1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
/*
* Copyright (C) 2014 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "primitive_type_propagation.h"
#include "nodes.h"
#include "ssa_builder.h"
namespace art {
static Primitive::Type MergeTypes(Primitive::Type existing, Primitive::Type new_type) {
// We trust the verifier has already done the necessary checking.
switch (existing) {
case Primitive::kPrimFloat:
case Primitive::kPrimDouble:
case Primitive::kPrimNot:
return existing;
default:
// Phis are initialized with a void type, so if we are asked
// to merge with a void type, we should use the existing one.
return new_type == Primitive::kPrimVoid
? existing
: HPhi::ToPhiType(new_type);
}
}
// Re-compute and update the type of the instruction. Returns
// whether or not the type was changed.
bool PrimitiveTypePropagation::UpdateType(HPhi* phi) {
DCHECK(phi->IsLive());
Primitive::Type existing = phi->GetType();
Primitive::Type new_type = existing;
for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
Primitive::Type input_type = phi->InputAt(i)->GetType();
new_type = MergeTypes(new_type, input_type);
}
phi->SetType(new_type);
if (new_type == Primitive::kPrimDouble
|| new_type == Primitive::kPrimFloat
|| new_type == Primitive::kPrimNot) {
// If the phi is of floating point type, we need to update its inputs to that
// type. For inputs that are phis, we need to recompute their types.
for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
HInstruction* input = phi->InputAt(i);
if (input->GetType() != new_type) {
HInstruction* equivalent = (new_type == Primitive::kPrimNot)
? SsaBuilder::GetReferenceTypeEquivalent(input)
: SsaBuilder::GetFloatOrDoubleEquivalent(phi, input, new_type);
phi->ReplaceInput(equivalent, i);
if (equivalent->IsPhi()) {
equivalent->AsPhi()->SetLive();
AddToWorklist(equivalent->AsPhi());
} else if (equivalent == input) {
// The input has changed its type. It can be an input of other phis,
// so we need to put phi users in the work list.
AddDependentInstructionsToWorklist(equivalent);
}
}
}
}
return existing != new_type;
}
void PrimitiveTypePropagation::Run() {
for (HReversePostOrderIterator it(*graph_); !it.Done(); it.Advance()) {
VisitBasicBlock(it.Current());
}
ProcessWorklist();
}
void PrimitiveTypePropagation::VisitBasicBlock(HBasicBlock* block) {
if (block->IsLoopHeader()) {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->AsPhi();
if (phi->IsLive()) {
AddToWorklist(phi);
}
}
} else {
for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
// Eagerly compute the type of the phi, for quicker convergence. Note
// that we don't need to add users to the worklist because we are
// doing a reverse post-order visit, therefore either the phi users are
// non-loop phi and will be visited later in the visit, or are loop-phis,
// and they are already in the work list.
HPhi* phi = it.Current()->AsPhi();
if (phi->IsLive()) {
UpdateType(phi);
}
}
}
}
void PrimitiveTypePropagation::ProcessWorklist() {
while (!worklist_.IsEmpty()) {
HPhi* instruction = worklist_.Pop();
if (UpdateType(instruction)) {
AddDependentInstructionsToWorklist(instruction);
}
}
}
void PrimitiveTypePropagation::AddToWorklist(HPhi* instruction) {
DCHECK(instruction->IsLive());
worklist_.Add(instruction);
}
void PrimitiveTypePropagation::AddDependentInstructionsToWorklist(HInstruction* instruction) {
for (HUseIterator<HInstruction*> it(instruction->GetUses()); !it.Done(); it.Advance()) {
HPhi* phi = it.Current()->GetUser()->AsPhi();
if (phi != nullptr && phi->IsLive() && phi->GetType() != instruction->GetType()) {
AddToWorklist(phi);
}
}
}
} // namespace art
|