summaryrefslogtreecommitdiffstats
path: root/libunwindstack/DwarfSection.cpp
blob: 22921684a32bc0d1ec274729e85d991954a9429b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
/*
 * Copyright (C) 2017 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <stdint.h>

#include <unwindstack/DwarfLocation.h>
#include <unwindstack/DwarfMemory.h>
#include <unwindstack/DwarfSection.h>
#include <unwindstack/DwarfStructs.h>
#include <unwindstack/Log.h>
#include <unwindstack/Memory.h>
#include <unwindstack/Regs.h>

#include "DwarfCfa.h"
#include "DwarfEncoding.h"
#include "DwarfError.h"
#include "DwarfOp.h"

namespace unwindstack {

DwarfSection::DwarfSection(Memory* memory) : memory_(memory), last_error_(DWARF_ERROR_NONE) {}

const DwarfFde* DwarfSection::GetFdeFromPc(uint64_t pc) {
  uint64_t fde_offset;
  if (!GetFdeOffsetFromPc(pc, &fde_offset)) {
    return nullptr;
  }
  const DwarfFde* fde = GetFdeFromOffset(fde_offset);
  // Guaranteed pc >= pc_start, need to check pc in the fde range.
  if (pc < fde->pc_end) {
    return fde;
  }
  last_error_ = DWARF_ERROR_ILLEGAL_STATE;
  return nullptr;
}

bool DwarfSection::Step(uint64_t pc, Regs* regs, Memory* process_memory, bool* finished) {
  last_error_ = DWARF_ERROR_NONE;
  const DwarfFde* fde = GetFdeFromPc(pc);
  if (fde == nullptr || fde->cie == nullptr) {
    last_error_ = DWARF_ERROR_ILLEGAL_STATE;
    return false;
  }

  // Now get the location information for this pc.
  dwarf_loc_regs_t loc_regs;
  if (!GetCfaLocationInfo(pc, fde, &loc_regs)) {
    return false;
  }

  // Now eval the actual registers.
  return Eval(fde->cie, process_memory, loc_regs, regs, finished);
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::EvalExpression(const DwarfLocation& loc, uint8_t version,
                                                   Memory* regular_memory, AddressType* value) {
  DwarfOp<AddressType> op(&memory_, regular_memory);

  // Need to evaluate the op data.
  uint64_t start = loc.values[1];
  uint64_t end = start + loc.values[0];
  if (!op.Eval(start, end, version)) {
    last_error_ = op.last_error();
    return false;
  }
  if (op.StackSize() == 0) {
    last_error_ = DWARF_ERROR_ILLEGAL_STATE;
    return false;
  }
  // We don't support an expression that evaluates to a register number.
  if (op.is_register()) {
    last_error_ = DWARF_ERROR_NOT_IMPLEMENTED;
    return false;
  }
  *value = op.StackAt(0);
  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::Eval(const DwarfCie* cie, Memory* regular_memory,
                                         const dwarf_loc_regs_t& loc_regs, Regs* regs,
                                         bool* finished) {
  RegsImpl<AddressType>* cur_regs = reinterpret_cast<RegsImpl<AddressType>*>(regs);
  if (cie->return_address_register >= cur_regs->total_regs()) {
    last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
    return false;
  }

  // Get the cfa value;
  auto cfa_entry = loc_regs.find(CFA_REG);
  if (cfa_entry == loc_regs.end()) {
    last_error_ = DWARF_ERROR_CFA_NOT_DEFINED;
    return false;
  }

  AddressType prev_cfa = regs->sp();

  AddressType cfa;
  const DwarfLocation* loc = &cfa_entry->second;
  // Only a few location types are valid for the cfa.
  switch (loc->type) {
    case DWARF_LOCATION_REGISTER:
      if (loc->values[0] >= cur_regs->total_regs()) {
        last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
        return false;
      }
      // If the stack pointer register is the CFA, and the stack
      // pointer register does not have any associated location
      // information, use the current cfa value.
      if (regs->sp_reg() == loc->values[0] && loc_regs.count(regs->sp_reg()) == 0) {
        cfa = prev_cfa;
      } else {
        cfa = (*cur_regs)[loc->values[0]];
      }
      cfa += loc->values[1];
      break;
    case DWARF_LOCATION_EXPRESSION:
    case DWARF_LOCATION_VAL_EXPRESSION: {
      AddressType value;
      if (!EvalExpression(*loc, cie->version, regular_memory, &value)) {
        return false;
      }
      if (loc->type == DWARF_LOCATION_EXPRESSION) {
        if (!regular_memory->Read(value, &cfa, sizeof(AddressType))) {
          last_error_ = DWARF_ERROR_MEMORY_INVALID;
          return false;
        }
      } else {
        cfa = value;
      }
      break;
    }
    default:
      last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
  }

  // This code is not guaranteed to work in cases where a register location
  // is a double indirection to the actual value. For example, if r3 is set
  // to r5 + 4, and r5 is set to CFA + 4, then this won't necessarily work
  // because it does not guarantee that r5 is evaluated before r3.
  // Check that this case does not exist, and error if it does.
  bool return_address_undefined = false;
  for (const auto& entry : loc_regs) {
    uint16_t reg = entry.first;
    // Already handled the CFA register.
    if (reg == CFA_REG) continue;

    if (reg >= cur_regs->total_regs()) {
      // Skip this unknown register.
      continue;
    }

    const DwarfLocation* loc = &entry.second;
    switch (loc->type) {
      case DWARF_LOCATION_OFFSET:
        if (!regular_memory->Read(cfa + loc->values[0], &(*cur_regs)[reg], sizeof(AddressType))) {
          last_error_ = DWARF_ERROR_MEMORY_INVALID;
          return false;
        }
        break;
      case DWARF_LOCATION_VAL_OFFSET:
        (*cur_regs)[reg] = cfa + loc->values[0];
        break;
      case DWARF_LOCATION_REGISTER: {
        uint16_t cur_reg = loc->values[0];
        if (cur_reg >= cur_regs->total_regs()) {
          last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
          return false;
        }
        if (loc_regs.find(cur_reg) != loc_regs.end()) {
          // This is a double indirection, a register definition references
          // another register which is also defined as something other
          // than a register.
          log(0,
              "Invalid indirection: register %d references register %d which is "
              "not a plain register.\n",
              reg, cur_reg);
          last_error_ = DWARF_ERROR_ILLEGAL_STATE;
          return false;
        }
        (*cur_regs)[reg] = (*cur_regs)[cur_reg] + loc->values[1];
        break;
      }
      case DWARF_LOCATION_EXPRESSION:
      case DWARF_LOCATION_VAL_EXPRESSION: {
        AddressType value;
        if (!EvalExpression(*loc, cie->version, regular_memory, &value)) {
          return false;
        }
        if (loc->type == DWARF_LOCATION_EXPRESSION) {
          if (!regular_memory->Read(value, &(*cur_regs)[reg], sizeof(AddressType))) {
            last_error_ = DWARF_ERROR_MEMORY_INVALID;
            return false;
          }
        } else {
          (*cur_regs)[reg] = value;
        }
        break;
      }
      case DWARF_LOCATION_UNDEFINED:
        if (reg == cie->return_address_register) {
          return_address_undefined = true;
        }
      default:
        break;
    }
  }

  // Find the return address location.
  if (return_address_undefined) {
    cur_regs->set_pc(0);
  } else {
    cur_regs->set_pc((*cur_regs)[cie->return_address_register]);
  }

  // If the pc was set to zero, consider this the final frame.
  *finished = (cur_regs->pc() == 0) ? true : false;

  cur_regs->set_sp(cfa);

  return true;
}

template <typename AddressType>
const DwarfCie* DwarfSectionImpl<AddressType>::GetCie(uint64_t offset) {
  auto cie_entry = cie_entries_.find(offset);
  if (cie_entry != cie_entries_.end()) {
    return &cie_entry->second;
  }
  DwarfCie* cie = &cie_entries_[offset];
  memory_.set_cur_offset(offset);
  if (!FillInCie(cie)) {
    // Erase the cached entry.
    cie_entries_.erase(offset);
    return nullptr;
  }
  return cie;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::FillInCie(DwarfCie* cie) {
  uint32_t length32;
  if (!memory_.ReadBytes(&length32, sizeof(length32))) {
    last_error_ = DWARF_ERROR_MEMORY_INVALID;
    return false;
  }
  // Set the default for the lsda encoding.
  cie->lsda_encoding = DW_EH_PE_omit;

  if (length32 == static_cast<uint32_t>(-1)) {
    // 64 bit Cie
    uint64_t length64;
    if (!memory_.ReadBytes(&length64, sizeof(length64))) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }

    cie->cfa_instructions_end = memory_.cur_offset() + length64;
    cie->fde_address_encoding = DW_EH_PE_sdata8;

    uint64_t cie_id;
    if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }
    if (!IsCie64(cie_id)) {
      // This is not a Cie, something has gone horribly wrong.
      last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
    }
  } else {
    // 32 bit Cie
    cie->cfa_instructions_end = memory_.cur_offset() + length32;
    cie->fde_address_encoding = DW_EH_PE_sdata4;

    uint32_t cie_id;
    if (!memory_.ReadBytes(&cie_id, sizeof(cie_id))) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }
    if (!IsCie32(cie_id)) {
      // This is not a Cie, something has gone horribly wrong.
      last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
    }
  }

  if (!memory_.ReadBytes(&cie->version, sizeof(cie->version))) {
    last_error_ = DWARF_ERROR_MEMORY_INVALID;
    return false;
  }

  if (cie->version != 1 && cie->version != 3 && cie->version != 4) {
    // Unrecognized version.
    last_error_ = DWARF_ERROR_UNSUPPORTED_VERSION;
    return false;
  }

  // Read the augmentation string.
  char aug_value;
  do {
    if (!memory_.ReadBytes(&aug_value, 1)) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }
    cie->augmentation_string.push_back(aug_value);
  } while (aug_value != '\0');

  if (cie->version == 4) {
    // Skip the Address Size field since we only use it for validation.
    memory_.set_cur_offset(memory_.cur_offset() + 1);

    // Segment Size
    if (!memory_.ReadBytes(&cie->segment_size, 1)) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }
  }

  // Code Alignment Factor
  if (!memory_.ReadULEB128(&cie->code_alignment_factor)) {
    last_error_ = DWARF_ERROR_MEMORY_INVALID;
    return false;
  }

  // Data Alignment Factor
  if (!memory_.ReadSLEB128(&cie->data_alignment_factor)) {
    last_error_ = DWARF_ERROR_MEMORY_INVALID;
    return false;
  }

  if (cie->version == 1) {
    // Return Address is a single byte.
    uint8_t return_address_register;
    if (!memory_.ReadBytes(&return_address_register, 1)) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }
    cie->return_address_register = return_address_register;
  } else if (!memory_.ReadULEB128(&cie->return_address_register)) {
    last_error_ = DWARF_ERROR_MEMORY_INVALID;
    return false;
  }

  if (cie->augmentation_string[0] != 'z') {
    cie->cfa_instructions_offset = memory_.cur_offset();
    return true;
  }

  uint64_t aug_length;
  if (!memory_.ReadULEB128(&aug_length)) {
    last_error_ = DWARF_ERROR_MEMORY_INVALID;
    return false;
  }
  cie->cfa_instructions_offset = memory_.cur_offset() + aug_length;

  for (size_t i = 1; i < cie->augmentation_string.size(); i++) {
    switch (cie->augmentation_string[i]) {
      case 'L':
        if (!memory_.ReadBytes(&cie->lsda_encoding, 1)) {
          last_error_ = DWARF_ERROR_MEMORY_INVALID;
          return false;
        }
        break;
      case 'P': {
        uint8_t encoding;
        if (!memory_.ReadBytes(&encoding, 1)) {
          last_error_ = DWARF_ERROR_MEMORY_INVALID;
          return false;
        }
        if (!memory_.ReadEncodedValue<AddressType>(encoding, &cie->personality_handler)) {
          last_error_ = DWARF_ERROR_MEMORY_INVALID;
          return false;
        }
      } break;
      case 'R':
        if (!memory_.ReadBytes(&cie->fde_address_encoding, 1)) {
          last_error_ = DWARF_ERROR_MEMORY_INVALID;
          return false;
        }
        break;
    }
  }
  return true;
}

template <typename AddressType>
const DwarfFde* DwarfSectionImpl<AddressType>::GetFdeFromOffset(uint64_t offset) {
  auto fde_entry = fde_entries_.find(offset);
  if (fde_entry != fde_entries_.end()) {
    return &fde_entry->second;
  }
  DwarfFde* fde = &fde_entries_[offset];
  memory_.set_cur_offset(offset);
  if (!FillInFde(fde)) {
    fde_entries_.erase(offset);
    return nullptr;
  }
  return fde;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::FillInFde(DwarfFde* fde) {
  uint32_t length32;
  if (!memory_.ReadBytes(&length32, sizeof(length32))) {
    last_error_ = DWARF_ERROR_MEMORY_INVALID;
    return false;
  }

  if (length32 == static_cast<uint32_t>(-1)) {
    // 64 bit Fde.
    uint64_t length64;
    if (!memory_.ReadBytes(&length64, sizeof(length64))) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }
    fde->cfa_instructions_end = memory_.cur_offset() + length64;

    uint64_t value64;
    if (!memory_.ReadBytes(&value64, sizeof(value64))) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }
    if (IsCie64(value64)) {
      // This is a Cie, this means something has gone wrong.
      last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
    }

    // Get the Cie pointer, which is necessary to properly read the rest of
    // of the Fde information.
    fde->cie_offset = GetCieOffsetFromFde64(value64);
  } else {
    // 32 bit Fde.
    fde->cfa_instructions_end = memory_.cur_offset() + length32;

    uint32_t value32;
    if (!memory_.ReadBytes(&value32, sizeof(value32))) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }
    if (IsCie32(value32)) {
      // This is a Cie, this means something has gone wrong.
      last_error_ = DWARF_ERROR_ILLEGAL_VALUE;
      return false;
    }

    // Get the Cie pointer, which is necessary to properly read the rest of
    // of the Fde information.
    fde->cie_offset = GetCieOffsetFromFde32(value32);
  }
  uint64_t cur_offset = memory_.cur_offset();

  const DwarfCie* cie = GetCie(fde->cie_offset);
  if (cie == nullptr) {
    return false;
  }
  fde->cie = cie;

  if (cie->segment_size != 0) {
    // Skip over the segment selector for now.
    cur_offset += cie->segment_size;
  }
  memory_.set_cur_offset(cur_offset);

  if (!memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding & 0xf, &fde->pc_start)) {
    last_error_ = DWARF_ERROR_MEMORY_INVALID;
    return false;
  }
  fde->pc_start = AdjustPcFromFde(fde->pc_start);

  if (!memory_.ReadEncodedValue<AddressType>(cie->fde_address_encoding & 0xf, &fde->pc_end)) {
    last_error_ = DWARF_ERROR_MEMORY_INVALID;
    return false;
  }
  fde->pc_end += fde->pc_start;
  if (cie->augmentation_string.size() > 0 && cie->augmentation_string[0] == 'z') {
    // Augmentation Size
    uint64_t aug_length;
    if (!memory_.ReadULEB128(&aug_length)) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }
    uint64_t cur_offset = memory_.cur_offset();

    if (!memory_.ReadEncodedValue<AddressType>(cie->lsda_encoding, &fde->lsda_address)) {
      last_error_ = DWARF_ERROR_MEMORY_INVALID;
      return false;
    }

    // Set our position to after all of the augmentation data.
    memory_.set_cur_offset(cur_offset + aug_length);
  }
  fde->cfa_instructions_offset = memory_.cur_offset();

  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::GetCfaLocationInfo(uint64_t pc, const DwarfFde* fde,
                                                       dwarf_loc_regs_t* loc_regs) {
  DwarfCfa<AddressType> cfa(&memory_, fde);

  // Look for the cached copy of the cie data.
  auto reg_entry = cie_loc_regs_.find(fde->cie_offset);
  if (reg_entry == cie_loc_regs_.end()) {
    if (!cfa.GetLocationInfo(pc, fde->cie->cfa_instructions_offset, fde->cie->cfa_instructions_end,
                             loc_regs)) {
      last_error_ = cfa.last_error();
      return false;
    }
    cie_loc_regs_[fde->cie_offset] = *loc_regs;
  }
  cfa.set_cie_loc_regs(&cie_loc_regs_[fde->cie_offset]);
  if (!cfa.GetLocationInfo(pc, fde->cfa_instructions_offset, fde->cfa_instructions_end, loc_regs)) {
    last_error_ = cfa.last_error();
    return false;
  }
  return true;
}

template <typename AddressType>
bool DwarfSectionImpl<AddressType>::Log(uint8_t indent, uint64_t pc, uint64_t load_bias,
                                        const DwarfFde* fde) {
  DwarfCfa<AddressType> cfa(&memory_, fde);

  // Always print the cie information.
  const DwarfCie* cie = fde->cie;
  if (!cfa.Log(indent, pc, load_bias, cie->cfa_instructions_offset, cie->cfa_instructions_end)) {
    last_error_ = cfa.last_error();
    return false;
  }
  if (!cfa.Log(indent, pc, load_bias, fde->cfa_instructions_offset, fde->cfa_instructions_end)) {
    last_error_ = cfa.last_error();
    return false;
  }
  return true;
}

// Explicitly instantiate DwarfSectionImpl
template class DwarfSectionImpl<uint32_t>;
template class DwarfSectionImpl<uint64_t>;

}  // namespace unwindstack