summaryrefslogtreecommitdiffstats
path: root/common/cmd_i2c.c
blob: fe5841e6bacd7d3607e6c12cf828ac67e6c1b588 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
/*
 * (C) Copyright 2001
 * Gerald Van Baren, Custom IDEAS, vanbaren@cideas.com.
 *
 * See file CREDITS for list of people who contributed to this
 * project.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License as
 * published by the Free Software Foundation; either version 2 of
 * the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
 * MA 02111-1307 USA
 */

/*
 * I2C Functions similar to the standard memory functions.
 *
 * There are several parameters in many of the commands that bear further
 * explanations:
 *
 * Two of the commands (imm and imw) take a byte/word/long modifier
 * (e.g. imm.w specifies the word-length modifier).  This was done to
 * allow manipulating word-length registers.  It was not done on any other
 * commands because it was not deemed useful.
 *
 * {i2c_chip} is the I2C chip address (the first byte sent on the bus).
 *   Each I2C chip on the bus has a unique address.  On the I2C data bus,
 *   the address is the upper seven bits and the LSB is the "read/write"
 *   bit.  Note that the {i2c_chip} address specified on the command
 *   line is not shifted up: e.g. a typical EEPROM memory chip may have
 *   an I2C address of 0x50, but the data put on the bus will be 0xA0
 *   for write and 0xA1 for read.  This "non shifted" address notation
 *   matches at least half of the data sheets :-/.
 *
 * {addr} is the address (or offset) within the chip.  Small memory
 *   chips have 8 bit addresses.  Large memory chips have 16 bit
 *   addresses.  Other memory chips have 9, 10, or 11 bit addresses.
 *   Many non-memory chips have multiple registers and {addr} is used
 *   as the register index.  Some non-memory chips have only one register
 *   and therefore don't need any {addr} parameter.
 *
 *   The default {addr} parameter is one byte (.1) which works well for
 *   memories and registers with 8 bits of address space.
 *
 *   You can specify the length of the {addr} field with the optional .0,
 *   .1, or .2 modifier (similar to the .b, .w, .l modifier).  If you are
 *   manipulating a single register device which doesn't use an address
 *   field, use "0.0" for the address and the ".0" length field will
 *   suppress the address in the I2C data stream.  This also works for
 *   successive reads using the I2C auto-incrementing memory pointer.
 *
 *   If you are manipulating a large memory with 2-byte addresses, use
 *   the .2 address modifier, e.g. 210.2 addresses location 528 (decimal).
 *
 *   Then there are the unfortunate memory chips that spill the most
 *   significant 1, 2, or 3 bits of address into the chip address byte.
 *   This effectively makes one chip (logically) look like 2, 4, or
 *   8 chips.  This is handled (awkwardly) by #defining
 *   CFG_I2C_EEPROM_ADDR_OVERFLOW and using the .1 modifier on the
 *   {addr} field (since .1 is the default, it doesn't actually have to
 *   be specified).  Examples: given a memory chip at I2C chip address
 *   0x50, the following would happen...
 *     imd 50 0 10      display 16 bytes starting at 0x000
 *                      On the bus: <S> A0 00 <E> <S> A1 <rd> ... <rd>
 *     imd 50 100 10    display 16 bytes starting at 0x100
 *                      On the bus: <S> A2 00 <E> <S> A3 <rd> ... <rd>
 *     imd 50 210 10    display 16 bytes starting at 0x210
 *                      On the bus: <S> A4 10 <E> <S> A5 <rd> ... <rd>
 *   This is awfully ugly.  It would be nice if someone would think up
 *   a better way of handling this.
 *
 * Adapted from cmd_mem.c which is copyright Wolfgang Denk (wd@denx.de).
 */

#include <common.h>
#include <command.h>
#include <cmd_i2c.h>
#include <i2c.h>
#include <asm/byteorder.h>

#if (CONFIG_COMMANDS & CFG_CMD_I2C)


/* Display values from last command.
 * Memory modify remembered values are different from display memory.
 */
static uchar	i2c_dp_last_chip;
static uint	i2c_dp_last_addr;
static uint	i2c_dp_last_alen;
static uint	i2c_dp_last_length = 0x10;

static uchar	i2c_mm_last_chip;
static uint	i2c_mm_last_addr;
static uint	i2c_mm_last_alen;

#if defined(CFG_I2C_NOPROBES)
static uchar i2c_no_probes[] = CFG_I2C_NOPROBES;
#endif

static int
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[]);
extern int cmd_get_data_size(char* arg, int default_size);

/*
 * Syntax:
 *	imd {i2c_chip} {addr}{.0, .1, .2} {len}
 */
#define DISP_LINE_LEN	16

int do_i2c_md ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	u_char	chip;
	uint	addr, alen, length;
	int	j, nbytes, linebytes;

	/* We use the last specified parameters, unless new ones are
	 * entered.
	 */
	chip   = i2c_dp_last_chip;
	addr   = i2c_dp_last_addr;
	alen   = i2c_dp_last_alen;
	length = i2c_dp_last_length;

	if (argc < 3) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	if ((flag & CMD_FLAG_REPEAT) == 0) {
		/*
		 * New command specified.
		 */
		alen = 1;

		/*
		 * I2C chip address
		 */
		chip = simple_strtoul(argv[1], NULL, 16);

		/*
		 * I2C data address within the chip.  This can be 1 or
		 * 2 bytes long.  Some day it might be 3 bytes long :-).
		 */
		addr = simple_strtoul(argv[2], NULL, 16);
		alen = 1;
		for(j = 0; j < 8; j++) {
			if (argv[2][j] == '.') {
				alen = argv[2][j+1] - '0';
				if (alen > 4) {
					printf ("Usage:\n%s\n", cmdtp->usage);
					return 1;
				}
				break;
			} else if (argv[2][j] == '\0') {
				break;
			}
		}

		/*
		 * If another parameter, it is the length to display.
		 * Length is the number of objects, not number of bytes.
		 */
		if (argc > 3)
			length = simple_strtoul(argv[3], NULL, 16);
	}

	/*
	 * Print the lines.
	 *
	 * We buffer all read data, so we can make sure data is read only
	 * once.
	 */
	nbytes = length;
	do {
		unsigned char	linebuf[DISP_LINE_LEN];
		unsigned char	*cp;

		linebytes = (nbytes > DISP_LINE_LEN) ? DISP_LINE_LEN : nbytes;

		if(i2c_read(chip, addr, alen, linebuf, linebytes) != 0) {
			printf("Error reading the chip.\n");
		} else {
			printf("%04x:", addr);
			cp = linebuf;
			for (j=0; j<linebytes; j++) {
				printf(" %02x", *cp++);
				addr++;
			}
			printf("    ");
			cp = linebuf;
			for (j=0; j<linebytes; j++) {
				if ((*cp < 0x20) || (*cp > 0x7e))
					printf(".");
				else
					printf("%c", *cp);
				cp++;
			}
			printf("\n");
		}
		nbytes -= linebytes;
	} while (nbytes > 0);

	i2c_dp_last_chip   = chip;
	i2c_dp_last_addr   = addr;
	i2c_dp_last_alen   = alen;
	i2c_dp_last_length = length;

	return 0;
}

int do_i2c_mm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	return mod_i2c_mem (cmdtp, 1, flag, argc, argv);
}


int do_i2c_nm ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	return mod_i2c_mem (cmdtp, 0, flag, argc, argv);
}

/* Write (fill) memory
 *
 * Syntax:
 *	imw {i2c_chip} {addr}{.0, .1, .2} {data} [{count}]
 */
int do_i2c_mw ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	uchar	chip;
	ulong	addr;
	uint	alen;
	uchar	byte;
	int	count;
	int	j;

	if ((argc < 4) || (argc > 5)) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	/*
 	 * Chip is always specified.
 	 */
	chip = simple_strtoul(argv[1], NULL, 16);

	/*
	 * Address is always specified.
	 */
	addr = simple_strtoul(argv[2], NULL, 16);
	alen = 1;
	for(j = 0; j < 8; j++) {
		if (argv[2][j] == '.') {
			alen = argv[2][j+1] - '0';
			if(alen > 4) {
				printf ("Usage:\n%s\n", cmdtp->usage);
				return 1;
			}
			break;
		} else if (argv[2][j] == '\0') {
			break;
		}
	}

	/*
	 * Value to write is always specified.
	 */
	byte = simple_strtoul(argv[3], NULL, 16);

	/*
	 * Optional count
	 */
	if(argc == 5) {
		count = simple_strtoul(argv[4], NULL, 16);
	} else {
		count = 1;
	}

	while (count-- > 0) {
		if(i2c_write(chip, addr++, alen, &byte, 1) != 0) {
			printf("Error writing the chip.\n");
		}
		/*
		 * Wait for the write to complete.  The write can take
		 * up to 10mSec (we allow a little more time).
		 *
		 * On some chips, while the write is in progress, the
		 * chip doesn't respond.  This apparently isn't a
		 * universal feature so we don't take advantage of it.
		 */
		udelay(11000);
#if 0
		for(timeout = 0; timeout < 10; timeout++) {
			udelay(2000);
			if(i2c_probe(chip) == 0)
				break;
		}
#endif
	}

	return (0);
}


/* Calculate a CRC on memory
 *
 * Syntax:
 *	icrc32 {i2c_chip} {addr}{.0, .1, .2} {count}
 */
int do_i2c_crc (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	uchar	chip;
	ulong	addr;
	uint	alen;
	int	count;
	uchar	byte;
	ulong	crc;
	ulong	err;
	int	j;

	if (argc < 4) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	/*
 	 * Chip is always specified.
 	 */
	chip = simple_strtoul(argv[1], NULL, 16);

	/*
	 * Address is always specified.
	 */
	addr = simple_strtoul(argv[2], NULL, 16);
	alen = 1;
	for(j = 0; j < 8; j++) {
		if (argv[2][j] == '.') {
			alen = argv[2][j+1] - '0';
			if(alen > 4) {
				printf ("Usage:\n%s\n", cmdtp->usage);
				return 1;
			}
			break;
		} else if (argv[2][j] == '\0') {
			break;
		}
	}

	/*
	 * Count is always specified
	 */
	count = simple_strtoul(argv[3], NULL, 16);

	printf ("CRC32 for %08lx ... %08lx ==> ", addr, addr + count - 1);
	/*
	 * CRC a byte at a time.  This is going to be slooow, but hey, the
	 * memories are small and slow too so hopefully nobody notices.
	 */
	crc = 0;
	err = 0;
	while(count-- > 0) {
		if(i2c_read(chip, addr, alen, &byte, 1) != 0) {
			err++;
		}
		crc = crc32 (crc, &byte, 1);
		addr++;
	}
	if(err > 0)
	{
		printf("Error reading the chip,\n");
	} else {
		printf ("%08lx\n", crc);
	}

	return 0;
}


/* Modify memory.
 *
 * Syntax:
 *	imm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
 *	inm{.b, .w, .l} {i2c_chip} {addr}{.0, .1, .2}
 */

static int
mod_i2c_mem(cmd_tbl_t *cmdtp, int incrflag, int flag, int argc, char *argv[])
{
	uchar	chip;
	ulong	addr;
	uint	alen;
	ulong	data;
	int	size = 1;
	int	nbytes;
	int	j;
	extern char console_buffer[];

	if (argc != 3) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

#ifdef CONFIG_BOOT_RETRY_TIME
	reset_cmd_timeout();	/* got a good command to get here */
#endif
	/*
	 * We use the last specified parameters, unless new ones are
	 * entered.
	 */
	chip = i2c_mm_last_chip;
	addr = i2c_mm_last_addr;
	alen = i2c_mm_last_alen;

	if ((flag & CMD_FLAG_REPEAT) == 0) {
		/*
		 * New command specified.  Check for a size specification.
		 * Defaults to byte if no or incorrect specification.
		 */
		size = cmd_get_data_size(argv[0], 1);

		/*
	 	 * Chip is always specified.
	 	 */
		chip = simple_strtoul(argv[1], NULL, 16);

		/*
		 * Address is always specified.
		 */
		addr = simple_strtoul(argv[2], NULL, 16);
		alen = 1;
		for(j = 0; j < 8; j++) {
			if (argv[2][j] == '.') {
				alen = argv[2][j+1] - '0';
				if(alen > 4) {
					printf ("Usage:\n%s\n", cmdtp->usage);
					return 1;
				}
				break;
			} else if (argv[2][j] == '\0') {
				break;
			}
		}
	}

	/*
	 * Print the address, followed by value.  Then accept input for
	 * the next value.  A non-converted value exits.
	 */
	do {
		printf("%08lx:", addr);
		if(i2c_read(chip, addr, alen, (char *)&data, size) != 0) {
			printf("\nError reading the chip,\n");
		} else {
			data = cpu_to_be32(data);
			if(size == 1) {
				printf(" %02lx", (data >> 24) & 0x000000FF);
			} else if(size == 2) {
				printf(" %04lx", (data >> 16) & 0x0000FFFF);
			} else {
				printf(" %08lx", data);
			}
		}

		nbytes = readline (" ? ");
		if (nbytes == 0) {
			/*
			 * <CR> pressed as only input, don't modify current
			 * location and move to next.
			 */
			if (incrflag)
				addr += size;
			nbytes = size;
#ifdef CONFIG_BOOT_RETRY_TIME
			reset_cmd_timeout(); /* good enough to not time out */
#endif
		}
#ifdef CONFIG_BOOT_RETRY_TIME
		else if (nbytes == -2) {
			break;	/* timed out, exit the command	*/
		}
#endif
		else {
			char *endp;

			data = simple_strtoul(console_buffer, &endp, 16);
			if(size == 1) {
				data = data << 24;
			} else if(size == 2) {
				data = data << 16;
			}
			data = be32_to_cpu(data);
			nbytes = endp - console_buffer;
			if (nbytes) {
#ifdef CONFIG_BOOT_RETRY_TIME
				/*
				 * good enough to not time out
				 */
				reset_cmd_timeout();
#endif
				if(i2c_write(chip, addr, alen, (char *)&data, size) != 0) {
					printf("Error writing the chip.\n");
				}
				if (incrflag)
					addr += size;
			}
		}
	} while (nbytes);

	chip = i2c_mm_last_chip;
	addr = i2c_mm_last_addr;
	alen = i2c_mm_last_alen;

	return 0;
}

/*
 * Syntax:
 *	iprobe {addr}{.0, .1, .2}
 */
int do_i2c_probe (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	int j;
#if defined(CFG_I2C_NOPROBES)
	int k, skip;
#endif

	printf("Valid chip addresses:");
	for(j = 0; j < 128; j++) {
#if defined(CFG_I2C_NOPROBES)
		skip = 0;
		for (k = 0; k < sizeof(i2c_no_probes); k++){
			if (j == i2c_no_probes[k]){
				skip = 1;
				break;
			}
		}
		if (skip)
			continue;
#endif
		if(i2c_probe(j) == 0) {
			printf(" %02X", j);
		}
	}
	printf("\n");

#if defined(CFG_I2C_NOPROBES)
	puts ("Excluded chip addresses:");
	for( k = 0; k < sizeof(i2c_no_probes); k++ )
		printf(" %02X", i2c_no_probes[k] );
	puts ("\n");
#endif

	return 0;
}


/*
 * Syntax:
 *	iloop {i2c_chip} {addr}{.0, .1, .2} [{length}] [{delay}]
 *	{length} - Number of bytes to read
 *	{delay}  - A DECIMAL number and defaults to 1000 uSec
 */
int do_i2c_loop(cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	u_char	chip;
	ulong	alen;
	uint	addr;
	uint	length;
	u_char	bytes[16];
	int	delay;
	int	j;

	if (argc < 3) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}

	/*
	 * Chip is always specified.
	 */
	chip = simple_strtoul(argv[1], NULL, 16);

	/*
	 * Address is always specified.
	 */
	addr = simple_strtoul(argv[2], NULL, 16);
	alen = 1;
	for(j = 0; j < 8; j++) {
		if (argv[2][j] == '.') {
			alen = argv[2][j+1] - '0';
			if (alen > 4) {
				printf ("Usage:\n%s\n", cmdtp->usage);
				return 1;
			}
			break;
		} else if (argv[2][j] == '\0') {
			break;
		}
	}

	/*
	 * Length is the number of objects, not number of bytes.
	 */
	length = 1;
	length = simple_strtoul(argv[3], NULL, 16);
	if(length > sizeof(bytes)) {
		length = sizeof(bytes);
	}

	/*
	 * The delay time (uSec) is optional.
	 */
	delay = 1000;
	if (argc > 3) {
		delay = simple_strtoul(argv[4], NULL, 10);
	}
	/*
	 * Run the loop...
	 */
	while(1) {
		if(i2c_read(chip, addr, alen, bytes, length) != 0) {
			printf("Error reading the chip.\n");
		}
		udelay(delay);
	}

	/* NOTREACHED */
	return 0;
}


/*
 * The SDRAM command is separately configured because many
 * (most?) embedded boards don't use SDRAM DIMMs.
 */
#if (CONFIG_COMMANDS & CFG_CMD_SDRAM)

/*
 * Syntax:
 *	sdram {i2c_chip}
 */
int do_sdram  ( cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
	u_char	chip;
	u_char	data[128];
	u_char	cksum;
	int	j;

	if (argc < 2) {
		printf ("Usage:\n%s\n", cmdtp->usage);
		return 1;
	}
	/*
	 * Chip is always specified.
 	 */
	chip = simple_strtoul(argv[1], NULL, 16);

	if(i2c_read(chip, 0, 1, data, sizeof(data)) != 0) {
		printf("No SDRAM Serial Presence Detect found.\n");
		return 1;
	}

	cksum = 0;
	for (j = 0; j < 63; j++) {
		cksum += data[j];
	}
	if(cksum != data[63]) {
		printf ("WARNING: Configuration data checksum failure:\n"
			"  is 0x%02x, calculated 0x%02x\n",
			data[63], cksum);
	}
	printf("SPD data revision            %d.%d\n",
		(data[62] >> 4) & 0x0F, data[62] & 0x0F);
	printf("Bytes used                   0x%02X\n", data[0]);
	printf("Serial memory size           0x%02X\n", 1 << data[1]);
	printf("Memory type                  ");
	switch(data[2]) {
		case 2:  printf("EDO\n");	break;
		case 4:  printf("SDRAM\n");	break;
		default: printf("unknown\n");	break;
	}
	printf("Row address bits             ");
	if((data[3] & 0x00F0) == 0) {
		printf("%d\n", data[3] & 0x0F);
	} else {
		printf("%d/%d\n", data[3] & 0x0F, (data[3] >> 4) & 0x0F);
	}
	printf("Column address bits          ");
	if((data[4] & 0x00F0) == 0) {
		printf("%d\n", data[4] & 0x0F);
	} else {
		printf("%d/%d\n", data[4] & 0x0F, (data[4] >> 4) & 0x0F);
	}
	printf("Module rows                  %d\n", data[5]);
	printf("Module data width            %d bits\n", (data[7] << 8) | data[6]);
	printf("Interface signal levels      ");
	switch(data[8]) {
		case 0:  printf("5.0v/TTL\n");	break;
		case 1:  printf("LVTTL\n");	break;
		case 2:  printf("HSTL 1.5\n");	break;
		case 3:  printf("SSTL 3.3\n");	break;
		case 4:  printf("SSTL 2.5\n");	break;
		default: printf("unknown\n");	break;
	}
	printf("SDRAM cycle time             %d.%d nS\n",
		(data[9] >> 4) & 0x0F, data[9] & 0x0F);
	printf("SDRAM access time            %d.%d nS\n",
		(data[10] >> 4) & 0x0F, data[10] & 0x0F);
	printf("EDC configuration            ");
	switch(data[11]) {
		case 0:  printf("None\n");	break;
		case 1:  printf("Parity\n");	break;
		case 2:  printf("ECC\n");	break;
		default: printf("unknown\n");	break;
	}
	if((data[12] & 0x80) == 0) {
		printf("No self refresh, rate        ");
	} else {
		printf("Self refresh, rate           ");
	}
	switch(data[12] & 0x7F) {
		case 0:  printf("15.625uS\n");	break;
		case 1:  printf("3.9uS\n");	break;
		case 2:  printf("7.8uS\n");	break;
		case 3:  printf("31.3uS\n");	break;
		case 4:  printf("62.5uS\n");	break;
		case 5:  printf("125uS\n");	break;
		default: printf("unknown\n");	break;
	}
	printf("SDRAM width (primary)        %d\n", data[13] & 0x7F);
	if((data[13] & 0x80) != 0) {
		printf("  (second bank)              %d\n",
			2 * (data[13] & 0x7F));
	}
	if(data[14] != 0) {
		printf("EDC width                    %d\n",
			data[14] & 0x7F);
		if((data[14] & 0x80) != 0) {
			printf("  (second bank)              %d\n",
				2 * (data[14] & 0x7F));
		}
	}
	printf("Min clock delay, back-to-back random column addresses %d\n",
		data[15]);
	printf("Burst length(s)             ");
	if(data[16] & 0x80) printf(" Page");
	if(data[16] & 0x08) printf(" 8");
	if(data[16] & 0x04) printf(" 4");
	if(data[16] & 0x02) printf(" 2");
	if(data[16] & 0x01) printf(" 1");
	printf("\n");
	printf("Number of banks              %d\n", data[17]);
	printf("CAS latency(s)              ");
	if(data[18] & 0x80) printf(" TBD");
	if(data[18] & 0x40) printf(" 7");
	if(data[18] & 0x20) printf(" 6");
	if(data[18] & 0x10) printf(" 5");
	if(data[18] & 0x08) printf(" 4");
	if(data[18] & 0x04) printf(" 3");
	if(data[18] & 0x02) printf(" 2");
	if(data[18] & 0x01) printf(" 1");
	printf("\n");
	printf("CS latency(s)               ");
	if(data[19] & 0x80) printf(" TBD");
	if(data[19] & 0x40) printf(" 6");
	if(data[19] & 0x20) printf(" 5");
	if(data[19] & 0x10) printf(" 4");
	if(data[19] & 0x08) printf(" 3");
	if(data[19] & 0x04) printf(" 2");
	if(data[19] & 0x02) printf(" 1");
	if(data[19] & 0x01) printf(" 0");
	printf("\n");
	printf("WE latency(s)               ");
	if(data[20] & 0x80) printf(" TBD");
	if(data[20] & 0x40) printf(" 6");
	if(data[20] & 0x20) printf(" 5");
	if(data[20] & 0x10) printf(" 4");
	if(data[20] & 0x08) printf(" 3");
	if(data[20] & 0x04) printf(" 2");
	if(data[20] & 0x02) printf(" 1");
	if(data[20] & 0x01) printf(" 0");
	printf("\n");
	printf("Module attributes:\n");
	if(!data[21])       printf("  (none)\n");
	if(data[21] & 0x80) printf("  TBD (bit 7)\n");
	if(data[21] & 0x40) printf("  Redundant row address\n");
	if(data[21] & 0x20) printf("  Differential clock input\n");
	if(data[21] & 0x10) printf("  Registerd DQMB inputs\n");
	if(data[21] & 0x08) printf("  Buffered DQMB inputs\n");
	if(data[21] & 0x04) printf("  On-card PLL\n");
	if(data[21] & 0x02) printf("  Registered address/control lines\n");
	if(data[21] & 0x01) printf("  Buffered address/control lines\n");
	printf("Device attributes:\n");
	if(data[22] & 0x80) printf("  TBD (bit 7)\n");
	if(data[22] & 0x40) printf("  TBD (bit 6)\n");
	if(data[22] & 0x20) printf("  Upper Vcc tolerance 5%%\n");
	else                printf("  Upper Vcc tolerance 10%%\n");
	if(data[22] & 0x10) printf("  Lower Vcc tolerance 5%%\n");
	else                printf("  Lower Vcc tolerance 10%%\n");
	if(data[22] & 0x08) printf("  Supports write1/read burst\n");
	if(data[22] & 0x04) printf("  Supports precharge all\n");
	if(data[22] & 0x02) printf("  Supports auto precharge\n");
	if(data[22] & 0x01) printf("  Supports early RAS# precharge\n");
	printf("SDRAM cycle time (2nd highest CAS latency)        %d.%d nS\n",
		(data[23] >> 4) & 0x0F, data[23] & 0x0F);
	printf("SDRAM access from clock (2nd highest CAS latency) %d.%d nS\n",
		(data[24] >> 4) & 0x0F, data[24] & 0x0F);
	printf("SDRAM cycle time (3rd highest CAS latency)        %d.%d nS\n",
		(data[25] >> 4) & 0x0F, data[25] & 0x0F);
	printf("SDRAM access from clock (3rd highest CAS latency) %d.%d nS\n",
		(data[26] >> 4) & 0x0F, data[26] & 0x0F);
	printf("Minimum row precharge        %d nS\n", data[27]);
	printf("Row active to row active min %d nS\n", data[28]);
	printf("RAS to CAS delay min         %d nS\n", data[29]);
	printf("Minimum RAS pulse width      %d nS\n", data[30]);
	printf("Density of each row         ");
	if(data[31] & 0x80) printf(" 512MByte");
	if(data[31] & 0x40) printf(" 256MByte");
	if(data[31] & 0x20) printf(" 128MByte");
	if(data[31] & 0x10) printf(" 64MByte");
	if(data[31] & 0x08) printf(" 32MByte");
	if(data[31] & 0x04) printf(" 16MByte");
	if(data[31] & 0x02) printf(" 8MByte");
	if(data[31] & 0x01) printf(" 4MByte");
	printf("\n");
	printf("Command and Address setup    %c%d.%d nS\n",
		(data[32] & 0x80) ? '-' : '+',
		(data[32] >> 4) & 0x07, data[32] & 0x0F);
	printf("Command and Address hold     %c%d.%d nS\n",
		(data[33] & 0x80) ? '-' : '+',
		(data[33] >> 4) & 0x07, data[33] & 0x0F);
	printf("Data signal input setup      %c%d.%d nS\n",
		(data[34] & 0x80) ? '-' : '+',
		(data[34] >> 4) & 0x07, data[34] & 0x0F);
	printf("Data signal input hold       %c%d.%d nS\n",
		(data[35] & 0x80) ? '-' : '+',
		(data[35] >> 4) & 0x07, data[35] & 0x0F);
	printf("Manufacturer's JEDEC ID      ");
	for(j = 64; j <= 71; j++)
		printf("%02X ", data[j]);
	printf("\n");
	printf("Manufacturing Location       %02X\n", data[72]);
	printf("Manufacturer's Part Number   ");
	for(j = 73; j <= 90; j++)
		printf("%02X ", data[j]);
	printf("\n");
	printf("Revision Code                %02X %02X\n", data[91], data[92]);
	printf("Manufacturing Date           %02X %02X\n", data[93], data[94]);
	printf("Assembly Serial Number       ");
	for(j = 95; j <= 98; j++)
		printf("%02X ", data[j]);
	printf("\n");
	printf("Speed rating                 PC%d\n",
		data[126] == 0x66 ? 66 : data[126]);

	return 0;
}
#endif	/* CFG_CMD_SDRAM */

#endif	/* CFG_CMD_I2C */