aboutsummaryrefslogtreecommitdiffstats
path: root/include/llvm/Analysis/ET-Forest.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Analysis/ET-Forest.h')
-rw-r--r--include/llvm/Analysis/ET-Forest.h309
1 files changed, 309 insertions, 0 deletions
diff --git a/include/llvm/Analysis/ET-Forest.h b/include/llvm/Analysis/ET-Forest.h
new file mode 100644
index 0000000000..892a0b5f88
--- /dev/null
+++ b/include/llvm/Analysis/ET-Forest.h
@@ -0,0 +1,309 @@
+//===- llvm/Analysis/ET-Forest.h - ET-Forest implementation -----*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was written by Daniel Berlin from code written by Pavel Nejedy, and
+// is distributed under the University of Illinois Open Source License. See
+// LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the following classes:
+// 1. ETNode: A node in the ET forest.
+// 2. ETOccurrence: An occurrence of the node in the splay tree
+// storing the DFS path information.
+//
+// The ET-forest structure is described in:
+// D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees.
+// J. G'omput. System Sci., 26(3):362 381, 1983.
+//
+// Basically, the ET-Forest is storing the dominator tree (ETNode),
+// and a splay tree containing the depth first path information for
+// those nodes (ETOccurrence). This enables us to answer queries
+// about domination (DominatedBySlow), and ancestry (NCA) in
+// logarithmic time, and perform updates to the information in
+// logarithmic time.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_ETFOREST_H
+#define LLVM_ANALYSIS_ETFOREST_H
+
+#include <cassert>
+
+namespace llvm {
+class ETNode;
+
+/// ETOccurrence - An occurrence for a node in the et tree
+///
+/// The et occurrence tree is really storing the sequences you get from
+/// doing a DFS over the ETNode's. It is stored as a modified splay
+/// tree.
+/// ET occurrences can occur at multiple places in the ordering depending
+/// on how many ET nodes have it as their father. To handle
+/// this, they are separate from the nodes.
+///
+class ETOccurrence {
+public:
+ ETOccurrence(ETNode *n): OccFor(n), Parent(NULL), Left(NULL), Right(NULL),
+ Depth(0), Min(0), MinOccurrence(this) {};
+
+ void setParent(ETOccurrence *n) {
+ Parent = n;
+ }
+
+ // Add D to our current depth
+ void setDepthAdd(int d) {
+ Min += d;
+ Depth += d;
+ }
+
+ // Reset our depth to D
+ void setDepth(int d) {
+ Min += d - Depth;
+ Depth = d;
+ }
+
+ // Set Left to N
+ void setLeft(ETOccurrence *n) {
+ assert(n != this && "Trying to set our left to ourselves");
+ Left = n;
+ if (n)
+ n->setParent(this);
+ }
+
+ // Set Right to N
+ void setRight(ETOccurrence *n) {
+ assert(n != this && "Trying to set our right to ourselves");
+ Right = n;
+ if (n)
+ n->setParent(this);
+ }
+
+ // Splay us to the root of the tree
+ void Splay(void);
+
+ // Recompute the minimum occurrence for this occurrence.
+ void recomputeMin(void) {
+ ETOccurrence *themin = Left;
+
+ // The min may be our Right, too.
+ if (!themin || (Right && themin->Min > Right->Min))
+ themin = Right;
+
+ if (themin && themin->Min < 0) {
+ Min = themin->Min + Depth;
+ MinOccurrence = themin->MinOccurrence;
+ } else {
+ Min = Depth;
+ MinOccurrence = this;
+ }
+ }
+ private:
+ friend class ETNode;
+
+ // Node we represent
+ ETNode *OccFor;
+
+ // Parent in the splay tree
+ ETOccurrence *Parent;
+
+ // Left Son in the splay tree
+ ETOccurrence *Left;
+
+ // Right Son in the splay tree
+ ETOccurrence *Right;
+
+ // Depth of the node is the sum of the depth on the path to the
+ // root.
+ int Depth;
+
+ // Subtree occurrence's minimum depth
+ int Min;
+
+ // Subtree occurrence with minimum depth
+ ETOccurrence *MinOccurrence;
+};
+
+
+class ETNode {
+public:
+ ETNode(void *d) : data(d), Father(NULL), Left(NULL),
+ Right(NULL), Son(NULL), ParentOcc(NULL) {
+ RightmostOcc = new ETOccurrence(this);
+ };
+
+ // This does *not* maintain the tree structure.
+ // If you want to remove a node from the forest structure, use
+ // removeFromForest()
+ ~ETNode() {
+ delete RightmostOcc;
+ }
+
+ void removeFromForest() {
+ // Split us away from all our sons.
+ while (Son)
+ Son->Split();
+
+ // And then split us away from our father.
+ if (Father)
+ Father->Split();
+ }
+
+ // Split us away from our parents and children, so that we can be
+ // reparented. NB: setFather WILL NOT DO WHAT YOU WANT IF YOU DO NOT
+ // SPLIT US FIRST.
+ void Split();
+
+ // Set our parent node to the passed in node
+ void setFather(ETNode *);
+
+ // Nearest Common Ancestor of two et nodes.
+ ETNode *NCA(ETNode *);
+
+ // Return true if we are below the passed in node in the forest.
+ bool Below(ETNode *);
+ /*
+ Given a dominator tree, we can determine whether one thing
+ dominates another in constant time by using two DFS numbers:
+
+ 1. The number for when we visit a node on the way down the tree
+ 2. The number for when we visit a node on the way back up the tree
+
+ You can view these as bounds for the range of dfs numbers the
+ nodes in the subtree of the dominator tree rooted at that node
+ will contain.
+
+ The dominator tree is always a simple acyclic tree, so there are
+ only three possible relations two nodes in the dominator tree have
+ to each other:
+
+ 1. Node A is above Node B (and thus, Node A dominates node B)
+
+ A
+ |
+ C
+ / \
+ B D
+
+
+ In the above case, DFS_Number_In of A will be <= DFS_Number_In of
+ B, and DFS_Number_Out of A will be >= DFS_Number_Out of B. This is
+ because we must hit A in the dominator tree *before* B on the walk
+ down, and we will hit A *after* B on the walk back up
+
+ 2. Node A is below node B (and thus, node B dominates node B)
+
+ B
+ |
+ A
+ / \
+ C D
+
+ In the above case, DFS_Number_In of A will be >= DFS_Number_In of
+ B, and DFS_Number_Out of A will be <= DFS_Number_Out of B.
+
+ This is because we must hit A in the dominator tree *after* B on
+ the walk down, and we will hit A *before* B on the walk back up
+
+ 3. Node A and B are siblings (and thus, neither dominates the other)
+
+ C
+ |
+ D
+ / \
+ A B
+
+ In the above case, DFS_Number_In of A will *always* be <=
+ DFS_Number_In of B, and DFS_Number_Out of A will *always* be <=
+ DFS_Number_Out of B. This is because we will always finish the dfs
+ walk of one of the subtrees before the other, and thus, the dfs
+ numbers for one subtree can't intersect with the range of dfs
+ numbers for the other subtree. If you swap A and B's position in
+ the dominator tree, the comparison changes direction, but the point
+ is that both comparisons will always go the same way if there is no
+ dominance relationship.
+
+ Thus, it is sufficient to write
+
+ A_Dominates_B(node A, node B) {
+ return DFS_Number_In(A) <= DFS_Number_In(B) &&
+ DFS_Number_Out(A) >= DFS_Number_Out(B);
+ }
+
+ A_Dominated_by_B(node A, node B) {
+ return DFS_Number_In(A) >= DFS_Number_In(A) &&
+ DFS_Number_Out(A) <= DFS_Number_Out(B);
+ }
+ */
+ bool DominatedBy(ETNode *other) const {
+ return this->DFSNumIn >= other->DFSNumIn &&
+ this->DFSNumOut <= other->DFSNumOut;
+ }
+
+ // This method is slower, but doesn't require the DFS numbers to
+ // be up to date.
+ bool DominatedBySlow(ETNode *other) {
+ return this->Below(other);
+ }
+
+ void assignDFSNumber(int &num) {
+ DFSNumIn = num++;
+
+ if (Son) {
+ Son->assignDFSNumber(num);
+ for (ETNode *son = Son->Right; son != Son; son = son->Right)
+ son->assignDFSNumber(num);
+ }
+ DFSNumOut = num++;
+ }
+
+ bool hasFather() const {
+ return Father != NULL;
+ }
+
+ // Do not let people play around with fathers.
+ const ETNode *getFather() const {
+ return Father;
+ }
+
+ template <typename T>
+ T *getData() const {
+ return static_cast<T*>(data);
+ }
+
+ unsigned getDFSNumIn() const {
+ return DFSNumIn;
+ }
+
+ unsigned getDFSNumOut() const {
+ return DFSNumOut;
+ }
+
+ private:
+ // Data represented by the node
+ void *data;
+
+ // DFS Numbers
+ unsigned DFSNumIn, DFSNumOut;
+
+ // Father
+ ETNode *Father;
+
+ // Brothers. Node, this ends up being a circularly linked list.
+ // Thus, if you want to get all the brothers, you need to stop when
+ // you hit node == this again.
+ ETNode *Left, *Right;
+
+ // First Son
+ ETNode *Son;
+
+ // Rightmost occurrence for this node
+ ETOccurrence *RightmostOcc;
+
+ // Parent occurrence for this node
+ ETOccurrence *ParentOcc;
+};
+} // end llvm namespace
+
+#endif