summaryrefslogtreecommitdiffstats
path: root/compiler/dex/quick/gen_common.cc
diff options
context:
space:
mode:
Diffstat (limited to 'compiler/dex/quick/gen_common.cc')
-rw-r--r--compiler/dex/quick/gen_common.cc1800
1 files changed, 1800 insertions, 0 deletions
diff --git a/compiler/dex/quick/gen_common.cc b/compiler/dex/quick/gen_common.cc
new file mode 100644
index 0000000000..865b9c5c4d
--- /dev/null
+++ b/compiler/dex/quick/gen_common.cc
@@ -0,0 +1,1800 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "dex/compiler_ir.h"
+#include "dex/compiler_internals.h"
+#include "dex/quick/mir_to_lir-inl.h"
+#include "mirror/array.h"
+#include "oat/runtime/oat_support_entrypoints.h"
+#include "verifier/method_verifier.h"
+
+namespace art {
+
+/*
+ * This source files contains "gen" codegen routines that should
+ * be applicable to most targets. Only mid-level support utilities
+ * and "op" calls may be used here.
+ */
+
+/*
+ * Generate an kPseudoBarrier marker to indicate the boundary of special
+ * blocks.
+ */
+void Mir2Lir::GenBarrier()
+{
+ LIR* barrier = NewLIR0(kPseudoBarrier);
+ /* Mark all resources as being clobbered */
+ barrier->def_mask = -1;
+}
+
+// FIXME: need to do some work to split out targets with
+// condition codes and those without
+LIR* Mir2Lir::GenCheck(ConditionCode c_code, ThrowKind kind)
+{
+ DCHECK_NE(cu_->instruction_set, kMips);
+ LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_);
+ LIR* branch = OpCondBranch(c_code, tgt);
+ // Remember branch target - will process later
+ throw_launchpads_.Insert(tgt);
+ return branch;
+}
+
+LIR* Mir2Lir::GenImmedCheck(ConditionCode c_code, int reg, int imm_val, ThrowKind kind)
+{
+ LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg, imm_val);
+ LIR* branch;
+ if (c_code == kCondAl) {
+ branch = OpUnconditionalBranch(tgt);
+ } else {
+ branch = OpCmpImmBranch(c_code, reg, imm_val, tgt);
+ }
+ // Remember branch target - will process later
+ throw_launchpads_.Insert(tgt);
+ return branch;
+}
+
+/* Perform null-check on a register. */
+LIR* Mir2Lir::GenNullCheck(int s_reg, int m_reg, int opt_flags)
+{
+ if (!(cu_->disable_opt & (1 << kNullCheckElimination)) &&
+ opt_flags & MIR_IGNORE_NULL_CHECK) {
+ return NULL;
+ }
+ return GenImmedCheck(kCondEq, m_reg, 0, kThrowNullPointer);
+}
+
+/* Perform check on two registers */
+LIR* Mir2Lir::GenRegRegCheck(ConditionCode c_code, int reg1, int reg2,
+ ThrowKind kind)
+{
+ LIR* tgt = RawLIR(0, kPseudoThrowTarget, kind, current_dalvik_offset_, reg1, reg2);
+ LIR* branch = OpCmpBranch(c_code, reg1, reg2, tgt);
+ // Remember branch target - will process later
+ throw_launchpads_.Insert(tgt);
+ return branch;
+}
+
+void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
+ RegLocation rl_src2, LIR* taken,
+ LIR* fall_through)
+{
+ ConditionCode cond;
+ switch (opcode) {
+ case Instruction::IF_EQ:
+ cond = kCondEq;
+ break;
+ case Instruction::IF_NE:
+ cond = kCondNe;
+ break;
+ case Instruction::IF_LT:
+ cond = kCondLt;
+ break;
+ case Instruction::IF_GE:
+ cond = kCondGe;
+ break;
+ case Instruction::IF_GT:
+ cond = kCondGt;
+ break;
+ case Instruction::IF_LE:
+ cond = kCondLe;
+ break;
+ default:
+ cond = static_cast<ConditionCode>(0);
+ LOG(FATAL) << "Unexpected opcode " << opcode;
+ }
+
+ // Normalize such that if either operand is constant, src2 will be constant
+ if (rl_src1.is_const) {
+ RegLocation rl_temp = rl_src1;
+ rl_src1 = rl_src2;
+ rl_src2 = rl_temp;
+ cond = FlipComparisonOrder(cond);
+ }
+
+ rl_src1 = LoadValue(rl_src1, kCoreReg);
+ // Is this really an immediate comparison?
+ if (rl_src2.is_const) {
+ // If it's already live in a register or not easily materialized, just keep going
+ RegLocation rl_temp = UpdateLoc(rl_src2);
+ if ((rl_temp.location == kLocDalvikFrame) &&
+ InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src2))) {
+ // OK - convert this to a compare immediate and branch
+ OpCmpImmBranch(cond, rl_src1.low_reg, mir_graph_->ConstantValue(rl_src2), taken);
+ OpUnconditionalBranch(fall_through);
+ return;
+ }
+ }
+ rl_src2 = LoadValue(rl_src2, kCoreReg);
+ OpCmpBranch(cond, rl_src1.low_reg, rl_src2.low_reg, taken);
+ OpUnconditionalBranch(fall_through);
+}
+
+void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
+ LIR* fall_through)
+{
+ ConditionCode cond;
+ rl_src = LoadValue(rl_src, kCoreReg);
+ switch (opcode) {
+ case Instruction::IF_EQZ:
+ cond = kCondEq;
+ break;
+ case Instruction::IF_NEZ:
+ cond = kCondNe;
+ break;
+ case Instruction::IF_LTZ:
+ cond = kCondLt;
+ break;
+ case Instruction::IF_GEZ:
+ cond = kCondGe;
+ break;
+ case Instruction::IF_GTZ:
+ cond = kCondGt;
+ break;
+ case Instruction::IF_LEZ:
+ cond = kCondLe;
+ break;
+ default:
+ cond = static_cast<ConditionCode>(0);
+ LOG(FATAL) << "Unexpected opcode " << opcode;
+ }
+ OpCmpImmBranch(cond, rl_src.low_reg, 0, taken);
+ OpUnconditionalBranch(fall_through);
+}
+
+void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src)
+{
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ if (rl_src.location == kLocPhysReg) {
+ OpRegCopy(rl_result.low_reg, rl_src.low_reg);
+ } else {
+ LoadValueDirect(rl_src, rl_result.low_reg);
+ }
+ OpRegRegImm(kOpAsr, rl_result.high_reg, rl_result.low_reg, 31);
+ StoreValueWide(rl_dest, rl_result);
+}
+
+void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
+ RegLocation rl_src)
+{
+ rl_src = LoadValue(rl_src, kCoreReg);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ OpKind op = kOpInvalid;
+ switch (opcode) {
+ case Instruction::INT_TO_BYTE:
+ op = kOp2Byte;
+ break;
+ case Instruction::INT_TO_SHORT:
+ op = kOp2Short;
+ break;
+ case Instruction::INT_TO_CHAR:
+ op = kOp2Char;
+ break;
+ default:
+ LOG(ERROR) << "Bad int conversion type";
+ }
+ OpRegReg(op, rl_result.low_reg, rl_src.low_reg);
+ StoreValue(rl_dest, rl_result);
+}
+
+/*
+ * Let helper function take care of everything. Will call
+ * Array::AllocFromCode(type_idx, method, count);
+ * Note: AllocFromCode will handle checks for errNegativeArraySize.
+ */
+void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
+ RegLocation rl_src)
+{
+ FlushAllRegs(); /* Everything to home location */
+ int func_offset;
+ if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
+ type_idx)) {
+ func_offset = ENTRYPOINT_OFFSET(pAllocArrayFromCode);
+ } else {
+ func_offset= ENTRYPOINT_OFFSET(pAllocArrayFromCodeWithAccessCheck);
+ }
+ CallRuntimeHelperImmMethodRegLocation(func_offset, type_idx, rl_src, true);
+ RegLocation rl_result = GetReturn(false);
+ StoreValue(rl_dest, rl_result);
+}
+
+/*
+ * Similar to GenNewArray, but with post-allocation initialization.
+ * Verifier guarantees we're dealing with an array class. Current
+ * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
+ * Current code also throws internal unimp if not 'L', '[' or 'I'.
+ */
+void Mir2Lir::GenFilledNewArray(CallInfo* info)
+{
+ int elems = info->num_arg_words;
+ int type_idx = info->index;
+ FlushAllRegs(); /* Everything to home location */
+ int func_offset;
+ if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
+ type_idx)) {
+ func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCode);
+ } else {
+ func_offset = ENTRYPOINT_OFFSET(pCheckAndAllocArrayFromCodeWithAccessCheck);
+ }
+ CallRuntimeHelperImmMethodImm(func_offset, type_idx, elems, true);
+ FreeTemp(TargetReg(kArg2));
+ FreeTemp(TargetReg(kArg1));
+ /*
+ * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
+ * return region. Because AllocFromCode placed the new array
+ * in kRet0, we'll just lock it into place. When debugger support is
+ * added, it may be necessary to additionally copy all return
+ * values to a home location in thread-local storage
+ */
+ LockTemp(TargetReg(kRet0));
+
+ // TODO: use the correct component size, currently all supported types
+ // share array alignment with ints (see comment at head of function)
+ size_t component_size = sizeof(int32_t);
+
+ // Having a range of 0 is legal
+ if (info->is_range && (elems > 0)) {
+ /*
+ * Bit of ugliness here. We're going generate a mem copy loop
+ * on the register range, but it is possible that some regs
+ * in the range have been promoted. This is unlikely, but
+ * before generating the copy, we'll just force a flush
+ * of any regs in the source range that have been promoted to
+ * home location.
+ */
+ for (int i = 0; i < elems; i++) {
+ RegLocation loc = UpdateLoc(info->args[i]);
+ if (loc.location == kLocPhysReg) {
+ StoreBaseDisp(TargetReg(kSp), SRegOffset(loc.s_reg_low),
+ loc.low_reg, kWord);
+ }
+ }
+ /*
+ * TUNING note: generated code here could be much improved, but
+ * this is an uncommon operation and isn't especially performance
+ * critical.
+ */
+ int r_src = AllocTemp();
+ int r_dst = AllocTemp();
+ int r_idx = AllocTemp();
+ int r_val = INVALID_REG;
+ switch(cu_->instruction_set) {
+ case kThumb2:
+ r_val = TargetReg(kLr);
+ break;
+ case kX86:
+ FreeTemp(TargetReg(kRet0));
+ r_val = AllocTemp();
+ break;
+ case kMips:
+ r_val = AllocTemp();
+ break;
+ default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
+ }
+ // Set up source pointer
+ RegLocation rl_first = info->args[0];
+ OpRegRegImm(kOpAdd, r_src, TargetReg(kSp), SRegOffset(rl_first.s_reg_low));
+ // Set up the target pointer
+ OpRegRegImm(kOpAdd, r_dst, TargetReg(kRet0),
+ mirror::Array::DataOffset(component_size).Int32Value());
+ // Set up the loop counter (known to be > 0)
+ LoadConstant(r_idx, elems - 1);
+ // Generate the copy loop. Going backwards for convenience
+ LIR* target = NewLIR0(kPseudoTargetLabel);
+ // Copy next element
+ LoadBaseIndexed(r_src, r_idx, r_val, 2, kWord);
+ StoreBaseIndexed(r_dst, r_idx, r_val, 2, kWord);
+ FreeTemp(r_val);
+ OpDecAndBranch(kCondGe, r_idx, target);
+ if (cu_->instruction_set == kX86) {
+ // Restore the target pointer
+ OpRegRegImm(kOpAdd, TargetReg(kRet0), r_dst,
+ -mirror::Array::DataOffset(component_size).Int32Value());
+ }
+ } else if (!info->is_range) {
+ // TUNING: interleave
+ for (int i = 0; i < elems; i++) {
+ RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
+ StoreBaseDisp(TargetReg(kRet0),
+ mirror::Array::DataOffset(component_size).Int32Value() +
+ i * 4, rl_arg.low_reg, kWord);
+ // If the LoadValue caused a temp to be allocated, free it
+ if (IsTemp(rl_arg.low_reg)) {
+ FreeTemp(rl_arg.low_reg);
+ }
+ }
+ }
+ if (info->result.location != kLocInvalid) {
+ StoreValue(info->result, GetReturn(false /* not fp */));
+ }
+}
+
+void Mir2Lir::GenSput(uint32_t field_idx, RegLocation rl_src, bool is_long_or_double,
+ bool is_object)
+{
+ int field_offset;
+ int ssb_index;
+ bool is_volatile;
+ bool is_referrers_class;
+ bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo(
+ field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index,
+ is_referrers_class, is_volatile, true);
+ if (fast_path && !SLOW_FIELD_PATH) {
+ DCHECK_GE(field_offset, 0);
+ int rBase;
+ if (is_referrers_class) {
+ // Fast path, static storage base is this method's class
+ RegLocation rl_method = LoadCurrMethod();
+ rBase = AllocTemp();
+ LoadWordDisp(rl_method.low_reg,
+ mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase);
+ if (IsTemp(rl_method.low_reg)) {
+ FreeTemp(rl_method.low_reg);
+ }
+ } else {
+ // Medium path, static storage base in a different class which requires checks that the other
+ // class is initialized.
+ // TODO: remove initialized check now that we are initializing classes in the compiler driver.
+ DCHECK_GE(ssb_index, 0);
+ // May do runtime call so everything to home locations.
+ FlushAllRegs();
+ // Using fixed register to sync with possible call to runtime support.
+ int r_method = TargetReg(kArg1);
+ LockTemp(r_method);
+ LoadCurrMethodDirect(r_method);
+ rBase = TargetReg(kArg0);
+ LockTemp(rBase);
+ LoadWordDisp(r_method,
+ mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(),
+ rBase);
+ LoadWordDisp(rBase,
+ mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
+ sizeof(int32_t*) * ssb_index, rBase);
+ // rBase now points at appropriate static storage base (Class*)
+ // or NULL if not initialized. Check for NULL and call helper if NULL.
+ // TUNING: fast path should fall through
+ LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL);
+ LoadConstant(TargetReg(kArg0), ssb_index);
+ CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true);
+ if (cu_->instruction_set == kMips) {
+ // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy
+ OpRegCopy(rBase, TargetReg(kRet0));
+ }
+ LIR* skip_target = NewLIR0(kPseudoTargetLabel);
+ branch_over->target = skip_target;
+ FreeTemp(r_method);
+ }
+ // rBase now holds static storage base
+ if (is_long_or_double) {
+ rl_src = LoadValueWide(rl_src, kAnyReg);
+ } else {
+ rl_src = LoadValue(rl_src, kAnyReg);
+ }
+ if (is_volatile) {
+ GenMemBarrier(kStoreStore);
+ }
+ if (is_long_or_double) {
+ StoreBaseDispWide(rBase, field_offset, rl_src.low_reg,
+ rl_src.high_reg);
+ } else {
+ StoreWordDisp(rBase, field_offset, rl_src.low_reg);
+ }
+ if (is_volatile) {
+ GenMemBarrier(kStoreLoad);
+ }
+ if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
+ MarkGCCard(rl_src.low_reg, rBase);
+ }
+ FreeTemp(rBase);
+ } else {
+ FlushAllRegs(); // Everything to home locations
+ int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Static) :
+ (is_object ? ENTRYPOINT_OFFSET(pSetObjStatic)
+ : ENTRYPOINT_OFFSET(pSet32Static));
+ CallRuntimeHelperImmRegLocation(setter_offset, field_idx, rl_src, true);
+ }
+}
+
+void Mir2Lir::GenSget(uint32_t field_idx, RegLocation rl_dest,
+ bool is_long_or_double, bool is_object)
+{
+ int field_offset;
+ int ssb_index;
+ bool is_volatile;
+ bool is_referrers_class;
+ bool fast_path = cu_->compiler_driver->ComputeStaticFieldInfo(
+ field_idx, mir_graph_->GetCurrentDexCompilationUnit(), field_offset, ssb_index,
+ is_referrers_class, is_volatile, false);
+ if (fast_path && !SLOW_FIELD_PATH) {
+ DCHECK_GE(field_offset, 0);
+ int rBase;
+ if (is_referrers_class) {
+ // Fast path, static storage base is this method's class
+ RegLocation rl_method = LoadCurrMethod();
+ rBase = AllocTemp();
+ LoadWordDisp(rl_method.low_reg,
+ mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), rBase);
+ } else {
+ // Medium path, static storage base in a different class which requires checks that the other
+ // class is initialized
+ // TODO: remove initialized check now that we are initializing classes in the compiler driver.
+ DCHECK_GE(ssb_index, 0);
+ // May do runtime call so everything to home locations.
+ FlushAllRegs();
+ // Using fixed register to sync with possible call to runtime support.
+ int r_method = TargetReg(kArg1);
+ LockTemp(r_method);
+ LoadCurrMethodDirect(r_method);
+ rBase = TargetReg(kArg0);
+ LockTemp(rBase);
+ LoadWordDisp(r_method,
+ mirror::AbstractMethod::DexCacheInitializedStaticStorageOffset().Int32Value(),
+ rBase);
+ LoadWordDisp(rBase, mirror::Array::DataOffset(sizeof(mirror::Object*)).Int32Value() +
+ sizeof(int32_t*) * ssb_index, rBase);
+ // rBase now points at appropriate static storage base (Class*)
+ // or NULL if not initialized. Check for NULL and call helper if NULL.
+ // TUNING: fast path should fall through
+ LIR* branch_over = OpCmpImmBranch(kCondNe, rBase, 0, NULL);
+ CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeStaticStorage), ssb_index, true);
+ if (cu_->instruction_set == kMips) {
+ // For Arm, kRet0 = kArg0 = rBase, for Mips, we need to copy
+ OpRegCopy(rBase, TargetReg(kRet0));
+ }
+ LIR* skip_target = NewLIR0(kPseudoTargetLabel);
+ branch_over->target = skip_target;
+ FreeTemp(r_method);
+ }
+ // rBase now holds static storage base
+ RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
+ if (is_volatile) {
+ GenMemBarrier(kLoadLoad);
+ }
+ if (is_long_or_double) {
+ LoadBaseDispWide(rBase, field_offset, rl_result.low_reg,
+ rl_result.high_reg, INVALID_SREG);
+ } else {
+ LoadWordDisp(rBase, field_offset, rl_result.low_reg);
+ }
+ FreeTemp(rBase);
+ if (is_long_or_double) {
+ StoreValueWide(rl_dest, rl_result);
+ } else {
+ StoreValue(rl_dest, rl_result);
+ }
+ } else {
+ FlushAllRegs(); // Everything to home locations
+ int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Static) :
+ (is_object ? ENTRYPOINT_OFFSET(pGetObjStatic)
+ : ENTRYPOINT_OFFSET(pGet32Static));
+ CallRuntimeHelperImm(getterOffset, field_idx, true);
+ if (is_long_or_double) {
+ RegLocation rl_result = GetReturnWide(rl_dest.fp);
+ StoreValueWide(rl_dest, rl_result);
+ } else {
+ RegLocation rl_result = GetReturn(rl_dest.fp);
+ StoreValue(rl_dest, rl_result);
+ }
+ }
+}
+
+void Mir2Lir::HandleSuspendLaunchPads()
+{
+ int num_elems = suspend_launchpads_.Size();
+ int helper_offset = ENTRYPOINT_OFFSET(pTestSuspendFromCode);
+ for (int i = 0; i < num_elems; i++) {
+ ResetRegPool();
+ ResetDefTracking();
+ LIR* lab = suspend_launchpads_.Get(i);
+ LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[0]);
+ current_dalvik_offset_ = lab->operands[1];
+ AppendLIR(lab);
+ int r_tgt = CallHelperSetup(helper_offset);
+ CallHelper(r_tgt, helper_offset, true /* MarkSafepointPC */);
+ OpUnconditionalBranch(resume_lab);
+ }
+}
+
+void Mir2Lir::HandleIntrinsicLaunchPads()
+{
+ int num_elems = intrinsic_launchpads_.Size();
+ for (int i = 0; i < num_elems; i++) {
+ ResetRegPool();
+ ResetDefTracking();
+ LIR* lab = intrinsic_launchpads_.Get(i);
+ CallInfo* info = reinterpret_cast<CallInfo*>(lab->operands[0]);
+ current_dalvik_offset_ = info->offset;
+ AppendLIR(lab);
+ // NOTE: GenInvoke handles MarkSafepointPC
+ GenInvoke(info);
+ LIR* resume_lab = reinterpret_cast<LIR*>(lab->operands[2]);
+ if (resume_lab != NULL) {
+ OpUnconditionalBranch(resume_lab);
+ }
+ }
+}
+
+void Mir2Lir::HandleThrowLaunchPads()
+{
+ int num_elems = throw_launchpads_.Size();
+ for (int i = 0; i < num_elems; i++) {
+ ResetRegPool();
+ ResetDefTracking();
+ LIR* lab = throw_launchpads_.Get(i);
+ current_dalvik_offset_ = lab->operands[1];
+ AppendLIR(lab);
+ int func_offset = 0;
+ int v1 = lab->operands[2];
+ int v2 = lab->operands[3];
+ bool target_x86 = (cu_->instruction_set == kX86);
+ switch (lab->operands[0]) {
+ case kThrowNullPointer:
+ func_offset = ENTRYPOINT_OFFSET(pThrowNullPointerFromCode);
+ break;
+ case kThrowConstantArrayBounds: // v1 is length reg (for Arm/Mips), v2 constant index
+ // v1 holds the constant array index. Mips/Arm uses v2 for length, x86 reloads.
+ if (target_x86) {
+ OpRegMem(kOpMov, TargetReg(kArg1), v1, mirror::Array::LengthOffset().Int32Value());
+ } else {
+ OpRegCopy(TargetReg(kArg1), v1);
+ }
+ // Make sure the following LoadConstant doesn't mess with kArg1.
+ LockTemp(TargetReg(kArg1));
+ LoadConstant(TargetReg(kArg0), v2);
+ func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode);
+ break;
+ case kThrowArrayBounds:
+ // Move v1 (array index) to kArg0 and v2 (array length) to kArg1
+ if (v2 != TargetReg(kArg0)) {
+ OpRegCopy(TargetReg(kArg0), v1);
+ if (target_x86) {
+ // x86 leaves the array pointer in v2, so load the array length that the handler expects
+ OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
+ } else {
+ OpRegCopy(TargetReg(kArg1), v2);
+ }
+ } else {
+ if (v1 == TargetReg(kArg1)) {
+ // Swap v1 and v2, using kArg2 as a temp
+ OpRegCopy(TargetReg(kArg2), v1);
+ if (target_x86) {
+ // x86 leaves the array pointer in v2; load the array length that the handler expects
+ OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
+ } else {
+ OpRegCopy(TargetReg(kArg1), v2);
+ }
+ OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
+ } else {
+ if (target_x86) {
+ // x86 leaves the array pointer in v2; load the array length that the handler expects
+ OpRegMem(kOpMov, TargetReg(kArg1), v2, mirror::Array::LengthOffset().Int32Value());
+ } else {
+ OpRegCopy(TargetReg(kArg1), v2);
+ }
+ OpRegCopy(TargetReg(kArg0), v1);
+ }
+ }
+ func_offset = ENTRYPOINT_OFFSET(pThrowArrayBoundsFromCode);
+ break;
+ case kThrowDivZero:
+ func_offset = ENTRYPOINT_OFFSET(pThrowDivZeroFromCode);
+ break;
+ case kThrowNoSuchMethod:
+ OpRegCopy(TargetReg(kArg0), v1);
+ func_offset =
+ ENTRYPOINT_OFFSET(pThrowNoSuchMethodFromCode);
+ break;
+ case kThrowStackOverflow:
+ func_offset = ENTRYPOINT_OFFSET(pThrowStackOverflowFromCode);
+ // Restore stack alignment
+ if (target_x86) {
+ OpRegImm(kOpAdd, TargetReg(kSp), frame_size_);
+ } else {
+ OpRegImm(kOpAdd, TargetReg(kSp), (num_core_spills_ + num_fp_spills_) * 4);
+ }
+ break;
+ default:
+ LOG(FATAL) << "Unexpected throw kind: " << lab->operands[0];
+ }
+ ClobberCalleeSave();
+ int r_tgt = CallHelperSetup(func_offset);
+ CallHelper(r_tgt, func_offset, true /* MarkSafepointPC */);
+ }
+}
+
+void Mir2Lir::GenIGet(uint32_t field_idx, int opt_flags, OpSize size,
+ RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
+ bool is_object)
+{
+ int field_offset;
+ bool is_volatile;
+
+ bool fast_path = FastInstance(field_idx, field_offset, is_volatile, false);
+
+ if (fast_path && !SLOW_FIELD_PATH) {
+ RegLocation rl_result;
+ RegisterClass reg_class = oat_reg_class_by_size(size);
+ DCHECK_GE(field_offset, 0);
+ rl_obj = LoadValue(rl_obj, kCoreReg);
+ if (is_long_or_double) {
+ DCHECK(rl_dest.wide);
+ GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+ if (cu_->instruction_set == kX86) {
+ rl_result = EvalLoc(rl_dest, reg_class, true);
+ GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+ LoadBaseDispWide(rl_obj.low_reg, field_offset, rl_result.low_reg,
+ rl_result.high_reg, rl_obj.s_reg_low);
+ if (is_volatile) {
+ GenMemBarrier(kLoadLoad);
+ }
+ } else {
+ int reg_ptr = AllocTemp();
+ OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset);
+ rl_result = EvalLoc(rl_dest, reg_class, true);
+ LoadBaseDispWide(reg_ptr, 0, rl_result.low_reg, rl_result.high_reg, INVALID_SREG);
+ if (is_volatile) {
+ GenMemBarrier(kLoadLoad);
+ }
+ FreeTemp(reg_ptr);
+ }
+ StoreValueWide(rl_dest, rl_result);
+ } else {
+ rl_result = EvalLoc(rl_dest, reg_class, true);
+ GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+ LoadBaseDisp(rl_obj.low_reg, field_offset, rl_result.low_reg,
+ kWord, rl_obj.s_reg_low);
+ if (is_volatile) {
+ GenMemBarrier(kLoadLoad);
+ }
+ StoreValue(rl_dest, rl_result);
+ }
+ } else {
+ int getterOffset = is_long_or_double ? ENTRYPOINT_OFFSET(pGet64Instance) :
+ (is_object ? ENTRYPOINT_OFFSET(pGetObjInstance)
+ : ENTRYPOINT_OFFSET(pGet32Instance));
+ CallRuntimeHelperImmRegLocation(getterOffset, field_idx, rl_obj, true);
+ if (is_long_or_double) {
+ RegLocation rl_result = GetReturnWide(rl_dest.fp);
+ StoreValueWide(rl_dest, rl_result);
+ } else {
+ RegLocation rl_result = GetReturn(rl_dest.fp);
+ StoreValue(rl_dest, rl_result);
+ }
+ }
+}
+
+void Mir2Lir::GenIPut(uint32_t field_idx, int opt_flags, OpSize size,
+ RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
+ bool is_object)
+{
+ int field_offset;
+ bool is_volatile;
+
+ bool fast_path = FastInstance(field_idx, field_offset, is_volatile,
+ true);
+ if (fast_path && !SLOW_FIELD_PATH) {
+ RegisterClass reg_class = oat_reg_class_by_size(size);
+ DCHECK_GE(field_offset, 0);
+ rl_obj = LoadValue(rl_obj, kCoreReg);
+ if (is_long_or_double) {
+ int reg_ptr;
+ rl_src = LoadValueWide(rl_src, kAnyReg);
+ GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+ reg_ptr = AllocTemp();
+ OpRegRegImm(kOpAdd, reg_ptr, rl_obj.low_reg, field_offset);
+ if (is_volatile) {
+ GenMemBarrier(kStoreStore);
+ }
+ StoreBaseDispWide(reg_ptr, 0, rl_src.low_reg, rl_src.high_reg);
+ if (is_volatile) {
+ GenMemBarrier(kLoadLoad);
+ }
+ FreeTemp(reg_ptr);
+ } else {
+ rl_src = LoadValue(rl_src, reg_class);
+ GenNullCheck(rl_obj.s_reg_low, rl_obj.low_reg, opt_flags);
+ if (is_volatile) {
+ GenMemBarrier(kStoreStore);
+ }
+ StoreBaseDisp(rl_obj.low_reg, field_offset, rl_src.low_reg, kWord);
+ if (is_volatile) {
+ GenMemBarrier(kLoadLoad);
+ }
+ if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
+ MarkGCCard(rl_src.low_reg, rl_obj.low_reg);
+ }
+ }
+ } else {
+ int setter_offset = is_long_or_double ? ENTRYPOINT_OFFSET(pSet64Instance) :
+ (is_object ? ENTRYPOINT_OFFSET(pSetObjInstance)
+ : ENTRYPOINT_OFFSET(pSet32Instance));
+ CallRuntimeHelperImmRegLocationRegLocation(setter_offset, field_idx, rl_obj, rl_src, true);
+ }
+}
+
+void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest)
+{
+ RegLocation rl_method = LoadCurrMethod();
+ int res_reg = AllocTemp();
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
+ *cu_->dex_file,
+ type_idx)) {
+ // Call out to helper which resolves type and verifies access.
+ // Resolved type returned in kRet0.
+ CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
+ type_idx, rl_method.low_reg, true);
+ RegLocation rl_result = GetReturn(false);
+ StoreValue(rl_dest, rl_result);
+ } else {
+ // We're don't need access checks, load type from dex cache
+ int32_t dex_cache_offset =
+ mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value();
+ LoadWordDisp(rl_method.low_reg, dex_cache_offset, res_reg);
+ int32_t offset_of_type =
+ mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
+ * type_idx);
+ LoadWordDisp(res_reg, offset_of_type, rl_result.low_reg);
+ if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
+ type_idx) || SLOW_TYPE_PATH) {
+ // Slow path, at runtime test if type is null and if so initialize
+ FlushAllRegs();
+ LIR* branch1 = OpCmpImmBranch(kCondEq, rl_result.low_reg, 0, NULL);
+ // Resolved, store and hop over following code
+ StoreValue(rl_dest, rl_result);
+ /*
+ * Because we have stores of the target value on two paths,
+ * clobber temp tracking for the destination using the ssa name
+ */
+ ClobberSReg(rl_dest.s_reg_low);
+ LIR* branch2 = OpUnconditionalBranch(0);
+ // TUNING: move slow path to end & remove unconditional branch
+ LIR* target1 = NewLIR0(kPseudoTargetLabel);
+ // Call out to helper, which will return resolved type in kArg0
+ CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx,
+ rl_method.low_reg, true);
+ RegLocation rl_result = GetReturn(false);
+ StoreValue(rl_dest, rl_result);
+ /*
+ * Because we have stores of the target value on two paths,
+ * clobber temp tracking for the destination using the ssa name
+ */
+ ClobberSReg(rl_dest.s_reg_low);
+ // Rejoin code paths
+ LIR* target2 = NewLIR0(kPseudoTargetLabel);
+ branch1->target = target1;
+ branch2->target = target2;
+ } else {
+ // Fast path, we're done - just store result
+ StoreValue(rl_dest, rl_result);
+ }
+ }
+}
+
+void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest)
+{
+ /* NOTE: Most strings should be available at compile time */
+ int32_t offset_of_string = mirror::Array::DataOffset(sizeof(mirror::String*)).Int32Value() +
+ (sizeof(mirror::String*) * string_idx);
+ if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
+ *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
+ // slow path, resolve string if not in dex cache
+ FlushAllRegs();
+ LockCallTemps(); // Using explicit registers
+ LoadCurrMethodDirect(TargetReg(kArg2));
+ LoadWordDisp(TargetReg(kArg2),
+ mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), TargetReg(kArg0));
+ // Might call out to helper, which will return resolved string in kRet0
+ int r_tgt = CallHelperSetup(ENTRYPOINT_OFFSET(pResolveStringFromCode));
+ LoadWordDisp(TargetReg(kArg0), offset_of_string, TargetReg(kRet0));
+ LoadConstant(TargetReg(kArg1), string_idx);
+ if (cu_->instruction_set == kThumb2) {
+ OpRegImm(kOpCmp, TargetReg(kRet0), 0); // Is resolved?
+ GenBarrier();
+ // For testing, always force through helper
+ if (!EXERCISE_SLOWEST_STRING_PATH) {
+ OpIT(kCondEq, "T");
+ }
+ OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq
+ LIR* call_inst = OpReg(kOpBlx, r_tgt); // .eq, helper(Method*, string_idx)
+ MarkSafepointPC(call_inst);
+ FreeTemp(r_tgt);
+ } else if (cu_->instruction_set == kMips) {
+ LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kRet0), 0, NULL);
+ OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .eq
+ LIR* call_inst = OpReg(kOpBlx, r_tgt);
+ MarkSafepointPC(call_inst);
+ FreeTemp(r_tgt);
+ LIR* target = NewLIR0(kPseudoTargetLabel);
+ branch->target = target;
+ } else {
+ DCHECK_EQ(cu_->instruction_set, kX86);
+ CallRuntimeHelperRegReg(ENTRYPOINT_OFFSET(pResolveStringFromCode), TargetReg(kArg2), TargetReg(kArg1), true);
+ }
+ GenBarrier();
+ StoreValue(rl_dest, GetReturn(false));
+ } else {
+ RegLocation rl_method = LoadCurrMethod();
+ int res_reg = AllocTemp();
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ LoadWordDisp(rl_method.low_reg,
+ mirror::AbstractMethod::DexCacheStringsOffset().Int32Value(), res_reg);
+ LoadWordDisp(res_reg, offset_of_string, rl_result.low_reg);
+ StoreValue(rl_dest, rl_result);
+ }
+}
+
+/*
+ * Let helper function take care of everything. Will
+ * call Class::NewInstanceFromCode(type_idx, method);
+ */
+void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest)
+{
+ FlushAllRegs(); /* Everything to home location */
+ // alloc will always check for resolution, do we also need to verify
+ // access because the verifier was unable to?
+ int func_offset;
+ if (cu_->compiler_driver->CanAccessInstantiableTypeWithoutChecks(
+ cu_->method_idx, *cu_->dex_file, type_idx)) {
+ func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCode);
+ } else {
+ func_offset = ENTRYPOINT_OFFSET(pAllocObjectFromCodeWithAccessCheck);
+ }
+ CallRuntimeHelperImmMethod(func_offset, type_idx, true);
+ RegLocation rl_result = GetReturn(false);
+ StoreValue(rl_dest, rl_result);
+}
+
+void Mir2Lir::GenThrow(RegLocation rl_src)
+{
+ FlushAllRegs();
+ CallRuntimeHelperRegLocation(ENTRYPOINT_OFFSET(pDeliverException), rl_src, true);
+}
+
+// For final classes there are no sub-classes to check and so we can answer the instance-of
+// question with simple comparisons.
+void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
+ RegLocation rl_src) {
+ RegLocation object = LoadValue(rl_src, kCoreReg);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ int result_reg = rl_result.low_reg;
+ if (result_reg == object.low_reg) {
+ result_reg = AllocTypedTemp(false, kCoreReg);
+ }
+ LoadConstant(result_reg, 0); // assume false
+ LIR* null_branchover = OpCmpImmBranch(kCondEq, object.low_reg, 0, NULL);
+
+ int check_class = AllocTypedTemp(false, kCoreReg);
+ int object_class = AllocTypedTemp(false, kCoreReg);
+
+ LoadCurrMethodDirect(check_class);
+ if (use_declaring_class) {
+ LoadWordDisp(check_class, mirror::AbstractMethod::DeclaringClassOffset().Int32Value(),
+ check_class);
+ LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class);
+ } else {
+ LoadWordDisp(check_class, mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(),
+ check_class);
+ LoadWordDisp(object.low_reg, mirror::Object::ClassOffset().Int32Value(), object_class);
+ int32_t offset_of_type =
+ mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
+ (sizeof(mirror::Class*) * type_idx);
+ LoadWordDisp(check_class, offset_of_type, check_class);
+ }
+
+ LIR* ne_branchover = NULL;
+ if (cu_->instruction_set == kThumb2) {
+ OpRegReg(kOpCmp, check_class, object_class); // Same?
+ OpIT(kCondEq, ""); // if-convert the test
+ LoadConstant(result_reg, 1); // .eq case - load true
+ } else {
+ ne_branchover = OpCmpBranch(kCondNe, check_class, object_class, NULL);
+ LoadConstant(result_reg, 1); // eq case - load true
+ }
+ LIR* target = NewLIR0(kPseudoTargetLabel);
+ null_branchover->target = target;
+ if (ne_branchover != NULL) {
+ ne_branchover->target = target;
+ }
+ FreeTemp(object_class);
+ FreeTemp(check_class);
+ if (IsTemp(result_reg)) {
+ OpRegCopy(rl_result.low_reg, result_reg);
+ FreeTemp(result_reg);
+ }
+ StoreValue(rl_dest, rl_result);
+}
+
+void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
+ bool type_known_abstract, bool use_declaring_class,
+ bool can_assume_type_is_in_dex_cache,
+ uint32_t type_idx, RegLocation rl_dest,
+ RegLocation rl_src) {
+ FlushAllRegs();
+ // May generate a call - use explicit registers
+ LockCallTemps();
+ LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method*
+ int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*
+ if (needs_access_check) {
+ // Check we have access to type_idx and if not throw IllegalAccessError,
+ // returns Class* in kArg0
+ CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
+ type_idx, true);
+ OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path
+ LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref
+ } else if (use_declaring_class) {
+ LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref
+ LoadWordDisp(TargetReg(kArg1),
+ mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), class_reg);
+ } else {
+ // Load dex cache entry into class_reg (kArg2)
+ LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref
+ LoadWordDisp(TargetReg(kArg1),
+ mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
+ int32_t offset_of_type =
+ mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() + (sizeof(mirror::Class*)
+ * type_idx);
+ LoadWordDisp(class_reg, offset_of_type, class_reg);
+ if (!can_assume_type_is_in_dex_cache) {
+ // Need to test presence of type in dex cache at runtime
+ LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
+ // Not resolved
+ // Call out to helper, which will return resolved type in kRet0
+ CallRuntimeHelperImm(ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, true);
+ OpRegCopy(TargetReg(kArg2), TargetReg(kRet0)); // Align usage with fast path
+ LoadValueDirectFixed(rl_src, TargetReg(kArg0)); /* reload Ref */
+ // Rejoin code paths
+ LIR* hop_target = NewLIR0(kPseudoTargetLabel);
+ hop_branch->target = hop_target;
+ }
+ }
+ /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
+ RegLocation rl_result = GetReturn(false);
+ if (cu_->instruction_set == kMips) {
+ // On MIPS rArg0 != rl_result, place false in result if branch is taken.
+ LoadConstant(rl_result.low_reg, 0);
+ }
+ LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
+
+ /* load object->klass_ */
+ DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
+ LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
+ /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
+ LIR* branchover = NULL;
+ if (type_known_final) {
+ // rl_result == ref == null == 0.
+ if (cu_->instruction_set == kThumb2) {
+ OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same?
+ OpIT(kCondEq, "E"); // if-convert the test
+ LoadConstant(rl_result.low_reg, 1); // .eq case - load true
+ LoadConstant(rl_result.low_reg, 0); // .ne case - load false
+ } else {
+ LoadConstant(rl_result.low_reg, 0); // ne case - load false
+ branchover = OpCmpBranch(kCondNe, TargetReg(kArg1), TargetReg(kArg2), NULL);
+ LoadConstant(rl_result.low_reg, 1); // eq case - load true
+ }
+ } else {
+ if (cu_->instruction_set == kThumb2) {
+ int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
+ if (!type_known_abstract) {
+ /* Uses conditional nullification */
+ OpRegReg(kOpCmp, TargetReg(kArg1), TargetReg(kArg2)); // Same?
+ OpIT(kCondEq, "EE"); // if-convert the test
+ LoadConstant(TargetReg(kArg0), 1); // .eq case - load true
+ }
+ OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class
+ OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class)
+ FreeTemp(r_tgt);
+ } else {
+ if (!type_known_abstract) {
+ /* Uses branchovers */
+ LoadConstant(rl_result.low_reg, 1); // assume true
+ branchover = OpCmpBranch(kCondEq, TargetReg(kArg1), TargetReg(kArg2), NULL);
+ }
+ if (cu_->instruction_set != kX86) {
+ int r_tgt = LoadHelper(ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
+ OpRegCopy(TargetReg(kArg0), TargetReg(kArg2)); // .ne case - arg0 <= class
+ OpReg(kOpBlx, r_tgt); // .ne case: helper(class, ref->class)
+ FreeTemp(r_tgt);
+ } else {
+ OpRegCopy(TargetReg(kArg0), TargetReg(kArg2));
+ OpThreadMem(kOpBlx, ENTRYPOINT_OFFSET(pInstanceofNonTrivialFromCode));
+ }
+ }
+ }
+ // TODO: only clobber when type isn't final?
+ ClobberCalleeSave();
+ /* branch targets here */
+ LIR* target = NewLIR0(kPseudoTargetLabel);
+ StoreValue(rl_dest, rl_result);
+ branch1->target = target;
+ if (branchover != NULL) {
+ branchover->target = target;
+ }
+}
+
+void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
+ bool type_known_final, type_known_abstract, use_declaring_class;
+ bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
+ *cu_->dex_file,
+ type_idx,
+ &type_known_final,
+ &type_known_abstract,
+ &use_declaring_class);
+ bool can_assume_type_is_in_dex_cache = !needs_access_check &&
+ cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
+
+ if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
+ GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
+ } else {
+ GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
+ use_declaring_class, can_assume_type_is_in_dex_cache,
+ type_idx, rl_dest, rl_src);
+ }
+}
+
+void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src)
+{
+ bool type_known_final, type_known_abstract, use_declaring_class;
+ bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
+ *cu_->dex_file,
+ type_idx,
+ &type_known_final,
+ &type_known_abstract,
+ &use_declaring_class);
+ // Note: currently type_known_final is unused, as optimizing will only improve the performance
+ // of the exception throw path.
+ DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
+ const MethodReference mr(cu->GetDexFile(), cu->GetDexMethodIndex());
+ if (!needs_access_check && cu_->compiler_driver->IsSafeCast(mr, insn_idx)) {
+ // Verifier type analysis proved this check cast would never cause an exception.
+ return;
+ }
+ FlushAllRegs();
+ // May generate a call - use explicit registers
+ LockCallTemps();
+ LoadCurrMethodDirect(TargetReg(kArg1)); // kArg1 <= current Method*
+ int class_reg = TargetReg(kArg2); // kArg2 will hold the Class*
+ if (needs_access_check) {
+ // Check we have access to type_idx and if not throw IllegalAccessError,
+ // returns Class* in kRet0
+ // InitializeTypeAndVerifyAccess(idx, method)
+ CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeAndVerifyAccessFromCode),
+ type_idx, TargetReg(kArg1), true);
+ OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path
+ } else if (use_declaring_class) {
+ LoadWordDisp(TargetReg(kArg1),
+ mirror::AbstractMethod::DeclaringClassOffset().Int32Value(), class_reg);
+ } else {
+ // Load dex cache entry into class_reg (kArg2)
+ LoadWordDisp(TargetReg(kArg1),
+ mirror::AbstractMethod::DexCacheResolvedTypesOffset().Int32Value(), class_reg);
+ int32_t offset_of_type =
+ mirror::Array::DataOffset(sizeof(mirror::Class*)).Int32Value() +
+ (sizeof(mirror::Class*) * type_idx);
+ LoadWordDisp(class_reg, offset_of_type, class_reg);
+ if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
+ // Need to test presence of type in dex cache at runtime
+ LIR* hop_branch = OpCmpImmBranch(kCondNe, class_reg, 0, NULL);
+ // Not resolved
+ // Call out to helper, which will return resolved type in kArg0
+ // InitializeTypeFromCode(idx, method)
+ CallRuntimeHelperImmReg(ENTRYPOINT_OFFSET(pInitializeTypeFromCode), type_idx, TargetReg(kArg1),
+ true);
+ OpRegCopy(class_reg, TargetReg(kRet0)); // Align usage with fast path
+ // Rejoin code paths
+ LIR* hop_target = NewLIR0(kPseudoTargetLabel);
+ hop_branch->target = hop_target;
+ }
+ }
+ // At this point, class_reg (kArg2) has class
+ LoadValueDirectFixed(rl_src, TargetReg(kArg0)); // kArg0 <= ref
+ /* Null is OK - continue */
+ LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0), 0, NULL);
+ /* load object->klass_ */
+ DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
+ LoadWordDisp(TargetReg(kArg0), mirror::Object::ClassOffset().Int32Value(), TargetReg(kArg1));
+ /* kArg1 now contains object->klass_ */
+ LIR* branch2 = NULL;
+ if (!type_known_abstract) {
+ branch2 = OpCmpBranch(kCondEq, TargetReg(kArg1), class_reg, NULL);
+ }
+ CallRuntimeHelperRegReg(ENTRYPOINT_OFFSET(pCheckCastFromCode), TargetReg(kArg1), TargetReg(kArg2),
+ true);
+ /* branch target here */
+ LIR* target = NewLIR0(kPseudoTargetLabel);
+ branch1->target = target;
+ if (branch2 != NULL) {
+ branch2->target = target;
+ }
+}
+
+void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
+ RegLocation rl_src1, RegLocation rl_src2)
+{
+ RegLocation rl_result;
+ if (cu_->instruction_set == kThumb2) {
+ /*
+ * NOTE: This is the one place in the code in which we might have
+ * as many as six live temporary registers. There are 5 in the normal
+ * set for Arm. Until we have spill capabilities, temporarily add
+ * lr to the temp set. It is safe to do this locally, but note that
+ * lr is used explicitly elsewhere in the code generator and cannot
+ * normally be used as a general temp register.
+ */
+ MarkTemp(TargetReg(kLr)); // Add lr to the temp pool
+ FreeTemp(TargetReg(kLr)); // and make it available
+ }
+ rl_src1 = LoadValueWide(rl_src1, kCoreReg);
+ rl_src2 = LoadValueWide(rl_src2, kCoreReg);
+ rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ // The longs may overlap - use intermediate temp if so
+ if ((rl_result.low_reg == rl_src1.high_reg) || (rl_result.low_reg == rl_src2.high_reg)){
+ int t_reg = AllocTemp();
+ OpRegRegReg(first_op, t_reg, rl_src1.low_reg, rl_src2.low_reg);
+ OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg, rl_src2.high_reg);
+ OpRegCopy(rl_result.low_reg, t_reg);
+ FreeTemp(t_reg);
+ } else {
+ OpRegRegReg(first_op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
+ OpRegRegReg(second_op, rl_result.high_reg, rl_src1.high_reg,
+ rl_src2.high_reg);
+ }
+ /*
+ * NOTE: If rl_dest refers to a frame variable in a large frame, the
+ * following StoreValueWide might need to allocate a temp register.
+ * To further work around the lack of a spill capability, explicitly
+ * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
+ * Remove when spill is functional.
+ */
+ FreeRegLocTemps(rl_result, rl_src1);
+ FreeRegLocTemps(rl_result, rl_src2);
+ StoreValueWide(rl_dest, rl_result);
+ if (cu_->instruction_set == kThumb2) {
+ Clobber(TargetReg(kLr));
+ UnmarkTemp(TargetReg(kLr)); // Remove lr from the temp pool
+ }
+}
+
+
+void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
+ RegLocation rl_src1, RegLocation rl_shift)
+{
+ int func_offset = -1; // Make gcc happy
+
+ switch (opcode) {
+ case Instruction::SHL_LONG:
+ case Instruction::SHL_LONG_2ADDR:
+ func_offset = ENTRYPOINT_OFFSET(pShlLong);
+ break;
+ case Instruction::SHR_LONG:
+ case Instruction::SHR_LONG_2ADDR:
+ func_offset = ENTRYPOINT_OFFSET(pShrLong);
+ break;
+ case Instruction::USHR_LONG:
+ case Instruction::USHR_LONG_2ADDR:
+ func_offset = ENTRYPOINT_OFFSET(pUshrLong);
+ break;
+ default:
+ LOG(FATAL) << "Unexpected case";
+ }
+ FlushAllRegs(); /* Send everything to home location */
+ CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_shift, false);
+ RegLocation rl_result = GetReturnWide(false);
+ StoreValueWide(rl_dest, rl_result);
+}
+
+
+void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
+ RegLocation rl_src1, RegLocation rl_src2)
+{
+ OpKind op = kOpBkpt;
+ bool is_div_rem = false;
+ bool check_zero = false;
+ bool unary = false;
+ RegLocation rl_result;
+ bool shift_op = false;
+ switch (opcode) {
+ case Instruction::NEG_INT:
+ op = kOpNeg;
+ unary = true;
+ break;
+ case Instruction::NOT_INT:
+ op = kOpMvn;
+ unary = true;
+ break;
+ case Instruction::ADD_INT:
+ case Instruction::ADD_INT_2ADDR:
+ op = kOpAdd;
+ break;
+ case Instruction::SUB_INT:
+ case Instruction::SUB_INT_2ADDR:
+ op = kOpSub;
+ break;
+ case Instruction::MUL_INT:
+ case Instruction::MUL_INT_2ADDR:
+ op = kOpMul;
+ break;
+ case Instruction::DIV_INT:
+ case Instruction::DIV_INT_2ADDR:
+ check_zero = true;
+ op = kOpDiv;
+ is_div_rem = true;
+ break;
+ /* NOTE: returns in kArg1 */
+ case Instruction::REM_INT:
+ case Instruction::REM_INT_2ADDR:
+ check_zero = true;
+ op = kOpRem;
+ is_div_rem = true;
+ break;
+ case Instruction::AND_INT:
+ case Instruction::AND_INT_2ADDR:
+ op = kOpAnd;
+ break;
+ case Instruction::OR_INT:
+ case Instruction::OR_INT_2ADDR:
+ op = kOpOr;
+ break;
+ case Instruction::XOR_INT:
+ case Instruction::XOR_INT_2ADDR:
+ op = kOpXor;
+ break;
+ case Instruction::SHL_INT:
+ case Instruction::SHL_INT_2ADDR:
+ shift_op = true;
+ op = kOpLsl;
+ break;
+ case Instruction::SHR_INT:
+ case Instruction::SHR_INT_2ADDR:
+ shift_op = true;
+ op = kOpAsr;
+ break;
+ case Instruction::USHR_INT:
+ case Instruction::USHR_INT_2ADDR:
+ shift_op = true;
+ op = kOpLsr;
+ break;
+ default:
+ LOG(FATAL) << "Invalid word arith op: " << opcode;
+ }
+ if (!is_div_rem) {
+ if (unary) {
+ rl_src1 = LoadValue(rl_src1, kCoreReg);
+ rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ OpRegReg(op, rl_result.low_reg, rl_src1.low_reg);
+ } else {
+ if (shift_op) {
+ int t_reg = INVALID_REG;
+ if (cu_->instruction_set == kX86) {
+ // X86 doesn't require masking and must use ECX
+ t_reg = TargetReg(kCount); // rCX
+ LoadValueDirectFixed(rl_src2, t_reg);
+ } else {
+ rl_src2 = LoadValue(rl_src2, kCoreReg);
+ t_reg = AllocTemp();
+ OpRegRegImm(kOpAnd, t_reg, rl_src2.low_reg, 31);
+ }
+ rl_src1 = LoadValue(rl_src1, kCoreReg);
+ rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, t_reg);
+ FreeTemp(t_reg);
+ } else {
+ rl_src1 = LoadValue(rl_src1, kCoreReg);
+ rl_src2 = LoadValue(rl_src2, kCoreReg);
+ rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ OpRegRegReg(op, rl_result.low_reg, rl_src1.low_reg, rl_src2.low_reg);
+ }
+ }
+ StoreValue(rl_dest, rl_result);
+ } else {
+ if (cu_->instruction_set == kMips) {
+ rl_src1 = LoadValue(rl_src1, kCoreReg);
+ rl_src2 = LoadValue(rl_src2, kCoreReg);
+ if (check_zero) {
+ GenImmedCheck(kCondEq, rl_src2.low_reg, 0, kThrowDivZero);
+ }
+ rl_result = GenDivRem(rl_dest, rl_src1.low_reg, rl_src2.low_reg, op == kOpDiv);
+ } else {
+ int func_offset = ENTRYPOINT_OFFSET(pIdivmod);
+ FlushAllRegs(); /* Send everything to home location */
+ LoadValueDirectFixed(rl_src2, TargetReg(kArg1));
+ int r_tgt = CallHelperSetup(func_offset);
+ LoadValueDirectFixed(rl_src1, TargetReg(kArg0));
+ if (check_zero) {
+ GenImmedCheck(kCondEq, TargetReg(kArg1), 0, kThrowDivZero);
+ }
+ // NOTE: callout here is not a safepoint
+ CallHelper(r_tgt, func_offset, false /* not a safepoint */ );
+ if (op == kOpDiv)
+ rl_result = GetReturn(false);
+ else
+ rl_result = GetReturnAlt();
+ }
+ StoreValue(rl_dest, rl_result);
+ }
+}
+
+/*
+ * The following are the first-level codegen routines that analyze the format
+ * of each bytecode then either dispatch special purpose codegen routines
+ * or produce corresponding Thumb instructions directly.
+ */
+
+static bool IsPowerOfTwo(int x)
+{
+ return (x & (x - 1)) == 0;
+}
+
+// Returns true if no more than two bits are set in 'x'.
+static bool IsPopCountLE2(unsigned int x)
+{
+ x &= x - 1;
+ return (x & (x - 1)) == 0;
+}
+
+// Returns the index of the lowest set bit in 'x'.
+static int LowestSetBit(unsigned int x) {
+ int bit_posn = 0;
+ while ((x & 0xf) == 0) {
+ bit_posn += 4;
+ x >>= 4;
+ }
+ while ((x & 1) == 0) {
+ bit_posn++;
+ x >>= 1;
+ }
+ return bit_posn;
+}
+
+// Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
+// and store the result in 'rl_dest'.
+bool Mir2Lir::HandleEasyDivide(Instruction::Code dalvik_opcode,
+ RegLocation rl_src, RegLocation rl_dest, int lit)
+{
+ if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
+ return false;
+ }
+ // No divide instruction for Arm, so check for more special cases
+ if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
+ return SmallLiteralDivide(dalvik_opcode, rl_src, rl_dest, lit);
+ }
+ int k = LowestSetBit(lit);
+ if (k >= 30) {
+ // Avoid special cases.
+ return false;
+ }
+ bool div = (dalvik_opcode == Instruction::DIV_INT_LIT8 ||
+ dalvik_opcode == Instruction::DIV_INT_LIT16);
+ rl_src = LoadValue(rl_src, kCoreReg);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ if (div) {
+ int t_reg = AllocTemp();
+ if (lit == 2) {
+ // Division by 2 is by far the most common division by constant.
+ OpRegRegImm(kOpLsr, t_reg, rl_src.low_reg, 32 - k);
+ OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg);
+ OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k);
+ } else {
+ OpRegRegImm(kOpAsr, t_reg, rl_src.low_reg, 31);
+ OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
+ OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.low_reg);
+ OpRegRegImm(kOpAsr, rl_result.low_reg, t_reg, k);
+ }
+ } else {
+ int t_reg1 = AllocTemp();
+ int t_reg2 = AllocTemp();
+ if (lit == 2) {
+ OpRegRegImm(kOpLsr, t_reg1, rl_src.low_reg, 32 - k);
+ OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg);
+ OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
+ OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1);
+ } else {
+ OpRegRegImm(kOpAsr, t_reg1, rl_src.low_reg, 31);
+ OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
+ OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.low_reg);
+ OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
+ OpRegRegReg(kOpSub, rl_result.low_reg, t_reg2, t_reg1);
+ }
+ }
+ StoreValue(rl_dest, rl_result);
+ return true;
+}
+
+// Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
+// and store the result in 'rl_dest'.
+bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit)
+{
+ // Can we simplify this multiplication?
+ bool power_of_two = false;
+ bool pop_count_le2 = false;
+ bool power_of_two_minus_one = false;
+ if (lit < 2) {
+ // Avoid special cases.
+ return false;
+ } else if (IsPowerOfTwo(lit)) {
+ power_of_two = true;
+ } else if (IsPopCountLE2(lit)) {
+ pop_count_le2 = true;
+ } else if (IsPowerOfTwo(lit + 1)) {
+ power_of_two_minus_one = true;
+ } else {
+ return false;
+ }
+ rl_src = LoadValue(rl_src, kCoreReg);
+ RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ if (power_of_two) {
+ // Shift.
+ OpRegRegImm(kOpLsl, rl_result.low_reg, rl_src.low_reg, LowestSetBit(lit));
+ } else if (pop_count_le2) {
+ // Shift and add and shift.
+ int first_bit = LowestSetBit(lit);
+ int second_bit = LowestSetBit(lit ^ (1 << first_bit));
+ GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
+ } else {
+ // Reverse subtract: (src << (shift + 1)) - src.
+ DCHECK(power_of_two_minus_one);
+ // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
+ int t_reg = AllocTemp();
+ OpRegRegImm(kOpLsl, t_reg, rl_src.low_reg, LowestSetBit(lit + 1));
+ OpRegRegReg(kOpSub, rl_result.low_reg, t_reg, rl_src.low_reg);
+ }
+ StoreValue(rl_dest, rl_result);
+ return true;
+}
+
+void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
+ int lit)
+{
+ RegLocation rl_result;
+ OpKind op = static_cast<OpKind>(0); /* Make gcc happy */
+ int shift_op = false;
+ bool is_div = false;
+
+ switch (opcode) {
+ case Instruction::RSUB_INT_LIT8:
+ case Instruction::RSUB_INT: {
+ rl_src = LoadValue(rl_src, kCoreReg);
+ rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ if (cu_->instruction_set == kThumb2) {
+ OpRegRegImm(kOpRsub, rl_result.low_reg, rl_src.low_reg, lit);
+ } else {
+ OpRegReg(kOpNeg, rl_result.low_reg, rl_src.low_reg);
+ OpRegImm(kOpAdd, rl_result.low_reg, lit);
+ }
+ StoreValue(rl_dest, rl_result);
+ return;
+ }
+
+ case Instruction::SUB_INT:
+ case Instruction::SUB_INT_2ADDR:
+ lit = -lit;
+ // Intended fallthrough
+ case Instruction::ADD_INT:
+ case Instruction::ADD_INT_2ADDR:
+ case Instruction::ADD_INT_LIT8:
+ case Instruction::ADD_INT_LIT16:
+ op = kOpAdd;
+ break;
+ case Instruction::MUL_INT:
+ case Instruction::MUL_INT_2ADDR:
+ case Instruction::MUL_INT_LIT8:
+ case Instruction::MUL_INT_LIT16: {
+ if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
+ return;
+ }
+ op = kOpMul;
+ break;
+ }
+ case Instruction::AND_INT:
+ case Instruction::AND_INT_2ADDR:
+ case Instruction::AND_INT_LIT8:
+ case Instruction::AND_INT_LIT16:
+ op = kOpAnd;
+ break;
+ case Instruction::OR_INT:
+ case Instruction::OR_INT_2ADDR:
+ case Instruction::OR_INT_LIT8:
+ case Instruction::OR_INT_LIT16:
+ op = kOpOr;
+ break;
+ case Instruction::XOR_INT:
+ case Instruction::XOR_INT_2ADDR:
+ case Instruction::XOR_INT_LIT8:
+ case Instruction::XOR_INT_LIT16:
+ op = kOpXor;
+ break;
+ case Instruction::SHL_INT_LIT8:
+ case Instruction::SHL_INT:
+ case Instruction::SHL_INT_2ADDR:
+ lit &= 31;
+ shift_op = true;
+ op = kOpLsl;
+ break;
+ case Instruction::SHR_INT_LIT8:
+ case Instruction::SHR_INT:
+ case Instruction::SHR_INT_2ADDR:
+ lit &= 31;
+ shift_op = true;
+ op = kOpAsr;
+ break;
+ case Instruction::USHR_INT_LIT8:
+ case Instruction::USHR_INT:
+ case Instruction::USHR_INT_2ADDR:
+ lit &= 31;
+ shift_op = true;
+ op = kOpLsr;
+ break;
+
+ case Instruction::DIV_INT:
+ case Instruction::DIV_INT_2ADDR:
+ case Instruction::DIV_INT_LIT8:
+ case Instruction::DIV_INT_LIT16:
+ case Instruction::REM_INT:
+ case Instruction::REM_INT_2ADDR:
+ case Instruction::REM_INT_LIT8:
+ case Instruction::REM_INT_LIT16: {
+ if (lit == 0) {
+ GenImmedCheck(kCondAl, 0, 0, kThrowDivZero);
+ return;
+ }
+ if (HandleEasyDivide(opcode, rl_src, rl_dest, lit)) {
+ return;
+ }
+ if ((opcode == Instruction::DIV_INT_LIT8) ||
+ (opcode == Instruction::DIV_INT) ||
+ (opcode == Instruction::DIV_INT_2ADDR) ||
+ (opcode == Instruction::DIV_INT_LIT16)) {
+ is_div = true;
+ } else {
+ is_div = false;
+ }
+ if (cu_->instruction_set == kMips) {
+ rl_src = LoadValue(rl_src, kCoreReg);
+ rl_result = GenDivRemLit(rl_dest, rl_src.low_reg, lit, is_div);
+ } else {
+ FlushAllRegs(); /* Everything to home location */
+ LoadValueDirectFixed(rl_src, TargetReg(kArg0));
+ Clobber(TargetReg(kArg0));
+ int func_offset = ENTRYPOINT_OFFSET(pIdivmod);
+ CallRuntimeHelperRegImm(func_offset, TargetReg(kArg0), lit, false);
+ if (is_div)
+ rl_result = GetReturn(false);
+ else
+ rl_result = GetReturnAlt();
+ }
+ StoreValue(rl_dest, rl_result);
+ return;
+ }
+ default:
+ LOG(FATAL) << "Unexpected opcode " << opcode;
+ }
+ rl_src = LoadValue(rl_src, kCoreReg);
+ rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ // Avoid shifts by literal 0 - no support in Thumb. Change to copy
+ if (shift_op && (lit == 0)) {
+ OpRegCopy(rl_result.low_reg, rl_src.low_reg);
+ } else {
+ OpRegRegImm(op, rl_result.low_reg, rl_src.low_reg, lit);
+ }
+ StoreValue(rl_dest, rl_result);
+}
+
+void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
+ RegLocation rl_src1, RegLocation rl_src2)
+{
+ RegLocation rl_result;
+ OpKind first_op = kOpBkpt;
+ OpKind second_op = kOpBkpt;
+ bool call_out = false;
+ bool check_zero = false;
+ int func_offset;
+ int ret_reg = TargetReg(kRet0);
+
+ switch (opcode) {
+ case Instruction::NOT_LONG:
+ rl_src2 = LoadValueWide(rl_src2, kCoreReg);
+ rl_result = EvalLoc(rl_dest, kCoreReg, true);
+ // Check for destructive overlap
+ if (rl_result.low_reg == rl_src2.high_reg) {
+ int t_reg = AllocTemp();
+ OpRegCopy(t_reg, rl_src2.high_reg);
+ OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg);
+ OpRegReg(kOpMvn, rl_result.high_reg, t_reg);
+ FreeTemp(t_reg);
+ } else {
+ OpRegReg(kOpMvn, rl_result.low_reg, rl_src2.low_reg);
+ OpRegReg(kOpMvn, rl_result.high_reg, rl_src2.high_reg);
+ }
+ StoreValueWide(rl_dest, rl_result);
+ return;
+ case Instruction::ADD_LONG:
+ case Instruction::ADD_LONG_2ADDR:
+ if (cu_->instruction_set != kThumb2) {
+ GenAddLong(rl_dest, rl_src1, rl_src2);
+ return;
+ }
+ first_op = kOpAdd;
+ second_op = kOpAdc;
+ break;
+ case Instruction::SUB_LONG:
+ case Instruction::SUB_LONG_2ADDR:
+ if (cu_->instruction_set != kThumb2) {
+ GenSubLong(rl_dest, rl_src1, rl_src2);
+ return;
+ }
+ first_op = kOpSub;
+ second_op = kOpSbc;
+ break;
+ case Instruction::MUL_LONG:
+ case Instruction::MUL_LONG_2ADDR:
+ if (cu_->instruction_set == kThumb2) {
+ GenMulLong(rl_dest, rl_src1, rl_src2);
+ return;
+ } else {
+ call_out = true;
+ ret_reg = TargetReg(kRet0);
+ func_offset = ENTRYPOINT_OFFSET(pLmul);
+ }
+ break;
+ case Instruction::DIV_LONG:
+ case Instruction::DIV_LONG_2ADDR:
+ call_out = true;
+ check_zero = true;
+ ret_reg = TargetReg(kRet0);
+ func_offset = ENTRYPOINT_OFFSET(pLdiv);
+ break;
+ case Instruction::REM_LONG:
+ case Instruction::REM_LONG_2ADDR:
+ call_out = true;
+ check_zero = true;
+ func_offset = ENTRYPOINT_OFFSET(pLdivmod);
+ /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
+ ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2) : TargetReg(kRet0);
+ break;
+ case Instruction::AND_LONG_2ADDR:
+ case Instruction::AND_LONG:
+ if (cu_->instruction_set == kX86) {
+ return GenAndLong(rl_dest, rl_src1, rl_src2);
+ }
+ first_op = kOpAnd;
+ second_op = kOpAnd;
+ break;
+ case Instruction::OR_LONG:
+ case Instruction::OR_LONG_2ADDR:
+ if (cu_->instruction_set == kX86) {
+ GenOrLong(rl_dest, rl_src1, rl_src2);
+ return;
+ }
+ first_op = kOpOr;
+ second_op = kOpOr;
+ break;
+ case Instruction::XOR_LONG:
+ case Instruction::XOR_LONG_2ADDR:
+ if (cu_->instruction_set == kX86) {
+ GenXorLong(rl_dest, rl_src1, rl_src2);
+ return;
+ }
+ first_op = kOpXor;
+ second_op = kOpXor;
+ break;
+ case Instruction::NEG_LONG: {
+ GenNegLong(rl_dest, rl_src2);
+ return;
+ }
+ default:
+ LOG(FATAL) << "Invalid long arith op";
+ }
+ if (!call_out) {
+ GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
+ } else {
+ FlushAllRegs(); /* Send everything to home location */
+ if (check_zero) {
+ LoadValueDirectWideFixed(rl_src2, TargetReg(kArg2), TargetReg(kArg3));
+ int r_tgt = CallHelperSetup(func_offset);
+ GenDivZeroCheck(TargetReg(kArg2), TargetReg(kArg3));
+ LoadValueDirectWideFixed(rl_src1, TargetReg(kArg0), TargetReg(kArg1));
+ // NOTE: callout here is not a safepoint
+ CallHelper(r_tgt, func_offset, false /* not safepoint */);
+ } else {
+ CallRuntimeHelperRegLocationRegLocation(func_offset, rl_src1, rl_src2, false);
+ }
+ // Adjust return regs in to handle case of rem returning kArg2/kArg3
+ if (ret_reg == TargetReg(kRet0))
+ rl_result = GetReturnWide(false);
+ else
+ rl_result = GetReturnWideAlt();
+ StoreValueWide(rl_dest, rl_result);
+ }
+}
+
+void Mir2Lir::GenConversionCall(int func_offset,
+ RegLocation rl_dest, RegLocation rl_src)
+{
+ /*
+ * Don't optimize the register usage since it calls out to support
+ * functions
+ */
+ FlushAllRegs(); /* Send everything to home location */
+ if (rl_src.wide) {
+ LoadValueDirectWideFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0),
+ rl_src.fp ? TargetReg(kFArg1) : TargetReg(kArg1));
+ } else {
+ LoadValueDirectFixed(rl_src, rl_src.fp ? TargetReg(kFArg0) : TargetReg(kArg0));
+ }
+ CallRuntimeHelperRegLocation(func_offset, rl_src, false);
+ if (rl_dest.wide) {
+ RegLocation rl_result;
+ rl_result = GetReturnWide(rl_dest.fp);
+ StoreValueWide(rl_dest, rl_result);
+ } else {
+ RegLocation rl_result;
+ rl_result = GetReturn(rl_dest.fp);
+ StoreValue(rl_dest, rl_result);
+ }
+}
+
+/* Check if we need to check for pending suspend request */
+void Mir2Lir::GenSuspendTest(int opt_flags)
+{
+ if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
+ return;
+ }
+ FlushAllRegs();
+ LIR* branch = OpTestSuspend(NULL);
+ LIR* ret_lab = NewLIR0(kPseudoTargetLabel);
+ LIR* target = RawLIR(current_dalvik_offset_, kPseudoSuspendTarget,
+ reinterpret_cast<uintptr_t>(ret_lab), current_dalvik_offset_);
+ branch->target = target;
+ suspend_launchpads_.Insert(target);
+}
+
+/* Check if we need to check for pending suspend request */
+void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target)
+{
+ if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
+ OpUnconditionalBranch(target);
+ return;
+ }
+ OpTestSuspend(target);
+ LIR* launch_pad =
+ RawLIR(current_dalvik_offset_, kPseudoSuspendTarget,
+ reinterpret_cast<uintptr_t>(target), current_dalvik_offset_);
+ FlushAllRegs();
+ OpUnconditionalBranch(launch_pad);
+ suspend_launchpads_.Insert(launch_pad);
+}
+
+} // namespace art