aboutsummaryrefslogtreecommitdiffstats
path: root/lib/CodeGen/LiveVariables.cpp
diff options
context:
space:
mode:
authorDan Gohman <djg@cray.com>2007-07-18 16:29:46 +0000
committerDan Gohman <djg@cray.com>2007-07-18 16:29:46 +0000
commitf17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc (patch)
treeebb79ea1ee5e3bc1fdf38541a811a8b804f0679a /lib/CodeGen/LiveVariables.cpp
downloadexternal_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.gz
external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.bz2
external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.zip
It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/LiveVariables.cpp')
-rw-r--r--lib/CodeGen/LiveVariables.cpp643
1 files changed, 643 insertions, 0 deletions
diff --git a/lib/CodeGen/LiveVariables.cpp b/lib/CodeGen/LiveVariables.cpp
new file mode 100644
index 0000000000..504b607b85
--- /dev/null
+++ b/lib/CodeGen/LiveVariables.cpp
@@ -0,0 +1,643 @@
+//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the LiveVariable analysis pass. For each machine
+// instruction in the function, this pass calculates the set of registers that
+// are immediately dead after the instruction (i.e., the instruction calculates
+// the value, but it is never used) and the set of registers that are used by
+// the instruction, but are never used after the instruction (i.e., they are
+// killed).
+//
+// This class computes live variables using are sparse implementation based on
+// the machine code SSA form. This class computes live variable information for
+// each virtual and _register allocatable_ physical register in a function. It
+// uses the dominance properties of SSA form to efficiently compute live
+// variables for virtual registers, and assumes that physical registers are only
+// live within a single basic block (allowing it to do a single local analysis
+// to resolve physical register lifetimes in each basic block). If a physical
+// register is not register allocatable, it is not tracked. This is useful for
+// things like the stack pointer and condition codes.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/LiveVariables.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/Config/alloca.h"
+#include <algorithm>
+using namespace llvm;
+
+char LiveVariables::ID = 0;
+static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis");
+
+void LiveVariables::VarInfo::dump() const {
+ cerr << "Register Defined by: ";
+ if (DefInst)
+ cerr << *DefInst;
+ else
+ cerr << "<null>\n";
+ cerr << " Alive in blocks: ";
+ for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i)
+ if (AliveBlocks[i]) cerr << i << ", ";
+ cerr << "\n Killed by:";
+ if (Kills.empty())
+ cerr << " No instructions.\n";
+ else {
+ for (unsigned i = 0, e = Kills.size(); i != e; ++i)
+ cerr << "\n #" << i << ": " << *Kills[i];
+ cerr << "\n";
+ }
+}
+
+LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
+ assert(MRegisterInfo::isVirtualRegister(RegIdx) &&
+ "getVarInfo: not a virtual register!");
+ RegIdx -= MRegisterInfo::FirstVirtualRegister;
+ if (RegIdx >= VirtRegInfo.size()) {
+ if (RegIdx >= 2*VirtRegInfo.size())
+ VirtRegInfo.resize(RegIdx*2);
+ else
+ VirtRegInfo.resize(2*VirtRegInfo.size());
+ }
+ VarInfo &VI = VirtRegInfo[RegIdx];
+ VI.AliveBlocks.resize(MF->getNumBlockIDs());
+ return VI;
+}
+
+bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isKill()) {
+ if ((MO.getReg() == Reg) ||
+ (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ MRegisterInfo::isPhysicalRegister(Reg) &&
+ RegInfo->isSubRegister(MO.getReg(), Reg)))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDead()) {
+ if ((MO.getReg() == Reg) ||
+ (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ MRegisterInfo::isPhysicalRegister(Reg) &&
+ RegInfo->isSubRegister(MO.getReg(), Reg)))
+ return true;
+ }
+ }
+ return false;
+}
+
+bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
+ return true;
+ }
+ return false;
+}
+
+void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
+ MachineBasicBlock *MBB,
+ std::vector<MachineBasicBlock*> &WorkList) {
+ unsigned BBNum = MBB->getNumber();
+
+ // Check to see if this basic block is one of the killing blocks. If so,
+ // remove it...
+ for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
+ if (VRInfo.Kills[i]->getParent() == MBB) {
+ VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
+ break;
+ }
+
+ if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion
+
+ if (VRInfo.AliveBlocks[BBNum])
+ return; // We already know the block is live
+
+ // Mark the variable known alive in this bb
+ VRInfo.AliveBlocks[BBNum] = true;
+
+ for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(),
+ E = MBB->pred_rend(); PI != E; ++PI)
+ WorkList.push_back(*PI);
+}
+
+void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
+ MachineBasicBlock *MBB) {
+ std::vector<MachineBasicBlock*> WorkList;
+ MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList);
+ while (!WorkList.empty()) {
+ MachineBasicBlock *Pred = WorkList.back();
+ WorkList.pop_back();
+ MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList);
+ }
+}
+
+
+void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
+ MachineInstr *MI) {
+ assert(VRInfo.DefInst && "Register use before def!");
+
+ VRInfo.NumUses++;
+
+ // Check to see if this basic block is already a kill block...
+ if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
+ // Yes, this register is killed in this basic block already. Increase the
+ // live range by updating the kill instruction.
+ VRInfo.Kills.back() = MI;
+ return;
+ }
+
+#ifndef NDEBUG
+ for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
+ assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
+#endif
+
+ assert(MBB != VRInfo.DefInst->getParent() &&
+ "Should have kill for defblock!");
+
+ // Add a new kill entry for this basic block.
+ // If this virtual register is already marked as alive in this basic block,
+ // that means it is alive in at least one of the successor block, it's not
+ // a kill.
+ if (!VRInfo.AliveBlocks[MBB->getNumber()])
+ VRInfo.Kills.push_back(MI);
+
+ // Update all dominating blocks to mark them known live.
+ for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
+ E = MBB->pred_end(); PI != E; ++PI)
+ MarkVirtRegAliveInBlock(VRInfo, *PI);
+}
+
+bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
+ bool AddIfNotFound) {
+ bool Found = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isUse()) {
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (Reg == IncomingReg) {
+ MO.setIsKill();
+ Found = true;
+ break;
+ } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
+ MRegisterInfo::isPhysicalRegister(IncomingReg) &&
+ RegInfo->isSuperRegister(IncomingReg, Reg) &&
+ MO.isKill())
+ // A super-register kill already exists.
+ return true;
+ }
+ }
+
+ // If not found, this means an alias of one of the operand is killed. Add a
+ // new implicit operand if required.
+ if (!Found && AddIfNotFound) {
+ MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
+ return true;
+ }
+ return Found;
+}
+
+bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI,
+ bool AddIfNotFound) {
+ bool Found = false;
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDef()) {
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+ if (Reg == IncomingReg) {
+ MO.setIsDead();
+ Found = true;
+ break;
+ } else if (MRegisterInfo::isPhysicalRegister(Reg) &&
+ MRegisterInfo::isPhysicalRegister(IncomingReg) &&
+ RegInfo->isSuperRegister(IncomingReg, Reg) &&
+ MO.isDead())
+ // There exists a super-register that's marked dead.
+ return true;
+ }
+ }
+
+ // If not found, this means an alias of one of the operand is dead. Add a
+ // new implicit operand.
+ if (!Found && AddIfNotFound) {
+ MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/,
+ true/*IsDead*/);
+ return true;
+ }
+ return Found;
+}
+
+void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
+ // There is a now a proper use, forget about the last partial use.
+ PhysRegPartUse[Reg] = NULL;
+
+ // Turn previous partial def's into read/mod/write.
+ for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) {
+ MachineInstr *Def = PhysRegPartDef[Reg][i];
+ // First one is just a def. This means the use is reading some undef bits.
+ if (i != 0)
+ Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
+ Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
+ }
+ PhysRegPartDef[Reg].clear();
+
+ // There was an earlier def of a super-register. Add implicit def to that MI.
+ // A: EAX = ...
+ // B: = AX
+ // Add implicit def to A.
+ if (PhysRegInfo[Reg] && !PhysRegUsed[Reg]) {
+ MachineInstr *Def = PhysRegInfo[Reg];
+ if (!Def->findRegisterDefOperand(Reg))
+ Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/);
+ }
+
+ PhysRegInfo[Reg] = MI;
+ PhysRegUsed[Reg] = true;
+
+ for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ PhysRegInfo[SubReg] = MI;
+ PhysRegUsed[SubReg] = true;
+ }
+
+ // Remember the partial uses.
+ for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
+ unsigned SuperReg = *SuperRegs; ++SuperRegs)
+ PhysRegPartUse[SuperReg] = MI;
+}
+
+bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI,
+ SmallSet<unsigned, 4> &SubKills) {
+ for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ MachineInstr *LastRef = PhysRegInfo[SubReg];
+ if (LastRef != RefMI)
+ SubKills.insert(SubReg);
+ else if (!HandlePhysRegKill(SubReg, RefMI, SubKills))
+ SubKills.insert(SubReg);
+ }
+
+ if (*RegInfo->getImmediateSubRegisters(Reg) == 0) {
+ // No sub-registers, just check if reg is killed by RefMI.
+ if (PhysRegInfo[Reg] == RefMI)
+ return true;
+ } else if (SubKills.empty())
+ // None of the sub-registers are killed elsewhere...
+ return true;
+ return false;
+}
+
+void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI,
+ SmallSet<unsigned, 4> &SubKills) {
+ if (SubKills.count(Reg) == 0)
+ addRegisterKilled(Reg, MI, true);
+ else {
+ for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs)
+ addRegisterKills(SubReg, MI, SubKills);
+ }
+}
+
+bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) {
+ SmallSet<unsigned, 4> SubKills;
+ if (HandlePhysRegKill(Reg, RefMI, SubKills)) {
+ addRegisterKilled(Reg, RefMI);
+ return true;
+ } else {
+ // Some sub-registers are killed by another MI.
+ for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs)
+ addRegisterKills(SubReg, RefMI, SubKills);
+ return false;
+ }
+}
+
+void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
+ // Does this kill a previous version of this register?
+ if (MachineInstr *LastRef = PhysRegInfo[Reg]) {
+ if (PhysRegUsed[Reg]) {
+ if (!HandlePhysRegKill(Reg, LastRef)) {
+ if (PhysRegPartUse[Reg])
+ addRegisterKilled(Reg, PhysRegPartUse[Reg], true);
+ }
+ } else if (PhysRegPartUse[Reg])
+ // Add implicit use / kill to last use of a sub-register.
+ addRegisterKilled(Reg, PhysRegPartUse[Reg], true);
+ else
+ addRegisterDead(Reg, LastRef);
+ }
+
+ for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ if (MachineInstr *LastRef = PhysRegInfo[SubReg]) {
+ if (PhysRegUsed[SubReg]) {
+ if (!HandlePhysRegKill(SubReg, LastRef)) {
+ if (PhysRegPartUse[SubReg])
+ addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true);
+ }
+ } else if (PhysRegPartUse[SubReg])
+ // Add implicit use / kill to last use of a sub-register.
+ addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true);
+ else
+ addRegisterDead(SubReg, LastRef);
+ }
+ }
+
+ if (MI) {
+ for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg);
+ unsigned SuperReg = *SuperRegs; ++SuperRegs) {
+ if (PhysRegInfo[SuperReg]) {
+ // The larger register is previously defined. Now a smaller part is
+ // being re-defined. Treat it as read/mod/write.
+ // EAX =
+ // AX = EAX<imp-use,kill>, EAX<imp-def>
+ MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/);
+ MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/);
+ PhysRegInfo[SuperReg] = MI;
+ PhysRegUsed[SuperReg] = false;
+ PhysRegPartUse[SuperReg] = NULL;
+ } else {
+ // Remember this partial def.
+ PhysRegPartDef[SuperReg].push_back(MI);
+ }
+ }
+
+ PhysRegInfo[Reg] = MI;
+ PhysRegUsed[Reg] = false;
+ PhysRegPartUse[Reg] = NULL;
+ for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg);
+ unsigned SubReg = *SubRegs; ++SubRegs) {
+ PhysRegInfo[SubReg] = MI;
+ PhysRegUsed[SubReg] = false;
+ PhysRegPartUse[SubReg] = NULL;
+ }
+ }
+}
+
+bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
+ MF = &mf;
+ const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo();
+ RegInfo = MF->getTarget().getRegisterInfo();
+ assert(RegInfo && "Target doesn't have register information?");
+
+ ReservedRegisters = RegInfo->getReservedRegs(mf);
+
+ unsigned NumRegs = RegInfo->getNumRegs();
+ PhysRegInfo = new MachineInstr*[NumRegs];
+ PhysRegUsed = new bool[NumRegs];
+ PhysRegPartUse = new MachineInstr*[NumRegs];
+ PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs];
+ PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()];
+ std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
+ std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
+ std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
+
+ /// Get some space for a respectable number of registers...
+ VirtRegInfo.resize(64);
+
+ analyzePHINodes(mf);
+
+ // Calculate live variable information in depth first order on the CFG of the
+ // function. This guarantees that we will see the definition of a virtual
+ // register before its uses due to dominance properties of SSA (except for PHI
+ // nodes, which are treated as a special case).
+ //
+ MachineBasicBlock *Entry = MF->begin();
+ SmallPtrSet<MachineBasicBlock*,16> Visited;
+ for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> >
+ DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited);
+ DFI != E; ++DFI) {
+ MachineBasicBlock *MBB = *DFI;
+
+ // Mark live-in registers as live-in.
+ for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(),
+ EE = MBB->livein_end(); II != EE; ++II) {
+ assert(MRegisterInfo::isPhysicalRegister(*II) &&
+ "Cannot have a live-in virtual register!");
+ HandlePhysRegDef(*II, 0);
+ }
+
+ // Loop over all of the instructions, processing them.
+ for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
+ I != E; ++I) {
+ MachineInstr *MI = I;
+
+ // Process all of the operands of the instruction...
+ unsigned NumOperandsToProcess = MI->getNumOperands();
+
+ // Unless it is a PHI node. In this case, ONLY process the DEF, not any
+ // of the uses. They will be handled in other basic blocks.
+ if (MI->getOpcode() == TargetInstrInfo::PHI)
+ NumOperandsToProcess = 1;
+
+ // Process all uses...
+ for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isRegister() && MO.isUse() && MO.getReg()) {
+ if (MRegisterInfo::isVirtualRegister(MO.getReg())){
+ HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI);
+ } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ !ReservedRegisters[MO.getReg()]) {
+ HandlePhysRegUse(MO.getReg(), MI);
+ }
+ }
+ }
+
+ // Process all defs...
+ for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isRegister() && MO.isDef() && MO.getReg()) {
+ if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
+ VarInfo &VRInfo = getVarInfo(MO.getReg());
+
+ assert(VRInfo.DefInst == 0 && "Variable multiply defined!");
+ VRInfo.DefInst = MI;
+ // Defaults to dead
+ VRInfo.Kills.push_back(MI);
+ } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) &&
+ !ReservedRegisters[MO.getReg()]) {
+ HandlePhysRegDef(MO.getReg(), MI);
+ }
+ }
+ }
+ }
+
+ // Handle any virtual assignments from PHI nodes which might be at the
+ // bottom of this basic block. We check all of our successor blocks to see
+ // if they have PHI nodes, and if so, we simulate an assignment at the end
+ // of the current block.
+ if (!PHIVarInfo[MBB->getNumber()].empty()) {
+ SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()];
+
+ for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(),
+ E = VarInfoVec.end(); I != E; ++I) {
+ VarInfo& VRInfo = getVarInfo(*I);
+ assert(VRInfo.DefInst && "Register use before def (or no def)!");
+
+ // Only mark it alive only in the block we are representing.
+ MarkVirtRegAliveInBlock(VRInfo, MBB);
+ }
+ }
+
+ // Finally, if the last instruction in the block is a return, make sure to mark
+ // it as using all of the live-out values in the function.
+ if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) {
+ MachineInstr *Ret = &MBB->back();
+ for (MachineFunction::liveout_iterator I = MF->liveout_begin(),
+ E = MF->liveout_end(); I != E; ++I) {
+ assert(MRegisterInfo::isPhysicalRegister(*I) &&
+ "Cannot have a live-in virtual register!");
+ HandlePhysRegUse(*I, Ret);
+ // Add live-out registers as implicit uses.
+ if (Ret->findRegisterUseOperandIdx(*I) == -1)
+ Ret->addRegOperand(*I, false, true);
+ }
+ }
+
+ // Loop over PhysRegInfo, killing any registers that are available at the
+ // end of the basic block. This also resets the PhysRegInfo map.
+ for (unsigned i = 0; i != NumRegs; ++i)
+ if (PhysRegInfo[i])
+ HandlePhysRegDef(i, 0);
+
+ // Clear some states between BB's. These are purely local information.
+ for (unsigned i = 0; i != NumRegs; ++i)
+ PhysRegPartDef[i].clear();
+ std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0);
+ std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false);
+ std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0);
+ }
+
+ // Convert and transfer the dead / killed information we have gathered into
+ // VirtRegInfo onto MI's.
+ //
+ for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i)
+ for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) {
+ if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst)
+ addRegisterDead(i + MRegisterInfo::FirstVirtualRegister,
+ VirtRegInfo[i].Kills[j]);
+ else
+ addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister,
+ VirtRegInfo[i].Kills[j]);
+ }
+
+ // Check to make sure there are no unreachable blocks in the MC CFG for the
+ // function. If so, it is due to a bug in the instruction selector or some
+ // other part of the code generator if this happens.
+#ifndef NDEBUG
+ for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
+ assert(Visited.count(&*i) != 0 && "unreachable basic block found");
+#endif
+
+ delete[] PhysRegInfo;
+ delete[] PhysRegUsed;
+ delete[] PhysRegPartUse;
+ delete[] PhysRegPartDef;
+ delete[] PHIVarInfo;
+
+ return false;
+}
+
+/// instructionChanged - When the address of an instruction changes, this
+/// method should be called so that live variables can update its internal
+/// data structures. This removes the records for OldMI, transfering them to
+/// the records for NewMI.
+void LiveVariables::instructionChanged(MachineInstr *OldMI,
+ MachineInstr *NewMI) {
+ // If the instruction defines any virtual registers, update the VarInfo,
+ // kill and dead information for the instruction.
+ for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = OldMI->getOperand(i);
+ if (MO.isRegister() && MO.getReg() &&
+ MRegisterInfo::isVirtualRegister(MO.getReg())) {
+ unsigned Reg = MO.getReg();
+ VarInfo &VI = getVarInfo(Reg);
+ if (MO.isDef()) {
+ if (MO.isDead()) {
+ MO.unsetIsDead();
+ addVirtualRegisterDead(Reg, NewMI);
+ }
+ // Update the defining instruction.
+ if (VI.DefInst == OldMI)
+ VI.DefInst = NewMI;
+ }
+ if (MO.isUse()) {
+ if (MO.isKill()) {
+ MO.unsetIsKill();
+ addVirtualRegisterKilled(Reg, NewMI);
+ }
+ // If this is a kill of the value, update the VI kills list.
+ if (VI.removeKill(OldMI))
+ VI.Kills.push_back(NewMI); // Yes, there was a kill of it
+ }
+ }
+ }
+}
+
+/// removeVirtualRegistersKilled - Remove all killed info for the specified
+/// instruction.
+void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isKill()) {
+ MO.unsetIsKill();
+ unsigned Reg = MO.getReg();
+ if (MRegisterInfo::isVirtualRegister(Reg)) {
+ bool removed = getVarInfo(Reg).removeKill(MI);
+ assert(removed && "kill not in register's VarInfo?");
+ }
+ }
+ }
+}
+
+/// removeVirtualRegistersDead - Remove all of the dead registers for the
+/// specified instruction from the live variable information.
+void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (MO.isReg() && MO.isDead()) {
+ MO.unsetIsDead();
+ unsigned Reg = MO.getReg();
+ if (MRegisterInfo::isVirtualRegister(Reg)) {
+ bool removed = getVarInfo(Reg).removeKill(MI);
+ assert(removed && "kill not in register's VarInfo?");
+ }
+ }
+ }
+}
+
+/// analyzePHINodes - Gather information about the PHI nodes in here. In
+/// particular, we want to map the variable information of a virtual
+/// register which is used in a PHI node. We map that to the BB the vreg is
+/// coming from.
+///
+void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
+ for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
+ I != E; ++I)
+ for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
+ BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
+ for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
+ PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()].
+ push_back(BBI->getOperand(i).getReg());
+}