1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "monitor_pool.h"
#include "common_runtime_test.h"
#include "scoped_thread_state_change.h"
#include "thread-inl.h"
namespace art {
class MonitorPoolTest : public CommonRuntimeTest {};
class RandGen {
public:
explicit RandGen(uint32_t seed) : val_(seed) {}
uint32_t next() {
val_ = val_ * 48271 % 2147483647 + 13;
return val_;
}
uint32_t val_;
};
static void VerifyMonitor(Monitor* mon, Thread* self) {
// Check whether the monitor id is correct.
EXPECT_EQ(MonitorPool::MonitorIdFromMonitor(mon), mon->GetMonitorId());
// Check whether the monitor id agrees with the compuation.
EXPECT_EQ(MonitorPool::ComputeMonitorId(mon, self), mon->GetMonitorId());
// Check whether we can use the monitor ID to get the monitor.
EXPECT_EQ(mon, MonitorPool::MonitorFromMonitorId(mon->GetMonitorId()));
}
TEST_F(MonitorPoolTest, MonitorPoolTest) {
std::vector<Monitor*> monitors;
RandGen r(0x1234);
// 1) Create and release monitors without increasing the storage.
// Number of max alive monitors before resize.
// Note: for correct testing, make sure this is corresponding to monitor-pool's initial size.
const size_t kMaxUsage = 28;
Thread* self = Thread::Current();
ScopedObjectAccess soa(self);
// Allocate and release monitors.
for (size_t i = 0; i < 1000 ; i++) {
bool alloc;
if (monitors.size() == 0) {
alloc = true;
} else if (monitors.size() == kMaxUsage) {
alloc = false;
} else {
// Random decision.
alloc = r.next() % 2 == 0;
}
if (alloc) {
Monitor* mon = MonitorPool::CreateMonitor(self, self, nullptr, static_cast<int32_t>(i));
monitors.push_back(mon);
VerifyMonitor(mon, self);
} else {
// Release a random monitor.
size_t index = r.next() % monitors.size();
Monitor* mon = monitors[index];
monitors.erase(monitors.begin() + index);
// Recheck the monitor.
VerifyMonitor(mon, self);
MonitorPool::ReleaseMonitor(self, mon);
}
}
// Loop some time.
for (size_t i = 0; i < 10; ++i) {
// 2.1) Create enough monitors to require new chunks.
size_t target_size = monitors.size() + 2*kMaxUsage;
while (monitors.size() < target_size) {
Monitor* mon = MonitorPool::CreateMonitor(self, self, nullptr,
static_cast<int32_t>(-monitors.size()));
monitors.push_back(mon);
VerifyMonitor(mon, self);
}
// 2.2) Verify all monitors.
for (Monitor* mon : monitors) {
VerifyMonitor(mon, self);
}
// 2.3) Release a number of monitors randomly.
for (size_t j = 0; j < kMaxUsage; j++) {
// Release a random monitor.
size_t index = r.next() % monitors.size();
Monitor* mon = monitors[index];
monitors.erase(monitors.begin() + index);
MonitorPool::ReleaseMonitor(self, mon);
}
}
// Check and release all remaining monitors.
for (Monitor* mon : monitors) {
VerifyMonitor(mon, self);
MonitorPool::ReleaseMonitor(self, mon);
}
}
} // namespace art
|