aboutsummaryrefslogtreecommitdiffstats
path: root/lib/Analysis/ValueTracking.cpp
diff options
context:
space:
mode:
authorShih-wei Liao <sliao@google.com>2010-02-10 11:10:31 -0800
committerShih-wei Liao <sliao@google.com>2010-02-10 11:10:31 -0800
commite264f62ca09a8f65c87a46d562a4d0f9ec5d457e (patch)
tree59e3d57ef656cef79afa708ae0a3daf25cd91fcf /lib/Analysis/ValueTracking.cpp
downloadexternal_llvm-e264f62ca09a8f65c87a46d562a4d0f9ec5d457e.tar.gz
external_llvm-e264f62ca09a8f65c87a46d562a4d0f9ec5d457e.tar.bz2
external_llvm-e264f62ca09a8f65c87a46d562a4d0f9ec5d457e.zip
Check in LLVM r95781.
Diffstat (limited to 'lib/Analysis/ValueTracking.cpp')
-rw-r--r--lib/Analysis/ValueTracking.cpp1438
1 files changed, 1438 insertions, 0 deletions
diff --git a/lib/Analysis/ValueTracking.cpp b/lib/Analysis/ValueTracking.cpp
new file mode 100644
index 0000000000..f9331e76d0
--- /dev/null
+++ b/lib/Analysis/ValueTracking.cpp
@@ -0,0 +1,1438 @@
+//===- ValueTracking.cpp - Walk computations to compute properties --------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains routines that help analyze properties that chains of
+// computations have.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/GlobalVariable.h"
+#include "llvm/GlobalAlias.h"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/LLVMContext.h"
+#include "llvm/Operator.h"
+#include "llvm/Target/TargetData.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/MathExtras.h"
+#include <cstring>
+using namespace llvm;
+
+/// ComputeMaskedBits - Determine which of the bits specified in Mask are
+/// known to be either zero or one and return them in the KnownZero/KnownOne
+/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
+/// processing.
+/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
+/// we cannot optimize based on the assumption that it is zero without changing
+/// it to be an explicit zero. If we don't change it to zero, other code could
+/// optimized based on the contradictory assumption that it is non-zero.
+/// Because instcombine aggressively folds operations with undef args anyway,
+/// this won't lose us code quality.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type (but only if TD is non-null), and vectors of integers. In the case
+/// where V is a vector, the mask, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
+ APInt &KnownZero, APInt &KnownOne,
+ const TargetData *TD, unsigned Depth) {
+ const unsigned MaxDepth = 6;
+ assert(V && "No Value?");
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+ unsigned BitWidth = Mask.getBitWidth();
+ assert((V->getType()->isIntOrIntVector() || isa<PointerType>(V->getType())) &&
+ "Not integer or pointer type!");
+ assert((!TD ||
+ TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
+ (!V->getType()->isIntOrIntVector() ||
+ V->getType()->getScalarSizeInBits() == BitWidth) &&
+ KnownZero.getBitWidth() == BitWidth &&
+ KnownOne.getBitWidth() == BitWidth &&
+ "V, Mask, KnownOne and KnownZero should have same BitWidth");
+
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
+ // We know all of the bits for a constant!
+ KnownOne = CI->getValue() & Mask;
+ KnownZero = ~KnownOne & Mask;
+ return;
+ }
+ // Null and aggregate-zero are all-zeros.
+ if (isa<ConstantPointerNull>(V) ||
+ isa<ConstantAggregateZero>(V)) {
+ KnownOne.clear();
+ KnownZero = Mask;
+ return;
+ }
+ // Handle a constant vector by taking the intersection of the known bits of
+ // each element.
+ if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
+ KnownZero.set(); KnownOne.set();
+ for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
+ APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
+ ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
+ TD, Depth);
+ KnownZero &= KnownZero2;
+ KnownOne &= KnownOne2;
+ }
+ return;
+ }
+ // The address of an aligned GlobalValue has trailing zeros.
+ if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+ unsigned Align = GV->getAlignment();
+ if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
+ const Type *ObjectType = GV->getType()->getElementType();
+ // If the object is defined in the current Module, we'll be giving
+ // it the preferred alignment. Otherwise, we have to assume that it
+ // may only have the minimum ABI alignment.
+ if (!GV->isDeclaration() && !GV->mayBeOverridden())
+ Align = TD->getPrefTypeAlignment(ObjectType);
+ else
+ Align = TD->getABITypeAlignment(ObjectType);
+ }
+ if (Align > 0)
+ KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
+ CountTrailingZeros_32(Align));
+ else
+ KnownZero.clear();
+ KnownOne.clear();
+ return;
+ }
+ // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
+ // the bits of its aliasee.
+ if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (GA->mayBeOverridden()) {
+ KnownZero.clear(); KnownOne.clear();
+ } else {
+ ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
+ TD, Depth+1);
+ }
+ return;
+ }
+
+ KnownZero.clear(); KnownOne.clear(); // Start out not knowing anything.
+
+ if (Depth == MaxDepth || Mask == 0)
+ return; // Limit search depth.
+
+ Operator *I = dyn_cast<Operator>(V);
+ if (!I) return;
+
+ APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::And: {
+ // If either the LHS or the RHS are Zero, the result is zero.
+ ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
+ APInt Mask2(Mask & ~KnownZero);
+ ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // Output known-1 bits are only known if set in both the LHS & RHS.
+ KnownOne &= KnownOne2;
+ // Output known-0 are known to be clear if zero in either the LHS | RHS.
+ KnownZero |= KnownZero2;
+ return;
+ }
+ case Instruction::Or: {
+ ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
+ APInt Mask2(Mask & ~KnownOne);
+ ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // Output known-0 bits are only known if clear in both the LHS & RHS.
+ KnownZero &= KnownZero2;
+ // Output known-1 are known to be set if set in either the LHS | RHS.
+ KnownOne |= KnownOne2;
+ return;
+ }
+ case Instruction::Xor: {
+ ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // Output known-0 bits are known if clear or set in both the LHS & RHS.
+ APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
+ // Output known-1 are known to be set if set in only one of the LHS, RHS.
+ KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
+ KnownZero = KnownZeroOut;
+ return;
+ }
+ case Instruction::Mul: {
+ APInt Mask2 = APInt::getAllOnesValue(BitWidth);
+ ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
+ ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // If low bits are zero in either operand, output low known-0 bits.
+ // Also compute a conserative estimate for high known-0 bits.
+ // More trickiness is possible, but this is sufficient for the
+ // interesting case of alignment computation.
+ KnownOne.clear();
+ unsigned TrailZ = KnownZero.countTrailingOnes() +
+ KnownZero2.countTrailingOnes();
+ unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
+ KnownZero2.countLeadingOnes(),
+ BitWidth) - BitWidth;
+
+ TrailZ = std::min(TrailZ, BitWidth);
+ LeadZ = std::min(LeadZ, BitWidth);
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
+ APInt::getHighBitsSet(BitWidth, LeadZ);
+ KnownZero &= Mask;
+ return;
+ }
+ case Instruction::UDiv: {
+ // For the purposes of computing leading zeros we can conservatively
+ // treat a udiv as a logical right shift by the power of 2 known to
+ // be less than the denominator.
+ APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+ ComputeMaskedBits(I->getOperand(0),
+ AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
+ unsigned LeadZ = KnownZero2.countLeadingOnes();
+
+ KnownOne2.clear();
+ KnownZero2.clear();
+ ComputeMaskedBits(I->getOperand(1),
+ AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
+ unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
+ if (RHSUnknownLeadingOnes != BitWidth)
+ LeadZ = std::min(BitWidth,
+ LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
+
+ KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
+ return;
+ }
+ case Instruction::Select:
+ ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+
+ // Only known if known in both the LHS and RHS.
+ KnownOne &= KnownOne2;
+ KnownZero &= KnownZero2;
+ return;
+ case Instruction::FPTrunc:
+ case Instruction::FPExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ return; // Can't work with floating point.
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ // We can't handle these if we don't know the pointer size.
+ if (!TD) return;
+ // FALL THROUGH and handle them the same as zext/trunc.
+ case Instruction::ZExt:
+ case Instruction::Trunc: {
+ const Type *SrcTy = I->getOperand(0)->getType();
+
+ unsigned SrcBitWidth;
+ // Note that we handle pointer operands here because of inttoptr/ptrtoint
+ // which fall through here.
+ if (isa<PointerType>(SrcTy))
+ SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
+ else
+ SrcBitWidth = SrcTy->getScalarSizeInBits();
+
+ APInt MaskIn(Mask);
+ MaskIn.zextOrTrunc(SrcBitWidth);
+ KnownZero.zextOrTrunc(SrcBitWidth);
+ KnownOne.zextOrTrunc(SrcBitWidth);
+ ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
+ Depth+1);
+ KnownZero.zextOrTrunc(BitWidth);
+ KnownOne.zextOrTrunc(BitWidth);
+ // Any top bits are known to be zero.
+ if (BitWidth > SrcBitWidth)
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ return;
+ }
+ case Instruction::BitCast: {
+ const Type *SrcTy = I->getOperand(0)->getType();
+ if ((SrcTy->isInteger() || isa<PointerType>(SrcTy)) &&
+ // TODO: For now, not handling conversions like:
+ // (bitcast i64 %x to <2 x i32>)
+ !isa<VectorType>(I->getType())) {
+ ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
+ Depth+1);
+ return;
+ }
+ break;
+ }
+ case Instruction::SExt: {
+ // Compute the bits in the result that are not present in the input.
+ unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
+
+ APInt MaskIn(Mask);
+ MaskIn.trunc(SrcBitWidth);
+ KnownZero.trunc(SrcBitWidth);
+ KnownOne.trunc(SrcBitWidth);
+ ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero.zext(BitWidth);
+ KnownOne.zext(BitWidth);
+
+ // If the sign bit of the input is known set or clear, then we know the
+ // top bits of the result.
+ if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
+ KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
+ KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
+ return;
+ }
+ case Instruction::Shl:
+ // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+ APInt Mask2(Mask.lshr(ShiftAmt));
+ ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero <<= ShiftAmt;
+ KnownOne <<= ShiftAmt;
+ KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
+ return;
+ }
+ break;
+ case Instruction::LShr:
+ // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // Compute the new bits that are at the top now.
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+
+ // Unsigned shift right.
+ APInt Mask2(Mask.shl(ShiftAmt));
+ ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
+ KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
+ // high bits known zero.
+ KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
+ return;
+ }
+ break;
+ case Instruction::AShr:
+ // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
+ if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ // Compute the new bits that are at the top now.
+ uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
+
+ // Signed shift right.
+ APInt Mask2(Mask.shl(ShiftAmt));
+ ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
+ KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
+
+ APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
+ if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
+ KnownZero |= HighBits;
+ else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
+ KnownOne |= HighBits;
+ return;
+ }
+ break;
+ case Instruction::Sub: {
+ if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
+ // We know that the top bits of C-X are clear if X contains less bits
+ // than C (i.e. no wrap-around can happen). For example, 20-X is
+ // positive if we can prove that X is >= 0 and < 16.
+ if (!CLHS->getValue().isNegative()) {
+ unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
+ // NLZ can't be BitWidth with no sign bit
+ APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
+ ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
+ TD, Depth+1);
+
+ // If all of the MaskV bits are known to be zero, then we know the
+ // output top bits are zero, because we now know that the output is
+ // from [0-C].
+ if ((KnownZero2 & MaskV) == MaskV) {
+ unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
+ // Top bits known zero.
+ KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
+ }
+ }
+ }
+ }
+ // fall through
+ case Instruction::Add: {
+ // If one of the operands has trailing zeros, then the bits that the
+ // other operand has in those bit positions will be preserved in the
+ // result. For an add, this works with either operand. For a subtract,
+ // this only works if the known zeros are in the right operand.
+ APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
+ APInt Mask2 = APInt::getLowBitsSet(BitWidth,
+ BitWidth - Mask.countLeadingZeros());
+ ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
+ Depth+1);
+ assert((LHSKnownZero & LHSKnownOne) == 0 &&
+ "Bits known to be one AND zero?");
+ unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
+
+ ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
+ Depth+1);
+ assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
+ unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
+
+ // Determine which operand has more trailing zeros, and use that
+ // many bits from the other operand.
+ if (LHSKnownZeroOut > RHSKnownZeroOut) {
+ if (I->getOpcode() == Instruction::Add) {
+ APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
+ KnownZero |= KnownZero2 & Mask;
+ KnownOne |= KnownOne2 & Mask;
+ } else {
+ // If the known zeros are in the left operand for a subtract,
+ // fall back to the minimum known zeros in both operands.
+ KnownZero |= APInt::getLowBitsSet(BitWidth,
+ std::min(LHSKnownZeroOut,
+ RHSKnownZeroOut));
+ }
+ } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
+ APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
+ KnownZero |= LHSKnownZero & Mask;
+ KnownOne |= LHSKnownOne & Mask;
+ }
+ return;
+ }
+ case Instruction::SRem:
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ APInt RA = Rem->getValue().abs();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = RA - 1;
+ APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
+ ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
+ Depth+1);
+
+ // The low bits of the first operand are unchanged by the srem.
+ KnownZero = KnownZero2 & LowBits;
+ KnownOne = KnownOne2 & LowBits;
+
+ // If the first operand is non-negative or has all low bits zero, then
+ // the upper bits are all zero.
+ if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
+ KnownZero |= ~LowBits;
+
+ // If the first operand is negative and not all low bits are zero, then
+ // the upper bits are all one.
+ if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
+ KnownOne |= ~LowBits;
+
+ KnownZero &= Mask;
+ KnownOne &= Mask;
+
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ }
+ }
+ break;
+ case Instruction::URem: {
+ if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
+ APInt RA = Rem->getValue();
+ if (RA.isPowerOf2()) {
+ APInt LowBits = (RA - 1);
+ APInt Mask2 = LowBits & Mask;
+ KnownZero |= ~LowBits & Mask;
+ ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
+ Depth+1);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ break;
+ }
+ }
+
+ // Since the result is less than or equal to either operand, any leading
+ // zero bits in either operand must also exist in the result.
+ APInt AllOnes = APInt::getAllOnesValue(BitWidth);
+ ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
+ TD, Depth+1);
+ ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
+ TD, Depth+1);
+
+ unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
+ KnownZero2.countLeadingOnes());
+ KnownOne.clear();
+ KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
+ break;
+ }
+
+ case Instruction::Alloca: {
+ AllocaInst *AI = cast<AllocaInst>(V);
+ unsigned Align = AI->getAlignment();
+ if (Align == 0 && TD)
+ Align = TD->getABITypeAlignment(AI->getType()->getElementType());
+
+ if (Align > 0)
+ KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
+ CountTrailingZeros_32(Align));
+ break;
+ }
+ case Instruction::GetElementPtr: {
+ // Analyze all of the subscripts of this getelementptr instruction
+ // to determine if we can prove known low zero bits.
+ APInt LocalMask = APInt::getAllOnesValue(BitWidth);
+ APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
+ ComputeMaskedBits(I->getOperand(0), LocalMask,
+ LocalKnownZero, LocalKnownOne, TD, Depth+1);
+ unsigned TrailZ = LocalKnownZero.countTrailingOnes();
+
+ gep_type_iterator GTI = gep_type_begin(I);
+ for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
+ Value *Index = I->getOperand(i);
+ if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
+ // Handle struct member offset arithmetic.
+ if (!TD) return;
+ const StructLayout *SL = TD->getStructLayout(STy);
+ unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
+ uint64_t Offset = SL->getElementOffset(Idx);
+ TrailZ = std::min(TrailZ,
+ CountTrailingZeros_64(Offset));
+ } else {
+ // Handle array index arithmetic.
+ const Type *IndexedTy = GTI.getIndexedType();
+ if (!IndexedTy->isSized()) return;
+ unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
+ uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
+ LocalMask = APInt::getAllOnesValue(GEPOpiBits);
+ LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
+ ComputeMaskedBits(Index, LocalMask,
+ LocalKnownZero, LocalKnownOne, TD, Depth+1);
+ TrailZ = std::min(TrailZ,
+ unsigned(CountTrailingZeros_64(TypeSize) +
+ LocalKnownZero.countTrailingOnes()));
+ }
+ }
+
+ KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
+ break;
+ }
+ case Instruction::PHI: {
+ PHINode *P = cast<PHINode>(I);
+ // Handle the case of a simple two-predecessor recurrence PHI.
+ // There's a lot more that could theoretically be done here, but
+ // this is sufficient to catch some interesting cases.
+ if (P->getNumIncomingValues() == 2) {
+ for (unsigned i = 0; i != 2; ++i) {
+ Value *L = P->getIncomingValue(i);
+ Value *R = P->getIncomingValue(!i);
+ Operator *LU = dyn_cast<Operator>(L);
+ if (!LU)
+ continue;
+ unsigned Opcode = LU->getOpcode();
+ // Check for operations that have the property that if
+ // both their operands have low zero bits, the result
+ // will have low zero bits.
+ if (Opcode == Instruction::Add ||
+ Opcode == Instruction::Sub ||
+ Opcode == Instruction::And ||
+ Opcode == Instruction::Or ||
+ Opcode == Instruction::Mul) {
+ Value *LL = LU->getOperand(0);
+ Value *LR = LU->getOperand(1);
+ // Find a recurrence.
+ if (LL == I)
+ L = LR;
+ else if (LR == I)
+ L = LL;
+ else
+ break;
+ // Ok, we have a PHI of the form L op= R. Check for low
+ // zero bits.
+ APInt Mask2 = APInt::getAllOnesValue(BitWidth);
+ ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
+ Mask2 = APInt::getLowBitsSet(BitWidth,
+ KnownZero2.countTrailingOnes());
+
+ // We need to take the minimum number of known bits
+ APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
+ ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
+
+ KnownZero = Mask &
+ APInt::getLowBitsSet(BitWidth,
+ std::min(KnownZero2.countTrailingOnes(),
+ KnownZero3.countTrailingOnes()));
+ break;
+ }
+ }
+ }
+
+ // Otherwise take the unions of the known bit sets of the operands,
+ // taking conservative care to avoid excessive recursion.
+ if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
+ KnownZero = APInt::getAllOnesValue(BitWidth);
+ KnownOne = APInt::getAllOnesValue(BitWidth);
+ for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
+ // Skip direct self references.
+ if (P->getIncomingValue(i) == P) continue;
+
+ KnownZero2 = APInt(BitWidth, 0);
+ KnownOne2 = APInt(BitWidth, 0);
+ // Recurse, but cap the recursion to one level, because we don't
+ // want to waste time spinning around in loops.
+ ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
+ KnownZero2, KnownOne2, TD, MaxDepth-1);
+ KnownZero &= KnownZero2;
+ KnownOne &= KnownOne2;
+ // If all bits have been ruled out, there's no need to check
+ // more operands.
+ if (!KnownZero && !KnownOne)
+ break;
+ }
+ }
+ break;
+ }
+ case Instruction::Call:
+ if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
+ switch (II->getIntrinsicID()) {
+ default: break;
+ case Intrinsic::ctpop:
+ case Intrinsic::ctlz:
+ case Intrinsic::cttz: {
+ unsigned LowBits = Log2_32(BitWidth)+1;
+ KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
+ break;
+ }
+ }
+ }
+ break;
+ }
+}
+
+/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
+/// this predicate to simplify operations downstream. Mask is known to be zero
+/// for bits that V cannot have.
+///
+/// This function is defined on values with integer type, values with pointer
+/// type (but only if TD is non-null), and vectors of integers. In the case
+/// where V is a vector, the mask, known zero, and known one values are the
+/// same width as the vector element, and the bit is set only if it is true
+/// for all of the elements in the vector.
+bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
+ const TargetData *TD, unsigned Depth) {
+ APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
+ ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
+ assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
+ return (KnownZero & Mask) == Mask;
+}
+
+
+
+/// ComputeNumSignBits - Return the number of times the sign bit of the
+/// register is replicated into the other bits. We know that at least 1 bit
+/// is always equal to the sign bit (itself), but other cases can give us
+/// information. For example, immediately after an "ashr X, 2", we know that
+/// the top 3 bits are all equal to each other, so we return 3.
+///
+/// 'Op' must have a scalar integer type.
+///
+unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
+ unsigned Depth) {
+ assert((TD || V->getType()->isIntOrIntVector()) &&
+ "ComputeNumSignBits requires a TargetData object to operate "
+ "on non-integer values!");
+ const Type *Ty = V->getType();
+ unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
+ Ty->getScalarSizeInBits();
+ unsigned Tmp, Tmp2;
+ unsigned FirstAnswer = 1;
+
+ // Note that ConstantInt is handled by the general ComputeMaskedBits case
+ // below.
+
+ if (Depth == 6)
+ return 1; // Limit search depth.
+
+ Operator *U = dyn_cast<Operator>(V);
+ switch (Operator::getOpcode(V)) {
+ default: break;
+ case Instruction::SExt:
+ Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
+ return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
+
+ case Instruction::AShr:
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ // ashr X, C -> adds C sign bits.
+ if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
+ Tmp += C->getZExtValue();
+ if (Tmp > TyBits) Tmp = TyBits;
+ }
+ return Tmp;
+ case Instruction::Shl:
+ if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
+ // shl destroys sign bits.
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ if (C->getZExtValue() >= TyBits || // Bad shift.
+ C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
+ return Tmp - C->getZExtValue();
+ }
+ break;
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: // NOT is handled here.
+ // Logical binary ops preserve the number of sign bits at the worst.
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ if (Tmp != 1) {
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
+ FirstAnswer = std::min(Tmp, Tmp2);
+ // We computed what we know about the sign bits as our first
+ // answer. Now proceed to the generic code that uses
+ // ComputeMaskedBits, and pick whichever answer is better.
+ }
+ break;
+
+ case Instruction::Select:
+ Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+ Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
+ return std::min(Tmp, Tmp2);
+
+ case Instruction::Add:
+ // Add can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+
+ // Special case decrementing a value (ADD X, -1):
+ if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
+ if (CRHS->isAllOnesValue()) {
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ APInt Mask = APInt::getAllOnesValue(TyBits);
+ ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
+ Depth+1);
+
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((KnownZero | APInt(TyBits, 1)) == Mask)
+ return TyBits;
+
+ // If we are subtracting one from a positive number, there is no carry
+ // out of the result.
+ if (KnownZero.isNegative())
+ return Tmp;
+ }
+
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
+ if (Tmp2 == 1) return 1;
+ return std::min(Tmp, Tmp2)-1;
+
+ case Instruction::Sub:
+ Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
+ if (Tmp2 == 1) return 1;
+
+ // Handle NEG.
+ if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
+ if (CLHS->isNullValue()) {
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ APInt Mask = APInt::getAllOnesValue(TyBits);
+ ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
+ TD, Depth+1);
+ // If the input is known to be 0 or 1, the output is 0/-1, which is all
+ // sign bits set.
+ if ((KnownZero | APInt(TyBits, 1)) == Mask)
+ return TyBits;
+
+ // If the input is known to be positive (the sign bit is known clear),
+ // the output of the NEG has the same number of sign bits as the input.
+ if (KnownZero.isNegative())
+ return Tmp2;
+
+ // Otherwise, we treat this like a SUB.
+ }
+
+ // Sub can have at most one carry bit. Thus we know that the output
+ // is, at worst, one more bit than the inputs.
+ Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
+ if (Tmp == 1) return 1; // Early out.
+ return std::min(Tmp, Tmp2)-1;
+
+ case Instruction::PHI: {
+ PHINode *PN = cast<PHINode>(U);
+ // Don't analyze large in-degree PHIs.
+ if (PN->getNumIncomingValues() > 4) break;
+
+ // Take the minimum of all incoming values. This can't infinitely loop
+ // because of our depth threshold.
+ Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
+ for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
+ if (Tmp == 1) return Tmp;
+ Tmp = std::min(Tmp,
+ ComputeNumSignBits(PN->getIncomingValue(1), TD, Depth+1));
+ }
+ return Tmp;
+ }
+
+ case Instruction::Trunc:
+ // FIXME: it's tricky to do anything useful for this, but it is an important
+ // case for targets like X86.
+ break;
+ }
+
+ // Finally, if we can prove that the top bits of the result are 0's or 1's,
+ // use this information.
+ APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
+ APInt Mask = APInt::getAllOnesValue(TyBits);
+ ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
+
+ if (KnownZero.isNegative()) { // sign bit is 0
+ Mask = KnownZero;
+ } else if (KnownOne.isNegative()) { // sign bit is 1;
+ Mask = KnownOne;
+ } else {
+ // Nothing known.
+ return FirstAnswer;
+ }
+
+ // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
+ // the number of identical bits in the top of the input value.
+ Mask = ~Mask;
+ Mask <<= Mask.getBitWidth()-TyBits;
+ // Return # leading zeros. We use 'min' here in case Val was zero before
+ // shifting. We don't want to return '64' as for an i32 "0".
+ return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
+}
+
+/// ComputeMultiple - This function computes the integer multiple of Base that
+/// equals V. If successful, it returns true and returns the multiple in
+/// Multiple. If unsuccessful, it returns false. It looks
+/// through SExt instructions only if LookThroughSExt is true.
+bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
+ bool LookThroughSExt, unsigned Depth) {
+ const unsigned MaxDepth = 6;
+
+ assert(V && "No Value?");
+ assert(Depth <= MaxDepth && "Limit Search Depth");
+ assert(V->getType()->isInteger() && "Not integer or pointer type!");
+
+ const Type *T = V->getType();
+
+ ConstantInt *CI = dyn_cast<ConstantInt>(V);
+
+ if (Base == 0)
+ return false;
+
+ if (Base == 1) {
+ Multiple = V;
+ return true;
+ }
+
+ ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
+ Constant *BaseVal = ConstantInt::get(T, Base);
+ if (CO && CO == BaseVal) {
+ // Multiple is 1.
+ Multiple = ConstantInt::get(T, 1);
+ return true;
+ }
+
+ if (CI && CI->getZExtValue() % Base == 0) {
+ Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
+ return true;
+ }
+
+ if (Depth == MaxDepth) return false; // Limit search depth.
+
+ Operator *I = dyn_cast<Operator>(V);
+ if (!I) return false;
+
+ switch (I->getOpcode()) {
+ default: break;
+ case Instruction::SExt:
+ if (!LookThroughSExt) return false;
+ // otherwise fall through to ZExt
+ case Instruction::ZExt:
+ return ComputeMultiple(I->getOperand(0), Base, Multiple,
+ LookThroughSExt, Depth+1);
+ case Instruction::Shl:
+ case Instruction::Mul: {
+ Value *Op0 = I->getOperand(0);
+ Value *Op1 = I->getOperand(1);
+
+ if (I->getOpcode() == Instruction::Shl) {
+ ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
+ if (!Op1CI) return false;
+ // Turn Op0 << Op1 into Op0 * 2^Op1
+ APInt Op1Int = Op1CI->getValue();
+ uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
+ Op1 = ConstantInt::get(V->getContext(),
+ APInt(Op1Int.getBitWidth(), 0).set(BitToSet));
+ }
+
+ Value *Mul0 = NULL;
+ Value *Mul1 = NULL;
+ bool M0 = ComputeMultiple(Op0, Base, Mul0,
+ LookThroughSExt, Depth+1);
+ bool M1 = ComputeMultiple(Op1, Base, Mul1,
+ LookThroughSExt, Depth+1);
+
+ if (M0) {
+ if (isa<Constant>(Op1) && isa<Constant>(Mul0)) {
+ // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
+ Multiple = ConstantExpr::getMul(cast<Constant>(Mul0),
+ cast<Constant>(Op1));
+ return true;
+ }
+
+ if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
+ if (Mul0CI->getValue() == 1) {
+ // V == Base * Op1, so return Op1
+ Multiple = Op1;
+ return true;
+ }
+ }
+
+ if (M1) {
+ if (isa<Constant>(Op0) && isa<Constant>(Mul1)) {
+ // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
+ Multiple = ConstantExpr::getMul(cast<Constant>(Mul1),
+ cast<Constant>(Op0));
+ return true;
+ }
+
+ if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
+ if (Mul1CI->getValue() == 1) {
+ // V == Base * Op0, so return Op0
+ Multiple = Op0;
+ return true;
+ }
+ }
+ }
+ }
+
+ // We could not determine if V is a multiple of Base.
+ return false;
+}
+
+/// CannotBeNegativeZero - Return true if we can prove that the specified FP
+/// value is never equal to -0.0.
+///
+/// NOTE: this function will need to be revisited when we support non-default
+/// rounding modes!
+///
+bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
+ if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
+ return !CFP->getValueAPF().isNegZero();
+
+ if (Depth == 6)
+ return 1; // Limit search depth.
+
+ const Operator *I = dyn_cast<Operator>(V);
+ if (I == 0) return false;
+
+ // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
+ if (I->getOpcode() == Instruction::FAdd &&
+ isa<ConstantFP>(I->getOperand(1)) &&
+ cast<ConstantFP>(I->getOperand(1))->isNullValue())
+ return true;
+
+ // sitofp and uitofp turn into +0.0 for zero.
+ if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
+ return true;
+
+ if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
+ // sqrt(-0.0) = -0.0, no other negative results are possible.
+ if (II->getIntrinsicID() == Intrinsic::sqrt)
+ return CannotBeNegativeZero(II->getOperand(1), Depth+1);
+
+ if (const CallInst *CI = dyn_cast<CallInst>(I))
+ if (const Function *F = CI->getCalledFunction()) {
+ if (F->isDeclaration()) {
+ // abs(x) != -0.0
+ if (F->getName() == "abs") return true;
+ // fabs[lf](x) != -0.0
+ if (F->getName() == "fabs") return true;
+ if (F->getName() == "fabsf") return true;
+ if (F->getName() == "fabsl") return true;
+ if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
+ F->getName() == "sqrtl")
+ return CannotBeNegativeZero(CI->getOperand(1), Depth+1);
+ }
+ }
+
+ return false;
+}
+
+
+/// GetLinearExpression - Analyze the specified value as a linear expression:
+/// "A*V + B", where A and B are constant integers. Return the scale and offset
+/// values as APInts and return V as a Value*. The incoming Value is known to
+/// have IntegerType. Note that this looks through extends, so the high bits
+/// may not be represented in the result.
+static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
+ const TargetData *TD, unsigned Depth) {
+ assert(isa<IntegerType>(V->getType()) && "Not an integer value");
+
+ // Limit our recursion depth.
+ if (Depth == 6) {
+ Scale = 1;
+ Offset = 0;
+ return V;
+ }
+
+ if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
+ if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
+ switch (BOp->getOpcode()) {
+ default: break;
+ case Instruction::Or:
+ // X|C == X+C if all the bits in C are unset in X. Otherwise we can't
+ // analyze it.
+ if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), TD))
+ break;
+ // FALL THROUGH.
+ case Instruction::Add:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
+ Offset += RHSC->getValue();
+ return V;
+ case Instruction::Mul:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
+ Offset *= RHSC->getValue();
+ Scale *= RHSC->getValue();
+ return V;
+ case Instruction::Shl:
+ V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, TD, Depth+1);
+ Offset <<= RHSC->getValue().getLimitedValue();
+ Scale <<= RHSC->getValue().getLimitedValue();
+ return V;
+ }
+ }
+ }
+
+ // Since clients don't care about the high bits of the value, just scales and
+ // offsets, we can look through extensions.
+ if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
+ Value *CastOp = cast<CastInst>(V)->getOperand(0);
+ unsigned OldWidth = Scale.getBitWidth();
+ unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
+ Scale.trunc(SmallWidth);
+ Offset.trunc(SmallWidth);
+ Value *Result = GetLinearExpression(CastOp, Scale, Offset, TD, Depth+1);
+ Scale.zext(OldWidth);
+ Offset.zext(OldWidth);
+ return Result;
+ }
+
+ Scale = 1;
+ Offset = 0;
+ return V;
+}
+
+/// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
+/// into a base pointer with a constant offset and a number of scaled symbolic
+/// offsets.
+///
+/// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
+/// the VarIndices vector) are Value*'s that are known to be scaled by the
+/// specified amount, but which may have other unrepresented high bits. As such,
+/// the gep cannot necessarily be reconstructed from its decomposed form.
+///
+/// When TargetData is around, this function is capable of analyzing everything
+/// that Value::getUnderlyingObject() can look through. When not, it just looks
+/// through pointer casts.
+///
+const Value *llvm::DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
+ SmallVectorImpl<std::pair<const Value*, int64_t> > &VarIndices,
+ const TargetData *TD) {
+ // Limit recursion depth to limit compile time in crazy cases.
+ unsigned MaxLookup = 6;
+
+ BaseOffs = 0;
+ do {
+ // See if this is a bitcast or GEP.
+ const Operator *Op = dyn_cast<Operator>(V);
+ if (Op == 0) {
+ // The only non-operator case we can handle are GlobalAliases.
+ if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
+ if (!GA->mayBeOverridden()) {
+ V = GA->getAliasee();
+ continue;
+ }
+ }
+ return V;
+ }
+
+ if (Op->getOpcode() == Instruction::BitCast) {
+ V = Op->getOperand(0);
+ continue;
+ }
+
+ const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
+ if (GEPOp == 0)
+ return V;
+
+ // Don't attempt to analyze GEPs over unsized objects.
+ if (!cast<PointerType>(GEPOp->getOperand(0)->getType())
+ ->getElementType()->isSized())
+ return V;
+
+ // If we are lacking TargetData information, we can't compute the offets of
+ // elements computed by GEPs. However, we can handle bitcast equivalent
+ // GEPs.
+ if (!TD) {
+ if (!GEPOp->hasAllZeroIndices())
+ return V;
+ V = GEPOp->getOperand(0);
+ continue;
+ }
+
+ // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
+ gep_type_iterator GTI = gep_type_begin(GEPOp);
+ for (User::const_op_iterator I = GEPOp->op_begin()+1,
+ E = GEPOp->op_end(); I != E; ++I) {
+ Value *Index = *I;
+ // Compute the (potentially symbolic) offset in bytes for this index.
+ if (const StructType *STy = dyn_cast<StructType>(*GTI++)) {
+ // For a struct, add the member offset.
+ unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
+ if (FieldNo == 0) continue;
+
+ BaseOffs += TD->getStructLayout(STy)->getElementOffset(FieldNo);
+ continue;
+ }
+
+ // For an array/pointer, add the element offset, explicitly scaled.
+ if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
+ if (CIdx->isZero()) continue;
+ BaseOffs += TD->getTypeAllocSize(*GTI)*CIdx->getSExtValue();
+ continue;
+ }
+
+ uint64_t Scale = TD->getTypeAllocSize(*GTI);
+
+ // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
+ unsigned Width = cast<IntegerType>(Index->getType())->getBitWidth();
+ APInt IndexScale(Width, 0), IndexOffset(Width, 0);
+ Index = GetLinearExpression(Index, IndexScale, IndexOffset, TD, 0);
+
+ // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
+ // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
+ BaseOffs += IndexOffset.getZExtValue()*Scale;
+ Scale *= IndexScale.getZExtValue();
+
+
+ // If we already had an occurrance of this index variable, merge this
+ // scale into it. For example, we want to handle:
+ // A[x][x] -> x*16 + x*4 -> x*20
+ // This also ensures that 'x' only appears in the index list once.
+ for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
+ if (VarIndices[i].first == Index) {
+ Scale += VarIndices[i].second;
+ VarIndices.erase(VarIndices.begin()+i);
+ break;
+ }
+ }
+
+ // Make sure that we have a scale that makes sense for this target's
+ // pointer size.
+ if (unsigned ShiftBits = 64-TD->getPointerSizeInBits()) {
+ Scale <<= ShiftBits;
+ Scale >>= ShiftBits;
+ }
+
+ if (Scale)
+ VarIndices.push_back(std::make_pair(Index, Scale));
+ }
+
+ // Analyze the base pointer next.
+ V = GEPOp->getOperand(0);
+ } while (--MaxLookup);
+
+ // If the chain of expressions is too deep, just return early.
+ return V;
+}
+
+
+// This is the recursive version of BuildSubAggregate. It takes a few different
+// arguments. Idxs is the index within the nested struct From that we are
+// looking at now (which is of type IndexedType). IdxSkip is the number of
+// indices from Idxs that should be left out when inserting into the resulting
+// struct. To is the result struct built so far, new insertvalue instructions
+// build on that.
+static Value *BuildSubAggregate(Value *From, Value* To, const Type *IndexedType,
+ SmallVector<unsigned, 10> &Idxs,
+ unsigned IdxSkip,
+ Instruction *InsertBefore) {
+ const llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
+ if (STy) {
+ // Save the original To argument so we can modify it
+ Value *OrigTo = To;
+ // General case, the type indexed by Idxs is a struct
+ for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
+ // Process each struct element recursively
+ Idxs.push_back(i);
+ Value *PrevTo = To;
+ To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
+ InsertBefore);
+ Idxs.pop_back();
+ if (!To) {
+ // Couldn't find any inserted value for this index? Cleanup
+ while (PrevTo != OrigTo) {
+ InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
+ PrevTo = Del->getAggregateOperand();
+ Del->eraseFromParent();
+ }
+ // Stop processing elements
+ break;
+ }
+ }
+ // If we succesfully found a value for each of our subaggregates
+ if (To)
+ return To;
+ }
+ // Base case, the type indexed by SourceIdxs is not a struct, or not all of
+ // the struct's elements had a value that was inserted directly. In the latter
+ // case, perhaps we can't determine each of the subelements individually, but
+ // we might be able to find the complete struct somewhere.
+
+ // Find the value that is at that particular spot
+ Value *V = FindInsertedValue(From, Idxs.begin(), Idxs.end());
+
+ if (!V)
+ return NULL;
+
+ // Insert the value in the new (sub) aggregrate
+ return llvm::InsertValueInst::Create(To, V, Idxs.begin() + IdxSkip,
+ Idxs.end(), "tmp", InsertBefore);
+}
+
+// This helper takes a nested struct and extracts a part of it (which is again a
+// struct) into a new value. For example, given the struct:
+// { a, { b, { c, d }, e } }
+// and the indices "1, 1" this returns
+// { c, d }.
+//
+// It does this by inserting an insertvalue for each element in the resulting
+// struct, as opposed to just inserting a single struct. This will only work if
+// each of the elements of the substruct are known (ie, inserted into From by an
+// insertvalue instruction somewhere).
+//
+// All inserted insertvalue instructions are inserted before InsertBefore
+static Value *BuildSubAggregate(Value *From, const unsigned *idx_begin,
+ const unsigned *idx_end,
+ Instruction *InsertBefore) {
+ assert(InsertBefore && "Must have someplace to insert!");
+ const Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
+ idx_begin,
+ idx_end);
+ Value *To = UndefValue::get(IndexedType);
+ SmallVector<unsigned, 10> Idxs(idx_begin, idx_end);
+ unsigned IdxSkip = Idxs.size();
+
+ return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
+}
+
+/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
+/// the scalar value indexed is already around as a register, for example if it
+/// were inserted directly into the aggregrate.
+///
+/// If InsertBefore is not null, this function will duplicate (modified)
+/// insertvalues when a part of a nested struct is extracted.
+Value *llvm::FindInsertedValue(Value *V, const unsigned *idx_begin,
+ const unsigned *idx_end, Instruction *InsertBefore) {
+ // Nothing to index? Just return V then (this is useful at the end of our
+ // recursion)
+ if (idx_begin == idx_end)
+ return V;
+ // We have indices, so V should have an indexable type
+ assert((isa<StructType>(V->getType()) || isa<ArrayType>(V->getType()))
+ && "Not looking at a struct or array?");
+ assert(ExtractValueInst::getIndexedType(V->getType(), idx_begin, idx_end)
+ && "Invalid indices for type?");
+ const CompositeType *PTy = cast<CompositeType>(V->getType());
+
+ if (isa<UndefValue>(V))
+ return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
+ idx_begin,
+ idx_end));
+ else if (isa<ConstantAggregateZero>(V))
+ return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
+ idx_begin,
+ idx_end));
+ else if (Constant *C = dyn_cast<Constant>(V)) {
+ if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
+ // Recursively process this constant
+ return FindInsertedValue(C->getOperand(*idx_begin), idx_begin + 1,
+ idx_end, InsertBefore);
+ } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
+ // Loop the indices for the insertvalue instruction in parallel with the
+ // requested indices
+ const unsigned *req_idx = idx_begin;
+ for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
+ i != e; ++i, ++req_idx) {
+ if (req_idx == idx_end) {
+ if (InsertBefore)
+ // The requested index identifies a part of a nested aggregate. Handle
+ // this specially. For example,
+ // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
+ // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
+ // %C = extractvalue {i32, { i32, i32 } } %B, 1
+ // This can be changed into
+ // %A = insertvalue {i32, i32 } undef, i32 10, 0
+ // %C = insertvalue {i32, i32 } %A, i32 11, 1
+ // which allows the unused 0,0 element from the nested struct to be
+ // removed.
+ return BuildSubAggregate(V, idx_begin, req_idx, InsertBefore);
+ else
+ // We can't handle this without inserting insertvalues
+ return 0;
+ }
+
+ // This insert value inserts something else than what we are looking for.
+ // See if the (aggregrate) value inserted into has the value we are
+ // looking for, then.
+ if (*req_idx != *i)
+ return FindInsertedValue(I->getAggregateOperand(), idx_begin, idx_end,
+ InsertBefore);
+ }
+ // If we end up here, the indices of the insertvalue match with those
+ // requested (though possibly only partially). Now we recursively look at
+ // the inserted value, passing any remaining indices.
+ return FindInsertedValue(I->getInsertedValueOperand(), req_idx, idx_end,
+ InsertBefore);
+ } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
+ // If we're extracting a value from an aggregrate that was extracted from
+ // something else, we can extract from that something else directly instead.
+ // However, we will need to chain I's indices with the requested indices.
+
+ // Calculate the number of indices required
+ unsigned size = I->getNumIndices() + (idx_end - idx_begin);
+ // Allocate some space to put the new indices in
+ SmallVector<unsigned, 5> Idxs;
+ Idxs.reserve(size);
+ // Add indices from the extract value instruction
+ for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
+ i != e; ++i)
+ Idxs.push_back(*i);
+
+ // Add requested indices
+ for (const unsigned *i = idx_begin, *e = idx_end; i != e; ++i)
+ Idxs.push_back(*i);
+
+ assert(Idxs.size() == size
+ && "Number of indices added not correct?");
+
+ return FindInsertedValue(I->getAggregateOperand(), Idxs.begin(), Idxs.end(),
+ InsertBefore);
+ }
+ // Otherwise, we don't know (such as, extracting from a function return value
+ // or load instruction)
+ return 0;
+}
+
+/// GetConstantStringInfo - This function computes the length of a
+/// null-terminated C string pointed to by V. If successful, it returns true
+/// and returns the string in Str. If unsuccessful, it returns false.
+bool llvm::GetConstantStringInfo(Value *V, std::string &Str, uint64_t Offset,
+ bool StopAtNul) {
+ // If V is NULL then return false;
+ if (V == NULL) return false;
+
+ // Look through bitcast instructions.
+ if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
+ return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
+
+ // If the value is not a GEP instruction nor a constant expression with a
+ // GEP instruction, then return false because ConstantArray can't occur
+ // any other way
+ User *GEP = 0;
+ if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
+ GEP = GEPI;
+ } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
+ if (CE->getOpcode() == Instruction::BitCast)
+ return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
+ if (CE->getOpcode() != Instruction::GetElementPtr)
+ return false;
+ GEP = CE;
+ }
+
+ if (GEP) {
+ // Make sure the GEP has exactly three arguments.
+ if (GEP->getNumOperands() != 3)
+ return false;
+
+ // Make sure the index-ee is a pointer to array of i8.
+ const PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
+ const ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
+ if (AT == 0 || !AT->getElementType()->isInteger(8))
+ return false;
+
+ // Check to make sure that the first operand of the GEP is an integer and
+ // has value 0 so that we are sure we're indexing into the initializer.
+ ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
+ if (FirstIdx == 0 || !FirstIdx->isZero())
+ return false;
+
+ // If the second index isn't a ConstantInt, then this is a variable index
+ // into the array. If this occurs, we can't say anything meaningful about
+ // the string.
+ uint64_t StartIdx = 0;
+ if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
+ StartIdx = CI->getZExtValue();
+ else
+ return false;
+ return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
+ StopAtNul);
+ }
+
+ // The GEP instruction, constant or instruction, must reference a global
+ // variable that is a constant and is initialized. The referenced constant
+ // initializer is the array that we'll use for optimization.
+ GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
+ if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
+ return false;
+ Constant *GlobalInit = GV->getInitializer();
+
+ // Handle the ConstantAggregateZero case
+ if (isa<ConstantAggregateZero>(GlobalInit)) {
+ // This is a degenerate case. The initializer is constant zero so the
+ // length of the string must be zero.
+ Str.clear();
+ return true;
+ }
+
+ // Must be a Constant Array
+ ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
+ if (Array == 0 || !Array->getType()->getElementType()->isInteger(8))
+ return false;
+
+ // Get the number of elements in the array
+ uint64_t NumElts = Array->getType()->getNumElements();
+
+ if (Offset > NumElts)
+ return false;
+
+ // Traverse the constant array from 'Offset' which is the place the GEP refers
+ // to in the array.
+ Str.reserve(NumElts-Offset);
+ for (unsigned i = Offset; i != NumElts; ++i) {
+ Constant *Elt = Array->getOperand(i);
+ ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
+ if (!CI) // This array isn't suitable, non-int initializer.
+ return false;
+ if (StopAtNul && CI->isZero())
+ return true; // we found end of string, success!
+ Str += (char)CI->getZExtValue();
+ }
+
+ // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
+ return true;
+}