1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>
#include <memory>
#include <mutex>
#include <string>
#include <android-base/stringprintf.h>
#include <unwindstack/Elf.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Maps.h>
#include <unwindstack/Memory.h>
namespace unwindstack {
bool MapInfo::InitFileMemoryFromPreviousReadOnlyMap(MemoryFileAtOffset* memory) {
// One last attempt, see if the previous map is read-only with the
// same name and stretches across this map.
if (prev_map == nullptr || prev_map->flags != PROT_READ) {
return false;
}
uint64_t map_size = end - prev_map->end;
if (!memory->Init(name, prev_map->offset, map_size)) {
return false;
}
uint64_t max_size;
if (!Elf::GetInfo(memory, &max_size) || max_size < map_size) {
return false;
}
if (!memory->Init(name, prev_map->offset, max_size)) {
return false;
}
elf_offset = offset - prev_map->offset;
elf_start_offset = prev_map->offset;
return true;
}
Memory* MapInfo::GetFileMemory() {
std::unique_ptr<MemoryFileAtOffset> memory(new MemoryFileAtOffset);
if (offset == 0) {
if (memory->Init(name, 0)) {
return memory.release();
}
return nullptr;
}
// These are the possibilities when the offset is non-zero.
// - There is an elf file embedded in a file, and the offset is the
// the start of the elf in the file.
// - There is an elf file embedded in a file, and the offset is the
// the start of the executable part of the file. The actual start
// of the elf is in the read-only segment preceeding this map.
// - The whole file is an elf file, and the offset needs to be saved.
//
// Map in just the part of the file for the map. If this is not
// a valid elf, then reinit as if the whole file is an elf file.
// If the offset is a valid elf, then determine the size of the map
// and reinit to that size. This is needed because the dynamic linker
// only maps in a portion of the original elf, and never the symbol
// file data.
uint64_t map_size = end - start;
if (!memory->Init(name, offset, map_size)) {
return nullptr;
}
// Check if the start of this map is an embedded elf.
uint64_t max_size = 0;
if (Elf::GetInfo(memory.get(), &max_size)) {
elf_start_offset = offset;
if (max_size > map_size) {
if (memory->Init(name, offset, max_size)) {
return memory.release();
}
// Try to reinit using the default map_size.
if (memory->Init(name, offset, map_size)) {
return memory.release();
}
elf_start_offset = 0;
return nullptr;
}
return memory.release();
}
// No elf at offset, try to init as if the whole file is an elf.
if (memory->Init(name, 0) && Elf::IsValidElf(memory.get())) {
elf_offset = offset;
// Need to check how to set the elf start offset. If this map is not
// the r-x map of a r-- map, then use the real offset value. Otherwise,
// use 0.
if (prev_map == nullptr || prev_map->offset != 0 || prev_map->flags != PROT_READ ||
prev_map->name != name) {
elf_start_offset = offset;
}
return memory.release();
}
// See if the map previous to this one contains a read-only map
// that represents the real start of the elf data.
if (InitFileMemoryFromPreviousReadOnlyMap(memory.get())) {
return memory.release();
}
// Failed to find elf at start of file or at read-only map, return
// file object from the current map.
if (memory->Init(name, offset, map_size)) {
return memory.release();
}
return nullptr;
}
Memory* MapInfo::CreateMemory(const std::shared_ptr<Memory>& process_memory) {
if (end <= start) {
return nullptr;
}
elf_offset = 0;
// Fail on device maps.
if (flags & MAPS_FLAGS_DEVICE_MAP) {
return nullptr;
}
// First try and use the file associated with the info.
if (!name.empty()) {
Memory* memory = GetFileMemory();
if (memory != nullptr) {
return memory;
}
}
if (process_memory == nullptr) {
return nullptr;
}
// Need to verify that this elf is valid. It's possible that
// only part of the elf file to be mapped into memory is in the executable
// map. In this case, there will be another read-only map that includes the
// first part of the elf file. This is done if the linker rosegment
// option is used.
std::unique_ptr<MemoryRange> memory(new MemoryRange(process_memory, start, end - start, 0));
if (Elf::IsValidElf(memory.get())) {
memory_backed_elf = true;
return memory.release();
}
// Find the read-only map by looking at the previous map. The linker
// doesn't guarantee that this invariant will always be true. However,
// if that changes, there is likely something else that will change and
// break something.
if (offset == 0 || name.empty() || prev_map == nullptr || prev_map->name != name ||
prev_map->offset >= offset) {
return nullptr;
}
// Make sure that relative pc values are corrected properly.
elf_offset = offset - prev_map->offset;
// Use this as the elf start offset, otherwise, you always get offsets into
// the r-x section, which is not quite the right information.
elf_start_offset = prev_map->offset;
MemoryRanges* ranges = new MemoryRanges;
ranges->Insert(
new MemoryRange(process_memory, prev_map->start, prev_map->end - prev_map->start, 0));
ranges->Insert(new MemoryRange(process_memory, start, end - start, elf_offset));
memory_backed_elf = true;
return ranges;
}
Elf* MapInfo::GetElf(const std::shared_ptr<Memory>& process_memory, ArchEnum expected_arch) {
{
// Make sure no other thread is trying to add the elf to this map.
std::lock_guard<std::mutex> guard(mutex_);
if (elf.get() != nullptr) {
return elf.get();
}
bool locked = false;
if (Elf::CachingEnabled() && !name.empty()) {
Elf::CacheLock();
locked = true;
if (Elf::CacheGet(this)) {
Elf::CacheUnlock();
return elf.get();
}
}
Memory* memory = CreateMemory(process_memory);
if (locked) {
if (Elf::CacheAfterCreateMemory(this)) {
delete memory;
Elf::CacheUnlock();
return elf.get();
}
}
elf.reset(new Elf(memory));
// If the init fails, keep the elf around as an invalid object so we
// don't try to reinit the object.
elf->Init();
if (elf->valid() && expected_arch != elf->arch()) {
// Make the elf invalid, mismatch between arch and expected arch.
elf->Invalidate();
}
if (locked) {
Elf::CacheAdd(this);
Elf::CacheUnlock();
}
}
// If there is a read-only map then a read-execute map that represents the
// same elf object, make sure the previous map is using the same elf
// object if it hasn't already been set.
if (prev_map != nullptr && elf_start_offset != offset && prev_map->offset == elf_start_offset &&
prev_map->name == name) {
std::lock_guard<std::mutex> guard(prev_map->mutex_);
if (prev_map->elf.get() == nullptr) {
prev_map->elf = elf;
prev_map->memory_backed_elf = memory_backed_elf;
}
}
return elf.get();
}
bool MapInfo::GetFunctionName(uint64_t addr, std::string* name, uint64_t* func_offset) {
{
// Make sure no other thread is trying to update this elf object.
std::lock_guard<std::mutex> guard(mutex_);
if (elf == nullptr) {
return false;
}
}
// No longer need the lock, once the elf object is created, it is not deleted
// until this object is deleted.
return elf->GetFunctionName(addr, name, func_offset);
}
uint64_t MapInfo::GetLoadBias(const std::shared_ptr<Memory>& process_memory) {
uint64_t cur_load_bias = load_bias.load();
if (cur_load_bias != static_cast<uint64_t>(-1)) {
return cur_load_bias;
}
{
// Make sure no other thread is trying to add the elf to this map.
std::lock_guard<std::mutex> guard(mutex_);
if (elf != nullptr) {
if (elf->valid()) {
cur_load_bias = elf->GetLoadBias();
load_bias = cur_load_bias;
return cur_load_bias;
} else {
load_bias = 0;
return 0;
}
}
}
// Call lightweight static function that will only read enough of the
// elf data to get the load bias.
std::unique_ptr<Memory> memory(CreateMemory(process_memory));
cur_load_bias = Elf::GetLoadBias(memory.get());
load_bias = cur_load_bias;
return cur_load_bias;
}
MapInfo::~MapInfo() {
uintptr_t id = build_id.load();
if (id != 0) {
delete reinterpret_cast<std::string*>(id);
}
}
std::string MapInfo::GetBuildID() {
uintptr_t id = build_id.load();
if (build_id != 0) {
return *reinterpret_cast<std::string*>(id);
}
// No need to lock, at worst if multiple threads do this at the same
// time it should be detected and only one thread should win and
// save the data.
std::unique_ptr<std::string> cur_build_id(new std::string);
// Now need to see if the elf object exists.
// Make sure no other thread is trying to add the elf to this map.
mutex_.lock();
Elf* elf_obj = elf.get();
mutex_.unlock();
if (elf_obj != nullptr) {
*cur_build_id = elf_obj->GetBuildID();
} else {
// This will only work if we can get the file associated with this memory.
// If this is only available in memory, then the section name information
// is not present and we will not be able to find the build id info.
std::unique_ptr<Memory> memory(GetFileMemory());
if (memory != nullptr) {
*cur_build_id = Elf::GetBuildID(memory.get());
}
}
id = reinterpret_cast<uintptr_t>(cur_build_id.get());
uintptr_t expected_id = 0;
if (build_id.compare_exchange_weak(expected_id, id)) {
// Value saved, so make sure the memory is not freed.
cur_build_id.release();
}
return *reinterpret_cast<std::string*>(id);
}
std::string MapInfo::GetPrintableBuildID() {
std::string raw_build_id = GetBuildID();
if (raw_build_id.empty()) {
return "";
}
std::string printable_build_id;
for (const char& c : raw_build_id) {
// Use %hhx to avoid sign extension on abis that have signed chars.
printable_build_id += android::base::StringPrintf("%02hhx", c);
}
return printable_build_id;
}
} // namespace unwindstack
|