diff options
author | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
---|---|---|
committer | Dan Gohman <djg@cray.com> | 2007-07-18 16:29:46 +0000 |
commit | f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc (patch) | |
tree | ebb79ea1ee5e3bc1fdf38541a811a8b804f0679a /lib/CodeGen/LiveVariables.cpp | |
download | external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.gz external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.tar.bz2 external_llvm-f17a25c88b892d30c2b41ba7ecdfbdfb2b4be9cc.zip |
It's not necessary to do rounding for alloca operations when the requested
alignment is equal to the stack alignment.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@40004 91177308-0d34-0410-b5e6-96231b3b80d8
Diffstat (limited to 'lib/CodeGen/LiveVariables.cpp')
-rw-r--r-- | lib/CodeGen/LiveVariables.cpp | 643 |
1 files changed, 643 insertions, 0 deletions
diff --git a/lib/CodeGen/LiveVariables.cpp b/lib/CodeGen/LiveVariables.cpp new file mode 100644 index 0000000000..504b607b85 --- /dev/null +++ b/lib/CodeGen/LiveVariables.cpp @@ -0,0 +1,643 @@ +//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===// +// +// The LLVM Compiler Infrastructure +// +// This file was developed by the LLVM research group and is distributed under +// the University of Illinois Open Source License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the LiveVariable analysis pass. For each machine +// instruction in the function, this pass calculates the set of registers that +// are immediately dead after the instruction (i.e., the instruction calculates +// the value, but it is never used) and the set of registers that are used by +// the instruction, but are never used after the instruction (i.e., they are +// killed). +// +// This class computes live variables using are sparse implementation based on +// the machine code SSA form. This class computes live variable information for +// each virtual and _register allocatable_ physical register in a function. It +// uses the dominance properties of SSA form to efficiently compute live +// variables for virtual registers, and assumes that physical registers are only +// live within a single basic block (allowing it to do a single local analysis +// to resolve physical register lifetimes in each basic block). If a physical +// register is not register allocatable, it is not tracked. This is useful for +// things like the stack pointer and condition codes. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/LiveVariables.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/Target/MRegisterInfo.h" +#include "llvm/Target/TargetInstrInfo.h" +#include "llvm/Target/TargetMachine.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Config/alloca.h" +#include <algorithm> +using namespace llvm; + +char LiveVariables::ID = 0; +static RegisterPass<LiveVariables> X("livevars", "Live Variable Analysis"); + +void LiveVariables::VarInfo::dump() const { + cerr << "Register Defined by: "; + if (DefInst) + cerr << *DefInst; + else + cerr << "<null>\n"; + cerr << " Alive in blocks: "; + for (unsigned i = 0, e = AliveBlocks.size(); i != e; ++i) + if (AliveBlocks[i]) cerr << i << ", "; + cerr << "\n Killed by:"; + if (Kills.empty()) + cerr << " No instructions.\n"; + else { + for (unsigned i = 0, e = Kills.size(); i != e; ++i) + cerr << "\n #" << i << ": " << *Kills[i]; + cerr << "\n"; + } +} + +LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) { + assert(MRegisterInfo::isVirtualRegister(RegIdx) && + "getVarInfo: not a virtual register!"); + RegIdx -= MRegisterInfo::FirstVirtualRegister; + if (RegIdx >= VirtRegInfo.size()) { + if (RegIdx >= 2*VirtRegInfo.size()) + VirtRegInfo.resize(RegIdx*2); + else + VirtRegInfo.resize(2*VirtRegInfo.size()); + } + VarInfo &VI = VirtRegInfo[RegIdx]; + VI.AliveBlocks.resize(MF->getNumBlockIDs()); + return VI; +} + +bool LiveVariables::KillsRegister(MachineInstr *MI, unsigned Reg) const { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isKill()) { + if ((MO.getReg() == Reg) || + (MRegisterInfo::isPhysicalRegister(MO.getReg()) && + MRegisterInfo::isPhysicalRegister(Reg) && + RegInfo->isSubRegister(MO.getReg(), Reg))) + return true; + } + } + return false; +} + +bool LiveVariables::RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDead()) { + if ((MO.getReg() == Reg) || + (MRegisterInfo::isPhysicalRegister(MO.getReg()) && + MRegisterInfo::isPhysicalRegister(Reg) && + RegInfo->isSubRegister(MO.getReg(), Reg))) + return true; + } + } + return false; +} + +bool LiveVariables::ModifiesRegister(MachineInstr *MI, unsigned Reg) const { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef() && MO.getReg() == Reg) + return true; + } + return false; +} + +void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, + MachineBasicBlock *MBB, + std::vector<MachineBasicBlock*> &WorkList) { + unsigned BBNum = MBB->getNumber(); + + // Check to see if this basic block is one of the killing blocks. If so, + // remove it... + for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) + if (VRInfo.Kills[i]->getParent() == MBB) { + VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry + break; + } + + if (MBB == VRInfo.DefInst->getParent()) return; // Terminate recursion + + if (VRInfo.AliveBlocks[BBNum]) + return; // We already know the block is live + + // Mark the variable known alive in this bb + VRInfo.AliveBlocks[BBNum] = true; + + for (MachineBasicBlock::const_pred_reverse_iterator PI = MBB->pred_rbegin(), + E = MBB->pred_rend(); PI != E; ++PI) + WorkList.push_back(*PI); +} + +void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo, + MachineBasicBlock *MBB) { + std::vector<MachineBasicBlock*> WorkList; + MarkVirtRegAliveInBlock(VRInfo, MBB, WorkList); + while (!WorkList.empty()) { + MachineBasicBlock *Pred = WorkList.back(); + WorkList.pop_back(); + MarkVirtRegAliveInBlock(VRInfo, Pred, WorkList); + } +} + + +void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB, + MachineInstr *MI) { + assert(VRInfo.DefInst && "Register use before def!"); + + VRInfo.NumUses++; + + // Check to see if this basic block is already a kill block... + if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) { + // Yes, this register is killed in this basic block already. Increase the + // live range by updating the kill instruction. + VRInfo.Kills.back() = MI; + return; + } + +#ifndef NDEBUG + for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i) + assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!"); +#endif + + assert(MBB != VRInfo.DefInst->getParent() && + "Should have kill for defblock!"); + + // Add a new kill entry for this basic block. + // If this virtual register is already marked as alive in this basic block, + // that means it is alive in at least one of the successor block, it's not + // a kill. + if (!VRInfo.AliveBlocks[MBB->getNumber()]) + VRInfo.Kills.push_back(MI); + + // Update all dominating blocks to mark them known live. + for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), + E = MBB->pred_end(); PI != E; ++PI) + MarkVirtRegAliveInBlock(VRInfo, *PI); +} + +bool LiveVariables::addRegisterKilled(unsigned IncomingReg, MachineInstr *MI, + bool AddIfNotFound) { + bool Found = false; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isUse()) { + unsigned Reg = MO.getReg(); + if (!Reg) + continue; + if (Reg == IncomingReg) { + MO.setIsKill(); + Found = true; + break; + } else if (MRegisterInfo::isPhysicalRegister(Reg) && + MRegisterInfo::isPhysicalRegister(IncomingReg) && + RegInfo->isSuperRegister(IncomingReg, Reg) && + MO.isKill()) + // A super-register kill already exists. + return true; + } + } + + // If not found, this means an alias of one of the operand is killed. Add a + // new implicit operand if required. + if (!Found && AddIfNotFound) { + MI->addRegOperand(IncomingReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); + return true; + } + return Found; +} + +bool LiveVariables::addRegisterDead(unsigned IncomingReg, MachineInstr *MI, + bool AddIfNotFound) { + bool Found = false; + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDef()) { + unsigned Reg = MO.getReg(); + if (!Reg) + continue; + if (Reg == IncomingReg) { + MO.setIsDead(); + Found = true; + break; + } else if (MRegisterInfo::isPhysicalRegister(Reg) && + MRegisterInfo::isPhysicalRegister(IncomingReg) && + RegInfo->isSuperRegister(IncomingReg, Reg) && + MO.isDead()) + // There exists a super-register that's marked dead. + return true; + } + } + + // If not found, this means an alias of one of the operand is dead. Add a + // new implicit operand. + if (!Found && AddIfNotFound) { + MI->addRegOperand(IncomingReg, true/*IsDef*/,true/*IsImp*/,false/*IsKill*/, + true/*IsDead*/); + return true; + } + return Found; +} + +void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) { + // There is a now a proper use, forget about the last partial use. + PhysRegPartUse[Reg] = NULL; + + // Turn previous partial def's into read/mod/write. + for (unsigned i = 0, e = PhysRegPartDef[Reg].size(); i != e; ++i) { + MachineInstr *Def = PhysRegPartDef[Reg][i]; + // First one is just a def. This means the use is reading some undef bits. + if (i != 0) + Def->addRegOperand(Reg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); + Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/); + } + PhysRegPartDef[Reg].clear(); + + // There was an earlier def of a super-register. Add implicit def to that MI. + // A: EAX = ... + // B: = AX + // Add implicit def to A. + if (PhysRegInfo[Reg] && !PhysRegUsed[Reg]) { + MachineInstr *Def = PhysRegInfo[Reg]; + if (!Def->findRegisterDefOperand(Reg)) + Def->addRegOperand(Reg, true/*IsDef*/,true/*IsImp*/); + } + + PhysRegInfo[Reg] = MI; + PhysRegUsed[Reg] = true; + + for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + PhysRegInfo[SubReg] = MI; + PhysRegUsed[SubReg] = true; + } + + // Remember the partial uses. + for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg); + unsigned SuperReg = *SuperRegs; ++SuperRegs) + PhysRegPartUse[SuperReg] = MI; +} + +bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI, + SmallSet<unsigned, 4> &SubKills) { + for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + MachineInstr *LastRef = PhysRegInfo[SubReg]; + if (LastRef != RefMI) + SubKills.insert(SubReg); + else if (!HandlePhysRegKill(SubReg, RefMI, SubKills)) + SubKills.insert(SubReg); + } + + if (*RegInfo->getImmediateSubRegisters(Reg) == 0) { + // No sub-registers, just check if reg is killed by RefMI. + if (PhysRegInfo[Reg] == RefMI) + return true; + } else if (SubKills.empty()) + // None of the sub-registers are killed elsewhere... + return true; + return false; +} + +void LiveVariables::addRegisterKills(unsigned Reg, MachineInstr *MI, + SmallSet<unsigned, 4> &SubKills) { + if (SubKills.count(Reg) == 0) + addRegisterKilled(Reg, MI, true); + else { + for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) + addRegisterKills(SubReg, MI, SubKills); + } +} + +bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *RefMI) { + SmallSet<unsigned, 4> SubKills; + if (HandlePhysRegKill(Reg, RefMI, SubKills)) { + addRegisterKilled(Reg, RefMI); + return true; + } else { + // Some sub-registers are killed by another MI. + for (const unsigned *SubRegs = RegInfo->getImmediateSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) + addRegisterKills(SubReg, RefMI, SubKills); + return false; + } +} + +void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) { + // Does this kill a previous version of this register? + if (MachineInstr *LastRef = PhysRegInfo[Reg]) { + if (PhysRegUsed[Reg]) { + if (!HandlePhysRegKill(Reg, LastRef)) { + if (PhysRegPartUse[Reg]) + addRegisterKilled(Reg, PhysRegPartUse[Reg], true); + } + } else if (PhysRegPartUse[Reg]) + // Add implicit use / kill to last use of a sub-register. + addRegisterKilled(Reg, PhysRegPartUse[Reg], true); + else + addRegisterDead(Reg, LastRef); + } + + for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + if (MachineInstr *LastRef = PhysRegInfo[SubReg]) { + if (PhysRegUsed[SubReg]) { + if (!HandlePhysRegKill(SubReg, LastRef)) { + if (PhysRegPartUse[SubReg]) + addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true); + } + } else if (PhysRegPartUse[SubReg]) + // Add implicit use / kill to last use of a sub-register. + addRegisterKilled(SubReg, PhysRegPartUse[SubReg], true); + else + addRegisterDead(SubReg, LastRef); + } + } + + if (MI) { + for (const unsigned *SuperRegs = RegInfo->getSuperRegisters(Reg); + unsigned SuperReg = *SuperRegs; ++SuperRegs) { + if (PhysRegInfo[SuperReg]) { + // The larger register is previously defined. Now a smaller part is + // being re-defined. Treat it as read/mod/write. + // EAX = + // AX = EAX<imp-use,kill>, EAX<imp-def> + MI->addRegOperand(SuperReg, false/*IsDef*/,true/*IsImp*/,true/*IsKill*/); + MI->addRegOperand(SuperReg, true/*IsDef*/,true/*IsImp*/); + PhysRegInfo[SuperReg] = MI; + PhysRegUsed[SuperReg] = false; + PhysRegPartUse[SuperReg] = NULL; + } else { + // Remember this partial def. + PhysRegPartDef[SuperReg].push_back(MI); + } + } + + PhysRegInfo[Reg] = MI; + PhysRegUsed[Reg] = false; + PhysRegPartUse[Reg] = NULL; + for (const unsigned *SubRegs = RegInfo->getSubRegisters(Reg); + unsigned SubReg = *SubRegs; ++SubRegs) { + PhysRegInfo[SubReg] = MI; + PhysRegUsed[SubReg] = false; + PhysRegPartUse[SubReg] = NULL; + } + } +} + +bool LiveVariables::runOnMachineFunction(MachineFunction &mf) { + MF = &mf; + const TargetInstrInfo &TII = *MF->getTarget().getInstrInfo(); + RegInfo = MF->getTarget().getRegisterInfo(); + assert(RegInfo && "Target doesn't have register information?"); + + ReservedRegisters = RegInfo->getReservedRegs(mf); + + unsigned NumRegs = RegInfo->getNumRegs(); + PhysRegInfo = new MachineInstr*[NumRegs]; + PhysRegUsed = new bool[NumRegs]; + PhysRegPartUse = new MachineInstr*[NumRegs]; + PhysRegPartDef = new SmallVector<MachineInstr*,4>[NumRegs]; + PHIVarInfo = new SmallVector<unsigned, 4>[MF->getNumBlockIDs()]; + std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); + std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); + std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); + + /// Get some space for a respectable number of registers... + VirtRegInfo.resize(64); + + analyzePHINodes(mf); + + // Calculate live variable information in depth first order on the CFG of the + // function. This guarantees that we will see the definition of a virtual + // register before its uses due to dominance properties of SSA (except for PHI + // nodes, which are treated as a special case). + // + MachineBasicBlock *Entry = MF->begin(); + SmallPtrSet<MachineBasicBlock*,16> Visited; + for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*,16> > + DFI = df_ext_begin(Entry, Visited), E = df_ext_end(Entry, Visited); + DFI != E; ++DFI) { + MachineBasicBlock *MBB = *DFI; + + // Mark live-in registers as live-in. + for (MachineBasicBlock::const_livein_iterator II = MBB->livein_begin(), + EE = MBB->livein_end(); II != EE; ++II) { + assert(MRegisterInfo::isPhysicalRegister(*II) && + "Cannot have a live-in virtual register!"); + HandlePhysRegDef(*II, 0); + } + + // Loop over all of the instructions, processing them. + for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); + I != E; ++I) { + MachineInstr *MI = I; + + // Process all of the operands of the instruction... + unsigned NumOperandsToProcess = MI->getNumOperands(); + + // Unless it is a PHI node. In this case, ONLY process the DEF, not any + // of the uses. They will be handled in other basic blocks. + if (MI->getOpcode() == TargetInstrInfo::PHI) + NumOperandsToProcess = 1; + + // Process all uses... + for (unsigned i = 0; i != NumOperandsToProcess; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isRegister() && MO.isUse() && MO.getReg()) { + if (MRegisterInfo::isVirtualRegister(MO.getReg())){ + HandleVirtRegUse(getVarInfo(MO.getReg()), MBB, MI); + } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && + !ReservedRegisters[MO.getReg()]) { + HandlePhysRegUse(MO.getReg(), MI); + } + } + } + + // Process all defs... + for (unsigned i = 0; i != NumOperandsToProcess; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isRegister() && MO.isDef() && MO.getReg()) { + if (MRegisterInfo::isVirtualRegister(MO.getReg())) { + VarInfo &VRInfo = getVarInfo(MO.getReg()); + + assert(VRInfo.DefInst == 0 && "Variable multiply defined!"); + VRInfo.DefInst = MI; + // Defaults to dead + VRInfo.Kills.push_back(MI); + } else if (MRegisterInfo::isPhysicalRegister(MO.getReg()) && + !ReservedRegisters[MO.getReg()]) { + HandlePhysRegDef(MO.getReg(), MI); + } + } + } + } + + // Handle any virtual assignments from PHI nodes which might be at the + // bottom of this basic block. We check all of our successor blocks to see + // if they have PHI nodes, and if so, we simulate an assignment at the end + // of the current block. + if (!PHIVarInfo[MBB->getNumber()].empty()) { + SmallVector<unsigned, 4>& VarInfoVec = PHIVarInfo[MBB->getNumber()]; + + for (SmallVector<unsigned, 4>::iterator I = VarInfoVec.begin(), + E = VarInfoVec.end(); I != E; ++I) { + VarInfo& VRInfo = getVarInfo(*I); + assert(VRInfo.DefInst && "Register use before def (or no def)!"); + + // Only mark it alive only in the block we are representing. + MarkVirtRegAliveInBlock(VRInfo, MBB); + } + } + + // Finally, if the last instruction in the block is a return, make sure to mark + // it as using all of the live-out values in the function. + if (!MBB->empty() && TII.isReturn(MBB->back().getOpcode())) { + MachineInstr *Ret = &MBB->back(); + for (MachineFunction::liveout_iterator I = MF->liveout_begin(), + E = MF->liveout_end(); I != E; ++I) { + assert(MRegisterInfo::isPhysicalRegister(*I) && + "Cannot have a live-in virtual register!"); + HandlePhysRegUse(*I, Ret); + // Add live-out registers as implicit uses. + if (Ret->findRegisterUseOperandIdx(*I) == -1) + Ret->addRegOperand(*I, false, true); + } + } + + // Loop over PhysRegInfo, killing any registers that are available at the + // end of the basic block. This also resets the PhysRegInfo map. + for (unsigned i = 0; i != NumRegs; ++i) + if (PhysRegInfo[i]) + HandlePhysRegDef(i, 0); + + // Clear some states between BB's. These are purely local information. + for (unsigned i = 0; i != NumRegs; ++i) + PhysRegPartDef[i].clear(); + std::fill(PhysRegInfo, PhysRegInfo + NumRegs, (MachineInstr*)0); + std::fill(PhysRegUsed, PhysRegUsed + NumRegs, false); + std::fill(PhysRegPartUse, PhysRegPartUse + NumRegs, (MachineInstr*)0); + } + + // Convert and transfer the dead / killed information we have gathered into + // VirtRegInfo onto MI's. + // + for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) + for (unsigned j = 0, e2 = VirtRegInfo[i].Kills.size(); j != e2; ++j) { + if (VirtRegInfo[i].Kills[j] == VirtRegInfo[i].DefInst) + addRegisterDead(i + MRegisterInfo::FirstVirtualRegister, + VirtRegInfo[i].Kills[j]); + else + addRegisterKilled(i + MRegisterInfo::FirstVirtualRegister, + VirtRegInfo[i].Kills[j]); + } + + // Check to make sure there are no unreachable blocks in the MC CFG for the + // function. If so, it is due to a bug in the instruction selector or some + // other part of the code generator if this happens. +#ifndef NDEBUG + for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i) + assert(Visited.count(&*i) != 0 && "unreachable basic block found"); +#endif + + delete[] PhysRegInfo; + delete[] PhysRegUsed; + delete[] PhysRegPartUse; + delete[] PhysRegPartDef; + delete[] PHIVarInfo; + + return false; +} + +/// instructionChanged - When the address of an instruction changes, this +/// method should be called so that live variables can update its internal +/// data structures. This removes the records for OldMI, transfering them to +/// the records for NewMI. +void LiveVariables::instructionChanged(MachineInstr *OldMI, + MachineInstr *NewMI) { + // If the instruction defines any virtual registers, update the VarInfo, + // kill and dead information for the instruction. + for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = OldMI->getOperand(i); + if (MO.isRegister() && MO.getReg() && + MRegisterInfo::isVirtualRegister(MO.getReg())) { + unsigned Reg = MO.getReg(); + VarInfo &VI = getVarInfo(Reg); + if (MO.isDef()) { + if (MO.isDead()) { + MO.unsetIsDead(); + addVirtualRegisterDead(Reg, NewMI); + } + // Update the defining instruction. + if (VI.DefInst == OldMI) + VI.DefInst = NewMI; + } + if (MO.isUse()) { + if (MO.isKill()) { + MO.unsetIsKill(); + addVirtualRegisterKilled(Reg, NewMI); + } + // If this is a kill of the value, update the VI kills list. + if (VI.removeKill(OldMI)) + VI.Kills.push_back(NewMI); // Yes, there was a kill of it + } + } + } +} + +/// removeVirtualRegistersKilled - Remove all killed info for the specified +/// instruction. +void LiveVariables::removeVirtualRegistersKilled(MachineInstr *MI) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isKill()) { + MO.unsetIsKill(); + unsigned Reg = MO.getReg(); + if (MRegisterInfo::isVirtualRegister(Reg)) { + bool removed = getVarInfo(Reg).removeKill(MI); + assert(removed && "kill not in register's VarInfo?"); + } + } + } +} + +/// removeVirtualRegistersDead - Remove all of the dead registers for the +/// specified instruction from the live variable information. +void LiveVariables::removeVirtualRegistersDead(MachineInstr *MI) { + for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (MO.isReg() && MO.isDead()) { + MO.unsetIsDead(); + unsigned Reg = MO.getReg(); + if (MRegisterInfo::isVirtualRegister(Reg)) { + bool removed = getVarInfo(Reg).removeKill(MI); + assert(removed && "kill not in register's VarInfo?"); + } + } + } +} + +/// analyzePHINodes - Gather information about the PHI nodes in here. In +/// particular, we want to map the variable information of a virtual +/// register which is used in a PHI node. We map that to the BB the vreg is +/// coming from. +/// +void LiveVariables::analyzePHINodes(const MachineFunction& Fn) { + for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end(); + I != E; ++I) + for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); + BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI) + for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) + PHIVarInfo[BBI->getOperand(i + 1).getMachineBasicBlock()->getNumber()]. + push_back(BBI->getOperand(i).getReg()); +} |