summaryrefslogtreecommitdiffstats
path: root/common/ihevc_chroma_itrans_recon_8x8.c
blob: f0863870de73af998f642cc5b4a38b6a77d2dc85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/******************************************************************************
*
* Copyright (C) 2012 Ittiam Systems Pvt Ltd, Bangalore
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
******************************************************************************/
/**
 *******************************************************************************
 * @file
 *  ihevc_chroma_itrans_recon_8x8.c
 *
 * @brief
 *  Contains function definitions for 8x8 inverse transform  and reconstruction
 * of chroma interleaved data.
 *
 * @author
 *  100470
 *
 * @par List of Functions:
 *  - ihevc_chroma_itrans_recon_8x8()
 *
 * @remarks
 *  None
 *
 *******************************************************************************
 */

#include <stdio.h>
#include <string.h>
#include "ihevc_typedefs.h"
#include "ihevc_macros.h"
#include "ihevc_platform_macros.h"
#include "ihevc_defs.h"
#include "ihevc_trans_tables.h"
#include "ihevc_chroma_itrans_recon.h"
#include "ihevc_func_selector.h"
#include "ihevc_trans_macros.h"

/* All the functions work one component(U or V) of interleaved data depending upon pointers passed to it */
/* Data visualization */
/* U V U V U V U V */
/* U V U V U V U V */
/* U V U V U V U V */
/* U V U V U V U V */
/* If the pointer points to first byte of above stream (U) , functions will operate on U component */
/* If the pointer points to second byte of above stream (V) , functions will operate on V component */

/**
 *******************************************************************************
 *
 * @brief
 *  This function performs Inverse transform  and reconstruction for 8x8
 * input block
 *
 * @par Description:
 *  Performs inverse transform and adds the prediction  data and clips output
 * to 8 bit
 *
 * @param[in] pi2_src
 *  Input 8x8 coefficients
 *
 * @param[in] pi2_tmp
 *  Temporary 8x8 buffer for storing inverse transform
 *  1st stage output
 *
 * @param[in] pu1_pred
 *  Prediction 8x8 block
 *
 * @param[out] pu1_dst
 *  Output 8x8 block
 *
 * @param[in] src_strd
 *  Input stride
 *
 * @param[in] pred_strd
 *  Prediction stride
 *
 * @param[in] dst_strd
 *  Output Stride
 *
 * @param[in] shift
 *  Output shift
 *
 * @param[in] zero_cols
 *  Zero columns in pi2_src
 *
 * @returns  Void
 *
 * @remarks
 *  None
 *
 *******************************************************************************
 */


void ihevc_chroma_itrans_recon_8x8(WORD16 *pi2_src,
                                   WORD16 *pi2_tmp,
                                   UWORD8 *pu1_pred,
                                   UWORD8 *pu1_dst,
                                   WORD32 src_strd,
                                   WORD32 pred_strd,
                                   WORD32 dst_strd,
                                   WORD32 zero_cols,
                                   WORD32 zero_rows)
{
    WORD32 j, k;
    WORD32 e[4], o[4];
    WORD32 ee[2], eo[2];
    WORD32 add;
    WORD32 shift;
    WORD16 *pi2_tmp_orig;
    WORD32 trans_size;
    WORD32 zero_rows_2nd_stage = zero_cols;
    WORD32 row_limit_2nd_stage;
    UNUSED(zero_rows);
    trans_size = TRANS_SIZE_8;

    pi2_tmp_orig = pi2_tmp;

    if((zero_cols & 0xF0) == 0xF0)
        row_limit_2nd_stage = 4;
    else
        row_limit_2nd_stage = TRANS_SIZE_8;

    /* Inverse Transform 1st stage */
    shift = IT_SHIFT_STAGE_1;
    add = 1 << (shift - 1);
    {
        /************************************************************************************************/
        /**********************************START - IT_RECON_8x8******************************************/
        /************************************************************************************************/

        for(j = 0; j < row_limit_2nd_stage; j++)
        {
            /* Checking for Zero Cols */
            if((zero_cols & 1) == 1)
            {
                memset(pi2_tmp, 0, trans_size * sizeof(WORD16));
            }
            else
            {
                /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
                for(k = 0; k < 4; k++)
                {
                    o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_src[src_strd]
                                    + g_ai2_ihevc_trans_8[3][k]
                                                    * pi2_src[3 * src_strd]
                                    + g_ai2_ihevc_trans_8[5][k]
                                                    * pi2_src[5 * src_strd]
                                    + g_ai2_ihevc_trans_8[7][k]
                                                    * pi2_src[7 * src_strd];
                }

                eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_src[2 * src_strd]
                                + g_ai2_ihevc_trans_8[6][0] * pi2_src[6 * src_strd];
                eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_src[2 * src_strd]
                                + g_ai2_ihevc_trans_8[6][1] * pi2_src[6 * src_strd];
                ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_src[0]
                                + g_ai2_ihevc_trans_8[4][0] * pi2_src[4 * src_strd];
                ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_src[0]
                                + g_ai2_ihevc_trans_8[4][1] * pi2_src[4 * src_strd];

                /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
                e[0] = ee[0] + eo[0];
                e[3] = ee[0] - eo[0];
                e[1] = ee[1] + eo[1];
                e[2] = ee[1] - eo[1];
                for(k = 0; k < 4; k++)
                {
                    pi2_tmp[k] =
                                    CLIP_S16(((e[k] + o[k] + add) >> shift));
                    pi2_tmp[k + 4] =
                                    CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
                }
            }
            pi2_src++;
            pi2_tmp += trans_size;
            zero_cols = zero_cols >> 1;
        }

        pi2_tmp = pi2_tmp_orig;

        /* Inverse Transform 2nd stage */
        shift = IT_SHIFT_STAGE_2;
        add = 1 << (shift - 1);

        if((zero_rows_2nd_stage & 0xF0) == 0xF0) /* First 4 rows of output of 1st stage are non-zero */
        {
            for(j = 0; j < trans_size; j++)
            {
                /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
                for(k = 0; k < 4; k++)
                {
                    o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
                                    + g_ai2_ihevc_trans_8[3][k]
                                                    * pi2_tmp[3 * trans_size];
                }
                eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size];
                eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size];
                ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0];
                ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0];

                /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
                e[0] = ee[0] + eo[0];
                e[3] = ee[0] - eo[0];
                e[1] = ee[1] + eo[1];
                e[2] = ee[1] - eo[1];
                for(k = 0; k < 4; k++)
                {
                    WORD32 itrans_out;
                    itrans_out =
                                    CLIP_S16(((e[k] + o[k] + add) >> shift));
                    pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
                    itrans_out =
                                    CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
                    pu1_dst[(k + 4) * 2] =
                                    CLIP_U8((itrans_out + pu1_pred[(k + 4) * 2]));
                }
                pi2_tmp++;
                pu1_pred += pred_strd;
                pu1_dst += dst_strd;
            }
        }
        else /* All rows of output of 1st stage are non-zero */
        {
            for(j = 0; j < trans_size; j++)
            {
                /* Utilizing symmetry properties to the maximum to minimize the number of multiplications */
                for(k = 0; k < 4; k++)
                {
                    o[k] = g_ai2_ihevc_trans_8[1][k] * pi2_tmp[trans_size]
                                    + g_ai2_ihevc_trans_8[3][k]
                                                    * pi2_tmp[3 * trans_size]
                                    + g_ai2_ihevc_trans_8[5][k]
                                                    * pi2_tmp[5 * trans_size]
                                    + g_ai2_ihevc_trans_8[7][k]
                                                    * pi2_tmp[7 * trans_size];
                }

                eo[0] = g_ai2_ihevc_trans_8[2][0] * pi2_tmp[2 * trans_size]
                                + g_ai2_ihevc_trans_8[6][0] * pi2_tmp[6 * trans_size];
                eo[1] = g_ai2_ihevc_trans_8[2][1] * pi2_tmp[2 * trans_size]
                                + g_ai2_ihevc_trans_8[6][1] * pi2_tmp[6 * trans_size];
                ee[0] = g_ai2_ihevc_trans_8[0][0] * pi2_tmp[0]
                                + g_ai2_ihevc_trans_8[4][0] * pi2_tmp[4 * trans_size];
                ee[1] = g_ai2_ihevc_trans_8[0][1] * pi2_tmp[0]
                                + g_ai2_ihevc_trans_8[4][1] * pi2_tmp[4 * trans_size];

                /* Combining e and o terms at each hierarchy levels to calculate the final spatial domain vector */
                e[0] = ee[0] + eo[0];
                e[3] = ee[0] - eo[0];
                e[1] = ee[1] + eo[1];
                e[2] = ee[1] - eo[1];
                for(k = 0; k < 4; k++)
                {
                    WORD32 itrans_out;
                    itrans_out =
                                    CLIP_S16(((e[k] + o[k] + add) >> shift));
                    pu1_dst[k * 2] = CLIP_U8((itrans_out + pu1_pred[k * 2]));
                    itrans_out =
                                    CLIP_S16(((e[3 - k] - o[3 - k] + add) >> shift));
                    pu1_dst[(k + 4) * 2] =
                                    CLIP_U8((itrans_out + pu1_pred[(k + 4) * 2]));
                }
                pi2_tmp++;
                pu1_pred += pred_strd;
                pu1_dst += dst_strd;
            }
        }
        /************************************************************************************************/
        /************************************END - IT_RECON_8x8******************************************/
        /************************************************************************************************/
    }
}