aboutsummaryrefslogtreecommitdiffstats
path: root/src/opts/SkXfermode_opts_SSE2.cpp
blob: b92477094b72cbd8b6ab5b8f884355bf2f969990 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
/*
 * Copyright 2014 Google Inc.
 *
 * Use of this source code is governed by a BSD-style license that can be
 * found in the LICENSE file.
 */

#include "SkColorPriv.h"
#include "SkColor_opts_SSE2.h"
#include "SkMathPriv.h"
#include "SkMath_opts_SSE2.h"
#include "SkXfermode.h"
#include "SkXfermode_opts_SSE2.h"
#include "SkXfermode_proccoeff.h"

////////////////////////////////////////////////////////////////////////////////
// 4 pixels SSE2 version functions
////////////////////////////////////////////////////////////////////////////////

static inline __m128i SkDiv255Round_SSE2(const __m128i& a) {
    __m128i prod = _mm_add_epi32(a, _mm_set1_epi32(128)); // prod += 128;
    prod = _mm_add_epi32(prod, _mm_srli_epi32(prod, 8));  // prod + (prod >> 8)
    prod = _mm_srli_epi32(prod, 8);                       // >> 8

    return prod;
}

static inline __m128i clamp_div255round_SSE2(const __m128i& prod) {
    // test if > 0
    __m128i cmp1 = _mm_cmpgt_epi32(prod, _mm_setzero_si128());
    // test if < 255*255
    __m128i cmp2 = _mm_cmplt_epi32(prod, _mm_set1_epi32(255*255));

    __m128i ret = _mm_setzero_si128();

    // if value >= 255*255, value = 255
    ret = _mm_andnot_si128(cmp2,  _mm_set1_epi32(255));

    __m128i div = SkDiv255Round_SSE2(prod);

    // test if > 0 && < 255*255
    __m128i cmp = _mm_and_si128(cmp1, cmp2);

    ret = _mm_or_si128(_mm_and_si128(cmp, div), _mm_andnot_si128(cmp, ret));

    return ret;
}
static inline __m128i SkMin32_SSE2(const __m128i& a, const __m128i& b) {
    __m128i cmp = _mm_cmplt_epi32(a, b);
    return _mm_or_si128(_mm_and_si128(cmp, a), _mm_andnot_si128(cmp, b));
}

static inline __m128i srcover_byte_SSE2(const __m128i& a, const __m128i& b) {
    // a + b - SkAlphaMulAlpha(a, b);
    return _mm_sub_epi32(_mm_add_epi32(a, b), SkAlphaMulAlpha_SSE2(a, b));

}

// Portable version overlay_byte() is in SkXfermode.cpp.
static inline __m128i overlay_byte_SSE2(const __m128i& sc, const __m128i& dc,
                                        const __m128i& sa, const __m128i& da) {
    __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
    __m128i tmp1 = _mm_mullo_epi16(sc, ida);
    __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);
    __m128i tmp2 = _mm_mullo_epi16(dc, isa);
    __m128i tmp = _mm_add_epi32(tmp1, tmp2);

    __m128i cmp = _mm_cmpgt_epi32(_mm_slli_epi32(dc, 1), da);
    __m128i rc1 = _mm_slli_epi32(sc, 1);                        // 2 * sc
    rc1 = Multiply32_SSE2(rc1, dc);                             // *dc

    __m128i rc2 = _mm_mullo_epi16(sa, da);                      // sa * da
    __m128i tmp3 = _mm_slli_epi32(_mm_sub_epi32(da, dc), 1);    // 2 * (da - dc)
    tmp3 = Multiply32_SSE2(tmp3, _mm_sub_epi32(sa, sc));        // * (sa - sc)
    rc2 = _mm_sub_epi32(rc2, tmp3);

    __m128i rc = _mm_or_si128(_mm_andnot_si128(cmp, rc1),
                              _mm_and_si128(cmp, rc2));
    return clamp_div255round_SSE2(_mm_add_epi32(rc, tmp));
}

static __m128i overlay_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
    __m128i sa = SkGetPackedA32_SSE2(src);
    __m128i da = SkGetPackedA32_SSE2(dst);

    __m128i a = srcover_byte_SSE2(sa, da);
    __m128i r = overlay_byte_SSE2(SkGetPackedR32_SSE2(src),
                                  SkGetPackedR32_SSE2(dst), sa, da);
    __m128i g = overlay_byte_SSE2(SkGetPackedG32_SSE2(src),
                                  SkGetPackedG32_SSE2(dst), sa, da);
    __m128i b = overlay_byte_SSE2(SkGetPackedB32_SSE2(src),
                                  SkGetPackedB32_SSE2(dst), sa, da);
    return SkPackARGB32_SSE2(a, r, g, b);
}

static inline __m128i darken_byte_SSE2(const __m128i& sc, const __m128i& dc,
                                       const __m128i& sa, const __m128i& da) {
    __m128i sd = _mm_mullo_epi16(sc, da);
    __m128i ds = _mm_mullo_epi16(dc, sa);

    __m128i cmp = _mm_cmplt_epi32(sd, ds);

    __m128i tmp = _mm_add_epi32(sc, dc);
    __m128i ret1 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(ds));
    __m128i ret2 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(sd));
    __m128i ret = _mm_or_si128(_mm_and_si128(cmp, ret1),
                               _mm_andnot_si128(cmp, ret2));
    return ret;
}

static __m128i darken_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
    __m128i sa = SkGetPackedA32_SSE2(src);
    __m128i da = SkGetPackedA32_SSE2(dst);

    __m128i a = srcover_byte_SSE2(sa, da);
    __m128i r = darken_byte_SSE2(SkGetPackedR32_SSE2(src),
                                 SkGetPackedR32_SSE2(dst), sa, da);
    __m128i g = darken_byte_SSE2(SkGetPackedG32_SSE2(src),
                                 SkGetPackedG32_SSE2(dst), sa, da);
    __m128i b = darken_byte_SSE2(SkGetPackedB32_SSE2(src),
                                 SkGetPackedB32_SSE2(dst), sa, da);
    return SkPackARGB32_SSE2(a, r, g, b);
}

static inline __m128i lighten_byte_SSE2(const __m128i& sc, const __m128i& dc,
                                        const __m128i& sa, const __m128i& da) {
    __m128i sd = _mm_mullo_epi16(sc, da);
    __m128i ds = _mm_mullo_epi16(dc, sa);

    __m128i cmp = _mm_cmpgt_epi32(sd, ds);

    __m128i tmp = _mm_add_epi32(sc, dc);
    __m128i ret1 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(ds));
    __m128i ret2 = _mm_sub_epi32(tmp, SkDiv255Round_SSE2(sd));
    __m128i ret = _mm_or_si128(_mm_and_si128(cmp, ret1),
                               _mm_andnot_si128(cmp, ret2));
    return ret;
}

static __m128i lighten_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
    __m128i sa = SkGetPackedA32_SSE2(src);
    __m128i da = SkGetPackedA32_SSE2(dst);

    __m128i a = srcover_byte_SSE2(sa, da);
    __m128i r = lighten_byte_SSE2(SkGetPackedR32_SSE2(src),
                                  SkGetPackedR32_SSE2(dst), sa, da);
    __m128i g = lighten_byte_SSE2(SkGetPackedG32_SSE2(src),
                                  SkGetPackedG32_SSE2(dst), sa, da);
    __m128i b = lighten_byte_SSE2(SkGetPackedB32_SSE2(src),
                                  SkGetPackedB32_SSE2(dst), sa, da);
    return SkPackARGB32_SSE2(a, r, g, b);
}

static inline __m128i colordodge_byte_SSE2(const __m128i& sc, const __m128i& dc,
                                           const __m128i& sa, const __m128i& da) {
    __m128i diff = _mm_sub_epi32(sa, sc);
    __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
    __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);

    // if (0 == dc)
    __m128i cmp1 = _mm_cmpeq_epi32(dc, _mm_setzero_si128());
    __m128i rc1 = _mm_and_si128(cmp1, SkAlphaMulAlpha_SSE2(sc, ida));

    // else if (0 == diff)
    __m128i cmp2 = _mm_cmpeq_epi32(diff, _mm_setzero_si128());
    __m128i cmp = _mm_andnot_si128(cmp1, cmp2);
    __m128i tmp1 = _mm_mullo_epi16(sa, da);
    __m128i tmp2 = _mm_mullo_epi16(sc, ida);
    __m128i tmp3 = _mm_mullo_epi16(dc, isa);
    __m128i rc2 = _mm_add_epi32(tmp1, tmp2);
    rc2 = _mm_add_epi32(rc2, tmp3);
    rc2 = clamp_div255round_SSE2(rc2);
    rc2 = _mm_and_si128(cmp, rc2);

    // else
    __m128i cmp3 = _mm_or_si128(cmp1, cmp2);
    __m128i value = _mm_mullo_epi16(dc, sa);
    diff = shim_mm_div_epi32(value, diff);

    __m128i tmp4 = SkMin32_SSE2(da, diff);
    tmp4 = Multiply32_SSE2(sa, tmp4);
    __m128i rc3 = _mm_add_epi32(tmp4, tmp2);
    rc3 = _mm_add_epi32(rc3, tmp3);
    rc3 = clamp_div255round_SSE2(rc3);
    rc3 = _mm_andnot_si128(cmp3, rc3);

    __m128i rc = _mm_or_si128(rc1, rc2);
    rc = _mm_or_si128(rc, rc3);

    return rc;
}

static __m128i colordodge_modeproc_SSE2(const __m128i& src,
                                        const __m128i& dst) {
    __m128i sa = SkGetPackedA32_SSE2(src);
    __m128i da = SkGetPackedA32_SSE2(dst);

    __m128i a = srcover_byte_SSE2(sa, da);
    __m128i r = colordodge_byte_SSE2(SkGetPackedR32_SSE2(src),
                                     SkGetPackedR32_SSE2(dst), sa, da);
    __m128i g = colordodge_byte_SSE2(SkGetPackedG32_SSE2(src),
                                     SkGetPackedG32_SSE2(dst), sa, da);
    __m128i b = colordodge_byte_SSE2(SkGetPackedB32_SSE2(src),
                                     SkGetPackedB32_SSE2(dst), sa, da);
    return SkPackARGB32_SSE2(a, r, g, b);
}

static inline __m128i colorburn_byte_SSE2(const __m128i& sc, const __m128i& dc,
                                          const __m128i& sa, const __m128i& da) {
    __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
    __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);

    // if (dc == da)
    __m128i cmp1 = _mm_cmpeq_epi32(dc, da);
    __m128i tmp1 = _mm_mullo_epi16(sa, da);
    __m128i tmp2 = _mm_mullo_epi16(sc, ida);
    __m128i tmp3 = _mm_mullo_epi16(dc, isa);
    __m128i rc1 = _mm_add_epi32(tmp1, tmp2);
    rc1 = _mm_add_epi32(rc1, tmp3);
    rc1 = clamp_div255round_SSE2(rc1);
    rc1 = _mm_and_si128(cmp1, rc1);

    // else if (0 == sc)
    __m128i cmp2 = _mm_cmpeq_epi32(sc, _mm_setzero_si128());
    __m128i rc2 = SkAlphaMulAlpha_SSE2(dc, isa);
    __m128i cmp = _mm_andnot_si128(cmp1, cmp2);
    rc2 = _mm_and_si128(cmp, rc2);

    // else
    __m128i cmp3 = _mm_or_si128(cmp1, cmp2);
    __m128i tmp4 = _mm_sub_epi32(da, dc);
    tmp4 = Multiply32_SSE2(tmp4, sa);
    tmp4 = shim_mm_div_epi32(tmp4, sc);

    __m128i tmp5 = _mm_sub_epi32(da, SkMin32_SSE2(da, tmp4));
    tmp5 = Multiply32_SSE2(sa, tmp5);
    __m128i rc3 = _mm_add_epi32(tmp5, tmp2);
    rc3 = _mm_add_epi32(rc3, tmp3);
    rc3 = clamp_div255round_SSE2(rc3);
    rc3 = _mm_andnot_si128(cmp3, rc3);

    __m128i rc = _mm_or_si128(rc1, rc2);
    rc = _mm_or_si128(rc, rc3);

    return rc;
}

static __m128i colorburn_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
    __m128i sa = SkGetPackedA32_SSE2(src);
    __m128i da = SkGetPackedA32_SSE2(dst);

    __m128i a = srcover_byte_SSE2(sa, da);
    __m128i r = colorburn_byte_SSE2(SkGetPackedR32_SSE2(src),
                                    SkGetPackedR32_SSE2(dst), sa, da);
    __m128i g = colorburn_byte_SSE2(SkGetPackedG32_SSE2(src),
                                    SkGetPackedG32_SSE2(dst), sa, da);
    __m128i b = colorburn_byte_SSE2(SkGetPackedB32_SSE2(src),
                                    SkGetPackedB32_SSE2(dst), sa, da);
    return SkPackARGB32_SSE2(a, r, g, b);
}

static inline __m128i hardlight_byte_SSE2(const __m128i& sc, const __m128i& dc,
                                          const __m128i& sa, const __m128i& da) {
    // if (2 * sc <= sa)
    __m128i tmp1 = _mm_slli_epi32(sc, 1);
    __m128i cmp1 = _mm_cmpgt_epi32(tmp1, sa);
    __m128i rc1 = _mm_mullo_epi16(sc, dc);                // sc * dc;
    rc1 = _mm_slli_epi32(rc1, 1);                         // 2 * sc * dc
    rc1 = _mm_andnot_si128(cmp1, rc1);

    // else
    tmp1 = _mm_mullo_epi16(sa, da);
    __m128i tmp2 = Multiply32_SSE2(_mm_sub_epi32(da, dc),
                                   _mm_sub_epi32(sa, sc));
    tmp2 = _mm_slli_epi32(tmp2, 1);
    __m128i rc2 = _mm_sub_epi32(tmp1, tmp2);
    rc2 = _mm_and_si128(cmp1, rc2);

    __m128i rc = _mm_or_si128(rc1, rc2);

    __m128i ida = _mm_sub_epi32(_mm_set1_epi32(255), da);
    tmp1 = _mm_mullo_epi16(sc, ida);
    __m128i isa = _mm_sub_epi32(_mm_set1_epi32(255), sa);
    tmp2 = _mm_mullo_epi16(dc, isa);
    rc = _mm_add_epi32(rc, tmp1);
    rc = _mm_add_epi32(rc, tmp2);
    return clamp_div255round_SSE2(rc);
}

static __m128i hardlight_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
    __m128i sa = SkGetPackedA32_SSE2(src);
    __m128i da = SkGetPackedA32_SSE2(dst);

    __m128i a = srcover_byte_SSE2(sa, da);
    __m128i r = hardlight_byte_SSE2(SkGetPackedR32_SSE2(src),
                                    SkGetPackedR32_SSE2(dst), sa, da);
    __m128i g = hardlight_byte_SSE2(SkGetPackedG32_SSE2(src),
                                    SkGetPackedG32_SSE2(dst), sa, da);
    __m128i b = hardlight_byte_SSE2(SkGetPackedB32_SSE2(src),
                                    SkGetPackedB32_SSE2(dst), sa, da);
    return SkPackARGB32_SSE2(a, r, g, b);
}

static __m128i sqrt_unit_byte_SSE2(const __m128i& n) {
    return SkSqrtBits_SSE2(n, 15+4);
}

static inline __m128i softlight_byte_SSE2(const __m128i& sc, const __m128i& dc,
                                          const __m128i& sa, const __m128i& da) {
    __m128i tmp1, tmp2, tmp3;

    // int m = da ? dc * 256 / da : 0;
    __m128i cmp = _mm_cmpeq_epi32(da, _mm_setzero_si128());
    __m128i m = _mm_slli_epi32(dc, 8);
    __m128 x = _mm_cvtepi32_ps(m);
    __m128 y = _mm_cvtepi32_ps(da);
    m = _mm_cvttps_epi32(_mm_div_ps(x, y));
    m = _mm_andnot_si128(cmp, m);

    // if (2 * sc <= sa)
    tmp1 = _mm_slli_epi32(sc, 1);                      // 2 * sc
    __m128i cmp1 = _mm_cmpgt_epi32(tmp1, sa);
    tmp1 = _mm_sub_epi32(tmp1, sa);                    // 2 * sc - sa
    tmp2 = _mm_sub_epi32(_mm_set1_epi32(256), m);      // 256 - m
    tmp1 = Multiply32_SSE2(tmp1, tmp2);
    tmp1 = _mm_srai_epi32(tmp1, 8);
    tmp1 = _mm_add_epi32(sa, tmp1);
    tmp1 = Multiply32_SSE2(dc, tmp1);
    __m128i rc1 = _mm_andnot_si128(cmp1, tmp1);

    // else if (4 * dc <= da)
    tmp2 = _mm_slli_epi32(dc, 2);                      // dc * 4
    __m128i cmp2 = _mm_cmpgt_epi32(tmp2, da);
    __m128i i = _mm_slli_epi32(m, 2);                  // 4 * m
    __m128i j = _mm_add_epi32(i, _mm_set1_epi32(256)); // 4 * m + 256
    __m128i k = Multiply32_SSE2(i, j);                 // 4 * m * (4 * m + 256)
    __m128i t = _mm_sub_epi32(m, _mm_set1_epi32(256)); // m - 256
    i = Multiply32_SSE2(k, t);                         // 4 * m * (4 * m + 256) * (m - 256)
    i = _mm_srai_epi32(i, 16);                         // >> 16
    j = Multiply32_SSE2(_mm_set1_epi32(7), m);         // 7 * m
    tmp2 = _mm_add_epi32(i, j);
    i = Multiply32_SSE2(dc, sa);                       // dc * sa
    j = _mm_slli_epi32(sc, 1);                         // 2 * sc
    j = _mm_sub_epi32(j, sa);                          // 2 * sc - sa
    j = Multiply32_SSE2(da, j);                        // da * (2 * sc - sa)
    tmp2 = Multiply32_SSE2(j, tmp2);                   // * tmp
    tmp2 = _mm_srai_epi32(tmp2, 8);                    // >> 8
    tmp2 = _mm_add_epi32(i, tmp2);
    cmp = _mm_andnot_si128(cmp2, cmp1);
    __m128i rc2 = _mm_and_si128(cmp, tmp2);
    __m128i rc = _mm_or_si128(rc1, rc2);

    // else
    tmp3 = sqrt_unit_byte_SSE2(m);
    tmp3 = _mm_sub_epi32(tmp3, m);
    tmp3 = Multiply32_SSE2(j, tmp3);                   // j = da * (2 * sc - sa)
    tmp3 = _mm_srai_epi32(tmp3, 8);
    tmp3 = _mm_add_epi32(i, tmp3);                     // i = dc * sa
    cmp = _mm_and_si128(cmp1, cmp2);
    __m128i rc3 = _mm_and_si128(cmp, tmp3);
    rc = _mm_or_si128(rc, rc3);

    tmp1 = _mm_sub_epi32(_mm_set1_epi32(255), da);     // 255 - da
    tmp1 = _mm_mullo_epi16(sc, tmp1);
    tmp2 = _mm_sub_epi32(_mm_set1_epi32(255), sa);     // 255 - sa
    tmp2 = _mm_mullo_epi16(dc, tmp2);
    rc = _mm_add_epi32(rc, tmp1);
    rc = _mm_add_epi32(rc, tmp2);
    return clamp_div255round_SSE2(rc);
}

static __m128i softlight_modeproc_SSE2(const __m128i& src, const __m128i& dst) {
    __m128i sa = SkGetPackedA32_SSE2(src);
    __m128i da = SkGetPackedA32_SSE2(dst);

    __m128i a = srcover_byte_SSE2(sa, da);
    __m128i r = softlight_byte_SSE2(SkGetPackedR32_SSE2(src),
                                    SkGetPackedR32_SSE2(dst), sa, da);
    __m128i g = softlight_byte_SSE2(SkGetPackedG32_SSE2(src),
                                    SkGetPackedG32_SSE2(dst), sa, da);
    __m128i b = softlight_byte_SSE2(SkGetPackedB32_SSE2(src),
                                    SkGetPackedB32_SSE2(dst), sa, da);
    return SkPackARGB32_SSE2(a, r, g, b);
}


////////////////////////////////////////////////////////////////////////////////

typedef __m128i (*SkXfermodeProcSIMD)(const __m128i& src, const __m128i& dst);

void SkSSE2ProcCoeffXfermode::xfer32(SkPMColor dst[], const SkPMColor src[],
                                     int count, const SkAlpha aa[]) const {
    SkASSERT(dst && src && count >= 0);

    SkXfermodeProc proc = this->getProc();
    SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD);
    SkASSERT(procSIMD != NULL);

    if (NULL == aa) {
        if (count >= 4) {
            while (((size_t)dst & 0x0F) != 0) {
                *dst = proc(*src, *dst);
                dst++;
                src++;
                count--;
            }

            const __m128i* s = reinterpret_cast<const __m128i*>(src);
            __m128i* d = reinterpret_cast<__m128i*>(dst);

            while (count >= 4) {
                __m128i src_pixel = _mm_loadu_si128(s++);
                __m128i dst_pixel = _mm_load_si128(d);

                dst_pixel = procSIMD(src_pixel, dst_pixel);
                _mm_store_si128(d++, dst_pixel);
                count -= 4;
            }

            src = reinterpret_cast<const SkPMColor*>(s);
            dst = reinterpret_cast<SkPMColor*>(d);
        }

        for (int i = count - 1; i >= 0; --i) {
            *dst = proc(*src, *dst);
            dst++;
            src++;
        }
    } else {
        for (int i = count - 1; i >= 0; --i) {
            unsigned a = aa[i];
            if (0 != a) {
                SkPMColor dstC = dst[i];
                SkPMColor C = proc(src[i], dstC);
                if (a != 0xFF) {
                    C = SkFourByteInterp(C, dstC, a);
                }
                dst[i] = C;
            }
        }
    }
}

void SkSSE2ProcCoeffXfermode::xfer16(uint16_t dst[], const SkPMColor src[],
                                     int count, const SkAlpha aa[]) const {
    SkASSERT(dst && src && count >= 0);

    SkXfermodeProc proc = this->getProc();
    SkXfermodeProcSIMD procSIMD = reinterpret_cast<SkXfermodeProcSIMD>(fProcSIMD);
    SkASSERT(procSIMD != NULL);

    if (NULL == aa) {
        if (count >= 8) {
            while (((size_t)dst & 0x0F) != 0) {
                SkPMColor dstC = SkPixel16ToPixel32(*dst);
                *dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC));
                dst++;
                src++;
                count--;
            }

            const __m128i* s = reinterpret_cast<const __m128i*>(src);
            __m128i* d = reinterpret_cast<__m128i*>(dst);

            while (count >= 8) {
                __m128i src_pixel1 = _mm_loadu_si128(s++);
                __m128i src_pixel2 = _mm_loadu_si128(s++);
                __m128i dst_pixel = _mm_load_si128(d);

                __m128i dst_pixel1 = _mm_unpacklo_epi16(dst_pixel, _mm_setzero_si128());
                __m128i dst_pixel2 = _mm_unpackhi_epi16(dst_pixel, _mm_setzero_si128());

                __m128i dstC1 = SkPixel16ToPixel32_SSE2(dst_pixel1);
                __m128i dstC2 = SkPixel16ToPixel32_SSE2(dst_pixel2);

                dst_pixel1 = procSIMD(src_pixel1, dstC1);
                dst_pixel2 = procSIMD(src_pixel2, dstC2);
                dst_pixel = SkPixel32ToPixel16_ToU16_SSE2(dst_pixel1, dst_pixel2);

                _mm_store_si128(d++, dst_pixel);
                count -= 8;
            }

            src = reinterpret_cast<const SkPMColor*>(s);
            dst = reinterpret_cast<uint16_t*>(d);
        }

        for (int i = count - 1; i >= 0; --i) {
            SkPMColor dstC = SkPixel16ToPixel32(*dst);
            *dst = SkPixel32ToPixel16_ToU16(proc(*src, dstC));
            dst++;
            src++;
        }
    } else {
        for (int i = count - 1; i >= 0; --i) {
            unsigned a = aa[i];
            if (0 != a) {
                SkPMColor dstC = SkPixel16ToPixel32(dst[i]);
                SkPMColor C = proc(src[i], dstC);
                if (0xFF != a) {
                    C = SkFourByteInterp(C, dstC, a);
                }
                dst[i] = SkPixel32ToPixel16_ToU16(C);
            }
        }
    }
}

#ifndef SK_IGNORE_TO_STRING
void SkSSE2ProcCoeffXfermode::toString(SkString* str) const {
    this->INHERITED::toString(str);
}
#endif

SkProcCoeffXfermode* SkPlatformXfermodeFactory_impl_SSE2(const ProcCoeff& rec,
                                                         SkXfermode::Mode mode) {
    SkXfermodeProcSIMD proc = nullptr;
    // TODO(mtklein): implement these Sk4px.
    switch (mode) {
        case SkProcCoeffXfermode::kOverlay_Mode:    proc =    overlay_modeproc_SSE2; break;
        case SkProcCoeffXfermode::kDarken_Mode:     proc =     darken_modeproc_SSE2; break;
        case SkProcCoeffXfermode::kLighten_Mode:    proc =    lighten_modeproc_SSE2; break;
        case SkProcCoeffXfermode::kColorDodge_Mode: proc = colordodge_modeproc_SSE2; break;
        case SkProcCoeffXfermode::kColorBurn_Mode:  proc =  colorburn_modeproc_SSE2; break;
        case SkProcCoeffXfermode::kHardLight_Mode:  proc =  hardlight_modeproc_SSE2; break;
        case SkProcCoeffXfermode::kSoftLight_Mode:  proc =  softlight_modeproc_SSE2; break;
        default: break;
    }
    return proc ? SkNEW_ARGS(SkSSE2ProcCoeffXfermode, (rec, mode, (void*)proc)) : nullptr;
}