diff options
Diffstat (limited to 'include/llvm/Analysis/ET-Forest.h')
-rw-r--r-- | include/llvm/Analysis/ET-Forest.h | 309 |
1 files changed, 309 insertions, 0 deletions
diff --git a/include/llvm/Analysis/ET-Forest.h b/include/llvm/Analysis/ET-Forest.h new file mode 100644 index 0000000000..892a0b5f88 --- /dev/null +++ b/include/llvm/Analysis/ET-Forest.h @@ -0,0 +1,309 @@ +//===- llvm/Analysis/ET-Forest.h - ET-Forest implementation -----*- C++ -*-===// +// +// The LLVM Compiler Infrastructure +// +// This file was written by Daniel Berlin from code written by Pavel Nejedy, and +// is distributed under the University of Illinois Open Source License. See +// LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the following classes: +// 1. ETNode: A node in the ET forest. +// 2. ETOccurrence: An occurrence of the node in the splay tree +// storing the DFS path information. +// +// The ET-forest structure is described in: +// D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. +// J. G'omput. System Sci., 26(3):362 381, 1983. +// +// Basically, the ET-Forest is storing the dominator tree (ETNode), +// and a splay tree containing the depth first path information for +// those nodes (ETOccurrence). This enables us to answer queries +// about domination (DominatedBySlow), and ancestry (NCA) in +// logarithmic time, and perform updates to the information in +// logarithmic time. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_ETFOREST_H +#define LLVM_ANALYSIS_ETFOREST_H + +#include <cassert> + +namespace llvm { +class ETNode; + +/// ETOccurrence - An occurrence for a node in the et tree +/// +/// The et occurrence tree is really storing the sequences you get from +/// doing a DFS over the ETNode's. It is stored as a modified splay +/// tree. +/// ET occurrences can occur at multiple places in the ordering depending +/// on how many ET nodes have it as their father. To handle +/// this, they are separate from the nodes. +/// +class ETOccurrence { +public: + ETOccurrence(ETNode *n): OccFor(n), Parent(NULL), Left(NULL), Right(NULL), + Depth(0), Min(0), MinOccurrence(this) {}; + + void setParent(ETOccurrence *n) { + Parent = n; + } + + // Add D to our current depth + void setDepthAdd(int d) { + Min += d; + Depth += d; + } + + // Reset our depth to D + void setDepth(int d) { + Min += d - Depth; + Depth = d; + } + + // Set Left to N + void setLeft(ETOccurrence *n) { + assert(n != this && "Trying to set our left to ourselves"); + Left = n; + if (n) + n->setParent(this); + } + + // Set Right to N + void setRight(ETOccurrence *n) { + assert(n != this && "Trying to set our right to ourselves"); + Right = n; + if (n) + n->setParent(this); + } + + // Splay us to the root of the tree + void Splay(void); + + // Recompute the minimum occurrence for this occurrence. + void recomputeMin(void) { + ETOccurrence *themin = Left; + + // The min may be our Right, too. + if (!themin || (Right && themin->Min > Right->Min)) + themin = Right; + + if (themin && themin->Min < 0) { + Min = themin->Min + Depth; + MinOccurrence = themin->MinOccurrence; + } else { + Min = Depth; + MinOccurrence = this; + } + } + private: + friend class ETNode; + + // Node we represent + ETNode *OccFor; + + // Parent in the splay tree + ETOccurrence *Parent; + + // Left Son in the splay tree + ETOccurrence *Left; + + // Right Son in the splay tree + ETOccurrence *Right; + + // Depth of the node is the sum of the depth on the path to the + // root. + int Depth; + + // Subtree occurrence's minimum depth + int Min; + + // Subtree occurrence with minimum depth + ETOccurrence *MinOccurrence; +}; + + +class ETNode { +public: + ETNode(void *d) : data(d), Father(NULL), Left(NULL), + Right(NULL), Son(NULL), ParentOcc(NULL) { + RightmostOcc = new ETOccurrence(this); + }; + + // This does *not* maintain the tree structure. + // If you want to remove a node from the forest structure, use + // removeFromForest() + ~ETNode() { + delete RightmostOcc; + } + + void removeFromForest() { + // Split us away from all our sons. + while (Son) + Son->Split(); + + // And then split us away from our father. + if (Father) + Father->Split(); + } + + // Split us away from our parents and children, so that we can be + // reparented. NB: setFather WILL NOT DO WHAT YOU WANT IF YOU DO NOT + // SPLIT US FIRST. + void Split(); + + // Set our parent node to the passed in node + void setFather(ETNode *); + + // Nearest Common Ancestor of two et nodes. + ETNode *NCA(ETNode *); + + // Return true if we are below the passed in node in the forest. + bool Below(ETNode *); + /* + Given a dominator tree, we can determine whether one thing + dominates another in constant time by using two DFS numbers: + + 1. The number for when we visit a node on the way down the tree + 2. The number for when we visit a node on the way back up the tree + + You can view these as bounds for the range of dfs numbers the + nodes in the subtree of the dominator tree rooted at that node + will contain. + + The dominator tree is always a simple acyclic tree, so there are + only three possible relations two nodes in the dominator tree have + to each other: + + 1. Node A is above Node B (and thus, Node A dominates node B) + + A + | + C + / \ + B D + + + In the above case, DFS_Number_In of A will be <= DFS_Number_In of + B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is + because we must hit A in the dominator tree *before* B on the walk + down, and we will hit A *after* B on the walk back up + + 2. Node A is below node B (and thus, node B dominates node B) + + B + | + A + / \ + C D + + In the above case, DFS_Number_In of A will be >= DFS_Number_In of + B, and DFS_Number_Out of A will be <= DFS_Number_Out of B. + + This is because we must hit A in the dominator tree *after* B on + the walk down, and we will hit A *before* B on the walk back up + + 3. Node A and B are siblings (and thus, neither dominates the other) + + C + | + D + / \ + A B + + In the above case, DFS_Number_In of A will *always* be <= + DFS_Number_In of B, and DFS_Number_Out of A will *always* be <= + DFS_Number_Out of B. This is because we will always finish the dfs + walk of one of the subtrees before the other, and thus, the dfs + numbers for one subtree can't intersect with the range of dfs + numbers for the other subtree. If you swap A and B's position in + the dominator tree, the comparison changes direction, but the point + is that both comparisons will always go the same way if there is no + dominance relationship. + + Thus, it is sufficient to write + + A_Dominates_B(node A, node B) { + return DFS_Number_In(A) <= DFS_Number_In(B) && + DFS_Number_Out(A) >= DFS_Number_Out(B); + } + + A_Dominated_by_B(node A, node B) { + return DFS_Number_In(A) >= DFS_Number_In(A) && + DFS_Number_Out(A) <= DFS_Number_Out(B); + } + */ + bool DominatedBy(ETNode *other) const { + return this->DFSNumIn >= other->DFSNumIn && + this->DFSNumOut <= other->DFSNumOut; + } + + // This method is slower, but doesn't require the DFS numbers to + // be up to date. + bool DominatedBySlow(ETNode *other) { + return this->Below(other); + } + + void assignDFSNumber(int &num) { + DFSNumIn = num++; + + if (Son) { + Son->assignDFSNumber(num); + for (ETNode *son = Son->Right; son != Son; son = son->Right) + son->assignDFSNumber(num); + } + DFSNumOut = num++; + } + + bool hasFather() const { + return Father != NULL; + } + + // Do not let people play around with fathers. + const ETNode *getFather() const { + return Father; + } + + template <typename T> + T *getData() const { + return static_cast<T*>(data); + } + + unsigned getDFSNumIn() const { + return DFSNumIn; + } + + unsigned getDFSNumOut() const { + return DFSNumOut; + } + + private: + // Data represented by the node + void *data; + + // DFS Numbers + unsigned DFSNumIn, DFSNumOut; + + // Father + ETNode *Father; + + // Brothers. Node, this ends up being a circularly linked list. + // Thus, if you want to get all the brothers, you need to stop when + // you hit node == this again. + ETNode *Left, *Right; + + // First Son + ETNode *Son; + + // Rightmost occurrence for this node + ETOccurrence *RightmostOcc; + + // Parent occurrence for this node + ETOccurrence *ParentOcc; +}; +} // end llvm namespace + +#endif |