summaryrefslogtreecommitdiffstats
path: root/compiler/optimizing/register_allocator.cc
blob: d64e146ff04dd61dcc6d80ac9df8874e010b6d01 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "register_allocator.h"

#include <iostream>
#include <sstream>

#include "base/bit_vector-inl.h"
#include "code_generator.h"
#include "ssa_liveness_analysis.h"

namespace art {

static constexpr size_t kMaxLifetimePosition = -1;
static constexpr size_t kDefaultNumberOfSpillSlots = 4;

// For simplicity, we implement register pairs as (reg, reg + 1).
// Note that this is a requirement for double registers on ARM, since we
// allocate SRegister.
static int GetHighForLowRegister(int reg) { return reg + 1; }
static bool IsLowRegister(int reg) { return (reg & 1) == 0; }
static bool IsLowOfUnalignedPairInterval(LiveInterval* low) {
  return GetHighForLowRegister(low->GetRegister()) != low->GetHighInterval()->GetRegister();
}

RegisterAllocator::RegisterAllocator(ArenaAllocator* allocator,
                                     CodeGenerator* codegen,
                                     const SsaLivenessAnalysis& liveness)
      : allocator_(allocator),
        codegen_(codegen),
        liveness_(liveness),
        unhandled_core_intervals_(allocator, 0),
        unhandled_fp_intervals_(allocator, 0),
        unhandled_(nullptr),
        handled_(allocator, 0),
        active_(allocator, 0),
        inactive_(allocator, 0),
        physical_core_register_intervals_(allocator, codegen->GetNumberOfCoreRegisters()),
        physical_fp_register_intervals_(allocator, codegen->GetNumberOfFloatingPointRegisters()),
        temp_intervals_(allocator, 4),
        int_spill_slots_(allocator, kDefaultNumberOfSpillSlots),
        long_spill_slots_(allocator, kDefaultNumberOfSpillSlots),
        float_spill_slots_(allocator, kDefaultNumberOfSpillSlots),
        double_spill_slots_(allocator, kDefaultNumberOfSpillSlots),
        safepoints_(allocator, 0),
        processing_core_registers_(false),
        number_of_registers_(-1),
        registers_array_(nullptr),
        blocked_core_registers_(codegen->GetBlockedCoreRegisters()),
        blocked_fp_registers_(codegen->GetBlockedFloatingPointRegisters()),
        reserved_out_slots_(0),
        maximum_number_of_live_core_registers_(0),
        maximum_number_of_live_fp_registers_(0) {
  static constexpr bool kIsBaseline = false;
  codegen->SetupBlockedRegisters(kIsBaseline);
  physical_core_register_intervals_.SetSize(codegen->GetNumberOfCoreRegisters());
  physical_fp_register_intervals_.SetSize(codegen->GetNumberOfFloatingPointRegisters());
  // Always reserve for the current method and the graph's max out registers.
  // TODO: compute it instead.
  // ArtMethod* takes 2 vregs for 64 bits.
  reserved_out_slots_ = InstructionSetPointerSize(codegen->GetInstructionSet()) / kVRegSize +
      codegen->GetGraph()->GetMaximumNumberOfOutVRegs();
}

bool RegisterAllocator::CanAllocateRegistersFor(const HGraph& graph ATTRIBUTE_UNUSED,
                                                InstructionSet instruction_set) {
  return instruction_set == kArm64
      || instruction_set == kX86_64
      || instruction_set == kMips64
      || instruction_set == kArm
      || instruction_set == kX86
      || instruction_set == kThumb2;
}

static bool ShouldProcess(bool processing_core_registers, LiveInterval* interval) {
  if (interval == nullptr) return false;
  bool is_core_register = (interval->GetType() != Primitive::kPrimDouble)
      && (interval->GetType() != Primitive::kPrimFloat);
  return processing_core_registers == is_core_register;
}

void RegisterAllocator::AllocateRegisters() {
  AllocateRegistersInternal();
  Resolve();

  if (kIsDebugBuild) {
    processing_core_registers_ = true;
    ValidateInternal(true);
    processing_core_registers_ = false;
    ValidateInternal(true);
    // Check that the linear order is still correct with regards to lifetime positions.
    // Since only parallel moves have been inserted during the register allocation,
    // these checks are mostly for making sure these moves have been added correctly.
    size_t current_liveness = 0;
    for (HLinearOrderIterator it(*codegen_->GetGraph()); !it.Done(); it.Advance()) {
      HBasicBlock* block = it.Current();
      for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
        HInstruction* instruction = inst_it.Current();
        DCHECK_LE(current_liveness, instruction->GetLifetimePosition());
        current_liveness = instruction->GetLifetimePosition();
      }
      for (HInstructionIterator inst_it(block->GetInstructions());
           !inst_it.Done();
           inst_it.Advance()) {
        HInstruction* instruction = inst_it.Current();
        DCHECK_LE(current_liveness, instruction->GetLifetimePosition()) << instruction->DebugName();
        current_liveness = instruction->GetLifetimePosition();
      }
    }
  }
}

void RegisterAllocator::BlockRegister(Location location,
                                      size_t start,
                                      size_t end) {
  int reg = location.reg();
  DCHECK(location.IsRegister() || location.IsFpuRegister());
  LiveInterval* interval = location.IsRegister()
      ? physical_core_register_intervals_.Get(reg)
      : physical_fp_register_intervals_.Get(reg);
  Primitive::Type type = location.IsRegister()
      ? Primitive::kPrimInt
      : Primitive::kPrimFloat;
  if (interval == nullptr) {
    interval = LiveInterval::MakeFixedInterval(allocator_, reg, type);
    if (location.IsRegister()) {
      physical_core_register_intervals_.Put(reg, interval);
    } else {
      physical_fp_register_intervals_.Put(reg, interval);
    }
  }
  DCHECK(interval->GetRegister() == reg);
  interval->AddRange(start, end);
}

void RegisterAllocator::AllocateRegistersInternal() {
  // Iterate post-order, to ensure the list is sorted, and the last added interval
  // is the one with the lowest start position.
  for (HLinearPostOrderIterator it(*codegen_->GetGraph()); !it.Done(); it.Advance()) {
    HBasicBlock* block = it.Current();
    for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
         back_it.Advance()) {
      ProcessInstruction(back_it.Current());
    }
    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
      ProcessInstruction(inst_it.Current());
    }
  }

  number_of_registers_ = codegen_->GetNumberOfCoreRegisters();
  registers_array_ = allocator_->AllocArray<size_t>(number_of_registers_);
  processing_core_registers_ = true;
  unhandled_ = &unhandled_core_intervals_;
  for (size_t i = 0, e = physical_core_register_intervals_.Size(); i < e; ++i) {
    LiveInterval* fixed = physical_core_register_intervals_.Get(i);
    if (fixed != nullptr) {
      // Fixed interval is added to inactive_ instead of unhandled_.
      // It's also the only type of inactive interval whose start position
      // can be after the current interval during linear scan.
      // Fixed interval is never split and never moves to unhandled_.
      inactive_.Add(fixed);
    }
  }
  LinearScan();

  inactive_.Reset();
  active_.Reset();
  handled_.Reset();

  number_of_registers_ = codegen_->GetNumberOfFloatingPointRegisters();
  registers_array_ = allocator_->AllocArray<size_t>(number_of_registers_);
  processing_core_registers_ = false;
  unhandled_ = &unhandled_fp_intervals_;
  for (size_t i = 0, e = physical_fp_register_intervals_.Size(); i < e; ++i) {
    LiveInterval* fixed = physical_fp_register_intervals_.Get(i);
    if (fixed != nullptr) {
      // Fixed interval is added to inactive_ instead of unhandled_.
      // It's also the only type of inactive interval whose start position
      // can be after the current interval during linear scan.
      // Fixed interval is never split and never moves to unhandled_.
      inactive_.Add(fixed);
    }
  }
  LinearScan();
}

void RegisterAllocator::ProcessInstruction(HInstruction* instruction) {
  LocationSummary* locations = instruction->GetLocations();
  size_t position = instruction->GetLifetimePosition();

  if (locations == nullptr) return;

  // Create synthesized intervals for temporaries.
  for (size_t i = 0; i < locations->GetTempCount(); ++i) {
    Location temp = locations->GetTemp(i);
    if (temp.IsRegister() || temp.IsFpuRegister()) {
      BlockRegister(temp, position, position + 1);
    } else {
      DCHECK(temp.IsUnallocated());
      switch (temp.GetPolicy()) {
        case Location::kRequiresRegister: {
          LiveInterval* interval =
              LiveInterval::MakeTempInterval(allocator_, Primitive::kPrimInt);
          temp_intervals_.Add(interval);
          interval->AddTempUse(instruction, i);
          unhandled_core_intervals_.Add(interval);
          break;
        }

        case Location::kRequiresFpuRegister: {
          LiveInterval* interval =
              LiveInterval::MakeTempInterval(allocator_, Primitive::kPrimDouble);
          temp_intervals_.Add(interval);
          interval->AddTempUse(instruction, i);
          if (codegen_->NeedsTwoRegisters(Primitive::kPrimDouble)) {
            interval->AddHighInterval(/* is_temp */ true);
            LiveInterval* high = interval->GetHighInterval();
            temp_intervals_.Add(high);
            unhandled_fp_intervals_.Add(high);
          }
          unhandled_fp_intervals_.Add(interval);
          break;
        }

        default:
          LOG(FATAL) << "Unexpected policy for temporary location "
                     << temp.GetPolicy();
      }
    }
  }

  bool core_register = (instruction->GetType() != Primitive::kPrimDouble)
      && (instruction->GetType() != Primitive::kPrimFloat);

  if (locations->CanCall()) {
    if (codegen_->IsLeafMethod()) {
      // TODO: We do this here because we do not want the suspend check to artificially
      // create live registers. We should find another place, but this is currently the
      // simplest.
      DCHECK(instruction->IsSuspendCheckEntry());
      instruction->GetBlock()->RemoveInstruction(instruction);
      return;
    }
    safepoints_.Add(instruction);
    if (locations->OnlyCallsOnSlowPath()) {
      // We add a synthesized range at this position to record the live registers
      // at this position. Ideally, we could just update the safepoints when locations
      // are updated, but we currently need to know the full stack size before updating
      // locations (because of parameters and the fact that we don't have a frame pointer).
      // And knowing the full stack size requires to know the maximum number of live
      // registers at calls in slow paths.
      // By adding the following interval in the algorithm, we can compute this
      // maximum before updating locations.
      LiveInterval* interval = LiveInterval::MakeSlowPathInterval(allocator_, instruction);
      interval->AddRange(position, position + 1);
      AddSorted(&unhandled_core_intervals_, interval);
      AddSorted(&unhandled_fp_intervals_, interval);
    }
  }

  if (locations->WillCall()) {
    // Block all registers.
    for (size_t i = 0; i < codegen_->GetNumberOfCoreRegisters(); ++i) {
      if (!codegen_->IsCoreCalleeSaveRegister(i)) {
        BlockRegister(Location::RegisterLocation(i),
                      position,
                      position + 1);
      }
    }
    for (size_t i = 0; i < codegen_->GetNumberOfFloatingPointRegisters(); ++i) {
      if (!codegen_->IsFloatingPointCalleeSaveRegister(i)) {
        BlockRegister(Location::FpuRegisterLocation(i),
                      position,
                      position + 1);
      }
    }
  }

  for (size_t i = 0; i < instruction->InputCount(); ++i) {
    Location input = locations->InAt(i);
    if (input.IsRegister() || input.IsFpuRegister()) {
      BlockRegister(input, position, position + 1);
    } else if (input.IsPair()) {
      BlockRegister(input.ToLow(), position, position + 1);
      BlockRegister(input.ToHigh(), position, position + 1);
    }
  }

  LiveInterval* current = instruction->GetLiveInterval();
  if (current == nullptr) return;

  GrowableArray<LiveInterval*>& unhandled = core_register
      ? unhandled_core_intervals_
      : unhandled_fp_intervals_;

  DCHECK(unhandled.IsEmpty() || current->StartsBeforeOrAt(unhandled.Peek()));

  if (codegen_->NeedsTwoRegisters(current->GetType())) {
    current->AddHighInterval();
  }

  for (size_t safepoint_index = safepoints_.Size(); safepoint_index > 0; --safepoint_index) {
    HInstruction* safepoint = safepoints_.Get(safepoint_index - 1);
    size_t safepoint_position = safepoint->GetLifetimePosition();

    // Test that safepoints are ordered in the optimal way.
    DCHECK(safepoint_index == safepoints_.Size()
           || safepoints_.Get(safepoint_index)->GetLifetimePosition() < safepoint_position);

    if (safepoint_position == current->GetStart()) {
      // The safepoint is for this instruction, so the location of the instruction
      // does not need to be saved.
      DCHECK_EQ(safepoint_index, safepoints_.Size());
      DCHECK_EQ(safepoint, instruction);
      continue;
    } else if (current->IsDeadAt(safepoint_position)) {
      break;
    } else if (!current->Covers(safepoint_position)) {
      // Hole in the interval.
      continue;
    }
    current->AddSafepoint(safepoint);
  }
  current->ResetSearchCache();

  // Some instructions define their output in fixed register/stack slot. We need
  // to ensure we know these locations before doing register allocation. For a
  // given register, we create an interval that covers these locations. The register
  // will be unavailable at these locations when trying to allocate one for an
  // interval.
  //
  // The backwards walking ensures the ranges are ordered on increasing start positions.
  Location output = locations->Out();
  if (output.IsUnallocated() && output.GetPolicy() == Location::kSameAsFirstInput) {
    Location first = locations->InAt(0);
    if (first.IsRegister() || first.IsFpuRegister()) {
      current->SetFrom(position + 1);
      current->SetRegister(first.reg());
    } else if (first.IsPair()) {
      current->SetFrom(position + 1);
      current->SetRegister(first.low());
      LiveInterval* high = current->GetHighInterval();
      high->SetRegister(first.high());
      high->SetFrom(position + 1);
    }
  } else if (output.IsRegister() || output.IsFpuRegister()) {
    // Shift the interval's start by one to account for the blocked register.
    current->SetFrom(position + 1);
    current->SetRegister(output.reg());
    BlockRegister(output, position, position + 1);
  } else if (output.IsPair()) {
    current->SetFrom(position + 1);
    current->SetRegister(output.low());
    LiveInterval* high = current->GetHighInterval();
    high->SetRegister(output.high());
    high->SetFrom(position + 1);
    BlockRegister(output.ToLow(), position, position + 1);
    BlockRegister(output.ToHigh(), position, position + 1);
  } else if (output.IsStackSlot() || output.IsDoubleStackSlot()) {
    current->SetSpillSlot(output.GetStackIndex());
  } else {
    DCHECK(output.IsUnallocated() || output.IsConstant());
  }

  // If needed, add interval to the list of unhandled intervals.
  if (current->HasSpillSlot() || instruction->IsConstant()) {
    // Split just before first register use.
    size_t first_register_use = current->FirstRegisterUse();
    if (first_register_use != kNoLifetime) {
      LiveInterval* split = SplitBetween(current, current->GetStart(), first_register_use - 1);
      // Don't add directly to `unhandled`, it needs to be sorted and the start
      // of this new interval might be after intervals already in the list.
      AddSorted(&unhandled, split);
    } else {
      // Nothing to do, we won't allocate a register for this value.
    }
  } else {
    // Don't add directly to `unhandled`, temp or safepoint intervals
    // for this instruction may have been added, and those can be
    // processed first.
    AddSorted(&unhandled, current);
  }
}

class AllRangesIterator : public ValueObject {
 public:
  explicit AllRangesIterator(LiveInterval* interval)
      : current_interval_(interval),
        current_range_(interval->GetFirstRange()) {}

  bool Done() const { return current_interval_ == nullptr; }
  LiveRange* CurrentRange() const { return current_range_; }
  LiveInterval* CurrentInterval() const { return current_interval_; }

  void Advance() {
    current_range_ = current_range_->GetNext();
    if (current_range_ == nullptr) {
      current_interval_ = current_interval_->GetNextSibling();
      if (current_interval_ != nullptr) {
        current_range_ = current_interval_->GetFirstRange();
      }
    }
  }

 private:
  LiveInterval* current_interval_;
  LiveRange* current_range_;

  DISALLOW_COPY_AND_ASSIGN(AllRangesIterator);
};

bool RegisterAllocator::ValidateInternal(bool log_fatal_on_failure) const {
  // To simplify unit testing, we eagerly create the array of intervals, and
  // call the helper method.
  GrowableArray<LiveInterval*> intervals(allocator_, 0);
  for (size_t i = 0; i < liveness_.GetNumberOfSsaValues(); ++i) {
    HInstruction* instruction = liveness_.GetInstructionFromSsaIndex(i);
    if (ShouldProcess(processing_core_registers_, instruction->GetLiveInterval())) {
      intervals.Add(instruction->GetLiveInterval());
    }
  }

  if (processing_core_registers_) {
    for (size_t i = 0, e = physical_core_register_intervals_.Size(); i < e; ++i) {
      LiveInterval* fixed = physical_core_register_intervals_.Get(i);
      if (fixed != nullptr) {
        intervals.Add(fixed);
      }
    }
  } else {
    for (size_t i = 0, e = physical_fp_register_intervals_.Size(); i < e; ++i) {
      LiveInterval* fixed = physical_fp_register_intervals_.Get(i);
      if (fixed != nullptr) {
        intervals.Add(fixed);
      }
    }
  }

  for (size_t i = 0, e = temp_intervals_.Size(); i < e; ++i) {
    LiveInterval* temp = temp_intervals_.Get(i);
    if (ShouldProcess(processing_core_registers_, temp)) {
      intervals.Add(temp);
    }
  }

  return ValidateIntervals(intervals, GetNumberOfSpillSlots(), reserved_out_slots_, *codegen_,
                           allocator_, processing_core_registers_, log_fatal_on_failure);
}

bool RegisterAllocator::ValidateIntervals(const GrowableArray<LiveInterval*>& intervals,
                                          size_t number_of_spill_slots,
                                          size_t number_of_out_slots,
                                          const CodeGenerator& codegen,
                                          ArenaAllocator* allocator,
                                          bool processing_core_registers,
                                          bool log_fatal_on_failure) {
  size_t number_of_registers = processing_core_registers
      ? codegen.GetNumberOfCoreRegisters()
      : codegen.GetNumberOfFloatingPointRegisters();
  GrowableArray<ArenaBitVector*> liveness_of_values(
      allocator, number_of_registers + number_of_spill_slots);

  // Allocate a bit vector per register. A live interval that has a register
  // allocated will populate the associated bit vector based on its live ranges.
  for (size_t i = 0; i < number_of_registers + number_of_spill_slots; ++i) {
    liveness_of_values.Add(new (allocator) ArenaBitVector(allocator, 0, true));
  }

  for (size_t i = 0, e = intervals.Size(); i < e; ++i) {
    for (AllRangesIterator it(intervals.Get(i)); !it.Done(); it.Advance()) {
      LiveInterval* current = it.CurrentInterval();
      HInstruction* defined_by = current->GetParent()->GetDefinedBy();
      if (current->GetParent()->HasSpillSlot()
           // Parameters have their own stack slot.
           && !(defined_by != nullptr && defined_by->IsParameterValue())) {
        BitVector* liveness_of_spill_slot = liveness_of_values.Get(number_of_registers
            + current->GetParent()->GetSpillSlot() / kVRegSize
            - number_of_out_slots);
        for (size_t j = it.CurrentRange()->GetStart(); j < it.CurrentRange()->GetEnd(); ++j) {
          if (liveness_of_spill_slot->IsBitSet(j)) {
            if (log_fatal_on_failure) {
              std::ostringstream message;
              message << "Spill slot conflict at " << j;
              LOG(FATAL) << message.str();
            } else {
              return false;
            }
          } else {
            liveness_of_spill_slot->SetBit(j);
          }
        }
      }

      if (current->HasRegister()) {
        BitVector* liveness_of_register = liveness_of_values.Get(current->GetRegister());
        for (size_t j = it.CurrentRange()->GetStart(); j < it.CurrentRange()->GetEnd(); ++j) {
          if (liveness_of_register->IsBitSet(j)) {
            if (current->IsUsingInputRegister() && current->CanUseInputRegister()) {
              continue;
            }
            if (log_fatal_on_failure) {
              std::ostringstream message;
              message << "Register conflict at " << j << " ";
              if (defined_by != nullptr) {
                message << "(" << defined_by->DebugName() << ")";
              }
              message << "for ";
              if (processing_core_registers) {
                codegen.DumpCoreRegister(message, current->GetRegister());
              } else {
                codegen.DumpFloatingPointRegister(message, current->GetRegister());
              }
              LOG(FATAL) << message.str();
            } else {
              return false;
            }
          } else {
            liveness_of_register->SetBit(j);
          }
        }
      }
    }
  }
  return true;
}

void RegisterAllocator::DumpInterval(std::ostream& stream, LiveInterval* interval) const {
  interval->Dump(stream);
  stream << ": ";
  if (interval->HasRegister()) {
    if (interval->IsFloatingPoint()) {
      codegen_->DumpFloatingPointRegister(stream, interval->GetRegister());
    } else {
      codegen_->DumpCoreRegister(stream, interval->GetRegister());
    }
  } else {
    stream << "spilled";
  }
  stream << std::endl;
}

void RegisterAllocator::DumpAllIntervals(std::ostream& stream) const {
  stream << "inactive: " << std::endl;
  for (size_t i = 0; i < inactive_.Size(); i ++) {
    DumpInterval(stream, inactive_.Get(i));
  }
  stream << "active: " << std::endl;
  for (size_t i = 0; i < active_.Size(); i ++) {
    DumpInterval(stream, active_.Get(i));
  }
  stream << "unhandled: " << std::endl;
  auto unhandled = (unhandled_ != nullptr) ?
      unhandled_ : &unhandled_core_intervals_;
  for (size_t i = 0; i < unhandled->Size(); i ++) {
    DumpInterval(stream, unhandled->Get(i));
  }
  stream << "handled: " << std::endl;
  for (size_t i = 0; i < handled_.Size(); i ++) {
    DumpInterval(stream, handled_.Get(i));
  }
}

// By the book implementation of a linear scan register allocator.
void RegisterAllocator::LinearScan() {
  while (!unhandled_->IsEmpty()) {
    // (1) Remove interval with the lowest start position from unhandled.
    LiveInterval* current = unhandled_->Pop();
    DCHECK(!current->IsFixed() && !current->HasSpillSlot());
    DCHECK(unhandled_->IsEmpty() || unhandled_->Peek()->GetStart() >= current->GetStart());
    DCHECK(!current->IsLowInterval() || unhandled_->Peek()->IsHighInterval());

    size_t position = current->GetStart();

    // Remember the inactive_ size here since the ones moved to inactive_ from
    // active_ below shouldn't need to be re-checked.
    size_t inactive_intervals_to_handle = inactive_.Size();

    // (2) Remove currently active intervals that are dead at this position.
    //     Move active intervals that have a lifetime hole at this position
    //     to inactive.
    for (size_t i = 0; i < active_.Size(); ++i) {
      LiveInterval* interval = active_.Get(i);
      if (interval->IsDeadAt(position)) {
        active_.Delete(interval);
        --i;
        handled_.Add(interval);
      } else if (!interval->Covers(position)) {
        active_.Delete(interval);
        --i;
        inactive_.Add(interval);
      }
    }

    // (3) Remove currently inactive intervals that are dead at this position.
    //     Move inactive intervals that cover this position to active.
    for (size_t i = 0; i < inactive_intervals_to_handle; ++i) {
      LiveInterval* interval = inactive_.Get(i);
      DCHECK(interval->GetStart() < position || interval->IsFixed());
      if (interval->IsDeadAt(position)) {
        inactive_.Delete(interval);
        --i;
        --inactive_intervals_to_handle;
        handled_.Add(interval);
      } else if (interval->Covers(position)) {
        inactive_.Delete(interval);
        --i;
        --inactive_intervals_to_handle;
        active_.Add(interval);
      }
    }

    if (current->IsSlowPathSafepoint()) {
      // Synthesized interval to record the maximum number of live registers
      // at safepoints. No need to allocate a register for it.
      if (processing_core_registers_) {
        maximum_number_of_live_core_registers_ =
          std::max(maximum_number_of_live_core_registers_, active_.Size());
      } else {
        maximum_number_of_live_fp_registers_ =
          std::max(maximum_number_of_live_fp_registers_, active_.Size());
      }
      DCHECK(unhandled_->IsEmpty() || unhandled_->Peek()->GetStart() > current->GetStart());
      continue;
    }

    if (current->IsHighInterval() && !current->GetLowInterval()->HasRegister()) {
      DCHECK(!current->HasRegister());
      // Allocating the low part was unsucessful. The splitted interval for the high part
      // will be handled next (it is in the `unhandled_` list).
      continue;
    }

    // (4) Try to find an available register.
    bool success = TryAllocateFreeReg(current);

    // (5) If no register could be found, we need to spill.
    if (!success) {
      success = AllocateBlockedReg(current);
    }

    // (6) If the interval had a register allocated, add it to the list of active
    //     intervals.
    if (success) {
      codegen_->AddAllocatedRegister(processing_core_registers_
          ? Location::RegisterLocation(current->GetRegister())
          : Location::FpuRegisterLocation(current->GetRegister()));
      active_.Add(current);
      if (current->HasHighInterval() && !current->GetHighInterval()->HasRegister()) {
        current->GetHighInterval()->SetRegister(GetHighForLowRegister(current->GetRegister()));
      }
    }
  }
}

static void FreeIfNotCoverAt(LiveInterval* interval, size_t position, size_t* free_until) {
  DCHECK(!interval->IsHighInterval());
  // Note that the same instruction may occur multiple times in the input list,
  // so `free_until` may have changed already.
  // Since `position` is not the current scan position, we need to use CoversSlow.
  if (interval->IsDeadAt(position)) {
    // Set the register to be free. Note that inactive intervals might later
    // update this.
    free_until[interval->GetRegister()] = kMaxLifetimePosition;
    if (interval->HasHighInterval()) {
      DCHECK(interval->GetHighInterval()->IsDeadAt(position));
      free_until[interval->GetHighInterval()->GetRegister()] = kMaxLifetimePosition;
    }
  } else if (!interval->CoversSlow(position)) {
    // The interval becomes inactive at `defined_by`. We make its register
    // available only until the next use strictly after `defined_by`.
    free_until[interval->GetRegister()] = interval->FirstUseAfter(position);
    if (interval->HasHighInterval()) {
      DCHECK(!interval->GetHighInterval()->CoversSlow(position));
      free_until[interval->GetHighInterval()->GetRegister()] = free_until[interval->GetRegister()];
    }
  }
}

// Find a free register. If multiple are found, pick the register that
// is free the longest.
bool RegisterAllocator::TryAllocateFreeReg(LiveInterval* current) {
  size_t* free_until = registers_array_;

  // First set all registers to be free.
  for (size_t i = 0; i < number_of_registers_; ++i) {
    free_until[i] = kMaxLifetimePosition;
  }

  // For each active interval, set its register to not free.
  for (size_t i = 0, e = active_.Size(); i < e; ++i) {
    LiveInterval* interval = active_.Get(i);
    DCHECK(interval->HasRegister());
    free_until[interval->GetRegister()] = 0;
  }

  // An interval that starts an instruction (that is, it is not split), may
  // re-use the registers used by the inputs of that instruciton, based on the
  // location summary.
  HInstruction* defined_by = current->GetDefinedBy();
  if (defined_by != nullptr && !current->IsSplit()) {
    LocationSummary* locations = defined_by->GetLocations();
    if (!locations->OutputCanOverlapWithInputs() && locations->Out().IsUnallocated()) {
      for (HInputIterator it(defined_by); !it.Done(); it.Advance()) {
        // Take the last interval of the input. It is the location of that interval
        // that will be used at `defined_by`.
        LiveInterval* interval = it.Current()->GetLiveInterval()->GetLastSibling();
        // Note that interval may have not been processed yet.
        // TODO: Handle non-split intervals last in the work list.
        if (interval->HasRegister() && interval->SameRegisterKind(*current)) {
          // The input must be live until the end of `defined_by`, to comply to
          // the linear scan algorithm. So we use `defined_by`'s end lifetime
          // position to check whether the input is dead or is inactive after
          // `defined_by`.
          DCHECK(interval->CoversSlow(defined_by->GetLifetimePosition()));
          size_t position = defined_by->GetLifetimePosition() + 1;
          FreeIfNotCoverAt(interval, position, free_until);
        }
      }
    }
  }

  // For each inactive interval, set its register to be free until
  // the next intersection with `current`.
  for (size_t i = 0, e = inactive_.Size(); i < e; ++i) {
    LiveInterval* inactive = inactive_.Get(i);
    // Temp/Slow-path-safepoint interval has no holes.
    DCHECK(!inactive->IsTemp() && !inactive->IsSlowPathSafepoint());
    if (!current->IsSplit() && !inactive->IsFixed()) {
      // Neither current nor inactive are fixed.
      // Thanks to SSA, a non-split interval starting in a hole of an
      // inactive interval should never intersect with that inactive interval.
      // Only if it's not fixed though, because fixed intervals don't come from SSA.
      DCHECK_EQ(inactive->FirstIntersectionWith(current), kNoLifetime);
      continue;
    }

    DCHECK(inactive->HasRegister());
    if (free_until[inactive->GetRegister()] == 0) {
      // Already used by some active interval. No need to intersect.
      continue;
    }
    size_t next_intersection = inactive->FirstIntersectionWith(current);
    if (next_intersection != kNoLifetime) {
      free_until[inactive->GetRegister()] =
          std::min(free_until[inactive->GetRegister()], next_intersection);
    }
  }

  int reg = kNoRegister;
  if (current->HasRegister()) {
    // Some instructions have a fixed register output.
    reg = current->GetRegister();
    if (free_until[reg] == 0) {
      DCHECK(current->IsHighInterval());
      // AllocateBlockedReg will spill the holder of the register.
      return false;
    }
  } else {
    DCHECK(!current->IsHighInterval());
    int hint = current->FindFirstRegisterHint(free_until, liveness_);
    if ((hint != kNoRegister)
        // For simplicity, if the hint we are getting for a pair cannot be used,
        // we are just going to allocate a new pair.
        && !(current->IsLowInterval() && IsBlocked(GetHighForLowRegister(hint)))) {
      DCHECK(!IsBlocked(hint));
      reg = hint;
    } else if (current->IsLowInterval()) {
      reg = FindAvailableRegisterPair(free_until, current->GetStart());
    } else {
      reg = FindAvailableRegister(free_until);
    }
  }

  DCHECK_NE(reg, kNoRegister);
  // If we could not find a register, we need to spill.
  if (free_until[reg] == 0) {
    return false;
  }

  if (current->IsLowInterval()) {
    // If the high register of this interval is not available, we need to spill.
    int high_reg = current->GetHighInterval()->GetRegister();
    if (high_reg == kNoRegister) {
      high_reg = GetHighForLowRegister(reg);
    }
    if (free_until[high_reg] == 0) {
      return false;
    }
  }

  current->SetRegister(reg);
  if (!current->IsDeadAt(free_until[reg])) {
    // If the register is only available for a subset of live ranges
    // covered by `current`, split `current` at the position where
    // the register is not available anymore.
    LiveInterval* split = Split(current, free_until[reg]);
    DCHECK(split != nullptr);
    AddSorted(unhandled_, split);
  }
  return true;
}

bool RegisterAllocator::IsBlocked(int reg) const {
  return processing_core_registers_
      ? blocked_core_registers_[reg]
      : blocked_fp_registers_[reg];
}

int RegisterAllocator::FindAvailableRegisterPair(size_t* next_use, size_t starting_at) const {
  int reg = kNoRegister;
  // Pick the register pair that is used the last.
  for (size_t i = 0; i < number_of_registers_; ++i) {
    if (IsBlocked(i)) continue;
    if (!IsLowRegister(i)) continue;
    int high_register = GetHighForLowRegister(i);
    if (IsBlocked(high_register)) continue;
    int existing_high_register = GetHighForLowRegister(reg);
    if ((reg == kNoRegister) || (next_use[i] >= next_use[reg]
                        && next_use[high_register] >= next_use[existing_high_register])) {
      reg = i;
      if (next_use[i] == kMaxLifetimePosition
          && next_use[high_register] == kMaxLifetimePosition) {
        break;
      }
    } else if (next_use[reg] <= starting_at || next_use[existing_high_register] <= starting_at) {
      // If one of the current register is known to be unavailable, just unconditionally
      // try a new one.
      reg = i;
    }
  }
  return reg;
}

int RegisterAllocator::FindAvailableRegister(size_t* next_use) const {
  int reg = kNoRegister;
  // Pick the register that is used the last.
  for (size_t i = 0; i < number_of_registers_; ++i) {
    if (IsBlocked(i)) continue;
    if (reg == kNoRegister || next_use[i] > next_use[reg]) {
      reg = i;
      if (next_use[i] == kMaxLifetimePosition) break;
    }
  }
  return reg;
}

bool RegisterAllocator::TrySplitNonPairOrUnalignedPairIntervalAt(size_t position,
                                                                 size_t first_register_use,
                                                                 size_t* next_use) {
  for (size_t i = 0, e = active_.Size(); i < e; ++i) {
    LiveInterval* active = active_.Get(i);
    DCHECK(active->HasRegister());
    if (active->IsFixed()) continue;
    if (active->IsHighInterval()) continue;
    if (first_register_use > next_use[active->GetRegister()]) continue;

    // Split the first interval found.
    if (!active->IsLowInterval() || IsLowOfUnalignedPairInterval(active)) {
      LiveInterval* split = Split(active, position);
      active_.DeleteAt(i);
      if (split != active) {
        handled_.Add(active);
      }
      AddSorted(unhandled_, split);
      return true;
    }
  }
  return false;
}

bool RegisterAllocator::PotentiallyRemoveOtherHalf(LiveInterval* interval,
                                                   GrowableArray<LiveInterval*>* intervals,
                                                   size_t index) {
  if (interval->IsLowInterval()) {
    DCHECK_EQ(intervals->Get(index), interval->GetHighInterval());
    intervals->DeleteAt(index);
    return true;
  } else if (interval->IsHighInterval()) {
    DCHECK_GT(index, 0u);
    DCHECK_EQ(intervals->Get(index - 1), interval->GetLowInterval());
    intervals->DeleteAt(index - 1);
    return true;
  } else {
    return false;
  }
}

// Find the register that is used the last, and spill the interval
// that holds it. If the first use of `current` is after that register
// we spill `current` instead.
bool RegisterAllocator::AllocateBlockedReg(LiveInterval* current) {
  size_t first_register_use = current->FirstRegisterUse();
  if (first_register_use == kNoLifetime) {
    AllocateSpillSlotFor(current);
    return false;
  }

  // We use the first use to compare with other intervals. If this interval
  // is used after any active intervals, we will spill this interval.
  size_t first_use = current->FirstUseAfter(current->GetStart());

  // First set all registers as not being used.
  size_t* next_use = registers_array_;
  for (size_t i = 0; i < number_of_registers_; ++i) {
    next_use[i] = kMaxLifetimePosition;
  }

  // For each active interval, find the next use of its register after the
  // start of current.
  for (size_t i = 0, e = active_.Size(); i < e; ++i) {
    LiveInterval* active = active_.Get(i);
    DCHECK(active->HasRegister());
    if (active->IsFixed()) {
      next_use[active->GetRegister()] = current->GetStart();
    } else {
      size_t use = active->FirstUseAfter(current->GetStart());
      if (use != kNoLifetime) {
        next_use[active->GetRegister()] = use;
      }
    }
  }

  // For each inactive interval, find the next use of its register after the
  // start of current.
  for (size_t i = 0, e = inactive_.Size(); i < e; ++i) {
    LiveInterval* inactive = inactive_.Get(i);
    // Temp/Slow-path-safepoint interval has no holes.
    DCHECK(!inactive->IsTemp() && !inactive->IsSlowPathSafepoint());
    if (!current->IsSplit() && !inactive->IsFixed()) {
      // Neither current nor inactive are fixed.
      // Thanks to SSA, a non-split interval starting in a hole of an
      // inactive interval should never intersect with that inactive interval.
      // Only if it's not fixed though, because fixed intervals don't come from SSA.
      DCHECK_EQ(inactive->FirstIntersectionWith(current), kNoLifetime);
      continue;
    }
    DCHECK(inactive->HasRegister());
    size_t next_intersection = inactive->FirstIntersectionWith(current);
    if (next_intersection != kNoLifetime) {
      if (inactive->IsFixed()) {
        next_use[inactive->GetRegister()] =
            std::min(next_intersection, next_use[inactive->GetRegister()]);
      } else {
        size_t use = inactive->FirstUseAfter(current->GetStart());
        if (use != kNoLifetime) {
          next_use[inactive->GetRegister()] = std::min(use, next_use[inactive->GetRegister()]);
        }
      }
    }
  }

  int reg = kNoRegister;
  bool should_spill = false;
  if (current->HasRegister()) {
    DCHECK(current->IsHighInterval());
    reg = current->GetRegister();
    // When allocating the low part, we made sure the high register was available.
    DCHECK_LT(first_use, next_use[reg]);
  } else if (current->IsLowInterval()) {
    reg = FindAvailableRegisterPair(next_use, first_register_use);
    // We should spill if both registers are not available.
    should_spill = (first_use >= next_use[reg])
      || (first_use >= next_use[GetHighForLowRegister(reg)]);
  } else {
    DCHECK(!current->IsHighInterval());
    reg = FindAvailableRegister(next_use);
    should_spill = (first_use >= next_use[reg]);
  }

  DCHECK_NE(reg, kNoRegister);
  if (should_spill) {
    DCHECK(!current->IsHighInterval());
    bool is_allocation_at_use_site = (current->GetStart() >= (first_register_use - 1));
    if (current->IsLowInterval()
        && is_allocation_at_use_site
        && TrySplitNonPairOrUnalignedPairIntervalAt(current->GetStart(),
                                                    first_register_use,
                                                    next_use)) {
      // If we're allocating a register for `current` because the instruction at
      // that position requires it, but we think we should spill, then there are
      // non-pair intervals or unaligned pair intervals blocking the allocation.
      // We split the first interval found, and put ourselves first in the
      // `unhandled_` list.
      LiveInterval* existing = unhandled_->Peek();
      DCHECK(existing->IsHighInterval());
      DCHECK_EQ(existing->GetLowInterval(), current);
      unhandled_->Add(current);
    } else {
      // If the first use of that instruction is after the last use of the found
      // register, we split this interval just before its first register use.
      AllocateSpillSlotFor(current);
      LiveInterval* split = SplitBetween(current, current->GetStart(), first_register_use - 1);
      if (current == split) {
        DumpInterval(std::cerr, current);
        DumpAllIntervals(std::cerr);
        // This situation has the potential to infinite loop, so we make it a non-debug CHECK.
        HInstruction* at = liveness_.GetInstructionFromPosition(first_register_use / 2);
        CHECK(false) << "There is not enough registers available for "
          << split->GetParent()->GetDefinedBy()->DebugName() << " "
          << split->GetParent()->GetDefinedBy()->GetId()
          << " at " << first_register_use - 1 << " "
          << (at == nullptr ? "" : at->DebugName());
      }
      AddSorted(unhandled_, split);
    }
    return false;
  } else {
    // Use this register and spill the active and inactives interval that
    // have that register.
    current->SetRegister(reg);

    for (size_t i = 0, e = active_.Size(); i < e; ++i) {
      LiveInterval* active = active_.Get(i);
      if (active->GetRegister() == reg) {
        DCHECK(!active->IsFixed());
        LiveInterval* split = Split(active, current->GetStart());
        if (split != active) {
          handled_.Add(active);
        }
        active_.DeleteAt(i);
        PotentiallyRemoveOtherHalf(active, &active_, i);
        AddSorted(unhandled_, split);
        break;
      }
    }

    for (size_t i = 0; i < inactive_.Size(); ++i) {
      LiveInterval* inactive = inactive_.Get(i);
      if (inactive->GetRegister() == reg) {
        if (!current->IsSplit() && !inactive->IsFixed()) {
          // Neither current nor inactive are fixed.
          // Thanks to SSA, a non-split interval starting in a hole of an
          // inactive interval should never intersect with that inactive interval.
          // Only if it's not fixed though, because fixed intervals don't come from SSA.
          DCHECK_EQ(inactive->FirstIntersectionWith(current), kNoLifetime);
          continue;
        }
        size_t next_intersection = inactive->FirstIntersectionWith(current);
        if (next_intersection != kNoLifetime) {
          if (inactive->IsFixed()) {
            LiveInterval* split = Split(current, next_intersection);
            DCHECK_NE(split, current);
            AddSorted(unhandled_, split);
          } else {
            // Split at the start of `current`, which will lead to splitting
            // at the end of the lifetime hole of `inactive`.
            LiveInterval* split = Split(inactive, current->GetStart());
            // If it's inactive, it must start before the current interval.
            DCHECK_NE(split, inactive);
            inactive_.DeleteAt(i);
            if (PotentiallyRemoveOtherHalf(inactive, &inactive_, i) && inactive->IsHighInterval()) {
              // We have removed an entry prior to `inactive`. So we need to decrement.
              --i;
            }
            // Decrement because we have removed `inactive` from the list.
            --i;
            handled_.Add(inactive);
            AddSorted(unhandled_, split);
          }
        }
      }
    }

    return true;
  }
}

void RegisterAllocator::AddSorted(GrowableArray<LiveInterval*>* array, LiveInterval* interval) {
  DCHECK(!interval->IsFixed() && !interval->HasSpillSlot());
  size_t insert_at = 0;
  for (size_t i = array->Size(); i > 0; --i) {
    LiveInterval* current = array->Get(i - 1);
    // High intervals must be processed right after their low equivalent.
    if (current->StartsAfter(interval) && !current->IsHighInterval()) {
      insert_at = i;
      break;
    } else if ((current->GetStart() == interval->GetStart()) && current->IsSlowPathSafepoint()) {
      // Ensure the slow path interval is the last to be processed at its location: we want the
      // interval to know all live registers at this location.
      DCHECK(i == 1 || array->Get(i - 2)->StartsAfter(current));
      insert_at = i;
      break;
    }
  }

  array->InsertAt(insert_at, interval);
  // Insert the high interval before the low, to ensure the low is processed before.
  if (interval->HasHighInterval()) {
    array->InsertAt(insert_at, interval->GetHighInterval());
  } else if (interval->HasLowInterval()) {
    array->InsertAt(insert_at + 1, interval->GetLowInterval());
  }
}

LiveInterval* RegisterAllocator::SplitBetween(LiveInterval* interval, size_t from, size_t to) {
  HBasicBlock* block_from = liveness_.GetBlockFromPosition(from / 2);
  HBasicBlock* block_to = liveness_.GetBlockFromPosition(to / 2);
  DCHECK(block_from != nullptr);
  DCHECK(block_to != nullptr);

  // Both locations are in the same block. We split at the given location.
  if (block_from == block_to) {
    return Split(interval, to);
  }

  /*
   * Non-linear control flow will force moves at every branch instruction to the new location.
   * To avoid having all branches doing the moves, we find the next non-linear position and
   * split the interval at this position. Take the following example (block number is the linear
   * order position):
   *
   *     B1
   *    /  \
   *   B2  B3
   *    \  /
   *     B4
   *
   * B2 needs to split an interval, whose next use is in B4. If we were to split at the
   * beginning of B4, B3 would need to do a move between B3 and B4 to ensure the interval
   * is now in the correct location. It makes performance worst if the interval is spilled
   * and both B2 and B3 need to reload it before entering B4.
   *
   * By splitting at B3, we give a chance to the register allocator to allocate the
   * interval to the same register as in B1, and therefore avoid doing any
   * moves in B3.
   */
  if (block_from->GetDominator() != nullptr) {
    const GrowableArray<HBasicBlock*>& dominated = block_from->GetDominator()->GetDominatedBlocks();
    for (size_t i = 0; i < dominated.Size(); ++i) {
      size_t position = dominated.Get(i)->GetLifetimeStart();
      if ((position > from) && (block_to->GetLifetimeStart() > position)) {
        // Even if we found a better block, we continue iterating in case
        // a dominated block is closer.
        // Note that dominated blocks are not sorted in liveness order.
        block_to = dominated.Get(i);
        DCHECK_NE(block_to, block_from);
      }
    }
  }

  // If `to` is in a loop, find the outermost loop header which does not contain `from`.
  for (HLoopInformationOutwardIterator it(*block_to); !it.Done(); it.Advance()) {
    HBasicBlock* header = it.Current()->GetHeader();
    if (block_from->GetLifetimeStart() >= header->GetLifetimeStart()) {
      break;
    }
    block_to = header;
  }

  // Split at the start of the found block, to piggy back on existing moves
  // due to resolution if non-linear control flow (see `ConnectSplitSiblings`).
  return Split(interval, block_to->GetLifetimeStart());
}

LiveInterval* RegisterAllocator::Split(LiveInterval* interval, size_t position) {
  DCHECK_GE(position, interval->GetStart());
  DCHECK(!interval->IsDeadAt(position));
  if (position == interval->GetStart()) {
    // Spill slot will be allocated when handling `interval` again.
    interval->ClearRegister();
    if (interval->HasHighInterval()) {
      interval->GetHighInterval()->ClearRegister();
    } else if (interval->HasLowInterval()) {
      interval->GetLowInterval()->ClearRegister();
    }
    return interval;
  } else {
    LiveInterval* new_interval = interval->SplitAt(position);
    if (interval->HasHighInterval()) {
      LiveInterval* high = interval->GetHighInterval()->SplitAt(position);
      new_interval->SetHighInterval(high);
      high->SetLowInterval(new_interval);
    } else if (interval->HasLowInterval()) {
      LiveInterval* low = interval->GetLowInterval()->SplitAt(position);
      new_interval->SetLowInterval(low);
      low->SetHighInterval(new_interval);
    }
    return new_interval;
  }
}

void RegisterAllocator::AllocateSpillSlotFor(LiveInterval* interval) {
  if (interval->IsHighInterval()) {
    // The low interval will contain the spill slot.
    return;
  }

  LiveInterval* parent = interval->GetParent();

  // An instruction gets a spill slot for its entire lifetime. If the parent
  // of this interval already has a spill slot, there is nothing to do.
  if (parent->HasSpillSlot()) {
    return;
  }

  HInstruction* defined_by = parent->GetDefinedBy();
  if (defined_by->IsParameterValue()) {
    // Parameters have their own stack slot.
    parent->SetSpillSlot(codegen_->GetStackSlotOfParameter(defined_by->AsParameterValue()));
    return;
  }

  if (defined_by->IsConstant()) {
    // Constants don't need a spill slot.
    return;
  }

  LiveInterval* last_sibling = interval;
  while (last_sibling->GetNextSibling() != nullptr) {
    last_sibling = last_sibling->GetNextSibling();
  }
  size_t end = last_sibling->GetEnd();

  GrowableArray<size_t>* spill_slots = nullptr;
  switch (interval->GetType()) {
    case Primitive::kPrimDouble:
      spill_slots = &double_spill_slots_;
      break;
    case Primitive::kPrimLong:
      spill_slots = &long_spill_slots_;
      break;
    case Primitive::kPrimFloat:
      spill_slots = &float_spill_slots_;
      break;
    case Primitive::kPrimNot:
    case Primitive::kPrimInt:
    case Primitive::kPrimChar:
    case Primitive::kPrimByte:
    case Primitive::kPrimBoolean:
    case Primitive::kPrimShort:
      spill_slots = &int_spill_slots_;
      break;
    case Primitive::kPrimVoid:
      LOG(FATAL) << "Unexpected type for interval " << interval->GetType();
  }

  // Find an available spill slot.
  size_t slot = 0;
  for (size_t e = spill_slots->Size(); slot < e; ++slot) {
    if (spill_slots->Get(slot) <= parent->GetStart()
        && (slot == (e - 1) || spill_slots->Get(slot + 1) <= parent->GetStart())) {
      break;
    }
  }

  if (parent->NeedsTwoSpillSlots()) {
    if (slot == spill_slots->Size()) {
      // We need a new spill slot.
      spill_slots->Add(end);
      spill_slots->Add(end);
    } else if (slot == spill_slots->Size() - 1) {
      spill_slots->Put(slot, end);
      spill_slots->Add(end);
    } else {
      spill_slots->Put(slot, end);
      spill_slots->Put(slot + 1, end);
    }
  } else {
    if (slot == spill_slots->Size()) {
      // We need a new spill slot.
      spill_slots->Add(end);
    } else {
      spill_slots->Put(slot, end);
    }
  }

  // Note that the exact spill slot location will be computed when we resolve,
  // that is when we know the number of spill slots for each type.
  parent->SetSpillSlot(slot);
}

static bool IsValidDestination(Location destination) {
  return destination.IsRegister()
      || destination.IsRegisterPair()
      || destination.IsFpuRegister()
      || destination.IsFpuRegisterPair()
      || destination.IsStackSlot()
      || destination.IsDoubleStackSlot();
}

void RegisterAllocator::AddMove(HParallelMove* move,
                                Location source,
                                Location destination,
                                HInstruction* instruction,
                                Primitive::Type type) const {
  if (type == Primitive::kPrimLong
      && codegen_->ShouldSplitLongMoves()
      // The parallel move resolver knows how to deal with long constants.
      && !source.IsConstant()) {
    move->AddMove(source.ToLow(), destination.ToLow(), Primitive::kPrimInt, instruction);
    move->AddMove(source.ToHigh(), destination.ToHigh(), Primitive::kPrimInt, nullptr);
  } else {
    move->AddMove(source, destination, type, instruction);
  }
}

void RegisterAllocator::AddInputMoveFor(HInstruction* input,
                                        HInstruction* user,
                                        Location source,
                                        Location destination) const {
  if (source.Equals(destination)) return;

  DCHECK(!user->IsPhi());

  HInstruction* previous = user->GetPrevious();
  HParallelMove* move = nullptr;
  if (previous == nullptr
      || !previous->IsParallelMove()
      || previous->GetLifetimePosition() < user->GetLifetimePosition()) {
    move = new (allocator_) HParallelMove(allocator_);
    move->SetLifetimePosition(user->GetLifetimePosition());
    user->GetBlock()->InsertInstructionBefore(move, user);
  } else {
    move = previous->AsParallelMove();
  }
  DCHECK_EQ(move->GetLifetimePosition(), user->GetLifetimePosition());
  AddMove(move, source, destination, nullptr, input->GetType());
}

static bool IsInstructionStart(size_t position) {
  return (position & 1) == 0;
}

static bool IsInstructionEnd(size_t position) {
  return (position & 1) == 1;
}

void RegisterAllocator::InsertParallelMoveAt(size_t position,
                                             HInstruction* instruction,
                                             Location source,
                                             Location destination) const {
  DCHECK(IsValidDestination(destination)) << destination;
  if (source.Equals(destination)) return;

  HInstruction* at = liveness_.GetInstructionFromPosition(position / 2);
  HParallelMove* move;
  if (at == nullptr) {
    if (IsInstructionStart(position)) {
      // Block boundary, don't do anything the connection of split siblings will handle it.
      return;
    } else {
      // Move must happen before the first instruction of the block.
      at = liveness_.GetInstructionFromPosition((position + 1) / 2);
      // Note that parallel moves may have already been inserted, so we explicitly
      // ask for the first instruction of the block: `GetInstructionFromPosition` does
      // not contain the `HParallelMove` instructions.
      at = at->GetBlock()->GetFirstInstruction();

      if (at->GetLifetimePosition() < position) {
        // We may insert moves for split siblings and phi spills at the beginning of the block.
        // Since this is a different lifetime position, we need to go to the next instruction.
        DCHECK(at->IsParallelMove());
        at = at->GetNext();
      }

      if (at->GetLifetimePosition() != position) {
        DCHECK_GT(at->GetLifetimePosition(), position);
        move = new (allocator_) HParallelMove(allocator_);
        move->SetLifetimePosition(position);
        at->GetBlock()->InsertInstructionBefore(move, at);
      } else {
        DCHECK(at->IsParallelMove());
        move = at->AsParallelMove();
      }
    }
  } else if (IsInstructionEnd(position)) {
    // Move must happen after the instruction.
    DCHECK(!at->IsControlFlow());
    move = at->GetNext()->AsParallelMove();
    // This is a parallel move for connecting siblings in a same block. We need to
    // differentiate it with moves for connecting blocks, and input moves.
    if (move == nullptr || move->GetLifetimePosition() > position) {
      move = new (allocator_) HParallelMove(allocator_);
      move->SetLifetimePosition(position);
      at->GetBlock()->InsertInstructionBefore(move, at->GetNext());
    }
  } else {
    // Move must happen before the instruction.
    HInstruction* previous = at->GetPrevious();
    if (previous == nullptr
        || !previous->IsParallelMove()
        || previous->GetLifetimePosition() != position) {
      // If the previous is a parallel move, then its position must be lower
      // than the given `position`: it was added just after the non-parallel
      // move instruction that precedes `instruction`.
      DCHECK(previous == nullptr
             || !previous->IsParallelMove()
             || previous->GetLifetimePosition() < position);
      move = new (allocator_) HParallelMove(allocator_);
      move->SetLifetimePosition(position);
      at->GetBlock()->InsertInstructionBefore(move, at);
    } else {
      move = previous->AsParallelMove();
    }
  }
  DCHECK_EQ(move->GetLifetimePosition(), position);
  AddMove(move, source, destination, instruction, instruction->GetType());
}

void RegisterAllocator::InsertParallelMoveAtExitOf(HBasicBlock* block,
                                                   HInstruction* instruction,
                                                   Location source,
                                                   Location destination) const {
  DCHECK(IsValidDestination(destination)) << destination;
  if (source.Equals(destination)) return;

  DCHECK_EQ(block->GetSuccessors().Size(), 1u);
  HInstruction* last = block->GetLastInstruction();
  // We insert moves at exit for phi predecessors and connecting blocks.
  // A block ending with an if cannot branch to a block with phis because
  // we do not allow critical edges. It can also not connect
  // a split interval between two blocks: the move has to happen in the successor.
  DCHECK(!last->IsIf());
  HInstruction* previous = last->GetPrevious();
  HParallelMove* move;
  // This is a parallel move for connecting blocks. We need to differentiate
  // it with moves for connecting siblings in a same block, and output moves.
  size_t position = last->GetLifetimePosition();
  if (previous == nullptr || !previous->IsParallelMove()
      || previous->AsParallelMove()->GetLifetimePosition() != position) {
    move = new (allocator_) HParallelMove(allocator_);
    move->SetLifetimePosition(position);
    block->InsertInstructionBefore(move, last);
  } else {
    move = previous->AsParallelMove();
  }
  AddMove(move, source, destination, instruction, instruction->GetType());
}

void RegisterAllocator::InsertParallelMoveAtEntryOf(HBasicBlock* block,
                                                    HInstruction* instruction,
                                                    Location source,
                                                    Location destination) const {
  DCHECK(IsValidDestination(destination)) << destination;
  if (source.Equals(destination)) return;

  HInstruction* first = block->GetFirstInstruction();
  HParallelMove* move = first->AsParallelMove();
  size_t position = block->GetLifetimeStart();
  // This is a parallel move for connecting blocks. We need to differentiate
  // it with moves for connecting siblings in a same block, and input moves.
  if (move == nullptr || move->GetLifetimePosition() != position) {
    move = new (allocator_) HParallelMove(allocator_);
    move->SetLifetimePosition(position);
    block->InsertInstructionBefore(move, first);
  }
  AddMove(move, source, destination, instruction, instruction->GetType());
}

void RegisterAllocator::InsertMoveAfter(HInstruction* instruction,
                                        Location source,
                                        Location destination) const {
  DCHECK(IsValidDestination(destination)) << destination;
  if (source.Equals(destination)) return;

  if (instruction->IsPhi()) {
    InsertParallelMoveAtEntryOf(instruction->GetBlock(), instruction, source, destination);
    return;
  }

  size_t position = instruction->GetLifetimePosition() + 1;
  HParallelMove* move = instruction->GetNext()->AsParallelMove();
  // This is a parallel move for moving the output of an instruction. We need
  // to differentiate with input moves, moves for connecting siblings in a
  // and moves for connecting blocks.
  if (move == nullptr || move->GetLifetimePosition() != position) {
    move = new (allocator_) HParallelMove(allocator_);
    move->SetLifetimePosition(position);
    instruction->GetBlock()->InsertInstructionBefore(move, instruction->GetNext());
  }
  AddMove(move, source, destination, instruction, instruction->GetType());
}

void RegisterAllocator::ConnectSiblings(LiveInterval* interval) {
  LiveInterval* current = interval;
  if (current->HasSpillSlot() && current->HasRegister()) {
    // We spill eagerly, so move must be at definition.
    InsertMoveAfter(interval->GetDefinedBy(),
                    interval->ToLocation(),
                    interval->NeedsTwoSpillSlots()
                        ? Location::DoubleStackSlot(interval->GetParent()->GetSpillSlot())
                        : Location::StackSlot(interval->GetParent()->GetSpillSlot()));
  }
  UsePosition* use = current->GetFirstUse();
  UsePosition* env_use = current->GetFirstEnvironmentUse();

  // Walk over all siblings, updating locations of use positions, and
  // connecting them when they are adjacent.
  do {
    Location source = current->ToLocation();

    // Walk over all uses covered by this interval, and update the location
    // information.

    LiveRange* range = current->GetFirstRange();
    while (range != nullptr) {
      while (use != nullptr && use->GetPosition() < range->GetStart()) {
        DCHECK(use->IsSynthesized());
        use = use->GetNext();
      }
      while (use != nullptr && use->GetPosition() <= range->GetEnd()) {
        DCHECK(!use->GetIsEnvironment());
        DCHECK(current->CoversSlow(use->GetPosition()) || (use->GetPosition() == range->GetEnd()));
        if (!use->IsSynthesized()) {
          LocationSummary* locations = use->GetUser()->GetLocations();
          Location expected_location = locations->InAt(use->GetInputIndex());
          // The expected (actual) location may be invalid in case the input is unused. Currently
          // this only happens for intrinsics.
          if (expected_location.IsValid()) {
            if (expected_location.IsUnallocated()) {
              locations->SetInAt(use->GetInputIndex(), source);
            } else if (!expected_location.IsConstant()) {
              AddInputMoveFor(interval->GetDefinedBy(), use->GetUser(), source, expected_location);
            }
          } else {
            DCHECK(use->GetUser()->IsInvoke());
            DCHECK(use->GetUser()->AsInvoke()->GetIntrinsic() != Intrinsics::kNone);
          }
        }
        use = use->GetNext();
      }

      // Walk over the environment uses, and update their locations.
      while (env_use != nullptr && env_use->GetPosition() < range->GetStart()) {
        env_use = env_use->GetNext();
      }

      while (env_use != nullptr && env_use->GetPosition() <= range->GetEnd()) {
        DCHECK(current->CoversSlow(env_use->GetPosition())
               || (env_use->GetPosition() == range->GetEnd()));
        HEnvironment* environment = env_use->GetUser()->GetEnvironment();
        environment->SetLocationAt(env_use->GetInputIndex(), source);
        env_use = env_use->GetNext();
      }

      range = range->GetNext();
    }

    // If the next interval starts just after this one, and has a register,
    // insert a move.
    LiveInterval* next_sibling = current->GetNextSibling();
    if (next_sibling != nullptr
        && next_sibling->HasRegister()
        && current->GetEnd() == next_sibling->GetStart()) {
      Location destination = next_sibling->ToLocation();
      InsertParallelMoveAt(current->GetEnd(), interval->GetDefinedBy(), source, destination);
    }

    for (SafepointPosition* safepoint_position = current->GetFirstSafepoint();
         safepoint_position != nullptr;
         safepoint_position = safepoint_position->GetNext()) {
      DCHECK(current->CoversSlow(safepoint_position->GetPosition()));

      LocationSummary* locations = safepoint_position->GetLocations();
      if ((current->GetType() == Primitive::kPrimNot) && current->GetParent()->HasSpillSlot()) {
        locations->SetStackBit(current->GetParent()->GetSpillSlot() / kVRegSize);
      }

      switch (source.GetKind()) {
        case Location::kRegister: {
          locations->AddLiveRegister(source);
          if (kIsDebugBuild && locations->OnlyCallsOnSlowPath()) {
            DCHECK_LE(locations->GetNumberOfLiveRegisters(),
                      maximum_number_of_live_core_registers_ +
                      maximum_number_of_live_fp_registers_);
          }
          if (current->GetType() == Primitive::kPrimNot) {
            locations->SetRegisterBit(source.reg());
          }
          break;
        }
        case Location::kFpuRegister: {
          locations->AddLiveRegister(source);
          break;
        }

        case Location::kRegisterPair:
        case Location::kFpuRegisterPair: {
          locations->AddLiveRegister(source.ToLow());
          locations->AddLiveRegister(source.ToHigh());
          break;
        }
        case Location::kStackSlot:  // Fall-through
        case Location::kDoubleStackSlot:  // Fall-through
        case Location::kConstant: {
          // Nothing to do.
          break;
        }
        default: {
          LOG(FATAL) << "Unexpected location for object";
        }
      }
    }
    current = next_sibling;
  } while (current != nullptr);

  if (kIsDebugBuild) {
    // Following uses can only be synthesized uses.
    while (use != nullptr) {
      DCHECK(use->IsSynthesized());
      use = use->GetNext();
    }
  }
}

void RegisterAllocator::ConnectSplitSiblings(LiveInterval* interval,
                                             HBasicBlock* from,
                                             HBasicBlock* to) const {
  if (interval->GetNextSibling() == nullptr) {
    // Nothing to connect. The whole range was allocated to the same location.
    return;
  }

  // Find the intervals that cover `from` and `to`.
  LiveInterval* destination = interval->GetSiblingAt(to->GetLifetimeStart());
  LiveInterval* source = interval->GetSiblingAt(from->GetLifetimeEnd() - 1);

  if (destination == source) {
    // Interval was not split.
    return;
  }
  DCHECK(destination != nullptr && source != nullptr);

  if (!destination->HasRegister()) {
    // Values are eagerly spilled. Spill slot already contains appropriate value.
    return;
  }

  // If `from` has only one successor, we can put the moves at the exit of it. Otherwise
  // we need to put the moves at the entry of `to`.
  if (from->GetSuccessors().Size() == 1) {
    InsertParallelMoveAtExitOf(from,
                               interval->GetParent()->GetDefinedBy(),
                               source->ToLocation(),
                               destination->ToLocation());
  } else {
    DCHECK_EQ(to->GetPredecessors().Size(), 1u);
    InsertParallelMoveAtEntryOf(to,
                                interval->GetParent()->GetDefinedBy(),
                                source->ToLocation(),
                                destination->ToLocation());
  }
}

void RegisterAllocator::Resolve() {
  codegen_->InitializeCodeGeneration(GetNumberOfSpillSlots(),
                                     maximum_number_of_live_core_registers_,
                                     maximum_number_of_live_fp_registers_,
                                     reserved_out_slots_,
                                     codegen_->GetGraph()->GetLinearOrder());

  // Adjust the Out Location of instructions.
  // TODO: Use pointers of Location inside LiveInterval to avoid doing another iteration.
  for (size_t i = 0, e = liveness_.GetNumberOfSsaValues(); i < e; ++i) {
    HInstruction* instruction = liveness_.GetInstructionFromSsaIndex(i);
    LiveInterval* current = instruction->GetLiveInterval();
    LocationSummary* locations = instruction->GetLocations();
    Location location = locations->Out();
    if (instruction->IsParameterValue()) {
      // Now that we know the frame size, adjust the parameter's location.
      if (location.IsStackSlot()) {
        location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
        current->SetSpillSlot(location.GetStackIndex());
        locations->UpdateOut(location);
      } else if (location.IsDoubleStackSlot()) {
        location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
        current->SetSpillSlot(location.GetStackIndex());
        locations->UpdateOut(location);
      } else if (current->HasSpillSlot()) {
        current->SetSpillSlot(current->GetSpillSlot() + codegen_->GetFrameSize());
      }
    } else if (current->HasSpillSlot()) {
      // Adjust the stack slot, now that we know the number of them for each type.
      // The way this implementation lays out the stack is the following:
      // [parameter slots     ]
      // [double spill slots  ]
      // [long spill slots    ]
      // [float spill slots   ]
      // [int/ref values      ]
      // [maximum out values  ] (number of arguments for calls)
      // [art method          ].
      uint32_t slot = current->GetSpillSlot();
      switch (current->GetType()) {
        case Primitive::kPrimDouble:
          slot += long_spill_slots_.Size();
          FALLTHROUGH_INTENDED;
        case Primitive::kPrimLong:
          slot += float_spill_slots_.Size();
          FALLTHROUGH_INTENDED;
        case Primitive::kPrimFloat:
          slot += int_spill_slots_.Size();
          FALLTHROUGH_INTENDED;
        case Primitive::kPrimNot:
        case Primitive::kPrimInt:
        case Primitive::kPrimChar:
        case Primitive::kPrimByte:
        case Primitive::kPrimBoolean:
        case Primitive::kPrimShort:
          slot += reserved_out_slots_;
          break;
        case Primitive::kPrimVoid:
          LOG(FATAL) << "Unexpected type for interval " << current->GetType();
      }
      current->SetSpillSlot(slot * kVRegSize);
    }

    Location source = current->ToLocation();

    if (location.IsUnallocated()) {
      if (location.GetPolicy() == Location::kSameAsFirstInput) {
        if (locations->InAt(0).IsUnallocated()) {
          locations->SetInAt(0, source);
        } else {
          DCHECK(locations->InAt(0).Equals(source));
        }
      }
      locations->UpdateOut(source);
    } else {
      DCHECK(source.Equals(location));
    }
  }

  // Connect siblings.
  for (size_t i = 0, e = liveness_.GetNumberOfSsaValues(); i < e; ++i) {
    HInstruction* instruction = liveness_.GetInstructionFromSsaIndex(i);
    ConnectSiblings(instruction->GetLiveInterval());
  }

  // Resolve non-linear control flow across branches. Order does not matter.
  for (HLinearOrderIterator it(*codegen_->GetGraph()); !it.Done(); it.Advance()) {
    HBasicBlock* block = it.Current();
    BitVector* live = liveness_.GetLiveInSet(*block);
    for (uint32_t idx : live->Indexes()) {
      HInstruction* current = liveness_.GetInstructionFromSsaIndex(idx);
      LiveInterval* interval = current->GetLiveInterval();
      for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) {
        ConnectSplitSiblings(interval, block->GetPredecessors().Get(i), block);
      }
    }
  }

  // Resolve phi inputs. Order does not matter.
  for (HLinearOrderIterator it(*codegen_->GetGraph()); !it.Done(); it.Advance()) {
    HBasicBlock* current = it.Current();
    for (HInstructionIterator inst_it(current->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
      HInstruction* phi = inst_it.Current();
      for (size_t i = 0, e = current->GetPredecessors().Size(); i < e; ++i) {
        HBasicBlock* predecessor = current->GetPredecessors().Get(i);
        DCHECK_EQ(predecessor->GetSuccessors().Size(), 1u);
        HInstruction* input = phi->InputAt(i);
        Location source = input->GetLiveInterval()->GetLocationAt(
            predecessor->GetLifetimeEnd() - 1);
        Location destination = phi->GetLiveInterval()->ToLocation();
        InsertParallelMoveAtExitOf(predecessor, phi, source, destination);
      }
    }
  }

  // Assign temp locations.
  for (size_t i = 0; i < temp_intervals_.Size(); ++i) {
    LiveInterval* temp = temp_intervals_.Get(i);
    if (temp->IsHighInterval()) {
      // High intervals can be skipped, they are already handled by the low interval.
      continue;
    }
    HInstruction* at = liveness_.GetTempUser(temp);
    size_t temp_index = liveness_.GetTempIndex(temp);
    LocationSummary* locations = at->GetLocations();
    switch (temp->GetType()) {
      case Primitive::kPrimInt:
        locations->SetTempAt(temp_index, Location::RegisterLocation(temp->GetRegister()));
        break;

      case Primitive::kPrimDouble:
        if (codegen_->NeedsTwoRegisters(Primitive::kPrimDouble)) {
          Location location = Location::FpuRegisterPairLocation(
              temp->GetRegister(), temp->GetHighInterval()->GetRegister());
          locations->SetTempAt(temp_index, location);
        } else {
          locations->SetTempAt(temp_index, Location::FpuRegisterLocation(temp->GetRegister()));
        }
        break;

      default:
        LOG(FATAL) << "Unexpected type for temporary location "
                   << temp->GetType();
    }
  }
}

}  // namespace art