const SDNode *N) {
+ const LoadSDNode *Ld = dyn_cast<LoadSDNode>(N);
+ return Ld && Ld->getExtensionType() == ISD::NON_EXTLOAD &&
+ Ld->getAddressingMode() == ISD::UNINDEXED;
+ }
+
+ /// isNON_EXTLoad - Returns true if the specified node is a non-extending
+ /// load.
+ inline bool isNON_EXTLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getExtensionType() == ISD::NON_EXTLOAD;
+ }
+
+ /// isEXTLoad - Returns true if the specified node is a EXTLOAD.
+ ///
+ inline bool isEXTLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getExtensionType() == ISD::EXTLOAD;
+ }
+
+ /// isSEXTLoad - Returns true if the specified node is a SEXTLOAD.
+ ///
+ inline bool isSEXTLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getExtensionType() == ISD::SEXTLOAD;
+ }
+
+ /// isZEXTLoad - Returns true if the specified node is a ZEXTLOAD.
+ ///
+ inline bool isZEXTLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getExtensionType() == ISD::ZEXTLOAD;
+ }
+
+ /// isUNINDEXEDLoad - Returns true if the specified node is an unindexed load.
+ ///
+ inline bool isUNINDEXEDLoad(const SDNode *N) {
+ return isa<LoadSDNode>(N) &&
+ cast<LoadSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
+ }
+
+ /// isNormalStore - Returns true if the specified node is a non-truncating
+ /// and unindexed store.
+ inline bool isNormalStore(const SDNode *N) {
+ const StoreSDNode *St = dyn_cast<StoreSDNode>(N);
+ return St && !St->isTruncatingStore() &&
+ St->getAddressingMode() == ISD::UNINDEXED;
+ }
+
+ /// isNON_TRUNCStore - Returns true if the specified node is a non-truncating
+ /// store.
+ inline bool isNON_TRUNCStore(const SDNode *N) {
+ return isa<StoreSDNode>(N) && !cast<StoreSDNode>(N)->isTruncatingStore();
+ }
+
+ /// isTRUNCStore - Returns true if the specified node is a truncating
+ /// store.
+ inline bool isTRUNCStore(const SDNode *N) {
+ return isa<StoreSDNode>(N) && cast<StoreSDNode>(N)->isTruncatingStore();
+ }
+
+ /// isUNINDEXEDStore - Returns true if the specified node is an
+ /// unindexed store.
+ inline bool isUNINDEXEDStore(const SDNode *N) {
+ return isa<StoreSDNode>(N) &&
+ cast<StoreSDNode>(N)->getAddressingMode() == ISD::UNINDEXED;
+ }
+}
+
+
+} // end llvm namespace
+
+#endif