aboutsummaryrefslogtreecommitdiffstats
path: root/slang_backend.cpp
blob: 8f4a255040539168e296699163efd573522cc9bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
/*
 * Copyright 2010-2012, The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "slang_backend.h"

#include <string>
#include <vector>

#include "bcinfo/BitcodeWrapper.h"

#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclGroup.h"

#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"

#include "clang/CodeGen/ModuleBuilder.h"

#include "clang/Frontend/CodeGenOptions.h"
#include "clang/Frontend/FrontendDiagnostic.h"

#include "llvm/ADT/Twine.h"
#include "llvm/ADT/StringExtras.h"

#include "llvm/Bitcode/ReaderWriter.h"

#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/SchedulerRegistry.h"

#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"

#include "llvm/Transforms/IPO/PassManagerBuilder.h"

#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/TargetRegistry.h"

#include "llvm/MC/SubtargetFeature.h"

#include "slang_assert.h"
#include "slang.h"
#include "slang_rs_context.h"
#include "slang_rs_export_foreach.h"
#include "slang_rs_export_func.h"
#include "slang_rs_export_type.h"
#include "slang_rs_export_var.h"
#include "slang_rs_metadata.h"

#include "strip_unknown_attributes.h"
#include "BitWriter_2_9/ReaderWriter_2_9.h"
#include "BitWriter_2_9_func/ReaderWriter_2_9_func.h"
#include "BitWriter_3_2/ReaderWriter_3_2.h"

namespace slang {

void Backend::CreateFunctionPasses() {
  if (!mPerFunctionPasses) {
    mPerFunctionPasses = new llvm::legacy::FunctionPassManager(mpModule);

    llvm::PassManagerBuilder PMBuilder;
    PMBuilder.OptLevel = mCodeGenOpts.OptimizationLevel;
    PMBuilder.populateFunctionPassManager(*mPerFunctionPasses);
  }
}

void Backend::CreateModulePasses() {
  if (!mPerModulePasses) {
    mPerModulePasses = new llvm::legacy::PassManager();

    llvm::PassManagerBuilder PMBuilder;
    PMBuilder.OptLevel = mCodeGenOpts.OptimizationLevel;
    PMBuilder.SizeLevel = mCodeGenOpts.OptimizeSize;
    if (mCodeGenOpts.UnitAtATime) {
      PMBuilder.DisableUnitAtATime = 0;
    } else {
      PMBuilder.DisableUnitAtATime = 1;
    }

    if (mCodeGenOpts.UnrollLoops) {
      PMBuilder.DisableUnrollLoops = 0;
    } else {
      PMBuilder.DisableUnrollLoops = 1;
    }

    PMBuilder.populateModulePassManager(*mPerModulePasses);
    // Add a pass to strip off unknown/unsupported attributes.
    mPerModulePasses->add(createStripUnknownAttributesPass());
  }
}

bool Backend::CreateCodeGenPasses() {
  if ((mOT != Slang::OT_Assembly) && (mOT != Slang::OT_Object))
    return true;

  // Now we add passes for code emitting
  if (mCodeGenPasses) {
    return true;
  } else {
    mCodeGenPasses = new llvm::legacy::FunctionPassManager(mpModule);
  }

  // Create the TargetMachine for generating code.
  std::string Triple = mpModule->getTargetTriple();

  std::string Error;
  const llvm::Target* TargetInfo =
      llvm::TargetRegistry::lookupTarget(Triple, Error);
  if (TargetInfo == nullptr) {
    mDiagEngine.Report(clang::diag::err_fe_unable_to_create_target) << Error;
    return false;
  }

  // Target Machine Options
  llvm::TargetOptions Options;

  Options.NoFramePointerElim = mCodeGenOpts.DisableFPElim;

  // Use hardware FPU.
  //
  // FIXME: Need to detect the CPU capability and decide whether to use softfp.
  // To use softfp, change following 2 lines to
  //
  // Options.FloatABIType = llvm::FloatABI::Soft;
  // Options.UseSoftFloat = true;
  Options.FloatABIType = llvm::FloatABI::Hard;
  Options.UseSoftFloat = false;

  // BCC needs all unknown symbols resolved at compilation time. So we don't
  // need any relocation model.
  llvm::Reloc::Model RM = llvm::Reloc::Static;

  // This is set for the linker (specify how large of the virtual addresses we
  // can access for all unknown symbols.)
  llvm::CodeModel::Model CM;
  if (mpModule->getDataLayout().getPointerSize() == 4) {
    CM = llvm::CodeModel::Small;
  } else {
    // The target may have pointer size greater than 32 (e.g. x86_64
    // architecture) may need large data address model
    CM = llvm::CodeModel::Medium;
  }

  // Setup feature string
  std::string FeaturesStr;
  if (mTargetOpts.CPU.size() || mTargetOpts.Features.size()) {
    llvm::SubtargetFeatures Features;

    for (std::vector<std::string>::const_iterator
             I = mTargetOpts.Features.begin(), E = mTargetOpts.Features.end();
         I != E;
         I++)
      Features.AddFeature(*I);

    FeaturesStr = Features.getString();
  }

  llvm::TargetMachine *TM =
    TargetInfo->createTargetMachine(Triple, mTargetOpts.CPU, FeaturesStr,
                                    Options, RM, CM);

  // Register scheduler
  llvm::RegisterScheduler::setDefault(llvm::createDefaultScheduler);

  // Register allocation policy:
  //  createFastRegisterAllocator: fast but bad quality
  //  createGreedyRegisterAllocator: not so fast but good quality
  llvm::RegisterRegAlloc::setDefault((mCodeGenOpts.OptimizationLevel == 0) ?
                                     llvm::createFastRegisterAllocator :
                                     llvm::createGreedyRegisterAllocator);

  llvm::CodeGenOpt::Level OptLevel = llvm::CodeGenOpt::Default;
  if (mCodeGenOpts.OptimizationLevel == 0) {
    OptLevel = llvm::CodeGenOpt::None;
  } else if (mCodeGenOpts.OptimizationLevel == 3) {
    OptLevel = llvm::CodeGenOpt::Aggressive;
  }

  llvm::TargetMachine::CodeGenFileType CGFT =
      llvm::TargetMachine::CGFT_AssemblyFile;
  if (mOT == Slang::OT_Object) {
    CGFT = llvm::TargetMachine::CGFT_ObjectFile;
  }
  if (TM->addPassesToEmitFile(*mCodeGenPasses, mBufferOutStream,
                              CGFT, OptLevel)) {
    mDiagEngine.Report(clang::diag::err_fe_unable_to_interface_with_target);
    return false;
  }

  return true;
}

Backend::Backend(RSContext *Context, clang::DiagnosticsEngine *DiagEngine,
                 const clang::CodeGenOptions &CodeGenOpts,
                 const clang::TargetOptions &TargetOpts, PragmaList *Pragmas,
                 llvm::raw_ostream *OS, Slang::OutputType OT,
                 clang::SourceManager &SourceMgr, bool AllowRSPrefix,
                 bool IsFilterscript)
    : ASTConsumer(), mTargetOpts(TargetOpts), mpModule(nullptr), mpOS(OS),
      mOT(OT), mGen(nullptr), mPerFunctionPasses(nullptr),
      mPerModulePasses(nullptr), mCodeGenPasses(nullptr),
      mBufferOutStream(*mpOS), mContext(Context),
      mSourceMgr(SourceMgr), mAllowRSPrefix(AllowRSPrefix),
      mIsFilterscript(IsFilterscript), mExportVarMetadata(nullptr),
      mExportFuncMetadata(nullptr), mExportForEachNameMetadata(nullptr),
      mExportForEachSignatureMetadata(nullptr), mExportTypeMetadata(nullptr),
      mRSObjectSlotsMetadata(nullptr), mRefCount(mContext->getASTContext()),
      mASTChecker(Context, Context->getTargetAPI(), IsFilterscript),
      mLLVMContext(llvm::getGlobalContext()), mDiagEngine(*DiagEngine),
      mCodeGenOpts(CodeGenOpts), mPragmas(Pragmas) {
  mGen = CreateLLVMCodeGen(mDiagEngine, "", mCodeGenOpts, mLLVMContext);
}

void Backend::Initialize(clang::ASTContext &Ctx) {
  mGen->Initialize(Ctx);

  mpModule = mGen->GetModule();
}

// Encase the Bitcode in a wrapper containing RS version information.
void Backend::WrapBitcode(llvm::raw_string_ostream &Bitcode) {
  bcinfo::AndroidBitcodeWrapper wrapper;
  size_t actualWrapperLen = bcinfo::writeAndroidBitcodeWrapper(
      &wrapper, Bitcode.str().length(), getTargetAPI(),
      SlangVersion::CURRENT, mCodeGenOpts.OptimizationLevel);

  slangAssert(actualWrapperLen > 0);

  // Write out the bitcode wrapper.
  mBufferOutStream.write(reinterpret_cast<char*>(&wrapper), actualWrapperLen);

  // Write out the actual encoded bitcode.
  mBufferOutStream << Bitcode.str();
}

void Backend::HandleTranslationUnit(clang::ASTContext &Ctx) {
  HandleTranslationUnitPre(Ctx);

  mGen->HandleTranslationUnit(Ctx);

  // Here, we complete a translation unit (whole translation unit is now in LLVM
  // IR). Now, interact with LLVM backend to generate actual machine code (asm
  // or machine code, whatever.)

  // Silently ignore if we weren't initialized for some reason.
  if (!mpModule)
    return;

  llvm::Module *M = mGen->ReleaseModule();
  if (!M) {
    // The module has been released by IR gen on failures, do not double free.
    mpModule = nullptr;
    return;
  }

  slangAssert(mpModule == M &&
              "Unexpected module change during LLVM IR generation");

  // Insert #pragma information into metadata section of module
  if (!mPragmas->empty()) {
    llvm::NamedMDNode *PragmaMetadata =
        mpModule->getOrInsertNamedMetadata(Slang::PragmaMetadataName);
    for (PragmaList::const_iterator I = mPragmas->begin(), E = mPragmas->end();
         I != E;
         I++) {
      llvm::SmallVector<llvm::Metadata*, 2> Pragma;
      // Name goes first
      Pragma.push_back(llvm::MDString::get(mLLVMContext, I->first));
      // And then value
      Pragma.push_back(llvm::MDString::get(mLLVMContext, I->second));

      // Create MDNode and insert into PragmaMetadata
      PragmaMetadata->addOperand(
          llvm::MDNode::get(mLLVMContext, Pragma));
    }
  }

  HandleTranslationUnitPost(mpModule);

  // Create passes for optimization and code emission

  // Create and run per-function passes
  CreateFunctionPasses();
  if (mPerFunctionPasses) {
    mPerFunctionPasses->doInitialization();

    for (llvm::Module::iterator I = mpModule->begin(), E = mpModule->end();
         I != E;
         I++)
      if (!I->isDeclaration())
        mPerFunctionPasses->run(*I);

    mPerFunctionPasses->doFinalization();
  }

  // Create and run module passes
  CreateModulePasses();
  if (mPerModulePasses)
    mPerModulePasses->run(*mpModule);

  switch (mOT) {
    case Slang::OT_Assembly:
    case Slang::OT_Object: {
      if (!CreateCodeGenPasses())
        return;

      mCodeGenPasses->doInitialization();

      for (llvm::Module::iterator I = mpModule->begin(), E = mpModule->end();
          I != E;
          I++)
        if (!I->isDeclaration())
          mCodeGenPasses->run(*I);

      mCodeGenPasses->doFinalization();
      break;
    }
    case Slang::OT_LLVMAssembly: {
      llvm::legacy::PassManager *LLEmitPM = new llvm::legacy::PassManager();
      LLEmitPM->add(llvm::createPrintModulePass(mBufferOutStream));
      LLEmitPM->run(*mpModule);
      break;
    }
    case Slang::OT_Bitcode: {
      llvm::legacy::PassManager *BCEmitPM = new llvm::legacy::PassManager();
      std::string BCStr;
      llvm::raw_string_ostream Bitcode(BCStr);
      unsigned int TargetAPI = getTargetAPI();
      switch (TargetAPI) {
        case SLANG_HC_TARGET_API:
        case SLANG_HC_MR1_TARGET_API:
        case SLANG_HC_MR2_TARGET_API: {
          // Pre-ICS targets must use the LLVM 2.9 BitcodeWriter
          BCEmitPM->add(llvm_2_9::createBitcodeWriterPass(Bitcode));
          break;
        }
        case SLANG_ICS_TARGET_API:
        case SLANG_ICS_MR1_TARGET_API: {
          // ICS targets must use the LLVM 2.9_func BitcodeWriter
          BCEmitPM->add(llvm_2_9_func::createBitcodeWriterPass(Bitcode));
          break;
        }
        default: {
          if (TargetAPI != SLANG_DEVELOPMENT_TARGET_API &&
              (TargetAPI < SLANG_MINIMUM_TARGET_API ||
               TargetAPI > SLANG_MAXIMUM_TARGET_API)) {
            slangAssert(false && "Invalid target API value");
          }
          // Switch to the 3.2 BitcodeWriter by default, and don't use
          // LLVM's included BitcodeWriter at all (for now).
          BCEmitPM->add(llvm_3_2::createBitcodeWriterPass(Bitcode));
          //BCEmitPM->add(llvm::createBitcodeWriterPass(Bitcode));
          break;
        }
      }

      BCEmitPM->run(*mpModule);
      WrapBitcode(Bitcode);
      break;
    }
    case Slang::OT_Nothing: {
      return;
    }
    default: {
      slangAssert(false && "Unknown output type");
    }
  }

  mBufferOutStream.flush();
}

void Backend::HandleTagDeclDefinition(clang::TagDecl *D) {
  mGen->HandleTagDeclDefinition(D);
}

void Backend::CompleteTentativeDefinition(clang::VarDecl *D) {
  mGen->CompleteTentativeDefinition(D);
}

Backend::~Backend() {
  delete mpModule;
  delete mGen;
  delete mPerFunctionPasses;
  delete mPerModulePasses;
  delete mCodeGenPasses;
}

// 1) Add zero initialization of local RS object types
void Backend::AnnotateFunction(clang::FunctionDecl *FD) {
  if (FD &&
      FD->hasBody() &&
      !Slang::IsLocInRSHeaderFile(FD->getLocation(), mSourceMgr)) {
    mRefCount.Init();
    mRefCount.Visit(FD->getBody());
  }
}

bool Backend::HandleTopLevelDecl(clang::DeclGroupRef D) {
  // Disallow user-defined functions with prefix "rs"
  if (!mAllowRSPrefix) {
    // Iterate all function declarations in the program.
    for (clang::DeclGroupRef::iterator I = D.begin(), E = D.end();
         I != E; I++) {
      clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(*I);
      if (FD == nullptr)
        continue;
      if (!FD->getName().startswith("rs"))  // Check prefix
        continue;
      if (!Slang::IsLocInRSHeaderFile(FD->getLocation(), mSourceMgr))
        mContext->ReportError(FD->getLocation(),
                              "invalid function name prefix, "
                              "\"rs\" is reserved: '%0'")
            << FD->getName();
    }
  }

  // Process any non-static function declarations
  for (clang::DeclGroupRef::iterator I = D.begin(), E = D.end(); I != E; I++) {
    clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(*I);
    if (FD && FD->isGlobal()) {
      // Check that we don't have any array parameters being misintrepeted as
      // kernel pointers due to the C type system's array to pointer decay.
      size_t numParams = FD->getNumParams();
      for (size_t i = 0; i < numParams; i++) {
        const clang::ParmVarDecl *PVD = FD->getParamDecl(i);
        clang::QualType QT = PVD->getOriginalType();
        if (QT->isArrayType()) {
          mContext->ReportError(
              PVD->getTypeSpecStartLoc(),
              "exported function parameters may not have array type: %0")
              << QT;
        }
      }
      AnnotateFunction(FD);
    }
  }
  return mGen->HandleTopLevelDecl(D);
}

void Backend::HandleTranslationUnitPre(clang::ASTContext &C) {
  clang::TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();

  // If we have an invalid RS/FS AST, don't check further.
  if (!mASTChecker.Validate()) {
    return;
  }

  if (mIsFilterscript) {
    mContext->addPragma("rs_fp_relaxed", "");
  }

  int version = mContext->getVersion();
  if (version == 0) {
    // Not setting a version is an error
    mDiagEngine.Report(
        mSourceMgr.getLocForEndOfFile(mSourceMgr.getMainFileID()),
        mDiagEngine.getCustomDiagID(
            clang::DiagnosticsEngine::Error,
            "missing pragma for version in source file"));
  } else {
    slangAssert(version == 1);
  }

  if (mContext->getReflectJavaPackageName().empty()) {
    mDiagEngine.Report(
        mSourceMgr.getLocForEndOfFile(mSourceMgr.getMainFileID()),
        mDiagEngine.getCustomDiagID(clang::DiagnosticsEngine::Error,
                                    "missing \"#pragma rs "
                                    "java_package_name(com.foo.bar)\" "
                                    "in source file"));
    return;
  }

  // Create a static global destructor if necessary (to handle RS object
  // runtime cleanup).
  clang::FunctionDecl *FD = mRefCount.CreateStaticGlobalDtor();
  if (FD) {
    HandleTopLevelDecl(clang::DeclGroupRef(FD));
  }

  // Process any static function declarations
  for (clang::DeclContext::decl_iterator I = TUDecl->decls_begin(),
          E = TUDecl->decls_end(); I != E; I++) {
    if ((I->getKind() >= clang::Decl::firstFunction) &&
        (I->getKind() <= clang::Decl::lastFunction)) {
      clang::FunctionDecl *FD = llvm::dyn_cast<clang::FunctionDecl>(*I);
      if (FD && !FD->isGlobal()) {
        AnnotateFunction(FD);
      }
    }
  }
}

///////////////////////////////////////////////////////////////////////////////
void Backend::dumpExportVarInfo(llvm::Module *M) {
  int slotCount = 0;
  if (mExportVarMetadata == nullptr)
    mExportVarMetadata = M->getOrInsertNamedMetadata(RS_EXPORT_VAR_MN);

  llvm::SmallVector<llvm::Metadata *, 2> ExportVarInfo;

  // We emit slot information (#rs_object_slots) for any reference counted
  // RS type or pointer (which can also be bound).

  for (RSContext::const_export_var_iterator I = mContext->export_vars_begin(),
          E = mContext->export_vars_end();
       I != E;
       I++) {
    const RSExportVar *EV = *I;
    const RSExportType *ET = EV->getType();
    bool countsAsRSObject = false;

    // Variable name
    ExportVarInfo.push_back(
        llvm::MDString::get(mLLVMContext, EV->getName().c_str()));

    // Type name
    switch (ET->getClass()) {
      case RSExportType::ExportClassPrimitive: {
        const RSExportPrimitiveType *PT =
            static_cast<const RSExportPrimitiveType*>(ET);
        ExportVarInfo.push_back(
            llvm::MDString::get(
              mLLVMContext, llvm::utostr_32(PT->getType())));
        if (PT->isRSObjectType()) {
          countsAsRSObject = true;
        }
        break;
      }
      case RSExportType::ExportClassPointer: {
        ExportVarInfo.push_back(
            llvm::MDString::get(
              mLLVMContext, ("*" + static_cast<const RSExportPointerType*>(ET)
                ->getPointeeType()->getName()).c_str()));
        break;
      }
      case RSExportType::ExportClassMatrix: {
        ExportVarInfo.push_back(
            llvm::MDString::get(
              mLLVMContext, llvm::utostr_32(
                  /* TODO Strange value.  This pushes just a number, quite
                   * different than the other cases.  What is this used for?
                   * These are the metadata values that some partner drivers
                   * want to reference (for TBAA, etc.). We may want to look
                   * at whether these provide any reasonable value (or have
                   * distinct enough values to actually depend on).
                   */
                DataTypeRSMatrix2x2 +
                static_cast<const RSExportMatrixType*>(ET)->getDim() - 2)));
        break;
      }
      case RSExportType::ExportClassVector:
      case RSExportType::ExportClassConstantArray:
      case RSExportType::ExportClassRecord: {
        ExportVarInfo.push_back(
            llvm::MDString::get(mLLVMContext,
              EV->getType()->getName().c_str()));
        break;
      }
    }

    mExportVarMetadata->addOperand(
        llvm::MDNode::get(mLLVMContext, ExportVarInfo));
    ExportVarInfo.clear();

    if (mRSObjectSlotsMetadata == nullptr) {
      mRSObjectSlotsMetadata =
          M->getOrInsertNamedMetadata(RS_OBJECT_SLOTS_MN);
    }

    if (countsAsRSObject) {
      mRSObjectSlotsMetadata->addOperand(llvm::MDNode::get(mLLVMContext,
          llvm::MDString::get(mLLVMContext, llvm::utostr_32(slotCount))));
    }

    slotCount++;
  }
}

void Backend::dumpExportFunctionInfo(llvm::Module *M) {
  if (mExportFuncMetadata == nullptr)
    mExportFuncMetadata =
        M->getOrInsertNamedMetadata(RS_EXPORT_FUNC_MN);

  llvm::SmallVector<llvm::Metadata *, 1> ExportFuncInfo;

  for (RSContext::const_export_func_iterator
          I = mContext->export_funcs_begin(),
          E = mContext->export_funcs_end();
       I != E;
       I++) {
    const RSExportFunc *EF = *I;

    // Function name
    if (!EF->hasParam()) {
      ExportFuncInfo.push_back(llvm::MDString::get(mLLVMContext,
                                                   EF->getName().c_str()));
    } else {
      llvm::Function *F = M->getFunction(EF->getName());
      llvm::Function *HelperFunction;
      const std::string HelperFunctionName(".helper_" + EF->getName());

      slangAssert(F && "Function marked as exported disappeared in Bitcode");

      // Create helper function
      {
        llvm::StructType *HelperFunctionParameterTy = nullptr;
        std::vector<bool> isStructInput;

        if (!F->getArgumentList().empty()) {
          std::vector<llvm::Type*> HelperFunctionParameterTys;
          for (llvm::Function::arg_iterator AI = F->arg_begin(),
                   AE = F->arg_end(); AI != AE; AI++) {
              if (AI->getType()->isPointerTy() && AI->getType()->getPointerElementType()->isStructTy()) {
                  HelperFunctionParameterTys.push_back(AI->getType()->getPointerElementType());
                  isStructInput.push_back(true);
              } else {
                  HelperFunctionParameterTys.push_back(AI->getType());
                  isStructInput.push_back(false);
              }
          }
          HelperFunctionParameterTy =
              llvm::StructType::get(mLLVMContext, HelperFunctionParameterTys);
        }

        if (!EF->checkParameterPacketType(HelperFunctionParameterTy)) {
          fprintf(stderr, "Failed to export function %s: parameter type "
                          "mismatch during creation of helper function.\n",
                  EF->getName().c_str());

          const RSExportRecordType *Expected = EF->getParamPacketType();
          if (Expected) {
            fprintf(stderr, "Expected:\n");
            Expected->getLLVMType()->dump();
          }
          if (HelperFunctionParameterTy) {
            fprintf(stderr, "Got:\n");
            HelperFunctionParameterTy->dump();
          }
        }

        std::vector<llvm::Type*> Params;
        if (HelperFunctionParameterTy) {
          llvm::PointerType *HelperFunctionParameterTyP =
              llvm::PointerType::getUnqual(HelperFunctionParameterTy);
          Params.push_back(HelperFunctionParameterTyP);
        }

        llvm::FunctionType * HelperFunctionType =
            llvm::FunctionType::get(F->getReturnType(),
                                    Params,
                                    /* IsVarArgs = */false);

        HelperFunction =
            llvm::Function::Create(HelperFunctionType,
                                   llvm::GlobalValue::ExternalLinkage,
                                   HelperFunctionName,
                                   M);

        HelperFunction->addFnAttr(llvm::Attribute::NoInline);
        HelperFunction->setCallingConv(F->getCallingConv());

        // Create helper function body
        {
          llvm::Argument *HelperFunctionParameter =
              &(*HelperFunction->arg_begin());
          llvm::BasicBlock *BB =
              llvm::BasicBlock::Create(mLLVMContext, "entry", HelperFunction);
          llvm::IRBuilder<> *IB = new llvm::IRBuilder<>(BB);
          llvm::SmallVector<llvm::Value*, 6> Params;
          llvm::Value *Idx[2];

          Idx[0] =
              llvm::ConstantInt::get(llvm::Type::getInt32Ty(mLLVMContext), 0);

          // getelementptr and load instruction for all elements in
          // parameter .p
          for (size_t i = 0; i < EF->getNumParameters(); i++) {
            // getelementptr
            Idx[1] = llvm::ConstantInt::get(
              llvm::Type::getInt32Ty(mLLVMContext), i);

            llvm::Value *Ptr = NULL;

            Ptr = IB->CreateInBoundsGEP(HelperFunctionParameter, Idx);

            // Load is only required for non-struct ptrs
            if (isStructInput[i]) {
                Params.push_back(Ptr);
            } else {
                llvm::Value *V = IB->CreateLoad(Ptr);
                Params.push_back(V);
            }
          }

          // Call and pass the all elements as parameter to F
          llvm::CallInst *CI = IB->CreateCall(F, Params);

          CI->setCallingConv(F->getCallingConv());

          if (F->getReturnType() == llvm::Type::getVoidTy(mLLVMContext))
            IB->CreateRetVoid();
          else
            IB->CreateRet(CI);

          delete IB;
        }
      }

      ExportFuncInfo.push_back(
          llvm::MDString::get(mLLVMContext, HelperFunctionName.c_str()));
    }

    mExportFuncMetadata->addOperand(
        llvm::MDNode::get(mLLVMContext, ExportFuncInfo));
    ExportFuncInfo.clear();
  }
}

void Backend::dumpExportForEachInfo(llvm::Module *M) {
  if (mExportForEachNameMetadata == nullptr) {
    mExportForEachNameMetadata =
        M->getOrInsertNamedMetadata(RS_EXPORT_FOREACH_NAME_MN);
  }
  if (mExportForEachSignatureMetadata == nullptr) {
    mExportForEachSignatureMetadata =
        M->getOrInsertNamedMetadata(RS_EXPORT_FOREACH_MN);
  }

  llvm::SmallVector<llvm::Metadata *, 1> ExportForEachName;
  llvm::SmallVector<llvm::Metadata *, 1> ExportForEachInfo;

  for (RSContext::const_export_foreach_iterator
          I = mContext->export_foreach_begin(),
          E = mContext->export_foreach_end();
       I != E;
       I++) {
    const RSExportForEach *EFE = *I;

    ExportForEachName.push_back(
        llvm::MDString::get(mLLVMContext, EFE->getName().c_str()));

    mExportForEachNameMetadata->addOperand(
        llvm::MDNode::get(mLLVMContext, ExportForEachName));
    ExportForEachName.clear();

    ExportForEachInfo.push_back(
        llvm::MDString::get(mLLVMContext,
                            llvm::utostr_32(EFE->getSignatureMetadata())));

    mExportForEachSignatureMetadata->addOperand(
        llvm::MDNode::get(mLLVMContext, ExportForEachInfo));
    ExportForEachInfo.clear();
  }
}

void Backend::dumpExportTypeInfo(llvm::Module *M) {
  llvm::SmallVector<llvm::Metadata *, 1> ExportTypeInfo;

  for (RSContext::const_export_type_iterator
          I = mContext->export_types_begin(),
          E = mContext->export_types_end();
       I != E;
       I++) {
    // First, dump type name list to export
    const RSExportType *ET = I->getValue();

    ExportTypeInfo.clear();
    // Type name
    ExportTypeInfo.push_back(
        llvm::MDString::get(mLLVMContext, ET->getName().c_str()));

    if (ET->getClass() == RSExportType::ExportClassRecord) {
      const RSExportRecordType *ERT =
          static_cast<const RSExportRecordType*>(ET);

      if (mExportTypeMetadata == nullptr)
        mExportTypeMetadata =
            M->getOrInsertNamedMetadata(RS_EXPORT_TYPE_MN);

      mExportTypeMetadata->addOperand(
          llvm::MDNode::get(mLLVMContext, ExportTypeInfo));

      // Now, export struct field information to %[struct name]
      std::string StructInfoMetadataName("%");
      StructInfoMetadataName.append(ET->getName());
      llvm::NamedMDNode *StructInfoMetadata =
          M->getOrInsertNamedMetadata(StructInfoMetadataName);
      llvm::SmallVector<llvm::Metadata *, 3> FieldInfo;

      slangAssert(StructInfoMetadata->getNumOperands() == 0 &&
                  "Metadata with same name was created before");
      for (RSExportRecordType::const_field_iterator FI = ERT->fields_begin(),
              FE = ERT->fields_end();
           FI != FE;
           FI++) {
        const RSExportRecordType::Field *F = *FI;

        // 1. field name
        FieldInfo.push_back(llvm::MDString::get(mLLVMContext,
                                                F->getName().c_str()));

        // 2. field type name
        FieldInfo.push_back(
            llvm::MDString::get(mLLVMContext,
                                F->getType()->getName().c_str()));

        StructInfoMetadata->addOperand(
            llvm::MDNode::get(mLLVMContext, FieldInfo));
        FieldInfo.clear();
      }
    }   // ET->getClass() == RSExportType::ExportClassRecord
  }
}

void Backend::HandleTranslationUnitPost(llvm::Module *M) {

  if (!mContext->is64Bit()) {
    M->setDataLayout("e-p:32:32-i64:64-v128:64:128-n32-S64");
  }

  if (!mContext->processExport()) {
    return;
  }

  if (mContext->hasExportVar())
    dumpExportVarInfo(M);

  if (mContext->hasExportFunc())
    dumpExportFunctionInfo(M);

  if (mContext->hasExportForEach())
    dumpExportForEachInfo(M);

  if (mContext->hasExportType())
    dumpExportTypeInfo(M);
}

}  // namespace slang