diff options
author | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
---|---|---|
committer | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
commit | f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc (patch) | |
tree | ebb79ea1ee5e3bc1fdf38541a811a8b804f0679a /lib/ExecutionEngine/ExecutionEngine.cpp | |
download | external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.gz external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.bz2 external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.zip |
It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/ExecutionEngine/ExecutionEngine.cpp')
-rw-r--r-- | lib/ExecutionEngine/ExecutionEngine.cpp | 809 |
1 files changed, 809 insertions, 0 deletions
diff --git a/lib/ExecutionEngine/ExecutionEngine.cpp b/lib/ExecutionEngine/ExecutionEngine.cpp new file mode 100644 index 0000000000..bbddb95ec3 --- /dev/null +++ b/lib/ExecutionEngine/ExecutionEngine.cpp @@ -0,0 +1,809 @@ +//===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file defines the common interface used by the various execution engine +// subclasses. +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "jit" +#include "llvm/Constants.h" +#include "llvm/DerivedTypes.h" +#include "llvm/Module.h" +#include "llvm/ModuleProvider.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ExecutionEngine/ExecutionEngine.h" +#include "llvm/ExecutionEngine/GenericValue.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MutexGuard.h" +#include "llvm/System/DynamicLibrary.h" +#include "llvm/Target/TargetData.h" +#include <math.h> +using namespace llvm; + +STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); +STATISTIC(NumGlobals , "Number of global vars initialized"); + +ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; +ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; + +ExecutionEngine::ExecutionEngine(ModuleProvider *P) { + LazyCompilationDisabled = false; + Modules.push_back(P); + assert(P && "ModuleProvider is null?"); +} + +ExecutionEngine::ExecutionEngine(Module *M) { + LazyCompilationDisabled = false; + assert(M && "Module is null?"); + Modules.push_back(new ExistingModuleProvider(M)); +} + +ExecutionEngine::~ExecutionEngine() { + clearAllGlobalMappings(); + for (unsigned i = 0, e = Modules.size(); i != e; ++i) + delete Modules[i]; +} + +/// FindFunctionNamed - Search all of the active modules to find the one that +/// defines FnName. This is very slow operation and shouldn't be used for +/// general code. +Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { + for (unsigned i = 0, e = Modules.size(); i != e; ++i) { + if (Function *F = Modules[i]->getModule()->getFunction(FnName)) + return F; + } + return 0; +} + + +/// addGlobalMapping - Tell the execution engine that the specified global is +/// at the specified location. This is used internally as functions are JIT'd +/// and as global variables are laid out in memory. It can and should also be +/// used by clients of the EE that want to have an LLVM global overlay +/// existing data in memory. +void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { + MutexGuard locked(lock); + + void *&CurVal = state.getGlobalAddressMap(locked)[GV]; + assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); + CurVal = Addr; + + // If we are using the reverse mapping, add it too + if (!state.getGlobalAddressReverseMap(locked).empty()) { + const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + assert((V == 0 || GV == 0) && "GlobalMapping already established!"); + V = GV; + } +} + +/// clearAllGlobalMappings - Clear all global mappings and start over again +/// use in dynamic compilation scenarios when you want to move globals +void ExecutionEngine::clearAllGlobalMappings() { + MutexGuard locked(lock); + + state.getGlobalAddressMap(locked).clear(); + state.getGlobalAddressReverseMap(locked).clear(); +} + +/// updateGlobalMapping - Replace an existing mapping for GV with a new +/// address. This updates both maps as required. If "Addr" is null, the +/// entry for the global is removed from the mappings. +void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { + MutexGuard locked(lock); + + // Deleting from the mapping? + if (Addr == 0) { + state.getGlobalAddressMap(locked).erase(GV); + if (!state.getGlobalAddressReverseMap(locked).empty()) + state.getGlobalAddressReverseMap(locked).erase(Addr); + return; + } + + void *&CurVal = state.getGlobalAddressMap(locked)[GV]; + if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) + state.getGlobalAddressReverseMap(locked).erase(CurVal); + CurVal = Addr; + + // If we are using the reverse mapping, add it too + if (!state.getGlobalAddressReverseMap(locked).empty()) { + const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; + assert((V == 0 || GV == 0) && "GlobalMapping already established!"); + V = GV; + } +} + +/// getPointerToGlobalIfAvailable - This returns the address of the specified +/// global value if it is has already been codegen'd, otherwise it returns null. +/// +void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { + MutexGuard locked(lock); + + std::map<const GlobalValue*, void*>::iterator I = + state.getGlobalAddressMap(locked).find(GV); + return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; +} + +/// getGlobalValueAtAddress - Return the LLVM global value object that starts +/// at the specified address. +/// +const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { + MutexGuard locked(lock); + + // If we haven't computed the reverse mapping yet, do so first. + if (state.getGlobalAddressReverseMap(locked).empty()) { + for (std::map<const GlobalValue*, void *>::iterator + I = state.getGlobalAddressMap(locked).begin(), + E = state.getGlobalAddressMap(locked).end(); I != E; ++I) + state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, + I->first)); + } + + std::map<void *, const GlobalValue*>::iterator I = + state.getGlobalAddressReverseMap(locked).find(Addr); + return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; +} + +// CreateArgv - Turn a vector of strings into a nice argv style array of +// pointers to null terminated strings. +// +static void *CreateArgv(ExecutionEngine *EE, + const std::vector<std::string> &InputArgv) { + unsigned PtrSize = EE->getTargetData()->getPointerSize(); + char *Result = new char[(InputArgv.size()+1)*PtrSize]; + + DOUT << "ARGV = " << (void*)Result << "\n"; + const Type *SBytePtr = PointerType::get(Type::Int8Ty); + + for (unsigned i = 0; i != InputArgv.size(); ++i) { + unsigned Size = InputArgv[i].size()+1; + char *Dest = new char[Size]; + DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; + + std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); + Dest[Size-1] = 0; + + // Endian safe: Result[i] = (PointerTy)Dest; + EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), + SBytePtr); + } + + // Null terminate it + EE->StoreValueToMemory(PTOGV(0), + (GenericValue*)(Result+InputArgv.size()*PtrSize), + SBytePtr); + return Result; +} + + +/// runStaticConstructorsDestructors - This method is used to execute all of +/// the static constructors or destructors for a program, depending on the +/// value of isDtors. +void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { + const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; + + // Execute global ctors/dtors for each module in the program. + for (unsigned m = 0, e = Modules.size(); m != e; ++m) { + GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); + + // If this global has internal linkage, or if it has a use, then it must be + // an old-style (llvmgcc3) static ctor with __main linked in and in use. If + // this is the case, don't execute any of the global ctors, __main will do + // it. + if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; + + // Should be an array of '{ int, void ()* }' structs. The first value is + // the init priority, which we ignore. + ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); + if (!InitList) continue; + for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) + if (ConstantStruct *CS = + dyn_cast<ConstantStruct>(InitList->getOperand(i))) { + if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. + + Constant *FP = CS->getOperand(1); + if (FP->isNullValue()) + break; // Found a null terminator, exit. + + if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) + if (CE->isCast()) + FP = CE->getOperand(0); + if (Function *F = dyn_cast<Function>(FP)) { + // Execute the ctor/dtor function! + runFunction(F, std::vector<GenericValue>()); + } + } + } +} + +/// runFunctionAsMain - This is a helper function which wraps runFunction to +/// handle the common task of starting up main with the specified argc, argv, +/// and envp parameters. +int ExecutionEngine::runFunctionAsMain(Function *Fn, + const std::vector<std::string> &argv, + const char * const * envp) { + std::vector<GenericValue> GVArgs; + GenericValue GVArgc; + GVArgc.IntVal = APInt(32, argv.size()); + + // Check main() type + unsigned NumArgs = Fn->getFunctionType()->getNumParams(); + const FunctionType *FTy = Fn->getFunctionType(); + const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty)); + switch (NumArgs) { + case 3: + if (FTy->getParamType(2) != PPInt8Ty) { + cerr << "Invalid type for third argument of main() supplied\n"; + abort(); + } + // FALLS THROUGH + case 2: + if (FTy->getParamType(1) != PPInt8Ty) { + cerr << "Invalid type for second argument of main() supplied\n"; + abort(); + } + // FALLS THROUGH + case 1: + if (FTy->getParamType(0) != Type::Int32Ty) { + cerr << "Invalid type for first argument of main() supplied\n"; + abort(); + } + // FALLS THROUGH + case 0: + if (FTy->getReturnType() != Type::Int32Ty && + FTy->getReturnType() != Type::VoidTy) { + cerr << "Invalid return type of main() supplied\n"; + abort(); + } + break; + default: + cerr << "Invalid number of arguments of main() supplied\n"; + abort(); + } + + if (NumArgs) { + GVArgs.push_back(GVArgc); // Arg #0 = argc. + if (NumArgs > 1) { + GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. + assert(((char **)GVTOP(GVArgs[1]))[0] && + "argv[0] was null after CreateArgv"); + if (NumArgs > 2) { + std::vector<std::string> EnvVars; + for (unsigned i = 0; envp[i]; ++i) + EnvVars.push_back(envp[i]); + GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. + } + } + } + return runFunction(Fn, GVArgs).IntVal.getZExtValue(); +} + +/// If possible, create a JIT, unless the caller specifically requests an +/// Interpreter or there's an error. If even an Interpreter cannot be created, +/// NULL is returned. +/// +ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, + bool ForceInterpreter, + std::string *ErrorStr) { + ExecutionEngine *EE = 0; + + // Unless the interpreter was explicitly selected, try making a JIT. + if (!ForceInterpreter && JITCtor) + EE = JITCtor(MP, ErrorStr); + + // If we can't make a JIT, make an interpreter instead. + if (EE == 0 && InterpCtor) + EE = InterpCtor(MP, ErrorStr); + + if (EE) { + // Make sure we can resolve symbols in the program as well. The zero arg + // to the function tells DynamicLibrary to load the program, not a library. + try { + sys::DynamicLibrary::LoadLibraryPermanently(0); + } catch (...) { + } + } + + return EE; +} + +/// getPointerToGlobal - This returns the address of the specified global +/// value. This may involve code generation if it's a function. +/// +void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { + if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) + return getPointerToFunction(F); + + MutexGuard locked(lock); + void *p = state.getGlobalAddressMap(locked)[GV]; + if (p) + return p; + + // Global variable might have been added since interpreter started. + if (GlobalVariable *GVar = + const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) + EmitGlobalVariable(GVar); + else + assert(0 && "Global hasn't had an address allocated yet!"); + return state.getGlobalAddressMap(locked)[GV]; +} + +/// This function converts a Constant* into a GenericValue. The interesting +/// part is if C is a ConstantExpr. +/// @brief Get a GenericValue for a Constnat* +GenericValue ExecutionEngine::getConstantValue(const Constant *C) { + // If its undefined, return the garbage. + if (isa<UndefValue>(C)) + return GenericValue(); + + // If the value is a ConstantExpr + if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { + Constant *Op0 = CE->getOperand(0); + switch (CE->getOpcode()) { + case Instruction::GetElementPtr: { + // Compute the index + GenericValue Result = getConstantValue(Op0); + SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); + uint64_t Offset = + TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); + + char* tmp = (char*) Result.PointerVal; + Result = PTOGV(tmp + Offset); + return Result; + } + case Instruction::Trunc: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.trunc(BitWidth); + return GV; + } + case Instruction::ZExt: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.zext(BitWidth); + return GV; + } + case Instruction::SExt: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + GV.IntVal = GV.IntVal.sext(BitWidth); + return GV; + } + case Instruction::FPTrunc: { + GenericValue GV = getConstantValue(Op0); + GV.FloatVal = float(GV.DoubleVal); + return GV; + } + case Instruction::FPExt:{ + GenericValue GV = getConstantValue(Op0); + GV.DoubleVal = double(GV.FloatVal); + return GV; + } + case Instruction::UIToFP: { + GenericValue GV = getConstantValue(Op0); + if (CE->getType() == Type::FloatTy) + GV.FloatVal = float(GV.IntVal.roundToDouble()); + else + GV.DoubleVal = GV.IntVal.roundToDouble(); + return GV; + } + case Instruction::SIToFP: { + GenericValue GV = getConstantValue(Op0); + if (CE->getType() == Type::FloatTy) + GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); + else + GV.DoubleVal = GV.IntVal.signedRoundToDouble(); + return GV; + } + case Instruction::FPToUI: // double->APInt conversion handles sign + case Instruction::FPToSI: { + GenericValue GV = getConstantValue(Op0); + uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); + if (Op0->getType() == Type::FloatTy) + GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); + else + GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); + return GV; + } + case Instruction::PtrToInt: { + GenericValue GV = getConstantValue(Op0); + uint32_t PtrWidth = TD->getPointerSizeInBits(); + GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); + return GV; + } + case Instruction::IntToPtr: { + GenericValue GV = getConstantValue(Op0); + uint32_t PtrWidth = TD->getPointerSizeInBits(); + if (PtrWidth != GV.IntVal.getBitWidth()) + GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); + assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); + GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); + return GV; + } + case Instruction::BitCast: { + GenericValue GV = getConstantValue(Op0); + const Type* DestTy = CE->getType(); + switch (Op0->getType()->getTypeID()) { + default: assert(0 && "Invalid bitcast operand"); + case Type::IntegerTyID: + assert(DestTy->isFloatingPoint() && "invalid bitcast"); + if (DestTy == Type::FloatTy) + GV.FloatVal = GV.IntVal.bitsToFloat(); + else if (DestTy == Type::DoubleTy) + GV.DoubleVal = GV.IntVal.bitsToDouble(); + break; + case Type::FloatTyID: + assert(DestTy == Type::Int32Ty && "Invalid bitcast"); + GV.IntVal.floatToBits(GV.FloatVal); + break; + case Type::DoubleTyID: + assert(DestTy == Type::Int64Ty && "Invalid bitcast"); + GV.IntVal.doubleToBits(GV.DoubleVal); + break; + case Type::PointerTyID: + assert(isa<PointerType>(DestTy) && "Invalid bitcast"); + break; // getConstantValue(Op0) above already converted it + } + return GV; + } + case Instruction::Add: + case Instruction::Sub: + case Instruction::Mul: + case Instruction::UDiv: + case Instruction::SDiv: + case Instruction::URem: + case Instruction::SRem: + case Instruction::And: + case Instruction::Or: + case Instruction::Xor: { + GenericValue LHS = getConstantValue(Op0); + GenericValue RHS = getConstantValue(CE->getOperand(1)); + GenericValue GV; + switch (CE->getOperand(0)->getType()->getTypeID()) { + default: assert(0 && "Bad add type!"); abort(); + case Type::IntegerTyID: + switch (CE->getOpcode()) { + default: assert(0 && "Invalid integer opcode"); + case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; + case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; + case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; + case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; + case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; + case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; + case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; + case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; + case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; + case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; + } + break; + case Type::FloatTyID: + switch (CE->getOpcode()) { + default: assert(0 && "Invalid float opcode"); abort(); + case Instruction::Add: + GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; + case Instruction::Sub: + GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; + case Instruction::Mul: + GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; + case Instruction::FDiv: + GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; + case Instruction::FRem: + GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; + } + break; + case Type::DoubleTyID: + switch (CE->getOpcode()) { + default: assert(0 && "Invalid double opcode"); abort(); + case Instruction::Add: + GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; + case Instruction::Sub: + GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; + case Instruction::Mul: + GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; + case Instruction::FDiv: + GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; + case Instruction::FRem: + GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; + } + break; + } + return GV; + } + default: + break; + } + cerr << "ConstantExpr not handled: " << *CE << "\n"; + abort(); + } + + GenericValue Result; + switch (C->getType()->getTypeID()) { + case Type::FloatTyID: + Result.FloatVal = (float)cast<ConstantFP>(C)->getValue(); + break; + case Type::DoubleTyID: + Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue(); + break; + case Type::IntegerTyID: + Result.IntVal = cast<ConstantInt>(C)->getValue(); + break; + case Type::PointerTyID: + if (isa<ConstantPointerNull>(C)) + Result.PointerVal = 0; + else if (const Function *F = dyn_cast<Function>(C)) + Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); + else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) + Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); + else + assert(0 && "Unknown constant pointer type!"); + break; + default: + cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; + abort(); + } + return Result; +} + +/// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr +/// is the address of the memory at which to store Val, cast to GenericValue *. +/// It is not a pointer to a GenericValue containing the address at which to +/// store Val. +/// +void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, + const Type *Ty) { + switch (Ty->getTypeID()) { + case Type::IntegerTyID: { + unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); + GenericValue TmpVal = Val; + if (BitWidth <= 8) + *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue()); + else if (BitWidth <= 16) { + *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue()); + } else if (BitWidth <= 32) { + *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue()); + } else if (BitWidth <= 64) { + *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue()); + } else { + uint64_t *Dest = (uint64_t*)Ptr; + const uint64_t *Src = Val.IntVal.getRawData(); + for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i) + Dest[i] = Src[i]; + } + break; + } + case Type::FloatTyID: + *((float*)Ptr) = Val.FloatVal; + break; + case Type::DoubleTyID: + *((double*)Ptr) = Val.DoubleVal; + break; + case Type::PointerTyID: + *((PointerTy*)Ptr) = Val.PointerVal; + break; + default: + cerr << "Cannot store value of type " << *Ty << "!\n"; + } +} + +/// FIXME: document +/// +void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, + GenericValue *Ptr, + const Type *Ty) { + switch (Ty->getTypeID()) { + case Type::IntegerTyID: { + unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); + if (BitWidth <= 8) + Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr)); + else if (BitWidth <= 16) { + Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr)); + } else if (BitWidth <= 32) { + Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr)); + } else if (BitWidth <= 64) { + Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr)); + } else + Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr); + break; + } + case Type::FloatTyID: + Result.FloatVal = *((float*)Ptr); + break; + case Type::DoubleTyID: + Result.DoubleVal = *((double*)Ptr); + break; + case Type::PointerTyID: + Result.PointerVal = *((PointerTy*)Ptr); + break; + default: + cerr << "Cannot load value of type " << *Ty << "!\n"; + abort(); + } +} + +// InitializeMemory - Recursive function to apply a Constant value into the +// specified memory location... +// +void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { + if (isa<UndefValue>(Init)) { + return; + } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { + unsigned ElementSize = + getTargetData()->getTypeSize(CP->getType()->getElementType()); + for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) + InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); + return; + } else if (Init->getType()->isFirstClassType()) { + GenericValue Val = getConstantValue(Init); + StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); + return; + } else if (isa<ConstantAggregateZero>(Init)) { + memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); + return; + } + + switch (Init->getType()->getTypeID()) { + case Type::ArrayTyID: { + const ConstantArray *CPA = cast<ConstantArray>(Init); + unsigned ElementSize = + getTargetData()->getTypeSize(CPA->getType()->getElementType()); + for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) + InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); + return; + } + + case Type::StructTyID: { + const ConstantStruct *CPS = cast<ConstantStruct>(Init); + const StructLayout *SL = + getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); + for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) + InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); + return; + } + + default: + cerr << "Bad Type: " << *Init->getType() << "\n"; + assert(0 && "Unknown constant type to initialize memory with!"); + } +} + +/// EmitGlobals - Emit all of the global variables to memory, storing their +/// addresses into GlobalAddress. This must make sure to copy the contents of +/// their initializers into the memory. +/// +void ExecutionEngine::emitGlobals() { + const TargetData *TD = getTargetData(); + + // Loop over all of the global variables in the program, allocating the memory + // to hold them. If there is more than one module, do a prepass over globals + // to figure out how the different modules should link together. + // + std::map<std::pair<std::string, const Type*>, + const GlobalValue*> LinkedGlobalsMap; + + if (Modules.size() != 1) { + for (unsigned m = 0, e = Modules.size(); m != e; ++m) { + Module &M = *Modules[m]->getModule(); + for (Module::const_global_iterator I = M.global_begin(), + E = M.global_end(); I != E; ++I) { + const GlobalValue *GV = I; + if (GV->hasInternalLinkage() || GV->isDeclaration() || + GV->hasAppendingLinkage() || !GV->hasName()) + continue;// Ignore external globals and globals with internal linkage. + + const GlobalValue *&GVEntry = + LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; + + // If this is the first time we've seen this global, it is the canonical + // version. + if (!GVEntry) { + GVEntry = GV; + continue; + } + + // If the existing global is strong, never replace it. + if (GVEntry->hasExternalLinkage() || + GVEntry->hasDLLImportLinkage() || + GVEntry->hasDLLExportLinkage()) + continue; + + // Otherwise, we know it's linkonce/weak, replace it if this is a strong + // symbol. + if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) + GVEntry = GV; + } + } + } + + std::vector<const GlobalValue*> NonCanonicalGlobals; + for (unsigned m = 0, e = Modules.size(); m != e; ++m) { + Module &M = *Modules[m]->getModule(); + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) { + // In the multi-module case, see what this global maps to. + if (!LinkedGlobalsMap.empty()) { + if (const GlobalValue *GVEntry = + LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { + // If something else is the canonical global, ignore this one. + if (GVEntry != &*I) { + NonCanonicalGlobals.push_back(I); + continue; + } + } + } + + if (!I->isDeclaration()) { + // Get the type of the global. + const Type *Ty = I->getType()->getElementType(); + + // Allocate some memory for it! + unsigned Size = TD->getTypeSize(Ty); + addGlobalMapping(I, new char[Size]); + } else { + // External variable reference. Try to use the dynamic loader to + // get a pointer to it. + if (void *SymAddr = + sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) + addGlobalMapping(I, SymAddr); + else { + cerr << "Could not resolve external global address: " + << I->getName() << "\n"; + abort(); + } + } + } + + // If there are multiple modules, map the non-canonical globals to their + // canonical location. + if (!NonCanonicalGlobals.empty()) { + for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { + const GlobalValue *GV = NonCanonicalGlobals[i]; + const GlobalValue *CGV = + LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; + void *Ptr = getPointerToGlobalIfAvailable(CGV); + assert(Ptr && "Canonical global wasn't codegen'd!"); + addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); + } + } + + // Now that all of the globals are set up in memory, loop through them all + // and initialize their contents. + for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); + I != E; ++I) { + if (!I->isDeclaration()) { + if (!LinkedGlobalsMap.empty()) { + if (const GlobalValue *GVEntry = + LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) + if (GVEntry != &*I) // Not the canonical variable. + continue; + } + EmitGlobalVariable(I); + } + } + } +} + +// EmitGlobalVariable - This method emits the specified global variable to the +// address specified in GlobalAddresses, or allocates new memory if it's not +// already in the map. +void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { + void *GA = getPointerToGlobalIfAvailable(GV); + DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; + + const Type *ElTy = GV->getType()->getElementType(); + size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); + if (GA == 0) { + // If it's not already specified, allocate memory for the global. + GA = new char[GVSize]; + addGlobalMapping(GV, GA); + } + + InitializeMemory(GV->getInitializer(), GA); + NumInitBytes += (unsigned)GVSize; + ++NumGlobals; +} |