summaryrefslogtreecommitdiffstats
path: root/fs_mgr/fs_mgr.cpp
blob: f2d34c7113d77edb21d114d955d15038646bbf30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "fs_mgr.h"

#include <ctype.h>
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <libgen.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/swap.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>

#include <functional>
#include <map>
#include <memory>
#include <string>
#include <thread>
#include <utility>
#include <vector>

#include <android-base/file.h>
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android-base/strings.h>
#include <android-base/unique_fd.h>
#include <cutils/android_filesystem_config.h>
#include <cutils/android_reboot.h>
#include <cutils/partition_utils.h>
#include <cutils/properties.h>
#include <ext4_utils/ext4.h>
#include <ext4_utils/ext4_sb.h>
#include <ext4_utils/ext4_utils.h>
#include <ext4_utils/wipe.h>
#include <fs_avb/fs_avb.h>
#include <fs_mgr_overlayfs.h>
#include <libdm/dm.h>
#include <liblp/metadata_format.h>
#include <linux/fs.h>
#include <linux/loop.h>
#include <linux/magic.h>
#include <log/log_properties.h>
#include <logwrap/logwrap.h>

#include "fs_mgr_priv.h"

#define KEY_LOC_PROP   "ro.crypto.keyfile.userdata"
#define KEY_IN_FOOTER  "footer"

#define E2FSCK_BIN      "/system/bin/e2fsck"
#define F2FS_FSCK_BIN   "/system/bin/fsck.f2fs"
#define MKSWAP_BIN      "/system/bin/mkswap"
#define TUNE2FS_BIN     "/system/bin/tune2fs"

#define FSCK_LOG_FILE   "/dev/fscklogs/log"

#define ZRAM_CONF_DEV   "/sys/block/zram0/disksize"
#define ZRAM_CONF_MCS   "/sys/block/zram0/max_comp_streams"
#define ZRAM_BACK_DEV   "/sys/block/zram0/backing_dev"

#define SYSFS_EXT4_VERITY "/sys/fs/ext4/features/verity"

#define ARRAY_SIZE(a) (sizeof(a) / sizeof(*(a)))

using android::base::Basename;
using android::base::Realpath;
using android::base::StartsWith;
using android::base::unique_fd;
using android::dm::DeviceMapper;
using android::dm::DmDeviceState;

// Realistically, this file should be part of the android::fs_mgr namespace;
using namespace android::fs_mgr;

using namespace std::literals;

// record fs stat
enum FsStatFlags {
    FS_STAT_IS_EXT4 = 0x0001,
    FS_STAT_NEW_IMAGE_VERSION = 0x0002,
    FS_STAT_E2FSCK_F_ALWAYS = 0x0004,
    FS_STAT_UNCLEAN_SHUTDOWN = 0x0008,
    FS_STAT_QUOTA_ENABLED = 0x0010,
    FS_STAT_RO_MOUNT_FAILED = 0x0040,
    FS_STAT_RO_UNMOUNT_FAILED = 0x0080,
    FS_STAT_FULL_MOUNT_FAILED = 0x0100,
    FS_STAT_E2FSCK_FAILED = 0x0200,
    FS_STAT_E2FSCK_FS_FIXED = 0x0400,
    FS_STAT_INVALID_MAGIC = 0x0800,
    FS_STAT_TOGGLE_QUOTAS_FAILED = 0x10000,
    FS_STAT_SET_RESERVED_BLOCKS_FAILED = 0x20000,
    FS_STAT_ENABLE_ENCRYPTION_FAILED = 0x40000,
    FS_STAT_ENABLE_VERITY_FAILED = 0x80000,
};

// TODO: switch to inotify()
bool fs_mgr_wait_for_file(const std::string& filename,
                          const std::chrono::milliseconds relative_timeout,
                          FileWaitMode file_wait_mode) {
    auto start_time = std::chrono::steady_clock::now();

    while (true) {
        int rv = access(filename.c_str(), F_OK);
        if (file_wait_mode == FileWaitMode::Exists) {
            if (!rv || errno != ENOENT) return true;
        } else if (file_wait_mode == FileWaitMode::DoesNotExist) {
            if (rv && errno == ENOENT) return true;
        }

        std::this_thread::sleep_for(50ms);

        auto now = std::chrono::steady_clock::now();
        auto time_elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(now - start_time);
        if (time_elapsed > relative_timeout) return false;
    }
}

static void log_fs_stat(const std::string& blk_device, int fs_stat) {
    if ((fs_stat & FS_STAT_IS_EXT4) == 0) return; // only log ext4
    std::string msg =
            android::base::StringPrintf("\nfs_stat,%s,0x%x\n", blk_device.c_str(), fs_stat);
    android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(FSCK_LOG_FILE, O_WRONLY | O_CLOEXEC |
                                                        O_APPEND | O_CREAT, 0664)));
    if (fd == -1 || !android::base::WriteStringToFd(msg, fd)) {
        LWARNING << __FUNCTION__ << "() cannot log " << msg;
    }
}

static bool is_extfs(const std::string& fs_type) {
    return fs_type == "ext4" || fs_type == "ext3" || fs_type == "ext2";
}

static bool is_f2fs(const std::string& fs_type) {
    return fs_type == "f2fs";
}

static std::string realpath(const std::string& blk_device) {
    std::string real_path;
    if (!Realpath(blk_device, &real_path)) {
        real_path = blk_device;
    }
    return real_path;
}

static bool should_force_check(int fs_stat) {
    return fs_stat &
           (FS_STAT_E2FSCK_F_ALWAYS | FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED |
            FS_STAT_RO_MOUNT_FAILED | FS_STAT_RO_UNMOUNT_FAILED | FS_STAT_FULL_MOUNT_FAILED |
            FS_STAT_E2FSCK_FAILED | FS_STAT_TOGGLE_QUOTAS_FAILED |
            FS_STAT_SET_RESERVED_BLOCKS_FAILED | FS_STAT_ENABLE_ENCRYPTION_FAILED);
}

static void check_fs(const std::string& blk_device, const std::string& fs_type,
                     const std::string& target, int* fs_stat) {
    int status;
    int ret;
    long tmpmnt_flags = MS_NOATIME | MS_NOEXEC | MS_NOSUID;
    auto tmpmnt_opts = "errors=remount-ro"s;
    const char* e2fsck_argv[] = {E2FSCK_BIN, "-y", blk_device.c_str()};
    const char* e2fsck_forced_argv[] = {E2FSCK_BIN, "-f", "-y", blk_device.c_str()};

    if (*fs_stat & FS_STAT_INVALID_MAGIC) {  // will fail, so do not try
        return;
    }

    /* Check for the types of filesystems we know how to check */
    if (is_extfs(fs_type)) {
        /*
         * First try to mount and unmount the filesystem.  We do this because
         * the kernel is more efficient than e2fsck in running the journal and
         * processing orphaned inodes, and on at least one device with a
         * performance issue in the emmc firmware, it can take e2fsck 2.5 minutes
         * to do what the kernel does in about a second.
         *
         * After mounting and unmounting the filesystem, run e2fsck, and if an
         * error is recorded in the filesystem superblock, e2fsck will do a full
         * check.  Otherwise, it does nothing.  If the kernel cannot mount the
         * filesytsem due to an error, e2fsck is still run to do a full check
         * fix the filesystem.
         */
        if (!(*fs_stat & FS_STAT_FULL_MOUNT_FAILED)) {  // already tried if full mount failed
            errno = 0;
            if (fs_type == "ext4") {
                // This option is only valid with ext4
                tmpmnt_opts += ",nomblk_io_submit";
            }
            ret = mount(blk_device.c_str(), target.c_str(), fs_type.c_str(), tmpmnt_flags,
                        tmpmnt_opts.c_str());
            PINFO << __FUNCTION__ << "(): mount(" << blk_device << "," << target << "," << fs_type
                  << ")=" << ret;
            if (!ret) {
                bool umounted = false;
                int retry_count = 5;
                while (retry_count-- > 0) {
                    umounted = umount(target.c_str()) == 0;
                    if (umounted) {
                        LINFO << __FUNCTION__ << "(): unmount(" << target << ") succeeded";
                        break;
                    }
                    PERROR << __FUNCTION__ << "(): umount(" << target << ") failed";
                    if (retry_count) sleep(1);
                }
                if (!umounted) {
                    // boot may fail but continue and leave it to later stage for now.
                    PERROR << __FUNCTION__ << "(): umount(" << target << ") timed out";
                    *fs_stat |= FS_STAT_RO_UNMOUNT_FAILED;
                }
            } else {
                *fs_stat |= FS_STAT_RO_MOUNT_FAILED;
            }
        }

        /*
         * Some system images do not have e2fsck for licensing reasons
         * (e.g. recent SDK system images). Detect these and skip the check.
         */
        if (access(E2FSCK_BIN, X_OK)) {
            LINFO << "Not running " << E2FSCK_BIN << " on " << realpath(blk_device)
                  << " (executable not in system image)";
        } else {
            LINFO << "Running " << E2FSCK_BIN << " on " << realpath(blk_device);
            if (should_force_check(*fs_stat)) {
                ret = android_fork_execvp_ext(
                    ARRAY_SIZE(e2fsck_forced_argv), const_cast<char**>(e2fsck_forced_argv), &status,
                    true, LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), nullptr, 0);
            } else {
                ret = android_fork_execvp_ext(
                    ARRAY_SIZE(e2fsck_argv), const_cast<char**>(e2fsck_argv), &status, true,
                    LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), nullptr, 0);
            }

            if (ret < 0) {
                /* No need to check for error in fork, we can't really handle it now */
                LERROR << "Failed trying to run " << E2FSCK_BIN;
                *fs_stat |= FS_STAT_E2FSCK_FAILED;
            } else if (status != 0) {
                LINFO << "e2fsck returned status 0x" << std::hex << status;
                *fs_stat |= FS_STAT_E2FSCK_FS_FIXED;
            }
        }
    } else if (is_f2fs(fs_type)) {
        const char* f2fs_fsck_argv[] = {F2FS_FSCK_BIN, "-a", blk_device.c_str()};
        const char* f2fs_fsck_forced_argv[] = {F2FS_FSCK_BIN, "-f", blk_device.c_str()};

        if (should_force_check(*fs_stat)) {
            LINFO << "Running " << F2FS_FSCK_BIN << " -f " << realpath(blk_device);
            ret = android_fork_execvp_ext(
                ARRAY_SIZE(f2fs_fsck_forced_argv), const_cast<char**>(f2fs_fsck_forced_argv), &status,
                true, LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), nullptr, 0);
        } else {
            LINFO << "Running " << F2FS_FSCK_BIN << " -a " << realpath(blk_device);
            ret = android_fork_execvp_ext(
                ARRAY_SIZE(f2fs_fsck_argv), const_cast<char**>(f2fs_fsck_argv), &status, true,
                LOG_KLOG | LOG_FILE, true, const_cast<char*>(FSCK_LOG_FILE), nullptr, 0);
        }
        if (ret < 0) {
            /* No need to check for error in fork, we can't really handle it now */
            LERROR << "Failed trying to run " << F2FS_FSCK_BIN;
        }
    }

    return;
}

static ext4_fsblk_t ext4_blocks_count(const struct ext4_super_block* es) {
    return ((ext4_fsblk_t)le32_to_cpu(es->s_blocks_count_hi) << 32) |
           le32_to_cpu(es->s_blocks_count_lo);
}

static ext4_fsblk_t ext4_r_blocks_count(const struct ext4_super_block* es) {
    return ((ext4_fsblk_t)le32_to_cpu(es->s_r_blocks_count_hi) << 32) |
           le32_to_cpu(es->s_r_blocks_count_lo);
}

static bool is_ext4_superblock_valid(const struct ext4_super_block* es) {
    if (es->s_magic != EXT4_SUPER_MAGIC) return false;
    if (es->s_rev_level != EXT4_DYNAMIC_REV && es->s_rev_level != EXT4_GOOD_OLD_REV) return false;
    if (EXT4_INODES_PER_GROUP(es) == 0) return false;
    return true;
}

// Read the primary superblock from an ext4 filesystem.  On failure return
// false.  If it's not an ext4 filesystem, also set FS_STAT_INVALID_MAGIC.
static bool read_ext4_superblock(const std::string& blk_device, struct ext4_super_block* sb,
                                 int* fs_stat) {
    android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));

    if (fd < 0) {
        PERROR << "Failed to open '" << blk_device << "'";
        return false;
    }

    if (TEMP_FAILURE_RETRY(pread(fd, sb, sizeof(*sb), 1024)) != sizeof(*sb)) {
        PERROR << "Can't read '" << blk_device << "' superblock";
        return false;
    }

    if (!is_ext4_superblock_valid(sb)) {
        LINFO << "Invalid ext4 superblock on '" << blk_device << "'";
        // not a valid fs, tune2fs, fsck, and mount  will all fail.
        *fs_stat |= FS_STAT_INVALID_MAGIC;
        return false;
    }
    *fs_stat |= FS_STAT_IS_EXT4;
    LINFO << "superblock s_max_mnt_count:" << sb->s_max_mnt_count << "," << blk_device;
    if (sb->s_max_mnt_count == 0xffff) {  // -1 (int16) in ext2, but uint16 in ext4
        *fs_stat |= FS_STAT_NEW_IMAGE_VERSION;
    }
    return true;
}

// exported silent version of the above that just answer the question is_ext4
bool fs_mgr_is_ext4(const std::string& blk_device) {
    android::base::ErrnoRestorer restore;
    android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
    if (fd < 0) return false;
    ext4_super_block sb;
    if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), 1024)) != sizeof(sb)) return false;
    if (!is_ext4_superblock_valid(&sb)) return false;
    return true;
}

// Some system images do not have tune2fs for licensing reasons.
// Detect these and skip running it.
static bool tune2fs_available(void) {
    return access(TUNE2FS_BIN, X_OK) == 0;
}

static bool run_tune2fs(const char* argv[], int argc) {
    int ret;

    ret = android_fork_execvp_ext(argc, const_cast<char**>(argv), nullptr, true,
                                  LOG_KLOG | LOG_FILE, true, nullptr, nullptr, 0);
    return ret == 0;
}

// Enable/disable quota support on the filesystem if needed.
static void tune_quota(const std::string& blk_device, const FstabEntry& entry,
                       const struct ext4_super_block* sb, int* fs_stat) {
    bool has_quota = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_QUOTA)) != 0;
    bool want_quota = entry.fs_mgr_flags.quota;

    if (has_quota == want_quota) {
        return;
    }

    if (!tune2fs_available()) {
        LERROR << "Unable to " << (want_quota ? "enable" : "disable") << " quotas on " << blk_device
               << " because " TUNE2FS_BIN " is missing";
        return;
    }

    const char* argv[] = {TUNE2FS_BIN, nullptr, nullptr, blk_device.c_str()};

    if (want_quota) {
        LINFO << "Enabling quotas on " << blk_device;
        argv[1] = "-Oquota";
        argv[2] = "-Qusrquota,grpquota";
        *fs_stat |= FS_STAT_QUOTA_ENABLED;
    } else {
        LINFO << "Disabling quotas on " << blk_device;
        argv[1] = "-O^quota";
        argv[2] = "-Q^usrquota,^grpquota";
    }

    if (!run_tune2fs(argv, ARRAY_SIZE(argv))) {
        LERROR << "Failed to run " TUNE2FS_BIN " to " << (want_quota ? "enable" : "disable")
               << " quotas on " << blk_device;
        *fs_stat |= FS_STAT_TOGGLE_QUOTAS_FAILED;
    }
}

// Set the number of reserved filesystem blocks if needed.
static void tune_reserved_size(const std::string& blk_device, const FstabEntry& entry,
                               const struct ext4_super_block* sb, int* fs_stat) {
    if (entry.reserved_size == 0) {
        return;
    }

    // The size to reserve is given in the fstab, but we won't reserve more
    // than 2% of the filesystem.
    const uint64_t max_reserved_blocks = ext4_blocks_count(sb) * 0.02;
    uint64_t reserved_blocks = entry.reserved_size / EXT4_BLOCK_SIZE(sb);

    if (reserved_blocks > max_reserved_blocks) {
        LWARNING << "Reserved blocks " << reserved_blocks << " is too large; "
                 << "capping to " << max_reserved_blocks;
        reserved_blocks = max_reserved_blocks;
    }

    if ((ext4_r_blocks_count(sb) == reserved_blocks) && (sb->s_def_resgid == AID_RESERVED_DISK)) {
        return;
    }

    if (!tune2fs_available()) {
        LERROR << "Unable to set the number of reserved blocks on " << blk_device
               << " because " TUNE2FS_BIN " is missing";
        return;
    }

    LINFO << "Setting reserved block count on " << blk_device << " to " << reserved_blocks;

    auto reserved_blocks_str = std::to_string(reserved_blocks);
    auto reserved_gid_str = std::to_string(AID_RESERVED_DISK);
    const char* argv[] = {
            TUNE2FS_BIN,       "-r", reserved_blocks_str.c_str(), "-g", reserved_gid_str.c_str(),
            blk_device.c_str()};
    if (!run_tune2fs(argv, ARRAY_SIZE(argv))) {
        LERROR << "Failed to run " TUNE2FS_BIN " to set the number of reserved blocks on "
               << blk_device;
        *fs_stat |= FS_STAT_SET_RESERVED_BLOCKS_FAILED;
    }
}

// Enable file-based encryption if needed.
static void tune_encrypt(const std::string& blk_device, const FstabEntry& entry,
                         const struct ext4_super_block* sb, int* fs_stat) {
    bool has_encrypt = (sb->s_feature_incompat & cpu_to_le32(EXT4_FEATURE_INCOMPAT_ENCRYPT)) != 0;
    bool want_encrypt = entry.fs_mgr_flags.file_encryption;

    if (has_encrypt || !want_encrypt) {
        return;
    }

    if (!tune2fs_available()) {
        LERROR << "Unable to enable ext4 encryption on " << blk_device
               << " because " TUNE2FS_BIN " is missing";
        return;
    }

    const char* argv[] = {TUNE2FS_BIN, "-Oencrypt", blk_device.c_str()};

    LINFO << "Enabling ext4 encryption on " << blk_device;
    if (!run_tune2fs(argv, ARRAY_SIZE(argv))) {
        LERROR << "Failed to run " TUNE2FS_BIN " to enable "
               << "ext4 encryption on " << blk_device;
        *fs_stat |= FS_STAT_ENABLE_ENCRYPTION_FAILED;
    }
}

// Enable fs-verity if needed.
static void tune_verity(const std::string& blk_device, const FstabEntry& entry,
                        const struct ext4_super_block* sb, int* fs_stat) {
    bool has_verity = (sb->s_feature_ro_compat & cpu_to_le32(EXT4_FEATURE_RO_COMPAT_VERITY)) != 0;
    bool want_verity = entry.fs_mgr_flags.fs_verity;

    if (has_verity || !want_verity) {
        return;
    }

    std::string verity_support;
    if (!android::base::ReadFileToString(SYSFS_EXT4_VERITY, &verity_support)) {
        LERROR << "Failed to open " << SYSFS_EXT4_VERITY;
        return;
    }

    if (!(android::base::Trim(verity_support) == "supported")) {
        LERROR << "Current ext4 verity not supported by kernel";
        return;
    }

    if (!tune2fs_available()) {
        LERROR << "Unable to enable ext4 verity on " << blk_device
               << " because " TUNE2FS_BIN " is missing";
        return;
    }

    LINFO << "Enabling ext4 verity on " << blk_device;

    const char* argv[] = {TUNE2FS_BIN, "-O", "verity", blk_device.c_str()};
    if (!run_tune2fs(argv, ARRAY_SIZE(argv))) {
        LERROR << "Failed to run " TUNE2FS_BIN " to enable "
               << "ext4 verity on " << blk_device;
        *fs_stat |= FS_STAT_ENABLE_VERITY_FAILED;
    }
}

// Read the primary superblock from an f2fs filesystem.  On failure return
// false.  If it's not an f2fs filesystem, also set FS_STAT_INVALID_MAGIC.
#define F2FS_BLKSIZE 4096
#define F2FS_SUPER_OFFSET 1024
static bool read_f2fs_superblock(const std::string& blk_device, int* fs_stat) {
    android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
    __le32 sb1, sb2;

    if (fd < 0) {
        PERROR << "Failed to open '" << blk_device << "'";
        return false;
    }

    if (TEMP_FAILURE_RETRY(pread(fd, &sb1, sizeof(sb1), F2FS_SUPER_OFFSET)) != sizeof(sb1)) {
        PERROR << "Can't read '" << blk_device << "' superblock1";
        return false;
    }
    if (TEMP_FAILURE_RETRY(pread(fd, &sb2, sizeof(sb2), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
        sizeof(sb2)) {
        PERROR << "Can't read '" << blk_device << "' superblock2";
        return false;
    }

    if (sb1 != cpu_to_le32(F2FS_SUPER_MAGIC) && sb2 != cpu_to_le32(F2FS_SUPER_MAGIC)) {
        LINFO << "Invalid f2fs superblock on '" << blk_device << "'";
        *fs_stat |= FS_STAT_INVALID_MAGIC;
        return false;
    }
    return true;
}

// exported silent version of the above that just answer the question is_f2fs
bool fs_mgr_is_f2fs(const std::string& blk_device) {
    android::base::ErrnoRestorer restore;
    android::base::unique_fd fd(TEMP_FAILURE_RETRY(open(blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
    if (fd < 0) return false;
    __le32 sb;
    if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_SUPER_OFFSET)) != sizeof(sb)) {
        return false;
    }
    if (sb == cpu_to_le32(F2FS_SUPER_MAGIC)) return true;
    if (TEMP_FAILURE_RETRY(pread(fd, &sb, sizeof(sb), F2FS_BLKSIZE + F2FS_SUPER_OFFSET)) !=
        sizeof(sb)) {
        return false;
    }
    return sb == cpu_to_le32(F2FS_SUPER_MAGIC);
}

//
// Prepare the filesystem on the given block device to be mounted.
//
// If the "check" option was given in the fstab record, or it seems that the
// filesystem was uncleanly shut down, we'll run fsck on the filesystem.
//
// If needed, we'll also enable (or disable) filesystem features as specified by
// the fstab record.
//
static int prepare_fs_for_mount(const std::string& blk_device, const FstabEntry& entry) {
    int fs_stat = 0;

    if (is_extfs(entry.fs_type)) {
        struct ext4_super_block sb;

        if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
            if ((sb.s_feature_incompat & EXT4_FEATURE_INCOMPAT_RECOVER) != 0 ||
                (sb.s_state & EXT4_VALID_FS) == 0) {
                LINFO << "Filesystem on " << blk_device << " was not cleanly shutdown; "
                      << "state flags: 0x" << std::hex << sb.s_state << ", "
                      << "incompat feature flags: 0x" << std::hex << sb.s_feature_incompat;
                fs_stat |= FS_STAT_UNCLEAN_SHUTDOWN;
            }

            // Note: quotas should be enabled before running fsck.
            tune_quota(blk_device, entry, &sb, &fs_stat);
        } else {
            return fs_stat;
        }
    } else if (is_f2fs(entry.fs_type)) {
        if (!read_f2fs_superblock(blk_device, &fs_stat)) {
            return fs_stat;
        }
    }

    if (entry.fs_mgr_flags.check ||
        (fs_stat & (FS_STAT_UNCLEAN_SHUTDOWN | FS_STAT_QUOTA_ENABLED))) {
        check_fs(blk_device, entry.fs_type, entry.mount_point, &fs_stat);
    }

    if (is_extfs(entry.fs_type) &&
        (entry.reserved_size != 0 || entry.fs_mgr_flags.file_encryption ||
         entry.fs_mgr_flags.fs_verity)) {
        struct ext4_super_block sb;

        if (read_ext4_superblock(blk_device, &sb, &fs_stat)) {
            tune_reserved_size(blk_device, entry, &sb, &fs_stat);
            tune_encrypt(blk_device, entry, &sb, &fs_stat);
            tune_verity(blk_device, entry, &sb, &fs_stat);
        }
    }

    return fs_stat;
}

// Mark the given block device as read-only, using the BLKROSET ioctl.
bool fs_mgr_set_blk_ro(const std::string& blockdev, bool readonly) {
    unique_fd fd(TEMP_FAILURE_RETRY(open(blockdev.c_str(), O_RDONLY | O_CLOEXEC)));
    if (fd < 0) {
        return false;
    }

    int ON = readonly;
    return ioctl(fd, BLKROSET, &ON) == 0;
}

// Orange state means the device is unlocked, see the following link for details.
// https://source.android.com/security/verifiedboot/verified-boot#device_state
bool fs_mgr_is_device_unlocked() {
    std::string verified_boot_state;
    if (fs_mgr_get_boot_config("verifiedbootstate", &verified_boot_state)) {
        return verified_boot_state == "orange";
    }
    return false;
}

// __mount(): wrapper around the mount() system call which also
// sets the underlying block device to read-only if the mount is read-only.
// See "man 2 mount" for return values.
static int __mount(const std::string& source, const std::string& target, const FstabEntry& entry) {
    // We need this because sometimes we have legacy symlinks that are
    // lingering around and need cleaning up.
    struct stat info;
    if (lstat(target.c_str(), &info) == 0 && (info.st_mode & S_IFMT) == S_IFLNK) {
        unlink(target.c_str());
    }
    mkdir(target.c_str(), 0755);
    errno = 0;
    unsigned long mountflags = entry.flags;
    int ret = 0;
    int save_errno = 0;
    do {
        if (save_errno == EAGAIN) {
            PINFO << "Retrying mount (source=" << source << ",target=" << target
                  << ",type=" << entry.fs_type << ")=" << ret << "(" << save_errno << ")";
        }
        ret = mount(source.c_str(), target.c_str(), entry.fs_type.c_str(), mountflags,
                    entry.fs_options.c_str());
        save_errno = errno;
    } while (ret && save_errno == EAGAIN);
    const char* target_missing = "";
    const char* source_missing = "";
    if (save_errno == ENOENT) {
        if (access(target.c_str(), F_OK)) {
            target_missing = "(missing)";
        } else if (access(source.c_str(), F_OK)) {
            source_missing = "(missing)";
        }
        errno = save_errno;
    }
    PINFO << __FUNCTION__ << "(source=" << source << source_missing << ",target=" << target
          << target_missing << ",type=" << entry.fs_type << ")=" << ret;
#ifndef SKIP_SET_BLK_RO
    if ((ret == 0) && (mountflags & MS_RDONLY) != 0) {
        fs_mgr_set_blk_ro(source);
    }
#endif
    errno = save_errno;
    return ret;
}

static bool fs_match(const std::string& in1, const std::string& in2) {
    if (in1.empty() || in2.empty()) {
        return false;
    }

    auto in1_end = in1.size() - 1;
    while (in1_end > 0 && in1[in1_end] == '/') {
        in1_end--;
    }

    auto in2_end = in2.size() - 1;
    while (in2_end > 0 && in2[in2_end] == '/') {
        in2_end--;
    }

    if (in1_end != in2_end) {
        return false;
    }

    for (size_t i = 0; i <= in1_end; ++i) {
        if (in1[i] != in2[i]) {
            return false;
        }
    }

    return true;
}

// Tries to mount any of the consecutive fstab entries that match
// the mountpoint of the one given by fstab[start_idx].
//
// end_idx: On return, will be the last entry that was looked at.
// attempted_idx: On return, will indicate which fstab entry
//     succeeded. In case of failure, it will be the start_idx.
// Sets errno to match the 1st mount failure on failure.
static bool mount_with_alternatives(const Fstab& fstab, int start_idx, int* end_idx,
                                    int* attempted_idx) {
    unsigned long i;
    int mount_errno = 0;
    bool mounted = false;

    // Hunt down an fstab entry for the same mount point that might succeed.
    for (i = start_idx;
         // We required that fstab entries for the same mountpoint be consecutive.
         i < fstab.size() && fstab[start_idx].mount_point == fstab[i].mount_point; i++) {
        // Don't try to mount/encrypt the same mount point again.
        // Deal with alternate entries for the same point which are required to be all following
        // each other.
        if (mounted) {
            LERROR << __FUNCTION__ << "(): skipping fstab dup mountpoint=" << fstab[i].mount_point
                   << " rec[" << i << "].fs_type=" << fstab[i].fs_type << " already mounted as "
                   << fstab[*attempted_idx].fs_type;
            continue;
        }

        int fs_stat = prepare_fs_for_mount(fstab[i].blk_device, fstab[i]);
        if (fs_stat & FS_STAT_INVALID_MAGIC) {
            LERROR << __FUNCTION__
                   << "(): skipping mount due to invalid magic, mountpoint=" << fstab[i].mount_point
                   << " blk_dev=" << realpath(fstab[i].blk_device) << " rec[" << i
                   << "].fs_type=" << fstab[i].fs_type;
            mount_errno = EINVAL;  // continue bootup for FDE
            continue;
        }

        int retry_count = 2;
        while (retry_count-- > 0) {
            if (!__mount(fstab[i].blk_device, fstab[i].mount_point, fstab[i])) {
                *attempted_idx = i;
                mounted = true;
                if (i != start_idx) {
                    LERROR << __FUNCTION__ << "(): Mounted " << fstab[i].blk_device << " on "
                           << fstab[i].mount_point << " with fs_type=" << fstab[i].fs_type
                           << " instead of " << fstab[start_idx].fs_type;
                }
                fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
                mount_errno = 0;
                break;
            } else {
                if (retry_count <= 0) break;  // run check_fs only once
                fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
                // back up the first errno for crypto decisions.
                if (mount_errno == 0) {
                    mount_errno = errno;
                }
                // retry after fsck
                check_fs(fstab[i].blk_device, fstab[i].fs_type, fstab[i].mount_point, &fs_stat);
            }
        }
        log_fs_stat(fstab[i].blk_device, fs_stat);
    }

    /* Adjust i for the case where it was still withing the recs[] */
    if (i < fstab.size()) --i;

    *end_idx = i;
    if (!mounted) {
        *attempted_idx = start_idx;
        errno = mount_errno;
        return false;
    }
    return true;
}

static bool TranslateExtLabels(FstabEntry* entry) {
    if (!StartsWith(entry->blk_device, "LABEL=")) {
        return true;
    }

    std::string label = entry->blk_device.substr(6);
    if (label.size() > 16) {
        LERROR << "FS label is longer than allowed by filesystem";
        return false;
    }

    auto blockdir = std::unique_ptr<DIR, decltype(&closedir)>{opendir("/dev/block"), closedir};
    if (!blockdir) {
        LERROR << "couldn't open /dev/block";
        return false;
    }

    struct dirent* ent;
    while ((ent = readdir(blockdir.get()))) {
        if (ent->d_type != DT_BLK)
            continue;

        unique_fd fd(TEMP_FAILURE_RETRY(
                openat(dirfd(blockdir.get()), ent->d_name, O_RDONLY | O_CLOEXEC)));
        if (fd < 0) {
            LERROR << "Cannot open block device /dev/block/" << ent->d_name;
            return false;
        }

        ext4_super_block super_block;
        if (TEMP_FAILURE_RETRY(lseek(fd, 1024, SEEK_SET)) < 0 ||
            TEMP_FAILURE_RETRY(read(fd, &super_block, sizeof(super_block))) !=
                    sizeof(super_block)) {
            // Probably a loopback device or something else without a readable superblock.
            continue;
        }

        if (super_block.s_magic != EXT4_SUPER_MAGIC) {
            LINFO << "/dev/block/" << ent->d_name << " not ext{234}";
            continue;
        }

        if (label == super_block.s_volume_name) {
            std::string new_blk_device = "/dev/block/"s + ent->d_name;

            LINFO << "resolved label " << entry->blk_device << " to " << new_blk_device;

            entry->blk_device = new_blk_device;
            return true;
        }
    }

    return false;
}

static bool needs_block_encryption(const FstabEntry& entry) {
    if (android::base::GetBoolProperty("ro.vold.forceencryption", false) && entry.is_encryptable())
        return true;
    if (entry.fs_mgr_flags.force_crypt) return true;
    if (entry.fs_mgr_flags.crypt) {
        // Check for existence of convert_fde breadcrumb file.
        auto convert_fde_name = entry.mount_point + "/misc/vold/convert_fde";
        if (access(convert_fde_name.c_str(), F_OK) == 0) return true;
    }
    if (entry.fs_mgr_flags.force_fde_or_fbe) {
        // Check for absence of convert_fbe breadcrumb file.
        auto convert_fbe_name = entry.mount_point + "/convert_fbe";
        if (access(convert_fbe_name.c_str(), F_OK) != 0) return true;
    }
    return false;
}

static bool should_use_metadata_encryption(const FstabEntry& entry) {
    return !entry.key_dir.empty() &&
           (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe);
}

// Check to see if a mountable volume has encryption requirements
static int handle_encryptable(const FstabEntry& entry) {
    // If this is block encryptable, need to trigger encryption.
    if (needs_block_encryption(entry)) {
        if (umount(entry.mount_point.c_str()) == 0) {
            return FS_MGR_MNTALL_DEV_NEEDS_ENCRYPTION;
        } else {
            PWARNING << "Could not umount " << entry.mount_point << " - allow continue unencrypted";
            return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
        }
    } else if (should_use_metadata_encryption(entry)) {
        if (umount(entry.mount_point.c_str()) == 0) {
            return FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION;
        } else {
            PERROR << "Could not umount " << entry.mount_point << " - fail since can't encrypt";
            return FS_MGR_MNTALL_FAIL;
        }
    } else if (entry.fs_mgr_flags.file_encryption || entry.fs_mgr_flags.force_fde_or_fbe) {
        LINFO << entry.mount_point << " is file encrypted";
        return FS_MGR_MNTALL_DEV_FILE_ENCRYPTED;
    } else if (entry.is_encryptable()) {
        return FS_MGR_MNTALL_DEV_NOT_ENCRYPTED;
    } else {
        return FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
    }
}

static bool call_vdc(const std::vector<std::string>& args) {
    std::vector<char const*> argv;
    argv.emplace_back("/system/bin/vdc");
    for (auto& arg : args) {
        argv.emplace_back(arg.c_str());
    }
    LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
    int ret =
            android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), nullptr, false, true);
    if (ret != 0) {
        LOG(ERROR) << "vdc returned error code: " << ret;
        return false;
    }
    LOG(DEBUG) << "vdc finished successfully";
    return true;
}

static bool call_vdc_ret(const std::vector<std::string>& args, int* ret) {
    std::vector<char const*> argv;
    argv.emplace_back("/system/bin/vdc");
    for (auto& arg : args) {
        argv.emplace_back(arg.c_str());
    }
    LOG(INFO) << "Calling: " << android::base::Join(argv, ' ');
    int err = android_fork_execvp(argv.size(), const_cast<char**>(argv.data()), ret, false, true);
    if (err != 0) {
        LOG(ERROR) << "vdc call failed with error code: " << err;
        return false;
    }
    LOG(DEBUG) << "vdc finished successfully";
    *ret = WEXITSTATUS(*ret);
    return true;
}

bool fs_mgr_update_logical_partition(FstabEntry* entry) {
    // Logical partitions are specified with a named partition rather than a
    // block device, so if the block device is a path, then it has already
    // been updated.
    if (entry->blk_device[0] == '/') {
        return true;
    }

    DeviceMapper& dm = DeviceMapper::Instance();
    std::string device_name;
    if (!dm.GetDmDevicePathByName(entry->blk_device, &device_name)) {
        return false;
    }

    entry->blk_device = device_name;
    return true;
}

class CheckpointManager {
  public:
    CheckpointManager(int needs_checkpoint = -1) : needs_checkpoint_(needs_checkpoint) {}

    bool Update(FstabEntry* entry, const std::string& block_device = std::string()) {
        if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) {
            return true;
        }

        if (entry->fs_mgr_flags.checkpoint_blk) {
            call_vdc({"checkpoint", "restoreCheckpoint", entry->blk_device});
        }

        if (needs_checkpoint_ == UNKNOWN &&
            !call_vdc_ret({"checkpoint", "needsCheckpoint"}, &needs_checkpoint_)) {
            LERROR << "Failed to find if checkpointing is needed. Assuming no.";
            needs_checkpoint_ = NO;
        }

        if (needs_checkpoint_ != YES) {
            return true;
        }

        if (!UpdateCheckpointPartition(entry, block_device)) {
            LERROR << "Could not set up checkpoint partition, skipping!";
            return false;
        }

        return true;
    }

    bool Revert(FstabEntry* entry) {
        if (!entry->fs_mgr_flags.checkpoint_blk && !entry->fs_mgr_flags.checkpoint_fs) {
            return true;
        }

        if (device_map_.find(entry->blk_device) == device_map_.end()) {
            return true;
        }

        std::string bow_device = entry->blk_device;
        entry->blk_device = device_map_[bow_device];
        device_map_.erase(bow_device);

        DeviceMapper& dm = DeviceMapper::Instance();
        if (!dm.DeleteDevice("bow")) {
            PERROR << "Failed to remove bow device";
        }

        return true;
    }

  private:
    bool UpdateCheckpointPartition(FstabEntry* entry, const std::string& block_device) {
        if (entry->fs_mgr_flags.checkpoint_fs) {
            if (is_f2fs(entry->fs_type)) {
                entry->fs_options += ",checkpoint=disable";
            } else {
                LERROR << entry->fs_type << " does not implement checkpoints.";
            }
        } else if (entry->fs_mgr_flags.checkpoint_blk) {
            auto actual_block_device = block_device.empty() ? entry->blk_device : block_device;
            if (fs_mgr_find_bow_device(actual_block_device).empty()) {
                unique_fd fd(
                        TEMP_FAILURE_RETRY(open(entry->blk_device.c_str(), O_RDONLY | O_CLOEXEC)));
                if (fd < 0) {
                    PERROR << "Cannot open device " << entry->blk_device;
                    return false;
                }

                uint64_t size = get_block_device_size(fd) / 512;
                if (!size) {
                    PERROR << "Cannot get device size";
                    return false;
                }

                android::dm::DmTable table;
                if (!table.AddTarget(std::make_unique<android::dm::DmTargetBow>(
                            0, size, entry->blk_device))) {
                    LERROR << "Failed to add bow target";
                    return false;
                }

                DeviceMapper& dm = DeviceMapper::Instance();
                if (!dm.CreateDevice("bow", table)) {
                    PERROR << "Failed to create bow device";
                    return false;
                }

                std::string name;
                if (!dm.GetDmDevicePathByName("bow", &name)) {
                    PERROR << "Failed to get bow device name";
                    return false;
                }

                device_map_[name] = entry->blk_device;
                entry->blk_device = name;
            }
        }
        return true;
    }

    enum { UNKNOWN = -1, NO = 0, YES = 1 };
    int needs_checkpoint_;
    std::map<std::string, std::string> device_map_;
};

std::string fs_mgr_find_bow_device(const std::string& block_device) {
    if (block_device.substr(0, 5) != "/dev/") {
        LOG(ERROR) << "Expected block device, got " << block_device;
        return std::string();
    }

    std::string sys_dir = std::string("/sys/") + block_device.substr(5);

    for (;;) {
        std::string name;
        if (!android::base::ReadFileToString(sys_dir + "/dm/name", &name)) {
            PLOG(ERROR) << block_device << " is not dm device";
            return std::string();
        }

        if (name == "bow\n") return sys_dir;

        std::string slaves = sys_dir + "/slaves";
        std::unique_ptr<DIR, decltype(&closedir)> directory(opendir(slaves.c_str()), closedir);
        if (!directory) {
            PLOG(ERROR) << "Can't open slave directory " << slaves;
            return std::string();
        }

        int count = 0;
        for (dirent* entry = readdir(directory.get()); entry; entry = readdir(directory.get())) {
            if (entry->d_type != DT_LNK) continue;

            if (count == 1) {
                LOG(ERROR) << "Too many slaves in " << slaves;
                return std::string();
            }

            ++count;
            sys_dir = std::string("/sys/block/") + entry->d_name;
        }

        if (count != 1) {
            LOG(ERROR) << "No slave in " << slaves;
            return std::string();
        }
    }
}

static bool IsMountPointMounted(const std::string& mount_point) {
    // Check if this is already mounted.
    Fstab fstab;
    if (!ReadFstabFromFile("/proc/mounts", &fstab)) {
        return false;
    }
    return GetEntryForMountPoint(&fstab, mount_point) != nullptr;
}

// When multiple fstab records share the same mount_point, it will try to mount each
// one in turn, and ignore any duplicates after a first successful mount.
// Returns -1 on error, and  FS_MGR_MNTALL_* otherwise.
int fs_mgr_mount_all(Fstab* fstab, int mount_mode) {
    int encryptable = FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE;
    int error_count = 0;
    CheckpointManager checkpoint_manager;
    AvbUniquePtr avb_handle(nullptr);

    if (fstab->empty()) {
        return FS_MGR_MNTALL_FAIL;
    }

    for (size_t i = 0; i < fstab->size(); i++) {
        auto& current_entry = (*fstab)[i];

        // If a filesystem should have been mounted in the first stage, we
        // ignore it here. With one exception, if the filesystem is
        // formattable, then it can only be formatted in the second stage,
        // so we allow it to mount here.
        if (current_entry.fs_mgr_flags.first_stage_mount &&
            (!current_entry.fs_mgr_flags.formattable ||
             IsMountPointMounted(current_entry.mount_point))) {
            continue;
        }

        // Don't mount entries that are managed by vold or not for the mount mode.
        if (current_entry.fs_mgr_flags.vold_managed || current_entry.fs_mgr_flags.recovery_only ||
            ((mount_mode == MOUNT_MODE_LATE) && !current_entry.fs_mgr_flags.late_mount) ||
            ((mount_mode == MOUNT_MODE_EARLY) && current_entry.fs_mgr_flags.late_mount)) {
            continue;
        }

        // Skip swap and raw partition entries such as boot, recovery, etc.
        if (current_entry.fs_type == "swap" || current_entry.fs_type == "emmc" ||
            current_entry.fs_type == "mtd") {
            continue;
        }

        // Skip mounting the root partition, as it will already have been mounted.
        if (current_entry.mount_point == "/" || current_entry.mount_point == "/system") {
#ifndef SKIP_SET_BLK_RO
            if ((current_entry.flags & MS_RDONLY) != 0) {
                fs_mgr_set_blk_ro(current_entry.blk_device);
            }
#endif
            continue;
        }

        // Translate LABEL= file system labels into block devices.
        if (is_extfs(current_entry.fs_type)) {
            if (!TranslateExtLabels(&current_entry)) {
                LERROR << "Could not translate label to block device";
                continue;
            }
        }

        if (current_entry.fs_mgr_flags.logical) {
            if (!fs_mgr_update_logical_partition(&current_entry)) {
                LERROR << "Could not set up logical partition, skipping!";
                continue;
            }
        }

        if (!checkpoint_manager.Update(&current_entry)) {
            continue;
        }

        if (current_entry.fs_mgr_flags.wait &&
            !fs_mgr_wait_for_file(current_entry.blk_device, 20s)) {
            LERROR << "Skipping '" << current_entry.blk_device << "' during mount_all";
            continue;
        }

        if (current_entry.fs_mgr_flags.avb) {
            if (!avb_handle) {
                avb_handle = AvbHandle::Open();
                if (!avb_handle) {
                    LERROR << "Failed to open AvbHandle";
                    return FS_MGR_MNTALL_FAIL;
                }
            }
            if (avb_handle->SetUpAvbHashtree(&current_entry, true /* wait_for_verity_dev */) ==
                AvbHashtreeResult::kFail) {
                LERROR << "Failed to set up AVB on partition: " << current_entry.mount_point
                       << ", skipping!";
                // Skips mounting the device.
                continue;
            }
        } else if (!current_entry.avb_keys.empty()) {
            if (AvbHandle::SetUpStandaloneAvbHashtree(&current_entry) == AvbHashtreeResult::kFail) {
                LERROR << "Failed to set up AVB on standalone partition: "
                       << current_entry.mount_point << ", skipping!";
                // Skips mounting the device.
                continue;
            }
        } else if ((current_entry.fs_mgr_flags.verify)) {
            int rc = fs_mgr_setup_verity(&current_entry, true);
            if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
                LINFO << "Verity disabled";
            } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
                LERROR << "Could not set up verified partition, skipping!";
                continue;
            }
        }

        int last_idx_inspected;
        int top_idx = i;
        int attempted_idx = -1;

        bool mret = mount_with_alternatives(*fstab, i, &last_idx_inspected, &attempted_idx);
        auto& attempted_entry = (*fstab)[attempted_idx];
        i = last_idx_inspected;
        int mount_errno = errno;

        // Handle success and deal with encryptability.
        if (mret) {
            int status = handle_encryptable(attempted_entry);

            if (status == FS_MGR_MNTALL_FAIL) {
                // Fatal error - no point continuing.
                return status;
            }

            if (status != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
                if (encryptable != FS_MGR_MNTALL_DEV_NOT_ENCRYPTABLE) {
                    // Log and continue
                    LERROR << "Only one encryptable/encrypted partition supported";
                }
                encryptable = status;
                if (status == FS_MGR_MNTALL_DEV_NEEDS_METADATA_ENCRYPTION) {
                    if (!call_vdc({"cryptfs", "encryptFstab", attempted_entry.blk_device,
                                   attempted_entry.mount_point})) {
                        LERROR << "Encryption failed";
                        return FS_MGR_MNTALL_FAIL;
                    }
                }
            }

            // Success!  Go get the next one.
            continue;
        }

        // Mounting failed, understand why and retry.
        bool wiped = partition_wiped(current_entry.blk_device.c_str());
        bool crypt_footer = false;
        if (mount_errno != EBUSY && mount_errno != EACCES &&
            current_entry.fs_mgr_flags.formattable && wiped) {
            // current_entry and attempted_entry point at the same partition, but sometimes
            // at two different lines in the fstab.  Use current_entry for formatting
            // as that is the preferred one.
            LERROR << __FUNCTION__ << "(): " << realpath(current_entry.blk_device)
                   << " is wiped and " << current_entry.mount_point << " " << current_entry.fs_type
                   << " is formattable. Format it.";

            checkpoint_manager.Revert(&current_entry);

            if (current_entry.is_encryptable() && current_entry.key_loc != KEY_IN_FOOTER) {
                unique_fd fd(TEMP_FAILURE_RETRY(
                        open(current_entry.key_loc.c_str(), O_WRONLY | O_CLOEXEC)));
                if (fd >= 0) {
                    LINFO << __FUNCTION__ << "(): also wipe " << current_entry.key_loc;
                    wipe_block_device(fd, get_file_size(fd));
                } else {
                    PERROR << __FUNCTION__ << "(): " << current_entry.key_loc << " wouldn't open";
                }
            } else if (current_entry.is_encryptable() && current_entry.key_loc == KEY_IN_FOOTER) {
                crypt_footer = true;
            }
            if (fs_mgr_do_format(current_entry, crypt_footer) == 0) {
                // Let's replay the mount actions.
                i = top_idx - 1;
                continue;
            } else {
                LERROR << __FUNCTION__ << "(): Format failed. "
                       << "Suggest recovery...";
                encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
                continue;
            }
        }

        // mount(2) returned an error, handle the encryptable/formattable case.
        if (mount_errno != EBUSY && mount_errno != EACCES && attempted_entry.is_encryptable()) {
            if (wiped) {
                LERROR << __FUNCTION__ << "(): " << attempted_entry.blk_device << " is wiped and "
                       << attempted_entry.mount_point << " " << attempted_entry.fs_type
                       << " is encryptable. Suggest recovery...";
                encryptable = FS_MGR_MNTALL_DEV_NEEDS_RECOVERY;
                continue;
            } else {
                // Need to mount a tmpfs at this mountpoint for now, and set
                // properties that vold will query later for decrypting
                LERROR << __FUNCTION__ << "(): possibly an encryptable blkdev "
                       << attempted_entry.blk_device << " for mount " << attempted_entry.mount_point
                       << " type " << attempted_entry.fs_type;
                if (fs_mgr_do_tmpfs_mount(attempted_entry.mount_point.c_str()) < 0) {
                    ++error_count;
                    continue;
                }
            }
            encryptable = FS_MGR_MNTALL_DEV_MIGHT_BE_ENCRYPTED;
        } else if (mount_errno != EBUSY && mount_errno != EACCES &&
                   should_use_metadata_encryption(attempted_entry)) {
            if (!call_vdc({"cryptfs", "mountFstab", attempted_entry.blk_device,
                           attempted_entry.mount_point})) {
                ++error_count;
            }
            encryptable = FS_MGR_MNTALL_DEV_IS_METADATA_ENCRYPTED;
            continue;
        } else {
            // fs_options might be null so we cannot use PERROR << directly.
            // Use StringPrintf to output "(null)" instead.
            if (attempted_entry.fs_mgr_flags.no_fail) {
                PERROR << android::base::StringPrintf(
                        "Ignoring failure to mount an un-encryptable or wiped "
                        "partition on %s at %s options: %s",
                        attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
                        attempted_entry.fs_options.c_str());
            } else {
                PERROR << android::base::StringPrintf(
                        "Failed to mount an un-encryptable or wiped partition "
                        "on %s at %s options: %s",
                        attempted_entry.blk_device.c_str(), attempted_entry.mount_point.c_str(),
                        attempted_entry.fs_options.c_str());
                ++error_count;
            }
            continue;
        }
    }

#if ALLOW_ADBD_DISABLE_VERITY == 1  // "userdebug" build
    fs_mgr_overlayfs_mount_all(fstab);
#endif

    if (error_count) {
        return FS_MGR_MNTALL_FAIL;
    } else {
        return encryptable;
    }
}

int fs_mgr_umount_all(android::fs_mgr::Fstab* fstab) {
    AvbUniquePtr avb_handle(nullptr);
    int ret = FsMgrUmountStatus::SUCCESS;
    for (auto& current_entry : *fstab) {
        if (!IsMountPointMounted(current_entry.mount_point)) {
            continue;
        }

        if (umount(current_entry.mount_point.c_str()) == -1) {
            PERROR << "Failed to umount " << current_entry.mount_point;
            ret |= FsMgrUmountStatus::ERROR_UMOUNT;
            continue;
        }

        if (current_entry.fs_mgr_flags.logical) {
            if (!fs_mgr_update_logical_partition(&current_entry)) {
                LERROR << "Could not get logical partition blk_device, skipping!";
                ret |= FsMgrUmountStatus::ERROR_DEVICE_MAPPER;
                continue;
            }
        }

        if (current_entry.fs_mgr_flags.avb || !current_entry.avb_keys.empty()) {
            if (!AvbHandle::TearDownAvbHashtree(&current_entry, true /* wait */)) {
                LERROR << "Failed to tear down AVB on mount point: " << current_entry.mount_point;
                ret |= FsMgrUmountStatus::ERROR_VERITY;
                continue;
            }
        } else if ((current_entry.fs_mgr_flags.verify)) {
            if (!fs_mgr_teardown_verity(&current_entry, true /* wait */)) {
                LERROR << "Failed to tear down verified partition on mount point: "
                       << current_entry.mount_point;
                ret |= FsMgrUmountStatus::ERROR_VERITY;
                continue;
            }
        }
    }
    return ret;
}

// wrapper to __mount() and expects a fully prepared fstab_rec,
// unlike fs_mgr_do_mount which does more things with avb / verity etc.
int fs_mgr_do_mount_one(const FstabEntry& entry, const std::string& mount_point) {
    // Run fsck if needed
    prepare_fs_for_mount(entry.blk_device, entry);

    int ret =
            __mount(entry.blk_device, mount_point.empty() ? entry.mount_point : mount_point, entry);
    if (ret) {
      ret = (errno == EBUSY) ? FS_MGR_DOMNT_BUSY : FS_MGR_DOMNT_FAILED;
    }

    return ret;
}

// If tmp_mount_point is non-null, mount the filesystem there.  This is for the
// tmp mount we do to check the user password
// If multiple fstab entries are to be mounted on "n_name", it will try to mount each one
// in turn, and stop on 1st success, or no more match.
static int fs_mgr_do_mount_helper(Fstab* fstab, const std::string& n_name,
                                  const std::string& n_blk_device, const char* tmp_mount_point,
                                  int needs_checkpoint) {
    int mount_errors = 0;
    int first_mount_errno = 0;
    std::string mount_point;
    CheckpointManager checkpoint_manager(needs_checkpoint);
    AvbUniquePtr avb_handle(nullptr);

    if (!fstab) {
        return FS_MGR_DOMNT_FAILED;
    }

    for (auto& fstab_entry : *fstab) {
        if (!fs_match(fstab_entry.mount_point, n_name)) {
            continue;
        }

        // We found our match.
        // If this swap or a raw partition, report an error.
        if (fstab_entry.fs_type == "swap" || fstab_entry.fs_type == "emmc" ||
            fstab_entry.fs_type == "mtd") {
            LERROR << "Cannot mount filesystem of type " << fstab_entry.fs_type << " on "
                   << n_blk_device;
            return FS_MGR_DOMNT_FAILED;
        }

        if (fstab_entry.fs_mgr_flags.logical) {
            if (!fs_mgr_update_logical_partition(&fstab_entry)) {
                LERROR << "Could not set up logical partition, skipping!";
                continue;
            }
        }

        if (!checkpoint_manager.Update(&fstab_entry, n_blk_device)) {
            LERROR << "Could not set up checkpoint partition, skipping!";
            continue;
        }

        // First check the filesystem if requested.
        if (fstab_entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(n_blk_device, 20s)) {
            LERROR << "Skipping mounting '" << n_blk_device << "'";
            continue;
        }

        int fs_stat = prepare_fs_for_mount(n_blk_device, fstab_entry);

        if (fstab_entry.fs_mgr_flags.avb) {
            if (!avb_handle) {
                avb_handle = AvbHandle::Open();
                if (!avb_handle) {
                    LERROR << "Failed to open AvbHandle";
                    return FS_MGR_DOMNT_FAILED;
                }
            }
            if (avb_handle->SetUpAvbHashtree(&fstab_entry, true /* wait_for_verity_dev */) ==
                AvbHashtreeResult::kFail) {
                LERROR << "Failed to set up AVB on partition: " << fstab_entry.mount_point
                       << ", skipping!";
                // Skips mounting the device.
                continue;
            }
        } else if (!fstab_entry.avb_keys.empty()) {
            if (AvbHandle::SetUpStandaloneAvbHashtree(&fstab_entry) == AvbHashtreeResult::kFail) {
                LERROR << "Failed to set up AVB on standalone partition: "
                       << fstab_entry.mount_point << ", skipping!";
                // Skips mounting the device.
                continue;
            }
        } else if (fstab_entry.fs_mgr_flags.verify) {
            int rc = fs_mgr_setup_verity(&fstab_entry, true);
            if (rc == FS_MGR_SETUP_VERITY_DISABLED || rc == FS_MGR_SETUP_VERITY_SKIPPED) {
                LINFO << "Verity disabled";
            } else if (rc != FS_MGR_SETUP_VERITY_SUCCESS) {
                LERROR << "Could not set up verified partition, skipping!";
                continue;
            }
        }

        // Now mount it where requested */
        if (tmp_mount_point) {
            mount_point = tmp_mount_point;
        } else {
            mount_point = fstab_entry.mount_point;
        }
        int retry_count = 2;
        while (retry_count-- > 0) {
            if (!__mount(n_blk_device, mount_point, fstab_entry)) {
                fs_stat &= ~FS_STAT_FULL_MOUNT_FAILED;
                return FS_MGR_DOMNT_SUCCESS;
            } else {
                if (retry_count <= 0) break;  // run check_fs only once
                if (!first_mount_errno) first_mount_errno = errno;
                mount_errors++;
                fs_stat |= FS_STAT_FULL_MOUNT_FAILED;
                // try again after fsck
                check_fs(n_blk_device, fstab_entry.fs_type, fstab_entry.mount_point, &fs_stat);
            }
        }
        log_fs_stat(fstab_entry.blk_device, fs_stat);
    }

    // Reach here means the mount attempt fails.
    if (mount_errors) {
        PERROR << "Cannot mount filesystem on " << n_blk_device << " at " << mount_point;
        if (first_mount_errno == EBUSY) return FS_MGR_DOMNT_BUSY;
    } else {
        // We didn't find a match, say so and return an error.
        LERROR << "Cannot find mount point " << n_name << " in fstab";
    }
    return FS_MGR_DOMNT_FAILED;
}

int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point) {
    return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, -1);
}

int fs_mgr_do_mount(Fstab* fstab, const char* n_name, char* n_blk_device, char* tmp_mount_point,
                    bool needs_checkpoint) {
    return fs_mgr_do_mount_helper(fstab, n_name, n_blk_device, tmp_mount_point, needs_checkpoint);
}

/*
 * mount a tmpfs filesystem at the given point.
 * return 0 on success, non-zero on failure.
 */
int fs_mgr_do_tmpfs_mount(const char *n_name)
{
    int ret;

    ret = mount("tmpfs", n_name, "tmpfs", MS_NOATIME | MS_NOSUID | MS_NODEV | MS_NOEXEC,
                CRYPTO_TMPFS_OPTIONS);
    if (ret < 0) {
        LERROR << "Cannot mount tmpfs filesystem at " << n_name;
        return -1;
    }

    /* Success */
    return 0;
}

static bool InstallZramDevice(const std::string& device) {
    if (!android::base::WriteStringToFile(device, ZRAM_BACK_DEV)) {
        PERROR << "Cannot write " << device << " in: " << ZRAM_BACK_DEV;
        return false;
    }
    LINFO << "Success to set " << device << " to " << ZRAM_BACK_DEV;
    return true;
}

static bool PrepareZramDevice(const std::string& loop, off64_t size, const std::string& bdev) {
    if (loop.empty() && bdev.empty()) return true;

    if (bdev.length()) {
        return InstallZramDevice(bdev);
    }

    // Get free loopback
    unique_fd loop_fd(TEMP_FAILURE_RETRY(open("/dev/loop-control", O_RDWR | O_CLOEXEC)));
    if (loop_fd.get() == -1) {
        PERROR << "Cannot open loop-control";
        return false;
    }

    int num = ioctl(loop_fd.get(), LOOP_CTL_GET_FREE);
    if (num == -1) {
        PERROR << "Cannot get free loop slot";
        return false;
    }

    // Prepare target path
    unique_fd target_fd(TEMP_FAILURE_RETRY(open(loop.c_str(), O_RDWR | O_CREAT | O_CLOEXEC, 0600)));
    if (target_fd.get() == -1) {
        PERROR << "Cannot open target path: " << loop;
        return false;
    }
    if (fallocate(target_fd.get(), 0, 0, size) < 0) {
        PERROR << "Cannot truncate target path: " << loop;
        return false;
    }

    // Connect loopback (device_fd) to target path (target_fd)
    std::string device = android::base::StringPrintf("/dev/block/loop%d", num);
    unique_fd device_fd(TEMP_FAILURE_RETRY(open(device.c_str(), O_RDWR | O_CLOEXEC)));
    if (device_fd.get() == -1) {
        PERROR << "Cannot open /dev/block/loop" << num;
        return false;
    }

    if (ioctl(device_fd.get(), LOOP_SET_FD, target_fd.get())) {
        PERROR << "Cannot set loopback to target path";
        return false;
    }

    // set block size & direct IO
    if (ioctl(device_fd.get(), LOOP_SET_BLOCK_SIZE, 4096)) {
        PWARNING << "Cannot set 4KB blocksize to /dev/block/loop" << num;
    }
    if (ioctl(device_fd.get(), LOOP_SET_DIRECT_IO, 1)) {
        PWARNING << "Cannot set direct_io to /dev/block/loop" << num;
    }

    return InstallZramDevice(device);
}

bool fs_mgr_swapon_all(const Fstab& fstab) {
    bool ret = true;
    for (const auto& entry : fstab) {
        // Skip non-swap entries.
        if (entry.fs_type != "swap") {
            continue;
        }

        if (!PrepareZramDevice(entry.zram_loopback_path, entry.zram_loopback_size, entry.zram_backing_dev_path)) {
            LERROR << "Skipping losetup for '" << entry.blk_device << "'";
        }

        if (entry.zram_size > 0) {
            // A zram_size was specified, so we need to configure the
            // device.  There is no point in having multiple zram devices
            // on a system (all the memory comes from the same pool) so
            // we can assume the device number is 0.
            if (entry.max_comp_streams >= 0) {
                auto zram_mcs_fp = std::unique_ptr<FILE, decltype(&fclose)>{
                        fopen(ZRAM_CONF_MCS, "re"), fclose};
                if (zram_mcs_fp == nullptr) {
                    LERROR << "Unable to open zram conf comp device " << ZRAM_CONF_MCS;
                    ret = false;
                    continue;
                }
                fprintf(zram_mcs_fp.get(), "%d\n", entry.max_comp_streams);
            }

            auto zram_fp =
                    std::unique_ptr<FILE, decltype(&fclose)>{fopen(ZRAM_CONF_DEV, "re+"), fclose};
            if (zram_fp == nullptr) {
                LERROR << "Unable to open zram conf device " << ZRAM_CONF_DEV;
                ret = false;
                continue;
            }
            fprintf(zram_fp.get(), "%" PRId64 "\n", entry.zram_size);
        }

        if (entry.fs_mgr_flags.wait && !fs_mgr_wait_for_file(entry.blk_device, 20s)) {
            LERROR << "Skipping mkswap for '" << entry.blk_device << "'";
            ret = false;
            continue;
        }

        // Initialize the swap area.
        const char* mkswap_argv[2] = {
                MKSWAP_BIN,
                entry.blk_device.c_str(),
        };
        int err = 0;
        int status;
        err = android_fork_execvp_ext(ARRAY_SIZE(mkswap_argv), const_cast<char**>(mkswap_argv),
                                      &status, true, LOG_KLOG, false, nullptr, nullptr, 0);
        if (err) {
            LERROR << "mkswap failed for " << entry.blk_device;
            ret = false;
            continue;
        }

        /* If -1, then no priority was specified in fstab, so don't set
         * SWAP_FLAG_PREFER or encode the priority */
        int flags = 0;
        if (entry.swap_prio >= 0) {
            flags = (entry.swap_prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK;
            flags |= SWAP_FLAG_PREFER;
        } else {
            flags = 0;
        }
        err = swapon(entry.blk_device.c_str(), flags);
        if (err) {
            LERROR << "swapon failed for " << entry.blk_device;
            ret = false;
        }
    }

    return ret;
}

bool fs_mgr_load_verity_state(int* mode) {
    /* return the default mode, unless any of the verified partitions are in
     * logging mode, in which case return that */
    *mode = VERITY_MODE_DEFAULT;

    Fstab fstab;
    if (!ReadDefaultFstab(&fstab)) {
        LERROR << "Failed to read default fstab";
        return false;
    }

    for (const auto& entry : fstab) {
        if (entry.fs_mgr_flags.avb) {
            *mode = VERITY_MODE_RESTART;  // avb only supports restart mode.
            break;
        } else if (!entry.fs_mgr_flags.verify) {
            continue;
        }

        int current;
        if (load_verity_state(entry, &current) < 0) {
            continue;
        }
        if (current != VERITY_MODE_DEFAULT) {
            *mode = current;
            break;
        }
    }

    return true;
}

bool fs_mgr_is_verity_enabled(const FstabEntry& entry) {
    if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
        return false;
    }

    DeviceMapper& dm = DeviceMapper::Instance();

    std::string mount_point = GetVerityDeviceName(entry);
    if (dm.GetState(mount_point) == DmDeviceState::INVALID) {
        return false;
    }

    const char* status;
    std::vector<DeviceMapper::TargetInfo> table;
    if (!dm.GetTableStatus(mount_point, &table) || table.empty() || table[0].data.empty()) {
        if (!entry.fs_mgr_flags.verify_at_boot) {
            return false;
        }
        status = "V";
    } else {
        status = table[0].data.c_str();
    }

    if (*status == 'C' || *status == 'V') {
        return true;
    }

    return false;
}

bool fs_mgr_verity_is_check_at_most_once(const android::fs_mgr::FstabEntry& entry) {
    if (!entry.fs_mgr_flags.verify && !entry.fs_mgr_flags.avb) {
        return false;
    }

    DeviceMapper& dm = DeviceMapper::Instance();
    std::string device = GetVerityDeviceName(entry);

    std::vector<DeviceMapper::TargetInfo> table;
    if (dm.GetState(device) == DmDeviceState::INVALID || !dm.GetTableInfo(device, &table)) {
        return false;
    }
    for (const auto& target : table) {
        if (strcmp(target.spec.target_type, "verity") == 0 &&
            target.data.find("check_at_most_once") != std::string::npos) {
            return true;
        }
    }
    return false;
}

std::string fs_mgr_get_super_partition_name(int slot) {
    // Devices upgrading to dynamic partitions are allowed to specify a super
    // partition name. This includes cuttlefish, which is a non-A/B device.
    std::string super_partition;
    if (fs_mgr_get_boot_config_from_kernel_cmdline("super_partition", &super_partition)) {
        if (fs_mgr_get_slot_suffix().empty()) {
            return super_partition;
        }
        std::string suffix;
        if (slot == 0) {
            suffix = "_a";
        } else if (slot == 1) {
            suffix = "_b";
        } else if (slot == -1) {
            suffix = fs_mgr_get_slot_suffix();
        }
        return super_partition + suffix;
    }
    return LP_METADATA_DEFAULT_PARTITION_NAME;
}