aboutsummaryrefslogtreecommitdiffstats
path: root/guava/src/com/google/common/math/IntMath.java
blob: 33ed40016c8ac40078213d3c10f00458e0ec8577 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.math;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.math.MathPreconditions.checkNoOverflow;
import static com.google.common.math.MathPreconditions.checkNonNegative;
import static com.google.common.math.MathPreconditions.checkPositive;
import static com.google.common.math.MathPreconditions.checkRoundingUnnecessary;
import static java.lang.Math.abs;
import static java.lang.Math.min;
import static java.math.RoundingMode.HALF_EVEN;
import static java.math.RoundingMode.HALF_UP;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.VisibleForTesting;

import java.math.BigInteger;
import java.math.RoundingMode;

/**
 * A class for arithmetic on values of type {@code int}. Where possible, methods are defined and
 * named analogously to their {@code BigInteger} counterparts.
 *
 * <p>The implementations of many methods in this class are based on material from Henry S. Warren,
 * Jr.'s <i>Hacker's Delight</i>, (Addison Wesley, 2002).
 *
 * <p>Similar functionality for {@code long} and for {@link BigInteger} can be found in
 * {@link LongMath} and {@link BigIntegerMath} respectively.  For other common operations on
 * {@code int} values, see {@link com.google.common.primitives.Ints}.
 *
 * @author Louis Wasserman
 * @since 11.0
 */
@GwtCompatible(emulated = true)
public final class IntMath {
  // NOTE: Whenever both tests are cheap and functional, it's faster to use &, | instead of &&, ||

  /**
   * Returns {@code true} if {@code x} represents a power of two.
   *
   * <p>This differs from {@code Integer.bitCount(x) == 1}, because
   * {@code Integer.bitCount(Integer.MIN_VALUE) == 1}, but {@link Integer#MIN_VALUE} is not a power
   * of two.
   */
  public static boolean isPowerOfTwo(int x) {
    return x > 0 & (x & (x - 1)) == 0;
  }

  /**
   * Returns the base-2 logarithm of {@code x}, rounded according to the specified rounding mode.
   *
   * @throws IllegalArgumentException if {@code x <= 0}
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
   *         is not a power of two
   */
  @SuppressWarnings("fallthrough")
  // TODO(kevinb): remove after this warning is disabled globally
  public static int log2(int x, RoundingMode mode) {
    checkPositive("x", x);
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(isPowerOfTwo(x));
        // fall through
      case DOWN:
      case FLOOR:
        return (Integer.SIZE - 1) - Integer.numberOfLeadingZeros(x);

      case UP:
      case CEILING:
        return Integer.SIZE - Integer.numberOfLeadingZeros(x - 1);

      case HALF_DOWN:
      case HALF_UP:
      case HALF_EVEN:
        // Since sqrt(2) is irrational, log2(x) - logFloor cannot be exactly 0.5
        int leadingZeros = Integer.numberOfLeadingZeros(x);
        int cmp = MAX_POWER_OF_SQRT2_UNSIGNED >>> leadingZeros;
          // floor(2^(logFloor + 0.5))
        int logFloor = (Integer.SIZE - 1) - leadingZeros;
        return (x <= cmp) ? logFloor : logFloor + 1;

      default:
        throw new AssertionError();
    }
  }

  /** The biggest half power of two that can fit in an unsigned int. */
  @VisibleForTesting static final int MAX_POWER_OF_SQRT2_UNSIGNED = 0xB504F333;

  /**
   * Returns the base-10 logarithm of {@code x}, rounded according to the specified rounding mode.
   *
   * @throws IllegalArgumentException if {@code x <= 0}
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and {@code x}
   *         is not a power of ten
   */
  @GwtIncompatible("need BigIntegerMath to adequately test")
  @SuppressWarnings("fallthrough")
  public static int log10(int x, RoundingMode mode) {
    checkPositive("x", x);
    int logFloor = log10Floor(x);
    int floorPow = powersOf10[logFloor];
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(x == floorPow);
        // fall through
      case FLOOR:
      case DOWN:
        return logFloor;
      case CEILING:
      case UP:
        return (x == floorPow) ? logFloor : logFloor + 1;
      case HALF_DOWN:
      case HALF_UP:
      case HALF_EVEN:
        // sqrt(10) is irrational, so log10(x) - logFloor is never exactly 0.5
        return (x <= halfPowersOf10[logFloor]) ? logFloor : logFloor + 1;
      default:
        throw new AssertionError();
    }
  }

  private static int log10Floor(int x) {
    /*
     * Based on Hacker's Delight Fig. 11-5, the two-table-lookup, branch-free implementation.
     *
     * The key idea is that based on the number of leading zeros (equivalently, floor(log2(x))),
     * we can narrow the possible floor(log10(x)) values to two.  For example, if floor(log2(x))
     * is 6, then 64 <= x < 128, so floor(log10(x)) is either 1 or 2.
     */
    int y = maxLog10ForLeadingZeros[Integer.numberOfLeadingZeros(x)];
    // y is the higher of the two possible values of floor(log10(x))

    int sgn = (x - powersOf10[y]) >>> (Integer.SIZE - 1);
    /*
     * sgn is the sign bit of x - 10^y; it is 1 if x < 10^y, and 0 otherwise. If x < 10^y, then we
     * want the lower of the two possible values, or y - 1, otherwise, we want y.
     */
    return y - sgn;
  }

  // maxLog10ForLeadingZeros[i] == floor(log10(2^(Long.SIZE - i)))
  @VisibleForTesting static final byte[] maxLog10ForLeadingZeros = {9, 9, 9, 8, 8, 8,
    7, 7, 7, 6, 6, 6, 6, 5, 5, 5, 4, 4, 4, 3, 3, 3, 3, 2, 2, 2, 1, 1, 1, 0, 0, 0, 0};

  @VisibleForTesting static final int[] powersOf10 = {1, 10, 100, 1000, 10000,
    100000, 1000000, 10000000, 100000000, 1000000000};

  // halfPowersOf10[i] = largest int less than 10^(i + 0.5)
  @VisibleForTesting static final int[] halfPowersOf10 =
      {3, 31, 316, 3162, 31622, 316227, 3162277, 31622776, 316227766, Integer.MAX_VALUE};

  /**
   * Returns {@code b} to the {@code k}th power. Even if the result overflows, it will be equal to
   * {@code BigInteger.valueOf(b).pow(k).intValue()}. This implementation runs in {@code O(log k)}
   * time.
   *
   * <p>Compare {@link #checkedPow}, which throws an {@link ArithmeticException} upon overflow.
   *
   * @throws IllegalArgumentException if {@code k < 0}
   */
  @GwtIncompatible("failing tests")
  public static int pow(int b, int k) {
    checkNonNegative("exponent", k);
    switch (b) {
      case 0:
        return (k == 0) ? 1 : 0;
      case 1:
        return 1;
      case (-1):
        return ((k & 1) == 0) ? 1 : -1;
      case 2:
        return (k < Integer.SIZE) ? (1 << k) : 0;
      case (-2):
        if (k < Integer.SIZE) {
          return ((k & 1) == 0) ? (1 << k) : -(1 << k);
        } else {
          return 0;
        }
      default:
        // continue below to handle the general case
    }
    for (int accum = 1;; k >>= 1) {
      switch (k) {
        case 0:
          return accum;
        case 1:
          return b * accum;
        default:
          accum *= ((k & 1) == 0) ? 1 : b;
          b *= b;
      }
    }
  }

  /**
   * Returns the square root of {@code x}, rounded with the specified rounding mode.
   *
   * @throws IllegalArgumentException if {@code x < 0}
   * @throws ArithmeticException if {@code mode} is {@link RoundingMode#UNNECESSARY} and
   *         {@code sqrt(x)} is not an integer
   */
  @GwtIncompatible("need BigIntegerMath to adequately test")
  @SuppressWarnings("fallthrough")
  public static int sqrt(int x, RoundingMode mode) {
    checkNonNegative("x", x);
    int sqrtFloor = sqrtFloor(x);
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(sqrtFloor * sqrtFloor == x); // fall through
      case FLOOR:
      case DOWN:
        return sqrtFloor;
      case CEILING:
      case UP:
        return (sqrtFloor * sqrtFloor == x) ? sqrtFloor : sqrtFloor + 1;
      case HALF_DOWN:
      case HALF_UP:
      case HALF_EVEN:
        int halfSquare = sqrtFloor * sqrtFloor + sqrtFloor;
        /*
         * We wish to test whether or not x <= (sqrtFloor + 0.5)^2 = halfSquare + 0.25.
         * Since both x and halfSquare are integers, this is equivalent to testing whether or not
         * x <= halfSquare.  (We have to deal with overflow, though.)
         */
        return (x <= halfSquare | halfSquare < 0) ? sqrtFloor : sqrtFloor + 1;
      default:
        throw new AssertionError();
    }
  }

  private static int sqrtFloor(int x) {
    // There is no loss of precision in converting an int to a double, according to
    // http://java.sun.com/docs/books/jls/third_edition/html/conversions.html#5.1.2
    return (int) Math.sqrt(x);
  }

  /**
   * Returns the result of dividing {@code p} by {@code q}, rounding using the specified
   * {@code RoundingMode}.
   *
   * @throws ArithmeticException if {@code q == 0}, or if {@code mode == UNNECESSARY} and {@code a}
   *         is not an integer multiple of {@code b}
   */
  @SuppressWarnings("fallthrough")
  public static int divide(int p, int q, RoundingMode mode) {
    checkNotNull(mode);
    if (q == 0) {
      throw new ArithmeticException("/ by zero"); // for GWT
    }
    int div = p / q;
    int rem = p - q * div; // equal to p % q

    if (rem == 0) {
      return div;
    }

    /*
     * Normal Java division rounds towards 0, consistently with RoundingMode.DOWN. We just have to
     * deal with the cases where rounding towards 0 is wrong, which typically depends on the sign of
     * p / q.
     *
     * signum is 1 if p and q are both nonnegative or both negative, and -1 otherwise.
     */
    int signum = 1 | ((p ^ q) >> (Integer.SIZE - 1));
    boolean increment;
    switch (mode) {
      case UNNECESSARY:
        checkRoundingUnnecessary(rem == 0);
        // fall through
      case DOWN:
        increment = false;
        break;
      case UP:
        increment = true;
        break;
      case CEILING:
        increment = signum > 0;
        break;
      case FLOOR:
        increment = signum < 0;
        break;
      case HALF_EVEN:
      case HALF_DOWN:
      case HALF_UP:
        int absRem = abs(rem);
        int cmpRemToHalfDivisor = absRem - (abs(q) - absRem);
        // subtracting two nonnegative ints can't overflow
        // cmpRemToHalfDivisor has the same sign as compare(abs(rem), abs(q) / 2).
        if (cmpRemToHalfDivisor == 0) { // exactly on the half mark
          increment = (mode == HALF_UP || (mode == HALF_EVEN & (div & 1) != 0));
        } else {
          increment = cmpRemToHalfDivisor > 0; // closer to the UP value
        }
        break;
      default:
        throw new AssertionError();
    }
    return increment ? div + signum : div;
  }

  /**
   * Returns {@code x mod m}. This differs from {@code x % m} in that it always returns a
   * non-negative result.
   *
   * <p>For example:<pre> {@code
   *
   * mod(7, 4) == 3
   * mod(-7, 4) == 1
   * mod(-1, 4) == 3
   * mod(-8, 4) == 0
   * mod(8, 4) == 0}</pre>
   *
   * @throws ArithmeticException if {@code m <= 0}
   */
  public static int mod(int x, int m) {
    if (m <= 0) {
      throw new ArithmeticException("Modulus " + m + " must be > 0");
    }
    int result = x % m;
    return (result >= 0) ? result : result + m;
  }

  /**
   * Returns the greatest common divisor of {@code a, b}. Returns {@code 0} if
   * {@code a == 0 && b == 0}.
   *
   * @throws IllegalArgumentException if {@code a < 0} or {@code b < 0}
   */
  public static int gcd(int a, int b) {
    /*
     * The reason we require both arguments to be >= 0 is because otherwise, what do you return on
     * gcd(0, Integer.MIN_VALUE)? BigInteger.gcd would return positive 2^31, but positive 2^31
     * isn't an int.
     */
    checkNonNegative("a", a);
    checkNonNegative("b", b);
    if (a == 0) {
      // 0 % b == 0, so b divides a, but the converse doesn't hold.
      // BigInteger.gcd is consistent with this decision.
      return b;
    } else if (b == 0) {
      return a; // similar logic
    }
    /*
     * Uses the binary GCD algorithm; see http://en.wikipedia.org/wiki/Binary_GCD_algorithm.
     * This is >40% faster than the Euclidean algorithm in benchmarks.
     */
    int aTwos = Integer.numberOfTrailingZeros(a);
    a >>= aTwos; // divide out all 2s
    int bTwos = Integer.numberOfTrailingZeros(b);
    b >>= bTwos; // divide out all 2s
    while (a != b) { // both a, b are odd
      // The key to the binary GCD algorithm is as follows:
      // Both a and b are odd.  Assume a > b; then gcd(a - b, b) = gcd(a, b).
      // But in gcd(a - b, b), a - b is even and b is odd, so we can divide out powers of two.

      // We bend over backwards to avoid branching, adapting a technique from
      // http://graphics.stanford.edu/~seander/bithacks.html#IntegerMinOrMax

      int delta = a - b; // can't overflow, since a and b are nonnegative

      int minDeltaOrZero = delta & (delta >> (Integer.SIZE - 1));
      // equivalent to Math.min(delta, 0)

      a = delta - minDeltaOrZero - minDeltaOrZero; // sets a to Math.abs(a - b)
      // a is now nonnegative and even

      b += minDeltaOrZero; // sets b to min(old a, b)
      a >>= Integer.numberOfTrailingZeros(a); // divide out all 2s, since 2 doesn't divide b
    }
    return a << min(aTwos, bTwos);
  }

  /**
   * Returns the sum of {@code a} and {@code b}, provided it does not overflow.
   *
   * @throws ArithmeticException if {@code a + b} overflows in signed {@code int} arithmetic
   */
  public static int checkedAdd(int a, int b) {
    long result = (long) a + b;
    checkNoOverflow(result == (int) result);
    return (int) result;
  }

  /**
   * Returns the difference of {@code a} and {@code b}, provided it does not overflow.
   *
   * @throws ArithmeticException if {@code a - b} overflows in signed {@code int} arithmetic
   */
  public static int checkedSubtract(int a, int b) {
    long result = (long) a - b;
    checkNoOverflow(result == (int) result);
    return (int) result;
  }

  /**
   * Returns the product of {@code a} and {@code b}, provided it does not overflow.
   *
   * @throws ArithmeticException if {@code a * b} overflows in signed {@code int} arithmetic
   */
  public static int checkedMultiply(int a, int b) {
    long result = (long) a * b;
    checkNoOverflow(result == (int) result);
    return (int) result;
  }

  /**
   * Returns the {@code b} to the {@code k}th power, provided it does not overflow.
   *
   * <p>{@link #pow} may be faster, but does not check for overflow.
   *
   * @throws ArithmeticException if {@code b} to the {@code k}th power overflows in signed
   *         {@code int} arithmetic
   */
  public static int checkedPow(int b, int k) {
    checkNonNegative("exponent", k);
    switch (b) {
      case 0:
        return (k == 0) ? 1 : 0;
      case 1:
        return 1;
      case (-1):
        return ((k & 1) == 0) ? 1 : -1;
      case 2:
        checkNoOverflow(k < Integer.SIZE - 1);
        return 1 << k;
      case (-2):
        checkNoOverflow(k < Integer.SIZE);
        return ((k & 1) == 0) ? 1 << k : -1 << k;
      default:
        // continue below to handle the general case
    }
    int accum = 1;
    while (true) {
      switch (k) {
        case 0:
          return accum;
        case 1:
          return checkedMultiply(accum, b);
        default:
          if ((k & 1) != 0) {
            accum = checkedMultiply(accum, b);
          }
          k >>= 1;
          if (k > 0) {
            checkNoOverflow(-FLOOR_SQRT_MAX_INT <= b & b <= FLOOR_SQRT_MAX_INT);
            b *= b;
          }
      }
    }
  }

  @VisibleForTesting static final int FLOOR_SQRT_MAX_INT = 46340;

  /**
   * Returns {@code n!}, that is, the product of the first {@code n} positive
   * integers, {@code 1} if {@code n == 0}, or {@link Integer#MAX_VALUE} if the
   * result does not fit in a {@code int}.
   *
   * @throws IllegalArgumentException if {@code n < 0}
   */
  public static int factorial(int n) {
    checkNonNegative("n", n);
    return (n < factorials.length) ? factorials[n] : Integer.MAX_VALUE;
  }

  private static final int[] factorials = {
      1,
      1,
      1 * 2,
      1 * 2 * 3,
      1 * 2 * 3 * 4,
      1 * 2 * 3 * 4 * 5,
      1 * 2 * 3 * 4 * 5 * 6,
      1 * 2 * 3 * 4 * 5 * 6 * 7,
      1 * 2 * 3 * 4 * 5 * 6 * 7 * 8,
      1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9,
      1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10,
      1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11,
      1 * 2 * 3 * 4 * 5 * 6 * 7 * 8 * 9 * 10 * 11 * 12};

  /**
   * Returns {@code n} choose {@code k}, also known as the binomial coefficient of {@code n} and
   * {@code k}, or {@link Integer#MAX_VALUE} if the result does not fit in an {@code int}.
   *
   * @throws IllegalArgumentException if {@code n < 0}, {@code k < 0} or {@code k > n}
   */
  @GwtIncompatible("need BigIntegerMath to adequately test")
  public static int binomial(int n, int k) {
    checkNonNegative("n", n);
    checkNonNegative("k", k);
    checkArgument(k <= n, "k (%s) > n (%s)", k, n);
    if (k > (n >> 1)) {
      k = n - k;
    }
    if (k >= biggestBinomials.length || n > biggestBinomials[k]) {
      return Integer.MAX_VALUE;
    }
    switch (k) {
      case 0:
        return 1;
      case 1:
        return n;
      default:
        long result = 1;
        for (int i = 0; i < k; i++) {
          result *= n - i;
          result /= i + 1;
        }
        return (int) result;
    }
  }

  // binomial(biggestBinomials[k], k) fits in an int, but not binomial(biggestBinomials[k]+1,k).
  @VisibleForTesting static int[] biggestBinomials = {
    Integer.MAX_VALUE,
    Integer.MAX_VALUE,
    65536,
    2345,
    477,
    193,
    110,
    75,
    58,
    49,
    43,
    39,
    37,
    35,
    34,
    34,
    33
  };

  /**
   * Returns the arithmetic mean of {@code x} and {@code y}, rounded towards
   * negative infinity. This method is overflow resilient.
   *
   * @since 14.0
   */
  public static int mean(int x, int y) {
    // Efficient method for computing the arithmetic mean.
    // The alternative (x + y) / 2 fails for large values.
    // The alternative (x + y) >>> 1 fails for negative values.
    return (x & y) + ((x ^ y) >> 1);
  }

  private IntMath() {}
}