aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/rcu/update.c
diff options
context:
space:
mode:
authorPaul E. McKenney <paulmck@linux.vnet.ibm.com>2014-06-27 13:42:20 -0700
committerPaul E. McKenney <paulmck@linux.vnet.ibm.com>2014-09-07 16:27:19 -0700
commit8315f42295d2667a7f942f154b73a86fd7cb2227 (patch)
tree67057935dada3305e0dab95f546359b40cc29b96 /kernel/rcu/update.c
parent11ed7f934cb807f26da09547b5946c2e534d1dac (diff)
downloadkernel_replicant_linux-8315f42295d2667a7f942f154b73a86fd7cb2227.tar.gz
kernel_replicant_linux-8315f42295d2667a7f942f154b73a86fd7cb2227.tar.bz2
kernel_replicant_linux-8315f42295d2667a7f942f154b73a86fd7cb2227.zip
rcu: Add call_rcu_tasks()
This commit adds a new RCU-tasks flavor of RCU, which provides call_rcu_tasks(). This RCU flavor's quiescent states are voluntary context switch (not preemption!) and userspace execution (not the idle loop -- use some sort of schedule_on_each_cpu() if you need to handle the idle tasks. Note that unlike other RCU flavors, these quiescent states occur in tasks, not necessarily CPUs. Includes fixes from Steven Rostedt. This RCU flavor is assumed to have very infrequent latency-tolerant updaters. This assumption permits significant simplifications, including a single global callback list protected by a single global lock, along with a single task-private linked list containing all tasks that have not yet passed through a quiescent state. If experience shows this assumption to be incorrect, the required additional complexity will be added. Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Diffstat (limited to 'kernel/rcu/update.c')
-rw-r--r--kernel/rcu/update.c171
1 files changed, 171 insertions, 0 deletions
diff --git a/kernel/rcu/update.c b/kernel/rcu/update.c
index 4056d7992a6c..19b3dacb0753 100644
--- a/kernel/rcu/update.c
+++ b/kernel/rcu/update.c
@@ -47,6 +47,7 @@
#include <linux/hardirq.h>
#include <linux/delay.h>
#include <linux/module.h>
+#include <linux/kthread.h>
#define CREATE_TRACE_POINTS
@@ -347,3 +348,173 @@ static int __init check_cpu_stall_init(void)
early_initcall(check_cpu_stall_init);
#endif /* #ifdef CONFIG_RCU_STALL_COMMON */
+
+#ifdef CONFIG_TASKS_RCU
+
+/*
+ * Simple variant of RCU whose quiescent states are voluntary context switch,
+ * user-space execution, and idle. As such, grace periods can take one good
+ * long time. There are no read-side primitives similar to rcu_read_lock()
+ * and rcu_read_unlock() because this implementation is intended to get
+ * the system into a safe state for some of the manipulations involved in
+ * tracing and the like. Finally, this implementation does not support
+ * high call_rcu_tasks() rates from multiple CPUs. If this is required,
+ * per-CPU callback lists will be needed.
+ */
+
+/* Global list of callbacks and associated lock. */
+static struct rcu_head *rcu_tasks_cbs_head;
+static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
+static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock);
+
+/* Post an RCU-tasks callback. */
+void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp))
+{
+ unsigned long flags;
+
+ rhp->next = NULL;
+ rhp->func = func;
+ raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
+ *rcu_tasks_cbs_tail = rhp;
+ rcu_tasks_cbs_tail = &rhp->next;
+ raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
+}
+EXPORT_SYMBOL_GPL(call_rcu_tasks);
+
+/* See if the current task has stopped holding out, remove from list if so. */
+static void check_holdout_task(struct task_struct *t)
+{
+ if (!ACCESS_ONCE(t->rcu_tasks_holdout) ||
+ t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) ||
+ !ACCESS_ONCE(t->on_rq)) {
+ ACCESS_ONCE(t->rcu_tasks_holdout) = false;
+ list_del_rcu(&t->rcu_tasks_holdout_list);
+ put_task_struct(t);
+ }
+}
+
+/* RCU-tasks kthread that detects grace periods and invokes callbacks. */
+static int __noreturn rcu_tasks_kthread(void *arg)
+{
+ unsigned long flags;
+ struct task_struct *g, *t;
+ struct rcu_head *list;
+ struct rcu_head *next;
+ LIST_HEAD(rcu_tasks_holdouts);
+
+ /* FIXME: Add housekeeping affinity. */
+
+ /*
+ * Each pass through the following loop makes one check for
+ * newly arrived callbacks, and, if there are some, waits for
+ * one RCU-tasks grace period and then invokes the callbacks.
+ * This loop is terminated by the system going down. ;-)
+ */
+ for (;;) {
+
+ /* Pick up any new callbacks. */
+ raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags);
+ list = rcu_tasks_cbs_head;
+ rcu_tasks_cbs_head = NULL;
+ rcu_tasks_cbs_tail = &rcu_tasks_cbs_head;
+ raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags);
+
+ /* If there were none, wait a bit and start over. */
+ if (!list) {
+ schedule_timeout_interruptible(HZ);
+ WARN_ON(signal_pending(current));
+ continue;
+ }
+
+ /*
+ * Wait for all pre-existing t->on_rq and t->nvcsw
+ * transitions to complete. Invoking synchronize_sched()
+ * suffices because all these transitions occur with
+ * interrupts disabled. Without this synchronize_sched(),
+ * a read-side critical section that started before the
+ * grace period might be incorrectly seen as having started
+ * after the grace period.
+ *
+ * This synchronize_sched() also dispenses with the
+ * need for a memory barrier on the first store to
+ * ->rcu_tasks_holdout, as it forces the store to happen
+ * after the beginning of the grace period.
+ */
+ synchronize_sched();
+
+ /*
+ * There were callbacks, so we need to wait for an
+ * RCU-tasks grace period. Start off by scanning
+ * the task list for tasks that are not already
+ * voluntarily blocked. Mark these tasks and make
+ * a list of them in rcu_tasks_holdouts.
+ */
+ rcu_read_lock();
+ for_each_process_thread(g, t) {
+ if (t != current && ACCESS_ONCE(t->on_rq) &&
+ !is_idle_task(t)) {
+ get_task_struct(t);
+ t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw);
+ ACCESS_ONCE(t->rcu_tasks_holdout) = true;
+ list_add(&t->rcu_tasks_holdout_list,
+ &rcu_tasks_holdouts);
+ }
+ }
+ rcu_read_unlock();
+
+ /*
+ * Each pass through the following loop scans the list
+ * of holdout tasks, removing any that are no longer
+ * holdouts. When the list is empty, we are done.
+ */
+ while (!list_empty(&rcu_tasks_holdouts)) {
+ schedule_timeout_interruptible(HZ);
+ WARN_ON(signal_pending(current));
+ rcu_read_lock();
+ list_for_each_entry_rcu(t, &rcu_tasks_holdouts,
+ rcu_tasks_holdout_list)
+ check_holdout_task(t);
+ rcu_read_unlock();
+ }
+
+ /*
+ * Because ->on_rq and ->nvcsw are not guaranteed
+ * to have a full memory barriers prior to them in the
+ * schedule() path, memory reordering on other CPUs could
+ * cause their RCU-tasks read-side critical sections to
+ * extend past the end of the grace period. However,
+ * because these ->nvcsw updates are carried out with
+ * interrupts disabled, we can use synchronize_sched()
+ * to force the needed ordering on all such CPUs.
+ *
+ * This synchronize_sched() also confines all
+ * ->rcu_tasks_holdout accesses to be within the grace
+ * period, avoiding the need for memory barriers for
+ * ->rcu_tasks_holdout accesses.
+ */
+ synchronize_sched();
+
+ /* Invoke the callbacks. */
+ while (list) {
+ next = list->next;
+ local_bh_disable();
+ list->func(list);
+ local_bh_enable();
+ list = next;
+ cond_resched();
+ }
+ }
+}
+
+/* Spawn rcu_tasks_kthread() at boot time. */
+static int __init rcu_spawn_tasks_kthread(void)
+{
+ struct task_struct __maybe_unused *t;
+
+ t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread");
+ BUG_ON(IS_ERR(t));
+ return 0;
+}
+early_initcall(rcu_spawn_tasks_kthread);
+
+#endif /* #ifdef CONFIG_TASKS_RCU */