aboutsummaryrefslogtreecommitdiffstats
path: root/guava/src/com/google/common/math/LongMath.java
blob: 07bd534e72f182164c01a43e56671a10c41c0b13 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.math;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.math.MathPreconditions.checkNoOverflow;
import static com.google.common.math.MathPreconditions.checkNonNegative;
import static com.google.common.math.MathPreconditions.checkPositive;
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.lang.Math.abs;
import static java.lang.Math.min;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.HALF_UP;

import com.google.common.annotations.Beta;
import com.google.common.annotations.VisibleForTesting;

import java.math.BigInteger;
import java.math.RoundingMode;

/**
 * A class for arithmetic on values of type {@code long}. Where possible, methods are defined and
 * named analogously to their {@code BigInteger} counterparts.
 *
 * <p>The implementations of many methods in this class are based on material from Henry S. Warren,
 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002).
 *
 * <p>Similar functionality for {@code int} and for {@link BigInteger} can be found in
 * {@link IntMath} and {@link BigIntegerMath} respectively.  For other common operations on
 * {@code long} values, see {@link com.google.common.primitives.Longs}.
 *
 * @author Louis Wasserman
 * @since 11.0
 */
@Beta
public final class LongMath {
  // NOTE: Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, ||

  /**
   * Returns {@code true} if {@code x} represents a power of two.
   *
   * <p>This differs from {@code Long.bitCount(x) == 1}, because
   * {@code Long.bitCount(Long.MIN_VALUE) == 1}, but {@link Long#MIN_VALUE} is not a power of two.
   */
  public static boolean isPowerOfTwo(long x) {
    return x > 0 & (x & (x - 1)) == 0;
  }

  /**
   * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
   *
   * @throws IllegalArgumentException if {@code x <= 0}
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
   *         is not a power of two
   */
  @SuppressWarnings("fallthrough")
  public static int log2(long x, RoundingMode mode) {
    checkPositive("x", x);
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(isPowerOfTwo(x));
        // fall through
      case DOWN:
      case FLOOR:
        return (Long.SIZE - 1) - Long.numberOfLeadingZeros(x);

      case UP:
      case CEILING:
        return Long.SIZE - Long.numberOfLeadingZeros(x - 1);

      case HALF_DOWN:
      case HALF_UP:
      case HALF_EVEN:
        // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
        int leadingZeros = Long.numberOfLeadingZeros(x);
        long cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros;
        // floor(2^(logFloor + 0.5))
        int logFloor = (Long.SIZE - 1) - leadingZeros;
        return (x <= cmp) ? logFloor : logFloor + 1;

      default:
        throw new AssertionError("impossible");
    }
  }

  /** The biggest half power of two that fits into an unsigned long */
  @VisibleForTesting static final long MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333F9DE6484L;

  /**
   * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
   *
   * @throws IllegalArgumentException if {@code x <= 0}
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
   *         is not a power of ten
   */
  @SuppressWarnings("fallthrough")
  public static int log10(long x, RoundingMode mode) {
    checkPositive("x", x);
    if (fitsInInt(x)) {
      return IntMath.log10((int) x, mode);
    }
    int logFloor = log10Floor(x);
    long floorPow = POWERS_OF_10[logFloor];
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(x == floorPow);
        // fall through
      case FLOOR:
      case DOWN:
        return logFloor;
      case CEILING:
      case UP:
        return (x == floorPow) ? logFloor : logFloor + 1;
      case HALF_DOWN:
      case HALF_UP:
      case HALF_EVEN:
        // sqrt(10) is irrational, so log10(x)-logFloor is never exactly 0.5
        return (x <= HALF_POWERS_OF_10[logFloor]) ? logFloor : logFloor + 1;
      default:
        throw new AssertionError();
    }
  }

  static int log10Floor(long x) {
    for (int i = 1; i < POWERS_OF_10.length; i++) {
      if (x < POWERS_OF_10[i]) {
        return i - 1;
      }
    }
    return POWERS_OF_10.length - 1;
  }

  @VisibleForTesting
  static final long[] POWERS_OF_10 = {
    1L,
    10L,
    100L,
    1000L,
    10000L,
    100000L,
    1000000L,
    10000000L,
    100000000L,
    1000000000L,
    10000000000L,
    100000000000L,
    1000000000000L,
    10000000000000L,
    100000000000000L,
    1000000000000000L,
    10000000000000000L,
    100000000000000000L,
    1000000000000000000L
  };

  // HALF_POWERS_OF_10[i] = largest long less than 10^(i + 0.5)
  @VisibleForTesting
  static final long[] HALF_POWERS_OF_10 = {
    3L,
    31L,
    316L,
    3162L,
    31622L,
    316227L,
    3162277L,
    31622776L,
    316227766L,
    3162277660L,
    31622776601L,
    316227766016L,
    3162277660168L,
    31622776601683L,
    316227766016837L,
    3162277660168379L,
    31622776601683793L,
    316227766016837933L,
    3162277660168379331L
  };

  /**
   * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to
   * {@code BigInteger.valueOf(b).pow(k).longValue()}. This implementation runs in {@code O(log k)}
   * time.
   *
   * @throws IllegalArgumentException if {@code k < 0}
   */
  public static long pow(long b, int k) {
    checkNonNegative("exponent", k);
    if (-2 <= b && b <= 2) {
      switch ((int) b) {
        case 0:
          return (k == 0) ? 1 : 0;
        case 1:
          return 1;
        case (-1):
          return ((k & 1) == 0) ? 1 : -1;
        case 2:
          return (k < Long.SIZE) ? 1L << k : 0;
        case (-2):
          if (k < Long.SIZE) {
            return ((k & 1) == 0) ? 1L << k : -(1L << k);
          } else {
            return 0;
          }
      }
    }
    for (long accum = 1;; k >>= 1) {
      switch (k) {
        case 0:
          return accum;
        case 1:
          return accum * b;
        default:
          accum *= ((k & 1) == 0) ? 1 : b;
          b *= b;
      }
    }
  }

  /**
   * Returns the square root of {@code x}, rounded with the specified rounding mode.
   *
   * @throws IllegalArgumentException if {@code x < 0}
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and
   *         {@code sqrt(x)} is not an integer
   */
  @SuppressWarnings("fallthrough")
  public static long sqrt(long x, RoundingMode mode) {
    checkNonNegative("x", x);
    if (fitsInInt(x)) {
      return IntMath.sqrt((int) x, mode);
    }
    long sqrtFloor = sqrtFloor(x);
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(sqrtFloor * sqrtFloor == x); // fall through
      case FLOOR:
      case DOWN:
        return sqrtFloor;
      case CEILING:
      case UP:
        return (sqrtFloor * sqrtFloor == x) ? sqrtFloor : sqrtFloor + 1;
      case HALF_DOWN:
      case HALF_UP:
      case HALF_EVEN:
        long halfSquare = sqrtFloor * sqrtFloor + sqrtFloor;
        /*
         * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25. Since both
         * x and halfSquare are integers, this is equivalent to testing whether or not x <=
         * halfSquare. (We have to deal with overflow, though.)
         */
        return (halfSquare >= x | halfSquare < 0) ? sqrtFloor : sqrtFloor + 1;
      default:
        throw new AssertionError();
    }
  }

  private static long sqrtFloor(long x) {
    // Hackers's Delight, Figure 11-1
    long sqrt0 = (long) Math.sqrt(x);
    // Precision can be lost in the cast to double, so we use this as a starting estimate.
    long sqrt1 = (sqrt0 + (x / sqrt0)) >> 1;
    if (sqrt1 == sqrt0) {
      return sqrt0;
    }
    do {
      sqrt0 = sqrt1;
      sqrt1 = (sqrt0 + (x / sqrt0)) >> 1;
    } while (sqrt1 < sqrt0);
    return sqrt0;
  }

  /**
   * Returns the result of dividing {@code p} by {@code q}, rounding using the specified
   * {@code RoundingMode}.
   *
   * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
   *         is not an integer multiple of {@code b}
   */
  @SuppressWarnings("fallthrough")
  public static long divide(long p, long q, RoundingMode mode) {
    checkNotNull(mode);
    long div = p / q; // throws if q == 0
    long rem = p - q * div; // equals p % q

    if (rem == 0) {
      return div;
    }

    /*
     * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to
     * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of
     * p / q.
     *
     * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise.
     */
    int signum = 1 | (int) ((p ^ q) >> (Long.SIZE - 1));
    boolean increment;
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(rem == 0);
        // fall through
      case DOWN:
        increment = false;
        break;
      case UP:
        increment = true;
        break;
      case CEILING:
        increment = signum > 0;
        break;
      case FLOOR:
        increment = signum < 0;
        break;
      case HALF_EVEN:
      case HALF_DOWN:
      case HALF_UP:
        long absRem = abs(rem);
        long cmpRemToHalfDivisor = absRem - (abs(q) - absRem);
        // subtracting two nonnegative longs can't overflow
        // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2).
        if (cmpRemToHalfDivisor == 0) { // exactly on the half mark
          increment = (mode == HALF_UP | (mode == HALF_EVEN & (div & 1) != 0));
        } else {
          increment = cmpRemToHalfDivisor > 0; // closer to the UP value
        }
        break;
      default:
        throw new AssertionError();
    }
    return increment ? div + signum : div;
  }

  /**
   * Returns {@code x mod m}. This differs from {@code x % m} in that it always returns a
   * non-negative result.
   *
   * <p>For example:
   *
   * <pre> {@code
   *
   * mod(7, 4) == 3
   * mod(-7, 4) == 1
   * mod(-1, 4) == 3
   * mod(-8, 4) == 0
   * mod(8, 4) == 0}</pre>
   *
   * @throws ArithmeticException if {@code m <= 0}
   */
  public static int mod(long x, int m) {
    // Cast is safe because the result is guaranteed in the range [0, m)
    return (int) mod(x, (long) m);
  }

  /**
   * Returns {@code x mod m}. This differs from {@code x % m} in that it always returns a
   * non-negative result.
   *
   * <p>For example:
   *
   * <pre> {@code
   *
   * mod(7, 4) == 3
   * mod(-7, 4) == 1
   * mod(-1, 4) == 3
   * mod(-8, 4) == 0
   * mod(8, 4) == 0}</pre>
   *
   * @throws ArithmeticException if {@code m <= 0}
   */
  public static long mod(long x, long m) {
    if (m <= 0) {
      throw new ArithmeticException("Modulus " + m + " must be > 0");
    }
    long result = x % m;
    return (result >= 0) ? result : result + m;
  }

  /**
   * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if
   * {@code a == 0 && b == 0}.
   *
   * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0}
   */
  public static long gcd(long a, long b) {
    /*
     * The reason we require both arguments to be >= 0 is because otherwise, what do you return on
     * gcd(0, Long.MIN_VALUE)? BigInteger.gcd would return positive 2^63, but positive 2^63 isn't
     * an int.
     */
    checkNonNegative("a", a);
    checkNonNegative("b", b);
    if (a == 0 | b == 0) {
      return a | b;
    }
    /*
     * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm.
     * This is over 40% faster than the Euclidean algorithm in benchmarks.
     */
    int aTwos = Long.numberOfTrailingZeros(a);
    a >>= aTwos; // divide out all 2s
    int bTwos = Long.numberOfTrailingZeros(b);
    b >>= bTwos; // divide out all 2s
    while (a != b) { // both a, b are odd
      if (a < b) { // swap a, b
        long t = b;
        b = a;
        a = t;
      }
      a -= b; // a is now positive and even
      a >>= Long.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b
    }
    return a << min(aTwos, bTwos);
  }

  /**
   * Returns the sum of {@code a} and {@code b}, provided it does not overflow.
   *
   * @throws ArithmeticException if {@code a + b} overflows in signed {@code long} arithmetic
   */
  public static long checkedAdd(long a, long b) {
    long result = a + b;
    checkNoOverflow((a ^ b) < 0 | (a ^ result) >= 0);
    return result;
  }

  /**
   * Returns the difference of {@code a} and {@code b}, provided it does not overflow.
   *
   * @throws ArithmeticException if {@code a - b} overflows in signed {@code long} arithmetic
   */
  public static long checkedSubtract(long a, long b) {
    long result = a - b;
    checkNoOverflow((a ^ b) >= 0 | (a ^ result) >= 0);
    return result;
  }

  /**
   * Returns the product of {@code a} and {@code b}, provided it does not overflow.
   *
   * @throws ArithmeticException if {@code a * b} overflows in signed {@code long} arithmetic
   */
  public static long checkedMultiply(long a, long b) {
    // Hacker's Delight, Section 2-12
    int leadingZeros = Long.numberOfLeadingZeros(a) + Long.numberOfLeadingZeros(~a)
        + Long.numberOfLeadingZeros(b) + Long.numberOfLeadingZeros(~b);
    /*
     * If leadingZeros > Long.SIZE + 1 it's definitely fine, if it's < Long.SIZE it's definitely
     * bad. We do the leadingZeros check to avoid the division below if at all possible.
     *
     * Otherwise, if b == Long.MIN_VALUE, then the only allowed values of a are 0 and 1. We take
     * care of all a < 0 with their own check, because in particular, the case a == -1 will
     * incorrectly pass the division check below.
     *
     * In all other cases, we check that either a is 0 or the result is consistent with division.
     */
    if (leadingZeros > Long.SIZE + 1) {
      return a * b;
    }
    checkNoOverflow(leadingZeros >= Long.SIZE);
    checkNoOverflow(a >= 0 | b != Long.MIN_VALUE);
    long result = a * b;
    checkNoOverflow(a == 0 || result / a == b);
    return result;
  }

  /**
   * Returns the {@code b} to the {@code k}th power, provided it does not overflow.
   *
   * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed
   *         {@code long} arithmetic
   */
  public static long checkedPow(long b, int k) {
    checkNonNegative("exponent", k);
    if (b >= -2 & b <= 2) {
      switch ((int) b) {
        case 0:
          return (k == 0) ? 1 : 0;
        case 1:
          return 1;
        case (-1):
          return ((k & 1) == 0) ? 1 : -1;
        case 2:
          checkNoOverflow(k < Long.SIZE - 1);
          return 1L << k;
        case (-2):
          checkNoOverflow(k < Long.SIZE);
          return ((k & 1) == 0) ? (1L << k) : (-1L << k);
      }
    }
    long accum = 1;
    while (true) {
      switch (k) {
        case 0:
          return accum;
        case 1:
          return checkedMultiply(accum, b);
        default:
          if ((k & 1) != 0) {
            accum = checkedMultiply(accum, b);
          }
          k >>= 1;
          if (k > 0) {
            checkNoOverflow(b <= FLOOR_SQRT_MAX_LONG);
            b *= b;
          }
      }
    }
  }

  @VisibleForTesting static final long FLOOR_SQRT_MAX_LONG = 3037000499L;

  /**
   * Returns {@code n!}, that is, the product of the first {@code n} positive
   * integers, {@code 1} if {@code n == 0}, or {@link Long#MAX_VALUE} if the
   * result does not fit in a {@code long}.
   *
   * @throws IllegalArgumentException if {@code n < 0}
   */
  public static long factorial(int n) {
    checkNonNegative("n", n);
    return (n < FACTORIALS.length) ? FACTORIALS[n] : Long.MAX_VALUE;
  }

  static final long[] FACTORIALS = {
      1L,
      1L,
      1L * 2,
      1L * 2 * 3,
      1L * 2 * 3 * 4,
      1L * 2 * 3 * 4 * 5,
      1L * 2 * 3 * 4 * 5 * 6,
      1L * 2 * 3 * 4 * 5 * 6 * 7,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19,
      1L * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 19 * 20
  };

  /**
   * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
   * {@code k}, or {@link Long#MAX_VALUE} if the result does not fit in a {@code long}.
   *
   * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0}, or {@code k > n}
   */
  public static long binomial(int n, int k) {
    checkNonNegative("n", n);
    checkNonNegative("k", k);
    checkArgument(k <= n, "k (%s) > n (%s)", k, n);
    if (k > (n >> 1)) {
      k = n - k;
    }
    if (k >= BIGGEST_BINOMIALS.length || n > BIGGEST_BINOMIALS[k]) {
      return Long.MAX_VALUE;
    }
    long result = 1;
    if (k < BIGGEST_SIMPLE_BINOMIALS.length && n <= BIGGEST_SIMPLE_BINOMIALS[k]) {
      // guaranteed not to overflow
      for (int i = 0; i < k; i++) {
        result *= n - i;
        result /= i + 1;
      }
    } else {
      // We want to do this in long math for speed, but want to avoid overflow.
      // Dividing by the GCD suffices to avoid overflow in all the remaining cases.
      for (int i = 1; i <= k; i++, n--) {
        int d = IntMath.gcd(n, i);
        result /= i / d; // (i/d) is guaranteed to divide result
        result *= n / d;
      }
    }
    return result;
  }

  /*
   * binomial(BIGGEST_BINOMIALS[k], k) fits in a long, but not
   * binomial(BIGGEST_BINOMIALS[k] + 1, k).
   */
  static final int[] BIGGEST_BINOMIALS =
      {Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 3810779, 121977, 16175, 4337, 1733,
          887, 534, 361, 265, 206, 169, 143, 125, 111, 101, 94, 88, 83, 79, 76, 74, 72, 70, 69, 68,
          67, 67, 66, 66, 66, 66};

  /*
   * binomial(BIGGEST_SIMPLE_BINOMIALS[k], k) doesn't need to use the slower GCD-based impl,
   * but binomial(BIGGEST_SIMPLE_BINOMIALS[k] + 1, k) does.
   */
  @VisibleForTesting static final int[] BIGGEST_SIMPLE_BINOMIALS =
      {Integer.MAX_VALUE, Integer.MAX_VALUE, Integer.MAX_VALUE, 2642246, 86251, 11724, 3218, 1313,
          684, 419, 287, 214, 169, 139, 119, 105, 95, 87, 81, 76, 73, 70, 68, 66, 64, 63, 62, 62,
          61, 61, 61};
  // These values were generated by using checkedMultiply to see when the simple multiply/divide
  // algorithm would lead to an overflow.

  static boolean fitsInInt(long x) {
    return (int) x == x;
  }

  private LongMath() {}
}