| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
| |
Code from compiler/dex/quick/mips64 is merged with code
in mips folder.
Change-Id: I785983c21549141306484647da86a0bb4815daaa
|
|
|
|
|
|
|
|
|
| |
Add Mips32r6 compiler support.
Don't use deprecated Mips32r2 instructions if running in Mips32r6
mode.
Change-Id: I54e689aa8c026ccb75c4af515aa2794f471c9f67
|
|
|
|
|
|
|
|
|
|
| |
Make several fields const in CompilationUnit. May benefit some Mir2Lir
code that repeats tests, and in general immutability is good.
Remove compiler_internals.h and refactor some other headers to reduce
overly broad imports (and thus forced recompiles on changes).
Change-Id: I898405907c68923581373b5981d8a85d2e5d185a
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Also, refactor how feature strings are handled so they are additive or
subtractive.
Make MIPS have features for FPU 32-bit and MIPS v2. Use in the quick compiler
rather than #ifdefs that wouldn't have worked in cross-compilation.
Add SIMD features for x86/x86-64 proposed in:
https://android-review.googlesource.com/#/c/112370/
Bug: 18056890
Change-Id: Ic88ff84a714926bd277beb74a430c5c7d5ed7666
|
|
|
|
|
|
|
| |
For floating-point division by power of two constants, generate
multiplication by the reciprocal instead.
Change-Id: I39c79eeb26b60cc754ad42045362b79498c755be
|
|
|
|
|
|
|
|
|
|
|
| |
Fix associated errors about unused paramenters and implict sign conversions.
For sign conversion this was largely in the area of enums, so add ostream
operators for the effected enums and fix tools/generate-operator-out.py.
Tidy arena allocation code and arena allocated data types, rather than fixing
new and delete operators.
Remove dead code.
Change-Id: I5b433e722d2f75baacfacae4d32aef4a828bfe1b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To reduce the complexity of calling trampolines in generic code,
introduce an enumeration for entrypoints. Introduce a header that lists
the entrypoint enum and exposes a templatized method that translates an
enum value to the corresponding thread offset value.
Call helpers are rewritten to have an enum parameter instead of the
thread offset. Also rewrite LoadHelper and GenConversionCall this way.
It is now LoadHelper's duty to select the right thread offset size.
Introduce InvokeTrampoline virtual method to Mir2Lir. This allows to
further simplify the call helpers, as well as make OpThreadMem specific
to X86 only (removed from Mir2Lir).
Make GenInlinedCharAt virtual, move a copy to X86 backend, and simplify
both copies. Remove LoadBaseIndexedDisp and OpRegMem from Mir2Lir, as they
are now specific to X86 only.
Remove StoreBaseIndexedDisp from Mir2Lir, as it was only ever used in the
X86 backend.
Remove OpTlsCmp from Mir2Lir, as it was only ever used in the X86 backend.
Remove OpLea from Mir2Lir, as it was only ever defined in the X86 backend.
Remove GenImmedCheck from Mir2Lir as it was neither used nor implemented.
Change-Id: If0a6182288c5d57653e3979bf547840a4c47626e
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds inlining support for the following functions:
* Math.max/min(long, long)
* Math.max/min(float, float)
* Math.max/min(double, double)
* Integer.reverse(int)
* Long.reverse(long)
Change-Id: Ia2b1619fd052358b3a0d23e5fcbfdb823d2029b9
Signed-off-by: Serban Constantinescu <serban.constantinescu@arm.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For 32-bit targets, object references are 32 bits wide both in
Dalvik virtual registers and in core physical registers. Because of
this, object references and non-floating point values were both
handled as if they had the same register class (kCoreReg).
However, for 64-bit systems, references are 32 bits in Dalvik vregs, but
64 bits in physical registers. Although the same underlying physical
core registers will still be used for object reference and non-float
values, different register class views will be used to represent them.
For example, an object reference in arm64 might be held in x3 at some
point, while the same underlying physical register, w3, would be used
to hold a 32-bit int.
This CL breaks apart the handling of object reference and non-float values
to allow the proper register class (or register view) to be used. A
new register class, kRefReg, is introduced which will map to a 32-bit
core register on 32-bit targets, and 64-bit core registers on 64-bit
targets. From this point on, object references should be allocated
registers in the kRefReg class rather than kCoreReg.
Change-Id: I6166827daa8a0ea3af326940d56a6a14874f5810
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Significant refactoring of register handling to unify usage across
all targets & 32/64 backends.
Reworked RegStorage encoding to allow expanded use of
x86 xmm registers; removed vector registers as a separate
register type. Reworked RegisterInfo to describe aliased
physical registers. Eliminated quite a bit of target-specific code
and generalized common code.
Use of RegStorage instead of int for registers now propagated down
to the NewLIRx() level. In future CLs, the NewLIRx() routines will
be replaced with versions that are explicit about what kind of
operand they expect (RegStorage, displacement, etc.). The goal
is to eventually use RegStorage all the way to the assembly phase.
TBD: MIPS needs verification.
TBD: Re-enable liveness tracking.
Change-Id: I388c006d5fa9b3ea72db4e37a19ce257f2a15964
|
|
|
|
|
|
|
| |
Begin a more full implementation x86-64 REX prefixes.
Doesn't implement 64bit thread offset support for the JNI compiler.
Change-Id: If9af2f08a1833c21ddb4b4077f9b03add1a05147
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Ready for review.
Continue the process of using RegStorage rather than
ints to hold register value in the top layers of codegen.
Given the huge number of changes in this CL, I've attempted
to minimize the number of actual logic changes. With this
CL, the use of ints for registers has largely been eliminated
except in the lowest utility levels. "Wide" utility routines
have been updated to take a single RegStorage rather than
a pair of ints representing low and high registers.
Upcoming CLs will be smaller and more targeted. My expectations:
o Allocate float double registers as a single double rather than
a pair of float single registers.
o Refactor to push code which assumes long and double Dalvik
values are held in a pair of register to the target dependent
layer.
o Clean-up of the xxx_mir.h files to reduce the amount of #defines
for registers. May also do a register renumbering to bring all
of our targets' register naming more consistent. Possibly
introduce a target-independent float/non-float test at the
RegStorage level.
Change-Id: I646de7392bdec94595dd2c6f76e0f1c4331096ff
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts commit 86ec520fc8b696ed6f164d7b756009ecd6e4aace.
Ready. Fixed the original type, plus some mechanical changes
for rebasing.
Still needs additional testing, but the problem with the original
CL appears to have been a typo in the definition of the x86
double return template RegLocation.
Change-Id: I828c721f91d9b2546ef008c6ea81f40756305891
|
|
|
|
|
|
| |
This reverts commit 2c1ed456dcdb027d097825dd98dbe48c71599b6c.
Change-Id: If88d69ba88e0af0b407ff2240566d7e4545d8a99
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For historical reasons, the Quick backend found it convenient
to consider all 64-bit Dalvik values held in registers
to be contained in a pair of 32-bit registers. Though this
worked well for ARM (with double-precision registers also
treated as a pair of 32-bit single-precision registers) it doesn't
play well with other targets. And, it is somewhat problematic
for 64-bit architectures.
This is the first of several CLs that will rework the way the
Quick backend deals with physical registers. The goal is to
eliminate the "64-bit value backed with 32-bit register pair"
requirement from the target-indendent portions of the backend
and support 64-bit registers throughout.
The key RegLocation struct, which describes the location of
Dalvik virtual register & register pairs, previously contained
fields for high and low physical registers. The low_reg and
high_reg fields are being replaced with a new type: RegStorage.
There will be a single instance of RegStorage for each RegLocation.
Note that RegStorage does not increase the space used. It is
16 bits wide, the same as the sum of the 8-bit low_reg and
high_reg fields.
At a target-independent level, it will describe whether the physical
register storage associated with the Dalvik value is a single 32
bit, single 64 bit, pair of 32 bit or vector. The actual register
number encoding is left to the target-dependent code layer.
Because physical register handling is pervasive throughout the
backend, this restructuring necessarily involves large CLs with
lots of changes. I'm going to roll these out in stages, and
attempt to segregate the CLs with largely mechanical changes from
those which restructure or rework the logic.
This CL is of the mechanical change variety - it replaces low_reg
and high_reg from RegLocation and introduces RegStorage. It also
includes a lot of new code (such as many calls to GetReg())
that should go away in upcoming CLs.
The tentative plan for the subsequent CLs is:
o Rework standard register utilities such as AllocReg() and
FreeReg() to use RegStorage instead of ints.
o Rework the target-independent GenXXX, OpXXX, LoadValue,
StoreValue, etc. routines to take RegStorage rather than
int register encodings.
o Take advantage of the vector representation and eliminate
the current vector field in RegLocation.
o Replace the "wide" variants of codegen utilities that take
low_reg/high_reg pairs with versions that use RegStorage.
o Add 64-bit register target independent codegen utilities
where possible, and where not virtualize with 32-bit general
register and 64-bit general register variants in the target
dependent layer.
o Expand/rework the LIR def/use flags to allow for more registers
(currently, we lose out on 16 MIPS floating point regs as
well as ARM's D16..D31 for lack of space in the masks).
o [Possibly] move the float/non-float determination of a register
from the target-dependent encoding to RegStorage. In other
words, replace IsFpReg(register_encoding_bits).
At the end of the day, all code in the target independent layer
should be using RegStorage, as should much of the target dependent
layer. Ideally, we won't be using the physical register number
encoding extracted from RegStorage (i.e. GetReg()) until the
NewLIRx() layer.
Change-Id: Idc5c741478f720bdd1d7123b94e4288be5ce52cb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Create set of entry points needed for image methods to avoid fix-up at load time:
- interpreter - bridge to interpreter, bridge to compiled code
- jni - dlsym lookup
- quick - resolution and bridge to interpreter
- portable - resolution and bridge to interpreter
Fix JNI work around to use JNI work around argument rewriting code that'd been
accidentally disabled.
Remove abstact method error stub, use interpreter bridge instead.
Consolidate trampoline (previously stub) generation in generic helper.
Simplify trampolines to jump directly into assembly code, keeps stack crawlable.
Dex: replace use of int with ThreadOffset for values that are thread offsets.
Tidy entry point routines between interpreter, jni, quick and portable.
Change-Id: I52a7c2bbb1b7e0ff8a3c3100b774212309d0828e
(cherry picked from commit 848871b4d8481229c32e0d048a9856e5a9a17ef9)
|
|
|
|
|
|
|
| |
Separate quick from portable entrypoints.
Move architectural dependencies into arch.
Change-Id: I9adbc0a9782e2959fdc3308215f01e3107632b7c
|
|
|
|
|
|
|
| |
Other directory layout bits of clean up. There is still work to separate quick
and portable in some files (e.g. argument visitor, proxy..).
Change-Id: If8fecffda8ba5c4c47a035f0c622c538c6b58351
|
|
|
|
| |
Change-Id: Iae286862c85fb8fd8901eae1204cd6d271d69496
|
|
|
|
| |
Change-Id: Ide80939faf8e8690d8842dde8133902ac725ed1a
|
|
The runtime, compiler, dex2oat, and oatdump now are in seperate trees
to prevent dependency creep. They can now be individually built
without rebuilding the rest of the art projects. dalvikvm and jdwpspy
were already this way. Builds in the art directory should behave as
before, building everything including tests.
Change-Id: Ic6b1151e5ed0f823c3dd301afd2b13eb2d8feb81
|