diff options
Diffstat (limited to 'compiler/dex/quick/gen_common.cc')
-rw-r--r-- | compiler/dex/quick/gen_common.cc | 1800 |
1 files changed, 1800 insertions, 0 deletions
diff --git a/compiler/dex/quick/gen_common.cc b/compiler/dex/quick/gen_common.cc new file mode 100644 index 0000000000..865b9c5c4d --- /dev/null +++ b/compiler/dex/quick/gen_common.cc @@ -0,0 +1,1800 @@ +/* + * Copyright (C) 2012 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "dex/compiler_ir.h" +#include "dex/compiler_internals.h" +#include "dex/quick/mir_to_lir-inl.h" +#include "mirror/array.h" +#include "oat/runtime/oat_support_entrypoints.h" +#include "verifier/method_verifier.h" + +namespace art { + +/* + * This source files contains "gen" codegen routines that should + * be applicable to most targets. Only mid-level support utilities + * and "op" calls may be used here. + */ + +/* + * Generate an kPseudoBarrier marker to indicate the boundary of special + * blocks. + */ +void Mir2Lir::GenBarrier() +{ + LIR* barrier = NewLIR0(kPseudoBarrier); + /* Mark all resources as being clobbered */ + barrier->def_mask = -1; +} + +// FIXME: need to do some work to split out targets with +// condition codes and those without +LIR* Mir2Lir::GenCheck(ConditionCode c_code, ThrowKind kind) +{ + DCHECK_NE(cu_->instruction_set, kMips); + LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_); + LIR* branch = OpCondBranch(c_code, tgt); + // Remember branch target - will process later + throw_launchpads_.Insert(tgt); + return branch; +} + +LIR* Mir2Lir::GenImmedCheck(ConditionCode c_code, int reg, int imm_val, ThrowKind kind) +{ + LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg, imm_val); + LIR* branch; + if (c_code == kCondAl) { + branch = OpUnconditionalBranch(tgt); + } else { + branch = OpCmpImmBranch(c_code, reg, imm_val, tgt); + } + // Remember branch target - will process later + throw_launchpads_.Insert(tgt); + return branch; +} + +/* Perform null-check on a register. */ +LIR* Mir2Lir::GenNullCheck(int s_reg, int m_reg, int opt_flags) +{ + if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && + opt_flags & MIR_IGNORE_NULL_CHECK) { + return NULL; + } + return GenImmedCheck(kCondEq, m_reg, 0, kThrowNullPointer); +} + +/* Perform check on two registers */ +LIR* Mir2Lir::GenRegRegCheck(ConditionCode c_code, int reg1, int reg2, + ThrowKind kind) +{ + LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg1, reg2); + LIR* branch = OpCmpBranch(c_code, reg1, reg2, tgt); + // Remember branch target - will process later + throw_launchpads_.Insert(tgt); + return branch; +} + +void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, + RegLocation rl_src2, LIR* taken, + LIR* fall_through) +{ + ConditionCode cond; + switch (opcode) { + case Instruction::IF_EQ: + cond = kCondEq; + break; + case Instruction::IF_NE: + cond = kCondNe; + break; + case Instruction::IF_LT: + cond = kCondLt; + break; + case Instruction::IF_GE: + cond = kCondGe; + break; + case Instruction::IF_GT: + cond = kCondGt; + break; + case Instruction::IF_LE: + cond = kCondLe; + break; + default: + cond = static_cast<ConditionCode>(0); + LOG(FATAL) << "Unexpected opcode " << opcode; + } + + // Normalize such that if either operand is constant, src2 will be constant + if (rl_src1.is_const) { + RegLocation rl_temp = rl_src1; + rl_src1 = rl_src2; + rl_src2 = rl_temp; + cond = FlipComparisonOrder(cond); + } + + rl_src1 = LoadValue(rl_src1, kCoreReg); + // Is this really an immediate comparison? + if (rl_src2.is_const) { + // If it's already live in a register or not easily materialized, just keep going + RegLocation rl_temp = UpdateLoc(rl_src2); + if ((rl_temp.location == kLocDalvikFrame) && + InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) { + // OK - convert this to a compare immediate and branch + OpCmpImmBranch(cond, rl_src1.low_reg, mir_graph_->ConstantValue(rl_src2), taken); + OpUnconditionalBranch(fall_through); + return; + } + } + rl_src2 = LoadValue(rl_src2, kCoreReg); + OpCmpBranch(cond, rl_src1.low_reg, rl_src2.low_reg, taken); + OpUnconditionalBranch(fall_through); +} + +void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken, + LIR* fall_through) +{ + ConditionCode cond; + rl_src = LoadValue(rl_src, kCoreReg); + switch (opcode) { + case Instruction::IF_EQZ: + cond = kCondEq; + break; + case Instruction::IF_NEZ: + cond = kCondNe; + break; + case Instruction::IF_LTZ: + cond = kCondLt; + break; + case Instruction::IF_GEZ: + cond = kCondGe; + break; + case Instruction::IF_GTZ: + cond = kCondGt; + break; + case Instruction::IF_LEZ: + cond = kCondLe; + break; + default: + cond = static_cast<ConditionCode>(0); + LOG(FATAL) << "Unexpected opcode " << opcode; + } + OpCmpImmBranch(cond, rl_src.low_reg, 0, taken); + OpUnconditionalBranch(fall_through); +} + +void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) +{ + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + if (rl_src.location == kLocPhysReg) { + OpRegCopy(rl_result.low_reg, rl_src.low_reg); + } else { + LoadValueDirect(rl_src, rl_result.low_reg); + } + OpRegRegImm(kOpAsr, rl_result.high_reg, rl_result.low_reg, 31); + StoreValueWide(rl_dest, rl_result); +} + +void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest, + RegLocation rl_src) +{ + rl_src = LoadValue(rl_src, kCoreReg); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + OpKind op = kOpInvalid; + switch (opcode) { + case Instruction::INT_TO_BYTE: + op = kOp2Byte; + break; + case Instruction::INT_TO_SHORT: + op = kOp2Short; + break; + case Instruction::INT_TO_CHAR: + op = kOp2Char; + break; + default: + LOG(ERROR) << "Bad int conversion type"; + } + OpRegReg(op, rl_result.low_reg, rl_src.low_reg); + StoreValue(rl_dest, rl_result); +} + +/* + * Let helper function take care of everything. Will call + * Array::AllocFromCode(type_idx, method, count); + * Note: AllocFromCode will handle checks for errNegativeArraySize. + */ +void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest, + RegLocation rl_src) +{ + FlushAllRegs(); /* Everything to home location */ + int func_offset; + if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, + type_idx)) { + func_offset = ENTRYPOINT_OFFSET(pAllocArrayFromCode); + } else { + func_offset= ENTRYPOINT_OFFSET(pAllocArrayFromCodeWithAccessCheck); + } + CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true); + RegLocation rl_result = GetReturn(false); + StoreValue(rl_dest, rl_result); +} + +/* + * Similar to GenNewArray, but with post-allocation initialization. + * Verifier guarantees we're dealing with an array class. Current + * code throws runtime exception "bad Filled array req" for 'D' and 'J'. + * Current code also throws internal unimp if not 'L', '[' or 'I'. + */ +void Mir2Lir::GenFilledNewArray(CallInfo* info) +{ + int elems = info->num_arg_words; + int type_idx = info->index; + FlushAllRegs(); /* Everything to home location */ + int func_offset; + if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file, + type_idx)) { + func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCode); + } else { + func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCodeWithAccessCheck); + } + CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true); + FreeTemp(TargetReg(kArg2)); + FreeTemp(TargetReg(kArg1)); + /* + * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the + * return region. Because AllocFromCode placed the new array + * in kRet0, we'll just lock it into place. When debugger support is + * added, it may be necessary to additionally copy all return + * values to a home location in thread-local storage + */ + LockTemp(TargetReg(kRet0)); + + // TODO: use the correct component size, currently all supported types + // share array alignment with ints (see comment at head of function) + size_t component_size = sizeof(int32_t); + + // Having a range of 0 is legal + if (info->is_range && (elems > 0)) { + /* + * Bit of ugliness here. We're going generate a mem copy loop + * on the register range, but it is possible that some regs + * in the range have been promoted. This is unlikely, but + * before generating the copy, we'll just force a flush + * of any regs in the source range that have been promoted to + * home location. + */ + for (int i = 0; i < elems; i++) { + RegLocation loc = UpdateLoc(info->args[i]); + if (loc.location == kLocPhysReg) { + StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low), + loc.low_reg, kWord); + } + } + /* + * TUNING note: generated code here could be much improved, but + * this is an uncommon operation and isn't especially performance + * critical. + */ + int r_src = AllocTemp(); + int r_dst = AllocTemp(); + int r_idx = AllocTemp(); + int r_val = INVALID_REG; + switch(cu_->instruction_set) { + case kThumb2: + r_val = TargetReg(kLr); + break; + case kX86: + FreeTemp(TargetReg(kRet0)); + r_val = AllocTemp(); + break; + case kMips: + r_val = AllocTemp(); + break; + default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set; + } + // Set up source pointer + RegLocation rl_first = info->args[0]; + OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low)); + // Set up the target pointer + OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0), + mirror::Array::DataOffset(component_size).Int32Value()); + // Set up the loop counter (known to be > 0) + LoadConstant(r_idx, elems - 1); + // Generate the copy loop. Going backwards for convenience + LIR* target = NewLIR0(kPseudoTargetLabel); + // Copy next element + LoadBaseIndexed(r_src, r_idx, r_val, 2, kWord); + StoreBaseIndexed(r_dst, r_idx, r_val, 2, kWord); + FreeTemp(r_val); + OpDecAndBranch(kCondGe, r_idx, target); + if (cu_->instruction_set == kX86) { + // Restore the target pointer + OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst, + -mirror::Array::DataOffset(component_size).Int32Value()); + } + } else if (!info->is_range) { + // TUNING: interleave + for (int i = 0; i < elems; i++) { + RegLocation rl_arg = LoadValue(info->args[i], kCoreReg); + StoreBaseDisp(TargetReg(kRet0), + mirror::Array::DataOffset(component_size).Int32Value() + + i * 4, rl_arg.low_reg, kWord); + // If the LoadValue caused a temp to be allocated, free it + if (IsTemp(rl_arg.low_reg)) { + FreeTemp(rl_arg.low_reg); + } + } + } + if (info->result.location != kLocInvalid) { + StoreValue(info->result, GetReturn(false /* not fp */)); + } +} + +void Mir2Lir::GenSput(uint32_t field_idx, RegLocation rl_src, bool is_long_or_double, + bool is_object) +{ + int field_offset; + int ssb_index; + bool is_volatile; + bool is_referrers_class; + bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( + field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index, + is_referrers_class, is_volatile, true); + if (fast_path && !SLOW_FIELD_PATH) { + DCHECK_GE(field_offset, 0); + int rBase; + if (is_referrers_class) { + // Fast path, static storage base is this method's class + RegLocation rl_method = LoadCurrMethod(); + rBase = AllocTemp(); + LoadWordDisp(rl_method.low_reg, + mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase); + if (IsTemp(rl_method.low_reg)) { + FreeTemp(rl_method.low_reg); + } + } else { + // Medium path, static storage base in a different class which requires checks that the other + // class is initialized. + // TODO: remove initialized check now that we are initializing classes in the compiler driver. + DCHECK_GE(ssb_index, 0); + // May do runtime call so everything to home locations. + FlushAllRegs(); + // Using fixed register to sync with possible call to runtime support. + int r_method = TargetReg(kArg1); + LockTemp(r_method); + LoadCurrMethodDirect(r_method); + rBase = TargetReg(kArg0); + LockTemp(rBase); + LoadWordDisp(r_method, + mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), + rBase); + LoadWordDisp(rBase, + mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + + sizeof(int32_t*) * ssb_index, rBase); + // rBase now points at appropriate static storage base (Class*) + // or NULL if not initialized. Check for NULL and call helper if NULL. + // TUNING: fast path should fall through + LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); + LoadConstant(TargetReg(kArg0), ssb_index); + CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); + if (cu_->instruction_set == kMips) { + // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy + OpRegCopy(rBase, TargetReg(kRet0)); + } + LIR* skip_target = NewLIR0(kPseudoTargetLabel); + branch_over->target = skip_target; + FreeTemp(r_method); + } + // rBase now holds static storage base + if (is_long_or_double) { + rl_src = LoadValueWide(rl_src, kAnyReg); + } else { + rl_src = LoadValue(rl_src, kAnyReg); + } + if (is_volatile) { + GenMemBarrier(kStoreStore); + } + if (is_long_or_double) { + StoreBaseDispWide(rBase, field_offset, rl_src.low_reg, + rl_src.high_reg); + } else { + StoreWordDisp(rBase, field_offset, rl_src.low_reg); + } + if (is_volatile) { + GenMemBarrier(kStoreLoad); + } + if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { + MarkGCCard(rl_src.low_reg, rBase); + } + FreeTemp(rBase); + } else { + FlushAllRegs(); // Everything to home locations + int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Static) : + (is_object ? ENTRYPOINT_OFFSET(pSetObjStatic) + : ENTRYPOINT_OFFSET(pSet32Static)); + CallRuntimeHelperImmRegLocation(setter_offset, field_idx, rl_src, true); + } +} + +void Mir2Lir::GenSget(uint32_t field_idx, RegLocation rl_dest, + bool is_long_or_double, bool is_object) +{ + int field_offset; + int ssb_index; + bool is_volatile; + bool is_referrers_class; + bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo( + field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index, + is_referrers_class, is_volatile, false); + if (fast_path && !SLOW_FIELD_PATH) { + DCHECK_GE(field_offset, 0); + int rBase; + if (is_referrers_class) { + // Fast path, static storage base is this method's class + RegLocation rl_method = LoadCurrMethod(); + rBase = AllocTemp(); + LoadWordDisp(rl_method.low_reg, + mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase); + } else { + // Medium path, static storage base in a different class which requires checks that the other + // class is initialized + // TODO: remove initialized check now that we are initializing classes in the compiler driver. + DCHECK_GE(ssb_index, 0); + // May do runtime call so everything to home locations. + FlushAllRegs(); + // Using fixed register to sync with possible call to runtime support. + int r_method = TargetReg(kArg1); + LockTemp(r_method); + LoadCurrMethodDirect(r_method); + rBase = TargetReg(kArg0); + LockTemp(rBase); + LoadWordDisp(r_method, + mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(), + rBase); + LoadWordDisp(rBase, mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() + + sizeof(int32_t*) * ssb_index, rBase); + // rBase now points at appropriate static storage base (Class*) + // or NULL if not initialized. Check for NULL and call helper if NULL. + // TUNING: fast path should fall through + LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL); + CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true); + if (cu_->instruction_set == kMips) { + // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy + OpRegCopy(rBase, TargetReg(kRet0)); + } + LIR* skip_target = NewLIR0(kPseudoTargetLabel); + branch_over->target = skip_target; + FreeTemp(r_method); + } + // rBase now holds static storage base + RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true); + if (is_volatile) { + GenMemBarrier(kLoadLoad); + } + if (is_long_or_double) { + LoadBaseDispWide(rBase, field_offset, rl_result.low_reg, + rl_result.high_reg, INVALID_SREG); + } else { + LoadWordDisp(rBase, field_offset, rl_result.low_reg); + } + FreeTemp(rBase); + if (is_long_or_double) { + StoreValueWide(rl_dest, rl_result); + } else { + StoreValue(rl_dest, rl_result); + } + } else { + FlushAllRegs(); // Everything to home locations + int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Static) : + (is_object ? ENTRYPOINT_OFFSET(pGetObjStatic) + : ENTRYPOINT_OFFSET(pGet32Static)); + CallRuntimeHelperImm(getterOffset, field_idx, true); + if (is_long_or_double) { + RegLocation rl_result = GetReturnWide(rl_dest.fp); + StoreValueWide(rl_dest, rl_result); + } else { + RegLocation rl_result = GetReturn(rl_dest.fp); + StoreValue(rl_dest, rl_result); + } + } +} + +void Mir2Lir::HandleSuspendLaunchPads() +{ + int num_elems = suspend_launchpads_.Size(); + int helper_offset = ENTRYPOINT_OFFSET(pTestSuspendFromCode); + for (int i = 0; i < num_elems; i++) { + ResetRegPool(); + ResetDefTracking(); + LIR* lab = suspend_launchpads_.Get(i); + LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[0]); + current_dalvik_offset_ = lab->operands[1]; + AppendLIR(lab); + int r_tgt = CallHelperSetup(helper_offset); + CallHelper(r_tgt, helper_offset, true /* MarkSafepointPC */); + OpUnconditionalBranch(resume_lab); + } +} + +void Mir2Lir::HandleIntrinsicLaunchPads() +{ + int num_elems = intrinsic_launchpads_.Size(); + for (int i = 0; i < num_elems; i++) { + ResetRegPool(); + ResetDefTracking(); + LIR* lab = intrinsic_launchpads_.Get(i); + CallInfo* info = reinterpret_cast<CallInfo*>(lab->operands[0]); + current_dalvik_offset_ = info->offset; + AppendLIR(lab); + // NOTE: GenInvoke handles MarkSafepointPC + GenInvoke(info); + LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[2]); + if (resume_lab != NULL) { + OpUnconditionalBranch(resume_lab); + } + } +} + +void Mir2Lir::HandleThrowLaunchPads() +{ + int num_elems = throw_launchpads_.Size(); + for (int i = 0; i < num_elems; i++) { + ResetRegPool(); + ResetDefTracking(); + LIR* lab = throw_launchpads_.Get(i); + current_dalvik_offset_ = lab->operands[1]; + AppendLIR(lab); + int func_offset = 0; + int v1 = lab->operands[2]; + int v2 = lab->operands[3]; + bool target_x86 = (cu_->instruction_set == kX86); + switch (lab->operands[0]) { + case kThrowNullPointer: + func_offset = ENTRYPOINT_OFFSET(pThrowNullPointerFromCode); + break; + case kThrowConstantArrayBounds: // v1 is length reg (for Arm/Mips), v2 constant index + // v1 holds the constant array index. Mips/Arm uses v2 for length, x86 reloads. + if (target_x86) { + OpRegMem(kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value()); + } else { + OpRegCopy(TargetReg(kArg1), v1); + } + // Make sure the following LoadConstant doesn't mess with kArg1. + LockTemp(TargetReg(kArg1)); + LoadConstant(TargetReg(kArg0), v2); + func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode); + break; + case kThrowArrayBounds: + // Move v1 (array index) to kArg0 and v2 (array length) to kArg1 + if (v2 != TargetReg(kArg0)) { + OpRegCopy(TargetReg(kArg0), v1); + if (target_x86) { + // x86 leaves the array pointer in v2, so load the array length that the handler expects + OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); + } else { + OpRegCopy(TargetReg(kArg1), v2); + } + } else { + if (v1 == TargetReg(kArg1)) { + // Swap v1 and v2, using kArg2 as a temp + OpRegCopy(TargetReg(kArg2), v1); + if (target_x86) { + // x86 leaves the array pointer in v2; load the array length that the handler expects + OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); + } else { + OpRegCopy(TargetReg(kArg1), v2); + } + OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); + } else { + if (target_x86) { + // x86 leaves the array pointer in v2; load the array length that the handler expects + OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value()); + } else { + OpRegCopy(TargetReg(kArg1), v2); + } + OpRegCopy(TargetReg(kArg0), v1); + } + } + func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode); + break; + case kThrowDivZero: + func_offset = ENTRYPOINT_OFFSET(pThrowDivZeroFromCode); + break; + case kThrowNoSuchMethod: + OpRegCopy(TargetReg(kArg0), v1); + func_offset = + ENTRYPOINT_OFFSET(pThrowNoSuchMethodFromCode); + break; + case kThrowStackOverflow: + func_offset = ENTRYPOINT_OFFSET(pThrowStackOverflowFromCode); + // Restore stack alignment + if (target_x86) { + OpRegImm(kOpAdd, TargetReg(kSp), frame_size_); + } else { + OpRegImm(kOpAdd, TargetReg(kSp), (num_core_spills_ + num_fp_spills_) * 4); + } + break; + default: + LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0]; + } + ClobberCalleeSave(); + int r_tgt = CallHelperSetup(func_offset); + CallHelper(r_tgt, func_offset, true /* MarkSafepointPC */); + } +} + +void Mir2Lir::GenIGet(uint32_t field_idx, int opt_flags, OpSize size, + RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double, + bool is_object) +{ + int field_offset; + bool is_volatile; + + bool fast_path = FastInstance(field_idx, field_offset, is_volatile, false); + + if (fast_path && !SLOW_FIELD_PATH) { + RegLocation rl_result; + RegisterClass reg_class = oat_reg_class_by_size(size); + DCHECK_GE(field_offset, 0); + rl_obj = LoadValue(rl_obj, kCoreReg); + if (is_long_or_double) { + DCHECK(rl_dest.wide); + GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); + if (cu_->instruction_set == kX86) { + rl_result = EvalLoc(rl_dest, reg_class, true); + GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); + LoadBaseDispWide(rl_obj.low_reg, field_offset, rl_result.low_reg, + rl_result.high_reg, rl_obj.s_reg_low); + if (is_volatile) { + GenMemBarrier(kLoadLoad); + } + } else { + int reg_ptr = AllocTemp(); + OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); + rl_result = EvalLoc(rl_dest, reg_class, true); + LoadBaseDispWide(reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG); + if (is_volatile) { + GenMemBarrier(kLoadLoad); + } + FreeTemp(reg_ptr); + } + StoreValueWide(rl_dest, rl_result); + } else { + rl_result = EvalLoc(rl_dest, reg_class, true); + GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); + LoadBaseDisp(rl_obj.low_reg, field_offset, rl_result.low_reg, + kWord, rl_obj.s_reg_low); + if (is_volatile) { + GenMemBarrier(kLoadLoad); + } + StoreValue(rl_dest, rl_result); + } + } else { + int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Instance) : + (is_object ? ENTRYPOINT_OFFSET(pGetObjInstance) + : ENTRYPOINT_OFFSET(pGet32Instance)); + CallRuntimeHelperImmRegLocation(getterOffset, field_idx, rl_obj, true); + if (is_long_or_double) { + RegLocation rl_result = GetReturnWide(rl_dest.fp); + StoreValueWide(rl_dest, rl_result); + } else { + RegLocation rl_result = GetReturn(rl_dest.fp); + StoreValue(rl_dest, rl_result); + } + } +} + +void Mir2Lir::GenIPut(uint32_t field_idx, int opt_flags, OpSize size, + RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double, + bool is_object) +{ + int field_offset; + bool is_volatile; + + bool fast_path = FastInstance(field_idx, field_offset, is_volatile, + true); + if (fast_path && !SLOW_FIELD_PATH) { + RegisterClass reg_class = oat_reg_class_by_size(size); + DCHECK_GE(field_offset, 0); + rl_obj = LoadValue(rl_obj, kCoreReg); + if (is_long_or_double) { + int reg_ptr; + rl_src = LoadValueWide(rl_src, kAnyReg); + GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); + reg_ptr = AllocTemp(); + OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset); + if (is_volatile) { + GenMemBarrier(kStoreStore); + } + StoreBaseDispWide(reg_ptr, 0, rl_src.low_reg, rl_src.high_reg); + if (is_volatile) { + GenMemBarrier(kLoadLoad); + } + FreeTemp(reg_ptr); + } else { + rl_src = LoadValue(rl_src, reg_class); + GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags); + if (is_volatile) { + GenMemBarrier(kStoreStore); + } + StoreBaseDisp(rl_obj.low_reg, field_offset, rl_src.low_reg, kWord); + if (is_volatile) { + GenMemBarrier(kLoadLoad); + } + if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) { + MarkGCCard(rl_src.low_reg, rl_obj.low_reg); + } + } + } else { + int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Instance) : + (is_object ? ENTRYPOINT_OFFSET(pSetObjInstance) + : ENTRYPOINT_OFFSET(pSet32Instance)); + CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_idx, rl_obj, rl_src, true); + } +} + +void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) +{ + RegLocation rl_method = LoadCurrMethod(); + int res_reg = AllocTemp(); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, + *cu_->dex_file, + type_idx)) { + // Call out to helper which resolves type and verifies access. + // Resolved type returned in kRet0. + CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode), + type_idx, rl_method.low_reg, true); + RegLocation rl_result = GetReturn(false); + StoreValue(rl_dest, rl_result); + } else { + // We're don't need access checks, load type from dex cache + int32_t dex_cache_offset = + mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(); + LoadWordDisp(rl_method.low_reg, dex_cache_offset, res_reg); + int32_t offset_of_type = + mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) + * type_idx); + LoadWordDisp(res_reg, offset_of_type, rl_result.low_reg); + if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, + type_idx) || SLOW_TYPE_PATH) { + // Slow path, at runtime test if type is null and if so initialize + FlushAllRegs(); + LIR* branch1 = OpCmpImmBranch(kCondEq, rl_result.low_reg, 0, NULL); + // Resolved, store and hop over following code + StoreValue(rl_dest, rl_result); + /* + * Because we have stores of the target value on two paths, + * clobber temp tracking for the destination using the ssa name + */ + ClobberSReg(rl_dest.s_reg_low); + LIR* branch2 = OpUnconditionalBranch(0); + // TUNING: move slow path to end & remove unconditional branch + LIR* target1 = NewLIR0(kPseudoTargetLabel); + // Call out to helper, which will return resolved type in kArg0 + CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, + rl_method.low_reg, true); + RegLocation rl_result = GetReturn(false); + StoreValue(rl_dest, rl_result); + /* + * Because we have stores of the target value on two paths, + * clobber temp tracking for the destination using the ssa name + */ + ClobberSReg(rl_dest.s_reg_low); + // Rejoin code paths + LIR* target2 = NewLIR0(kPseudoTargetLabel); + branch1->target = target1; + branch2->target = target2; + } else { + // Fast path, we're done - just store result + StoreValue(rl_dest, rl_result); + } + } +} + +void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) +{ + /* NOTE: Most strings should be available at compile time */ + int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() + + (sizeof(mirror::String*) * string_idx); + if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache( + *cu_->dex_file, string_idx) || SLOW_STRING_PATH) { + // slow path, resolve string if not in dex cache + FlushAllRegs(); + LockCallTemps(); // Using explicit registers + LoadCurrMethodDirect(TargetReg(kArg2)); + LoadWordDisp(TargetReg(kArg2), + mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0)); + // Might call out to helper, which will return resolved string in kRet0 + int r_tgt = CallHelperSetup(ENTRYPOINT_OFFSET(pResolveStringFromCode)); + LoadWordDisp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0)); + LoadConstant(TargetReg(kArg1), string_idx); + if (cu_->instruction_set == kThumb2) { + OpRegImm(kOpCmp, TargetReg(kRet0), 0); // Is resolved? + GenBarrier(); + // For testing, always force through helper + if (!EXERCISE_SLOWEST_STRING_PATH) { + OpIT(kCondEq, "T"); + } + OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq + LIR* call_inst = OpReg(kOpBlx, r_tgt); // .eq, helper(Method*, string_idx) + MarkSafepointPC(call_inst); + FreeTemp(r_tgt); + } else if (cu_->instruction_set == kMips) { + LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kRet0), 0, NULL); + OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq + LIR* call_inst = OpReg(kOpBlx, r_tgt); + MarkSafepointPC(call_inst); + FreeTemp(r_tgt); + LIR* target = NewLIR0(kPseudoTargetLabel); + branch->target = target; + } else { + DCHECK_EQ(cu_->instruction_set, kX86); + CallRuntimeHelperRegReg(ENTRYPOINT_OFFSET(pResolveStringFromCode), TargetReg(kArg2), TargetReg(kArg1), true); + } + GenBarrier(); + StoreValue(rl_dest, GetReturn(false)); + } else { + RegLocation rl_method = LoadCurrMethod(); + int res_reg = AllocTemp(); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + LoadWordDisp(rl_method.low_reg, + mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), res_reg); + LoadWordDisp(res_reg, offset_of_string, rl_result.low_reg); + StoreValue(rl_dest, rl_result); + } +} + +/* + * Let helper function take care of everything. Will + * call Class::NewInstanceFromCode(type_idx, method); + */ +void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) +{ + FlushAllRegs(); /* Everything to home location */ + // alloc will always check for resolution, do we also need to verify + // access because the verifier was unable to? + int func_offset; + if (cu_->compiler_driver->CanAccessInstantiableTypeWithoutChecks( + cu_->method_idx, *cu_->dex_file, type_idx)) { + func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCode); + } else { + func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCodeWithAccessCheck); + } + CallRuntimeHelperImmMethod(func_offset, type_idx, true); + RegLocation rl_result = GetReturn(false); + StoreValue(rl_dest, rl_result); +} + +void Mir2Lir::GenThrow(RegLocation rl_src) +{ + FlushAllRegs(); + CallRuntimeHelperRegLocation(ENTRYPOINT_OFFSET(pDeliverException), rl_src, true); +} + +// For final classes there are no sub-classes to check and so we can answer the instance-of +// question with simple comparisons. +void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest, + RegLocation rl_src) { + RegLocation object = LoadValue(rl_src, kCoreReg); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + int result_reg = rl_result.low_reg; + if (result_reg == object.low_reg) { + result_reg = AllocTypedTemp(false, kCoreReg); + } + LoadConstant(result_reg, 0); // assume false + LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL); + + int check_class = AllocTypedTemp(false, kCoreReg); + int object_class = AllocTypedTemp(false, kCoreReg); + + LoadCurrMethodDirect(check_class); + if (use_declaring_class) { + LoadWordDisp(check_class, mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), + check_class); + LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class); + } else { + LoadWordDisp(check_class, mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), + check_class); + LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class); + int32_t offset_of_type = + mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + + (sizeof(mirror::Class*) * type_idx); + LoadWordDisp(check_class, offset_of_type, check_class); + } + + LIR* ne_branchover = NULL; + if (cu_->instruction_set == kThumb2) { + OpRegReg(kOpCmp, check_class, object_class); // Same? + OpIT(kCondEq, ""); // if-convert the test + LoadConstant(result_reg, 1); // .eq case - load true + } else { + ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL); + LoadConstant(result_reg, 1); // eq case - load true + } + LIR* target = NewLIR0(kPseudoTargetLabel); + null_branchover->target = target; + if (ne_branchover != NULL) { + ne_branchover->target = target; + } + FreeTemp(object_class); + FreeTemp(check_class); + if (IsTemp(result_reg)) { + OpRegCopy(rl_result.low_reg, result_reg); + FreeTemp(result_reg); + } + StoreValue(rl_dest, rl_result); +} + +void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final, + bool type_known_abstract, bool use_declaring_class, + bool can_assume_type_is_in_dex_cache, + uint32_t type_idx, RegLocation rl_dest, + RegLocation rl_src) { + FlushAllRegs(); + // May generate a call - use explicit registers + LockCallTemps(); + LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* + int class_reg = TargetReg(kArg2); // kArg2 will hold the Class* + if (needs_access_check) { + // Check we have access to type_idx and if not throw IllegalAccessError, + // returns Class* in kArg0 + CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode), + type_idx, true); + OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path + LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref + } else if (use_declaring_class) { + LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref + LoadWordDisp(TargetReg(kArg1), + mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), class_reg); + } else { + // Load dex cache entry into class_reg (kArg2) + LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref + LoadWordDisp(TargetReg(kArg1), + mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); + int32_t offset_of_type = + mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*) + * type_idx); + LoadWordDisp(class_reg, offset_of_type, class_reg); + if (!can_assume_type_is_in_dex_cache) { + // Need to test presence of type in dex cache at runtime + LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); + // Not resolved + // Call out to helper, which will return resolved type in kRet0 + CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, true); + OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path + LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* reload Ref */ + // Rejoin code paths + LIR* hop_target = NewLIR0(kPseudoTargetLabel); + hop_branch->target = hop_target; + } + } + /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */ + RegLocation rl_result = GetReturn(false); + if (cu_->instruction_set == kMips) { + // On MIPS rArg0 != rl_result, place false in result if branch is taken. + LoadConstant(rl_result.low_reg, 0); + } + LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); + + /* load object->klass_ */ + DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); + LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); + /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */ + LIR* branchover = NULL; + if (type_known_final) { + // rl_result == ref == null == 0. + if (cu_->instruction_set == kThumb2) { + OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? + OpIT(kCondEq, "E"); // if-convert the test + LoadConstant(rl_result.low_reg, 1); // .eq case - load true + LoadConstant(rl_result.low_reg, 0); // .ne case - load false + } else { + LoadConstant(rl_result.low_reg, 0); // ne case - load false + branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL); + LoadConstant(rl_result.low_reg, 1); // eq case - load true + } + } else { + if (cu_->instruction_set == kThumb2) { + int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode)); + if (!type_known_abstract) { + /* Uses conditional nullification */ + OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same? + OpIT(kCondEq, "EE"); // if-convert the test + LoadConstant(TargetReg(kArg0), 1); // .eq case - load true + } + OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class + OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) + FreeTemp(r_tgt); + } else { + if (!type_known_abstract) { + /* Uses branchovers */ + LoadConstant(rl_result.low_reg, 1); // assume true + branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL); + } + if (cu_->instruction_set != kX86) { + int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode)); + OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class + OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class) + FreeTemp(r_tgt); + } else { + OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); + OpThreadMem(kOpBlx, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode)); + } + } + } + // TODO: only clobber when type isn't final? + ClobberCalleeSave(); + /* branch targets here */ + LIR* target = NewLIR0(kPseudoTargetLabel); + StoreValue(rl_dest, rl_result); + branch1->target = target; + if (branchover != NULL) { + branchover->target = target; + } +} + +void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) { + bool type_known_final, type_known_abstract, use_declaring_class; + bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, + *cu_->dex_file, + type_idx, + &type_known_final, + &type_known_abstract, + &use_declaring_class); + bool can_assume_type_is_in_dex_cache = !needs_access_check && + cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx); + + if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) { + GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src); + } else { + GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract, + use_declaring_class, can_assume_type_is_in_dex_cache, + type_idx, rl_dest, rl_src); + } +} + +void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) +{ + bool type_known_final, type_known_abstract, use_declaring_class; + bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, + *cu_->dex_file, + type_idx, + &type_known_final, + &type_known_abstract, + &use_declaring_class); + // Note: currently type_known_final is unused, as optimizing will only improve the performance + // of the exception throw path. + DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit(); + const MethodReference mr(cu->GetDexFile(), cu->GetDexMethodIndex()); + if (!needs_access_check && cu_->compiler_driver->IsSafeCast(mr, insn_idx)) { + // Verifier type analysis proved this check cast would never cause an exception. + return; + } + FlushAllRegs(); + // May generate a call - use explicit registers + LockCallTemps(); + LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method* + int class_reg = TargetReg(kArg2); // kArg2 will hold the Class* + if (needs_access_check) { + // Check we have access to type_idx and if not throw IllegalAccessError, + // returns Class* in kRet0 + // InitializeTypeAndVerifyAccess(idx, method) + CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode), + type_idx, TargetReg(kArg1), true); + OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path + } else if (use_declaring_class) { + LoadWordDisp(TargetReg(kArg1), + mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), class_reg); + } else { + // Load dex cache entry into class_reg (kArg2) + LoadWordDisp(TargetReg(kArg1), + mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg); + int32_t offset_of_type = + mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + + (sizeof(mirror::Class*) * type_idx); + LoadWordDisp(class_reg, offset_of_type, class_reg); + if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) { + // Need to test presence of type in dex cache at runtime + LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL); + // Not resolved + // Call out to helper, which will return resolved type in kArg0 + // InitializeTypeFromCode(idx, method) + CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, TargetReg(kArg1), + true); + OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path + // Rejoin code paths + LIR* hop_target = NewLIR0(kPseudoTargetLabel); + hop_branch->target = hop_target; + } + } + // At this point, class_reg (kArg2) has class + LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref + /* Null is OK - continue */ + LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL); + /* load object->klass_ */ + DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0); + LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1)); + /* kArg1 now contains object->klass_ */ + LIR* branch2 = NULL; + if (!type_known_abstract) { + branch2 = OpCmpBranch(kCondEq, TargetReg(kArg1), class_reg, NULL); + } + CallRuntimeHelperRegReg(ENTRYPOINT_OFFSET(pCheckCastFromCode), TargetReg(kArg1), TargetReg(kArg2), + true); + /* branch target here */ + LIR* target = NewLIR0(kPseudoTargetLabel); + branch1->target = target; + if (branch2 != NULL) { + branch2->target = target; + } +} + +void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest, + RegLocation rl_src1, RegLocation rl_src2) +{ + RegLocation rl_result; + if (cu_->instruction_set == kThumb2) { + /* + * NOTE: This is the one place in the code in which we might have + * as many as six live temporary registers. There are 5 in the normal + * set for Arm. Until we have spill capabilities, temporarily add + * lr to the temp set. It is safe to do this locally, but note that + * lr is used explicitly elsewhere in the code generator and cannot + * normally be used as a general temp register. + */ + MarkTemp(TargetReg(kLr)); // Add lr to the temp pool + FreeTemp(TargetReg(kLr)); // and make it available + } + rl_src1 = LoadValueWide(rl_src1, kCoreReg); + rl_src2 = LoadValueWide(rl_src2, kCoreReg); + rl_result = EvalLoc(rl_dest, kCoreReg, true); + // The longs may overlap - use intermediate temp if so + if ((rl_result.low_reg == rl_src1.high_reg) || (rl_result.low_reg == rl_src2.high_reg)){ + int t_reg = AllocTemp(); + OpRegRegReg(first_op, t_reg, rl_src1.low_reg, rl_src2.low_reg); + OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg); + OpRegCopy(rl_result.low_reg, t_reg); + FreeTemp(t_reg); + } else { + OpRegRegReg(first_op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); + OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, + rl_src2.high_reg); + } + /* + * NOTE: If rl_dest refers to a frame variable in a large frame, the + * following StoreValueWide might need to allocate a temp register. + * To further work around the lack of a spill capability, explicitly + * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result. + * Remove when spill is functional. + */ + FreeRegLocTemps(rl_result, rl_src1); + FreeRegLocTemps(rl_result, rl_src2); + StoreValueWide(rl_dest, rl_result); + if (cu_->instruction_set == kThumb2) { + Clobber(TargetReg(kLr)); + UnmarkTemp(TargetReg(kLr)); // Remove lr from the temp pool + } +} + + +void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest, + RegLocation rl_src1, RegLocation rl_shift) +{ + int func_offset = -1; // Make gcc happy + + switch (opcode) { + case Instruction::SHL_LONG: + case Instruction::SHL_LONG_2ADDR: + func_offset = ENTRYPOINT_OFFSET(pShlLong); + break; + case Instruction::SHR_LONG: + case Instruction::SHR_LONG_2ADDR: + func_offset = ENTRYPOINT_OFFSET(pShrLong); + break; + case Instruction::USHR_LONG: + case Instruction::USHR_LONG_2ADDR: + func_offset = ENTRYPOINT_OFFSET(pUshrLong); + break; + default: + LOG(FATAL) << "Unexpected case"; + } + FlushAllRegs(); /* Send everything to home location */ + CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false); + RegLocation rl_result = GetReturnWide(false); + StoreValueWide(rl_dest, rl_result); +} + + +void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest, + RegLocation rl_src1, RegLocation rl_src2) +{ + OpKind op = kOpBkpt; + bool is_div_rem = false; + bool check_zero = false; + bool unary = false; + RegLocation rl_result; + bool shift_op = false; + switch (opcode) { + case Instruction::NEG_INT: + op = kOpNeg; + unary = true; + break; + case Instruction::NOT_INT: + op = kOpMvn; + unary = true; + break; + case Instruction::ADD_INT: + case Instruction::ADD_INT_2ADDR: + op = kOpAdd; + break; + case Instruction::SUB_INT: + case Instruction::SUB_INT_2ADDR: + op = kOpSub; + break; + case Instruction::MUL_INT: + case Instruction::MUL_INT_2ADDR: + op = kOpMul; + break; + case Instruction::DIV_INT: + case Instruction::DIV_INT_2ADDR: + check_zero = true; + op = kOpDiv; + is_div_rem = true; + break; + /* NOTE: returns in kArg1 */ + case Instruction::REM_INT: + case Instruction::REM_INT_2ADDR: + check_zero = true; + op = kOpRem; + is_div_rem = true; + break; + case Instruction::AND_INT: + case Instruction::AND_INT_2ADDR: + op = kOpAnd; + break; + case Instruction::OR_INT: + case Instruction::OR_INT_2ADDR: + op = kOpOr; + break; + case Instruction::XOR_INT: + case Instruction::XOR_INT_2ADDR: + op = kOpXor; + break; + case Instruction::SHL_INT: + case Instruction::SHL_INT_2ADDR: + shift_op = true; + op = kOpLsl; + break; + case Instruction::SHR_INT: + case Instruction::SHR_INT_2ADDR: + shift_op = true; + op = kOpAsr; + break; + case Instruction::USHR_INT: + case Instruction::USHR_INT_2ADDR: + shift_op = true; + op = kOpLsr; + break; + default: + LOG(FATAL) << "Invalid word arith op: " << opcode; + } + if (!is_div_rem) { + if (unary) { + rl_src1 = LoadValue(rl_src1, kCoreReg); + rl_result = EvalLoc(rl_dest, kCoreReg, true); + OpRegReg(op, rl_result.low_reg, rl_src1.low_reg); + } else { + if (shift_op) { + int t_reg = INVALID_REG; + if (cu_->instruction_set == kX86) { + // X86 doesn't require masking and must use ECX + t_reg = TargetReg(kCount); // rCX + LoadValueDirectFixed(rl_src2, t_reg); + } else { + rl_src2 = LoadValue(rl_src2, kCoreReg); + t_reg = AllocTemp(); + OpRegRegImm(kOpAnd, t_reg, rl_src2.low_reg, 31); + } + rl_src1 = LoadValue(rl_src1, kCoreReg); + rl_result = EvalLoc(rl_dest, kCoreReg, true); + OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, t_reg); + FreeTemp(t_reg); + } else { + rl_src1 = LoadValue(rl_src1, kCoreReg); + rl_src2 = LoadValue(rl_src2, kCoreReg); + rl_result = EvalLoc(rl_dest, kCoreReg, true); + OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg); + } + } + StoreValue(rl_dest, rl_result); + } else { + if (cu_->instruction_set == kMips) { + rl_src1 = LoadValue(rl_src1, kCoreReg); + rl_src2 = LoadValue(rl_src2, kCoreReg); + if (check_zero) { + GenImmedCheck(kCondEq, rl_src2.low_reg, 0, kThrowDivZero); + } + rl_result = GenDivRem(rl_dest, rl_src1.low_reg, rl_src2.low_reg, op == kOpDiv); + } else { + int func_offset = ENTRYPOINT_OFFSET(pIdivmod); + FlushAllRegs(); /* Send everything to home location */ + LoadValueDirectFixed(rl_src2, TargetReg(kArg1)); + int r_tgt = CallHelperSetup(func_offset); + LoadValueDirectFixed(rl_src1, TargetReg(kArg0)); + if (check_zero) { + GenImmedCheck(kCondEq, TargetReg(kArg1), 0, kThrowDivZero); + } + // NOTE: callout here is not a safepoint + CallHelper(r_tgt, func_offset, false /* not a safepoint */ ); + if (op == kOpDiv) + rl_result = GetReturn(false); + else + rl_result = GetReturnAlt(); + } + StoreValue(rl_dest, rl_result); + } +} + +/* + * The following are the first-level codegen routines that analyze the format + * of each bytecode then either dispatch special purpose codegen routines + * or produce corresponding Thumb instructions directly. + */ + +static bool IsPowerOfTwo(int x) +{ + return (x & (x - 1)) == 0; +} + +// Returns true if no more than two bits are set in 'x'. +static bool IsPopCountLE2(unsigned int x) +{ + x &= x - 1; + return (x & (x - 1)) == 0; +} + +// Returns the index of the lowest set bit in 'x'. +static int LowestSetBit(unsigned int x) { + int bit_posn = 0; + while ((x & 0xf) == 0) { + bit_posn += 4; + x >>= 4; + } + while ((x & 1) == 0) { + bit_posn++; + x >>= 1; + } + return bit_posn; +} + +// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit' +// and store the result in 'rl_dest'. +bool Mir2Lir::HandleEasyDivide(Instruction::Code dalvik_opcode, + RegLocation rl_src, RegLocation rl_dest, int lit) +{ + if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) { + return false; + } + // No divide instruction for Arm, so check for more special cases + if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) { + return SmallLiteralDivide(dalvik_opcode, rl_src, rl_dest, lit); + } + int k = LowestSetBit(lit); + if (k >= 30) { + // Avoid special cases. + return false; + } + bool div = (dalvik_opcode == Instruction::DIV_INT_LIT8 || + dalvik_opcode == Instruction::DIV_INT_LIT16); + rl_src = LoadValue(rl_src, kCoreReg); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + if (div) { + int t_reg = AllocTemp(); + if (lit == 2) { + // Division by 2 is by far the most common division by constant. + OpRegRegImm(kOpLsr, t_reg, rl_src.low_reg, 32 - k); + OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); + OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); + } else { + OpRegRegImm(kOpAsr, t_reg, rl_src.low_reg, 31); + OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k); + OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg); + OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k); + } + } else { + int t_reg1 = AllocTemp(); + int t_reg2 = AllocTemp(); + if (lit == 2) { + OpRegRegImm(kOpLsr, t_reg1, rl_src.low_reg, 32 - k); + OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); + OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1); + OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); + } else { + OpRegRegImm(kOpAsr, t_reg1, rl_src.low_reg, 31); + OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k); + OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg); + OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1); + OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1); + } + } + StoreValue(rl_dest, rl_result); + return true; +} + +// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit' +// and store the result in 'rl_dest'. +bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) +{ + // Can we simplify this multiplication? + bool power_of_two = false; + bool pop_count_le2 = false; + bool power_of_two_minus_one = false; + if (lit < 2) { + // Avoid special cases. + return false; + } else if (IsPowerOfTwo(lit)) { + power_of_two = true; + } else if (IsPopCountLE2(lit)) { + pop_count_le2 = true; + } else if (IsPowerOfTwo(lit + 1)) { + power_of_two_minus_one = true; + } else { + return false; + } + rl_src = LoadValue(rl_src, kCoreReg); + RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true); + if (power_of_two) { + // Shift. + OpRegRegImm(kOpLsl, rl_result.low_reg, rl_src.low_reg, LowestSetBit(lit)); + } else if (pop_count_le2) { + // Shift and add and shift. + int first_bit = LowestSetBit(lit); + int second_bit = LowestSetBit(lit ^ (1 << first_bit)); + GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit); + } else { + // Reverse subtract: (src << (shift + 1)) - src. + DCHECK(power_of_two_minus_one); + // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1) + int t_reg = AllocTemp(); + OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, LowestSetBit(lit + 1)); + OpRegRegReg(kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg); + } + StoreValue(rl_dest, rl_result); + return true; +} + +void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src, + int lit) +{ + RegLocation rl_result; + OpKind op = static_cast<OpKind>(0); /* Make gcc happy */ + int shift_op = false; + bool is_div = false; + + switch (opcode) { + case Instruction::RSUB_INT_LIT8: + case Instruction::RSUB_INT: { + rl_src = LoadValue(rl_src, kCoreReg); + rl_result = EvalLoc(rl_dest, kCoreReg, true); + if (cu_->instruction_set == kThumb2) { + OpRegRegImm(kOpRsub, rl_result.low_reg, rl_src.low_reg, lit); + } else { + OpRegReg(kOpNeg, rl_result.low_reg, rl_src.low_reg); + OpRegImm(kOpAdd, rl_result.low_reg, lit); + } + StoreValue(rl_dest, rl_result); + return; + } + + case Instruction::SUB_INT: + case Instruction::SUB_INT_2ADDR: + lit = -lit; + // Intended fallthrough + case Instruction::ADD_INT: + case Instruction::ADD_INT_2ADDR: + case Instruction::ADD_INT_LIT8: + case Instruction::ADD_INT_LIT16: + op = kOpAdd; + break; + case Instruction::MUL_INT: + case Instruction::MUL_INT_2ADDR: + case Instruction::MUL_INT_LIT8: + case Instruction::MUL_INT_LIT16: { + if (HandleEasyMultiply(rl_src, rl_dest, lit)) { + return; + } + op = kOpMul; + break; + } + case Instruction::AND_INT: + case Instruction::AND_INT_2ADDR: + case Instruction::AND_INT_LIT8: + case Instruction::AND_INT_LIT16: + op = kOpAnd; + break; + case Instruction::OR_INT: + case Instruction::OR_INT_2ADDR: + case Instruction::OR_INT_LIT8: + case Instruction::OR_INT_LIT16: + op = kOpOr; + break; + case Instruction::XOR_INT: + case Instruction::XOR_INT_2ADDR: + case Instruction::XOR_INT_LIT8: + case Instruction::XOR_INT_LIT16: + op = kOpXor; + break; + case Instruction::SHL_INT_LIT8: + case Instruction::SHL_INT: + case Instruction::SHL_INT_2ADDR: + lit &= 31; + shift_op = true; + op = kOpLsl; + break; + case Instruction::SHR_INT_LIT8: + case Instruction::SHR_INT: + case Instruction::SHR_INT_2ADDR: + lit &= 31; + shift_op = true; + op = kOpAsr; + break; + case Instruction::USHR_INT_LIT8: + case Instruction::USHR_INT: + case Instruction::USHR_INT_2ADDR: + lit &= 31; + shift_op = true; + op = kOpLsr; + break; + + case Instruction::DIV_INT: + case Instruction::DIV_INT_2ADDR: + case Instruction::DIV_INT_LIT8: + case Instruction::DIV_INT_LIT16: + case Instruction::REM_INT: + case Instruction::REM_INT_2ADDR: + case Instruction::REM_INT_LIT8: + case Instruction::REM_INT_LIT16: { + if (lit == 0) { + GenImmedCheck(kCondAl, 0, 0, kThrowDivZero); + return; + } + if (HandleEasyDivide(opcode, rl_src, rl_dest, lit)) { + return; + } + if ((opcode == Instruction::DIV_INT_LIT8) || + (opcode == Instruction::DIV_INT) || + (opcode == Instruction::DIV_INT_2ADDR) || + (opcode == Instruction::DIV_INT_LIT16)) { + is_div = true; + } else { + is_div = false; + } + if (cu_->instruction_set == kMips) { + rl_src = LoadValue(rl_src, kCoreReg); + rl_result = GenDivRemLit(rl_dest, rl_src.low_reg, lit, is_div); + } else { + FlushAllRegs(); /* Everything to home location */ + LoadValueDirectFixed(rl_src, TargetReg(kArg0)); + Clobber(TargetReg(kArg0)); + int func_offset = ENTRYPOINT_OFFSET(pIdivmod); + CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false); + if (is_div) + rl_result = GetReturn(false); + else + rl_result = GetReturnAlt(); + } + StoreValue(rl_dest, rl_result); + return; + } + default: + LOG(FATAL) << "Unexpected opcode " << opcode; + } + rl_src = LoadValue(rl_src, kCoreReg); + rl_result = EvalLoc(rl_dest, kCoreReg, true); + // Avoid shifts by literal 0 - no support in Thumb. Change to copy + if (shift_op && (lit == 0)) { + OpRegCopy(rl_result.low_reg, rl_src.low_reg); + } else { + OpRegRegImm(op, rl_result.low_reg, rl_src.low_reg, lit); + } + StoreValue(rl_dest, rl_result); +} + +void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest, + RegLocation rl_src1, RegLocation rl_src2) +{ + RegLocation rl_result; + OpKind first_op = kOpBkpt; + OpKind second_op = kOpBkpt; + bool call_out = false; + bool check_zero = false; + int func_offset; + int ret_reg = TargetReg(kRet0); + + switch (opcode) { + case Instruction::NOT_LONG: + rl_src2 = LoadValueWide(rl_src2, kCoreReg); + rl_result = EvalLoc(rl_dest, kCoreReg, true); + // Check for destructive overlap + if (rl_result.low_reg == rl_src2.high_reg) { + int t_reg = AllocTemp(); + OpRegCopy(t_reg, rl_src2.high_reg); + OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); + OpRegReg(kOpMvn, rl_result.high_reg, t_reg); + FreeTemp(t_reg); + } else { + OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg); + OpRegReg(kOpMvn, rl_result.high_reg, rl_src2.high_reg); + } + StoreValueWide(rl_dest, rl_result); + return; + case Instruction::ADD_LONG: + case Instruction::ADD_LONG_2ADDR: + if (cu_->instruction_set != kThumb2) { + GenAddLong(rl_dest, rl_src1, rl_src2); + return; + } + first_op = kOpAdd; + second_op = kOpAdc; + break; + case Instruction::SUB_LONG: + case Instruction::SUB_LONG_2ADDR: + if (cu_->instruction_set != kThumb2) { + GenSubLong(rl_dest, rl_src1, rl_src2); + return; + } + first_op = kOpSub; + second_op = kOpSbc; + break; + case Instruction::MUL_LONG: + case Instruction::MUL_LONG_2ADDR: + if (cu_->instruction_set == kThumb2) { + GenMulLong(rl_dest, rl_src1, rl_src2); + return; + } else { + call_out = true; + ret_reg = TargetReg(kRet0); + func_offset = ENTRYPOINT_OFFSET(pLmul); + } + break; + case Instruction::DIV_LONG: + case Instruction::DIV_LONG_2ADDR: + call_out = true; + check_zero = true; + ret_reg = TargetReg(kRet0); + func_offset = ENTRYPOINT_OFFSET(pLdiv); + break; + case Instruction::REM_LONG: + case Instruction::REM_LONG_2ADDR: + call_out = true; + check_zero = true; + func_offset = ENTRYPOINT_OFFSET(pLdivmod); + /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */ + ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0); + break; + case Instruction::AND_LONG_2ADDR: + case Instruction::AND_LONG: + if (cu_->instruction_set == kX86) { + return GenAndLong(rl_dest, rl_src1, rl_src2); + } + first_op = kOpAnd; + second_op = kOpAnd; + break; + case Instruction::OR_LONG: + case Instruction::OR_LONG_2ADDR: + if (cu_->instruction_set == kX86) { + GenOrLong(rl_dest, rl_src1, rl_src2); + return; + } + first_op = kOpOr; + second_op = kOpOr; + break; + case Instruction::XOR_LONG: + case Instruction::XOR_LONG_2ADDR: + if (cu_->instruction_set == kX86) { + GenXorLong(rl_dest, rl_src1, rl_src2); + return; + } + first_op = kOpXor; + second_op = kOpXor; + break; + case Instruction::NEG_LONG: { + GenNegLong(rl_dest, rl_src2); + return; + } + default: + LOG(FATAL) << "Invalid long arith op"; + } + if (!call_out) { + GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2); + } else { + FlushAllRegs(); /* Send everything to home location */ + if (check_zero) { + LoadValueDirectWideFixed(rl_src2, TargetReg(kArg2), TargetReg(kArg3)); + int r_tgt = CallHelperSetup(func_offset); + GenDivZeroCheck(TargetReg(kArg2), TargetReg(kArg3)); + LoadValueDirectWideFixed(rl_src1, TargetReg(kArg0), TargetReg(kArg1)); + // NOTE: callout here is not a safepoint + CallHelper(r_tgt, func_offset, false /* not safepoint */); + } else { + CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false); + } + // Adjust return regs in to handle case of rem returning kArg2/kArg3 + if (ret_reg == TargetReg(kRet0)) + rl_result = GetReturnWide(false); + else + rl_result = GetReturnWideAlt(); + StoreValueWide(rl_dest, rl_result); + } +} + +void Mir2Lir::GenConversionCall(int func_offset, + RegLocation rl_dest, RegLocation rl_src) +{ + /* + * Don't optimize the register usage since it calls out to support + * functions + */ + FlushAllRegs(); /* Send everything to home location */ + if (rl_src.wide) { + LoadValueDirectWideFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0), + rl_src.fp ? TargetReg(kFArg1) : TargetReg(kArg1)); + } else { + LoadValueDirectFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0)); + } + CallRuntimeHelperRegLocation(func_offset, rl_src, false); + if (rl_dest.wide) { + RegLocation rl_result; + rl_result = GetReturnWide(rl_dest.fp); + StoreValueWide(rl_dest, rl_result); + } else { + RegLocation rl_result; + rl_result = GetReturn(rl_dest.fp); + StoreValue(rl_dest, rl_result); + } +} + +/* Check if we need to check for pending suspend request */ +void Mir2Lir::GenSuspendTest(int opt_flags) +{ + if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { + return; + } + FlushAllRegs(); + LIR* branch = OpTestSuspend(NULL); + LIR* ret_lab = NewLIR0(kPseudoTargetLabel); + LIR* target = RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, + reinterpret_cast<uintptr_t>(ret_lab), current_dalvik_offset_); + branch->target = target; + suspend_launchpads_.Insert(target); +} + +/* Check if we need to check for pending suspend request */ +void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) +{ + if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) { + OpUnconditionalBranch(target); + return; + } + OpTestSuspend(target); + LIR* launch_pad = + RawLIR(current_dalvik_offset_, kPseudoSuspendTarget, + reinterpret_cast<uintptr_t>(target), current_dalvik_offset_); + FlushAllRegs(); + OpUnconditionalBranch(launch_pad); + suspend_launchpads_.Insert(launch_pad); +} + +} // namespace art |