aboutsummaryrefslogtreecommitdiffstats
path: root/guava/src/com/google/common/collect/Ordering.java
blob: 9ee9c480ea49bce8f6f9bb6eaef29d62a39ae326 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Function;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.SortedMap;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.concurrent.atomic.AtomicInteger;

import javax.annotation.Nullable;

/**
 * A comparator, with additional methods to support common operations. This is
 * an "enriched" version of {@code Comparator}, in the same sense that {@link
 * FluentIterable} is an enriched {@link Iterable}). For example: <pre>   {@code
 *
 *   if (Ordering.from(comparator).reverse().isOrdered(list)) { ... }}</pre>
 *
 * The {@link #from(Comparator)} method returns the equivalent {@code Ordering}
 * instance for a pre-existing comparator. You can also skip the comparator step
 * and extend {@code Ordering} directly: <pre>   {@code
 *
 *   Ordering<String> byLengthOrdering = new Ordering<String>() {
 *     public int compare(String left, String right) {
 *       return Ints.compare(left.length(), right.length());
 *     }
 *   };}</pre>
 *
 * Except as noted, the orderings returned by the factory methods of this
 * class are serializable if and only if the provided instances that back them
 * are. For example, if {@code ordering} and {@code function} can themselves be
 * serialized, then {@code ordering.onResultOf(function)} can as well.
 *
 * <p>See the Guava User Guide article on <a href=
 * "http://code.google.com/p/guava-libraries/wiki/OrderingExplained">
 * {@code Ordering}</a>.
 *
 * @author Jesse Wilson
 * @author Kevin Bourrillion
 * @since 2.0 (imported from Google Collections Library)
 */
@GwtCompatible
public abstract class Ordering<T> implements Comparator<T> {
  // Natural order

  /**
   * Returns a serializable ordering that uses the natural order of the values.
   * The ordering throws a {@link NullPointerException} when passed a null
   * parameter.
   *
   * <p>The type specification is {@code <C extends Comparable>}, instead of
   * the technically correct {@code <C extends Comparable<? super C>>}, to
   * support legacy types from before Java 5.
   */
  @GwtCompatible(serializable = true)
  @SuppressWarnings("unchecked") // TODO(kevinb): right way to explain this??
  public static <C extends Comparable> Ordering<C> natural() {
    return (Ordering<C>) NaturalOrdering.INSTANCE;
  }

  // Static factories

  /**
   * Returns an ordering based on an <i>existing</i> comparator instance. Note
   * that there's no need to create a <i>new</i> comparator just to pass it in
   * here; simply subclass {@code Ordering} and implement its {@code compareTo}
   * method directly instead.
   *
   * @param comparator the comparator that defines the order
   * @return comparator itself if it is already an {@code Ordering}; otherwise
   *     an ordering that wraps that comparator
   */
  @GwtCompatible(serializable = true)
  public static <T> Ordering<T> from(Comparator<T> comparator) {
    return (comparator instanceof Ordering)
        ? (Ordering<T>) comparator
        : new ComparatorOrdering<T>(comparator);
  }

  /**
   * Simply returns its argument.
   *
   * @deprecated no need to use this
   */
  @GwtCompatible(serializable = true)
  @Deprecated public static <T> Ordering<T> from(Ordering<T> ordering) {
    return checkNotNull(ordering);
  }

  /**
   * Returns an ordering that compares objects according to the order in
   * which they appear in the given list. Only objects present in the list
   * (according to {@link Object#equals}) may be compared. This comparator
   * imposes a "partial ordering" over the type {@code T}. Subsequent changes
   * to the {@code valuesInOrder} list will have no effect on the returned
   * comparator. Null values in the list are not supported.
   *
   * <p>The returned comparator throws an {@link ClassCastException} when it
   * receives an input parameter that isn't among the provided values.
   *
   * <p>The generated comparator is serializable if all the provided values are
   * serializable.
   *
   * @param valuesInOrder the values that the returned comparator will be able
   *     to compare, in the order the comparator should induce
   * @return the comparator described above
   * @throws NullPointerException if any of the provided values is null
   * @throws IllegalArgumentException if {@code valuesInOrder} contains any
   *     duplicate values (according to {@link Object#equals})
   */
  @GwtCompatible(serializable = true)
  public static <T> Ordering<T> explicit(List<T> valuesInOrder) {
    return new ExplicitOrdering<T>(valuesInOrder);
  }

  /**
   * Returns an ordering that compares objects according to the order in
   * which they are given to this method. Only objects present in the argument
   * list (according to {@link Object#equals}) may be compared. This comparator
   * imposes a "partial ordering" over the type {@code T}. Null values in the
   * argument list are not supported.
   *
   * <p>The returned comparator throws a {@link ClassCastException} when it
   * receives an input parameter that isn't among the provided values.
   *
   * <p>The generated comparator is serializable if all the provided values are
   * serializable.
   *
   * @param leastValue the value which the returned comparator should consider
   *     the "least" of all values
   * @param remainingValuesInOrder the rest of the values that the returned
   *     comparator will be able to compare, in the order the comparator should
   *     follow
   * @return the comparator described above
   * @throws NullPointerException if any of the provided values is null
   * @throws IllegalArgumentException if any duplicate values (according to
   *     {@link Object#equals(Object)}) are present among the method arguments
   */
  @GwtCompatible(serializable = true)
  public static <T> Ordering<T> explicit(
      T leastValue, T... remainingValuesInOrder) {
    return explicit(Lists.asList(leastValue, remainingValuesInOrder));
  }

  // Ordering<Object> singletons

  /**
   * Returns an ordering which treats all values as equal, indicating "no
   * ordering." Passing this ordering to any <i>stable</i> sort algorithm
   * results in no change to the order of elements. Note especially that {@link
   * #sortedCopy} and {@link #immutableSortedCopy} are stable, and in the
   * returned instance these are implemented by simply copying the source list.
   *
   * <p>Example: <pre>   {@code
   *
   *   Ordering.allEqual().nullsLast().sortedCopy(
   *       asList(t, null, e, s, null, t, null))}</pre>
   *
   * Assuming {@code t}, {@code e} and {@code s} are non-null, this returns
   * {@code [t, e, s, t, null, null, null]} regardlesss of the true comparison
   * order of those three values (which might not even implement {@link
   * Comparable} at all).
   *
   * <p><b>Warning:</b> by definition, this comparator is not <i>consistent with
   * equals</i> (as defined {@linkplain Comparator here}). Avoid its use in
   * APIs, such as {@link TreeSet#TreeSet(Comparator)}, where such consistency
   * is expected.
   *
   * <p>The returned comparator is serializable.
   */
  @GwtCompatible(serializable = true)
  @SuppressWarnings("unchecked")
  public static Ordering<Object> allEqual() {
    return AllEqualOrdering.INSTANCE;
  }

  /**
   * Returns an ordering that compares objects by the natural ordering of their
   * string representations as returned by {@code toString()}. It does not
   * support null values.
   *
   * <p>The comparator is serializable.
   */
  @GwtCompatible(serializable = true)
  public static Ordering<Object> usingToString() {
    return UsingToStringOrdering.INSTANCE;
  }

  /**
   * Returns an arbitrary ordering over all objects, for which {@code compare(a,
   * b) == 0} implies {@code a == b} (identity equality). There is no meaning
   * whatsoever to the order imposed, but it is constant for the life of the VM.
   *
   * <p>Because the ordering is identity-based, it is not "consistent with
   * {@link Object#equals(Object)}" as defined by {@link Comparator}. Use
   * caution when building a {@link SortedSet} or {@link SortedMap} from it, as
   * the resulting collection will not behave exactly according to spec.
   *
   * <p>This ordering is not serializable, as its implementation relies on
   * {@link System#identityHashCode(Object)}, so its behavior cannot be
   * preserved across serialization.
   *
   * @since 2.0
   */
  public static Ordering<Object> arbitrary() {
    return ArbitraryOrderingHolder.ARBITRARY_ORDERING;
  }

  private static class ArbitraryOrderingHolder {
    static final Ordering<Object> ARBITRARY_ORDERING = new ArbitraryOrdering();
  }

  @VisibleForTesting static class ArbitraryOrdering extends Ordering<Object> {
    @SuppressWarnings("deprecation") // TODO(kevinb): ?
    private Map<Object, Integer> uids =
        Platform.tryWeakKeys(new MapMaker()).makeComputingMap(
            new Function<Object, Integer>() {
              final AtomicInteger counter = new AtomicInteger(0);
              @Override
              public Integer apply(Object from) {
                return counter.getAndIncrement();
              }
            });

    @Override public int compare(Object left, Object right) {
      if (left == right) {
        return 0;
      } else if (left == null) {
        return -1;
      } else if (right == null) {
        return 1;
      }
      int leftCode = identityHashCode(left);
      int rightCode = identityHashCode(right);
      if (leftCode != rightCode) {
        return leftCode < rightCode ? -1 : 1;
      }

      // identityHashCode collision (rare, but not as rare as you'd think)
      int result = uids.get(left).compareTo(uids.get(right));
      if (result == 0) {
        throw new AssertionError(); // extremely, extremely unlikely.
      }
      return result;
    }

    @Override public String toString() {
      return "Ordering.arbitrary()";
    }

    /*
     * We need to be able to mock identityHashCode() calls for tests, because it
     * can take 1-10 seconds to find colliding objects. Mocking frameworks that
     * can do magic to mock static method calls still can't do so for a system
     * class, so we need the indirection. In production, Hotspot should still
     * recognize that the call is 1-morphic and should still be willing to
     * inline it if necessary.
     */
    int identityHashCode(Object object) {
      return System.identityHashCode(object);
    }
  }

  // Constructor

  /**
   * Constructs a new instance of this class (only invokable by the subclass
   * constructor, typically implicit).
   */
  protected Ordering() {}

  // Instance-based factories (and any static equivalents)

  /**
   * Returns the reverse of this ordering; the {@code Ordering} equivalent to
   * {@link Collections#reverseOrder(Comparator)}.
   */
  // type parameter <S> lets us avoid the extra <String> in statements like:
  // Ordering<String> o = Ordering.<String>natural().reverse();
  @GwtCompatible(serializable = true)
  public <S extends T> Ordering<S> reverse() {
    return new ReverseOrdering<S>(this);
  }

  /**
   * Returns an ordering that treats {@code null} as less than all other values
   * and uses {@code this} to compare non-null values.
   */
  // type parameter <S> lets us avoid the extra <String> in statements like:
  // Ordering<String> o = Ordering.<String>natural().nullsFirst();
  @GwtCompatible(serializable = true)
  public <S extends T> Ordering<S> nullsFirst() {
    return new NullsFirstOrdering<S>(this);
  }

  /**
   * Returns an ordering that treats {@code null} as greater than all other
   * values and uses this ordering to compare non-null values.
   */
  // type parameter <S> lets us avoid the extra <String> in statements like:
  // Ordering<String> o = Ordering.<String>natural().nullsLast();
  @GwtCompatible(serializable = true)
  public <S extends T> Ordering<S> nullsLast() {
    return new NullsLastOrdering<S>(this);
  }

  /**
   * Returns a new ordering on {@code F} which orders elements by first applying
   * a function to them, then comparing those results using {@code this}. For
   * example, to compare objects by their string forms, in a case-insensitive
   * manner, use: <pre>   {@code
   *
   *   Ordering.from(String.CASE_INSENSITIVE_ORDER)
   *       .onResultOf(Functions.toStringFunction())}</pre>
   */
  @GwtCompatible(serializable = true)
  public <F> Ordering<F> onResultOf(Function<F, ? extends T> function) {
    return new ByFunctionOrdering<F, T>(function, this);
  }

  /**
   * Returns an ordering which first uses the ordering {@code this}, but which
   * in the event of a "tie", then delegates to {@code secondaryComparator}.
   * For example, to sort a bug list first by status and second by priority, you
   * might use {@code byStatus.compound(byPriority)}. For a compound ordering
   * with three or more components, simply chain multiple calls to this method.
   *
   * <p>An ordering produced by this method, or a chain of calls to this method,
   * is equivalent to one created using {@link Ordering#compound(Iterable)} on
   * the same component comparators.
   */
  @GwtCompatible(serializable = true)
  public <U extends T> Ordering<U> compound(
      Comparator<? super U> secondaryComparator) {
    return new CompoundOrdering<U>(this, checkNotNull(secondaryComparator));
  }

  /**
   * Returns an ordering which tries each given comparator in order until a
   * non-zero result is found, returning that result, and returning zero only if
   * all comparators return zero. The returned ordering is based on the state of
   * the {@code comparators} iterable at the time it was provided to this
   * method.
   *
   * <p>The returned ordering is equivalent to that produced using {@code
   * Ordering.from(comp1).compound(comp2).compound(comp3) . . .}.
   *
   * <p><b>Warning:</b> Supplying an argument with undefined iteration order,
   * such as a {@link HashSet}, will produce non-deterministic results.
   *
   * @param comparators the comparators to try in order
   */
  @GwtCompatible(serializable = true)
  public static <T> Ordering<T> compound(
      Iterable<? extends Comparator<? super T>> comparators) {
    return new CompoundOrdering<T>(comparators);
  }

  /**
   * Returns a new ordering which sorts iterables by comparing corresponding
   * elements pairwise until a nonzero result is found; imposes "dictionary
   * order". If the end of one iterable is reached, but not the other, the
   * shorter iterable is considered to be less than the longer one. For example,
   * a lexicographical natural ordering over integers considers {@code
   * [] < [1] < [1, 1] < [1, 2] < [2]}.
   *
   * <p>Note that {@code ordering.lexicographical().reverse()} is not
   * equivalent to {@code ordering.reverse().lexicographical()} (consider how
   * each would order {@code [1]} and {@code [1, 1]}).
   *
   * @since 2.0
   */
  @GwtCompatible(serializable = true)
  // type parameter <S> lets us avoid the extra <String> in statements like:
  // Ordering<Iterable<String>> o =
  //     Ordering.<String>natural().lexicographical();
  public <S extends T> Ordering<Iterable<S>> lexicographical() {
    /*
     * Note that technically the returned ordering should be capable of
     * handling not just {@code Iterable<S>} instances, but also any {@code
     * Iterable<? extends S>}. However, the need for this comes up so rarely
     * that it doesn't justify making everyone else deal with the very ugly
     * wildcard.
     */
    return new LexicographicalOrdering<S>(this);
  }

  // Regular instance methods

  // Override to add @Nullable
  @Override public abstract int compare(@Nullable T left, @Nullable T right);

  /**
   * Returns the least of the specified values according to this ordering. If
   * there are multiple least values, the first of those is returned. The
   * iterator will be left exhausted: its {@code hasNext()} method will return
   * {@code false}.
   *
   * @param iterator the iterator whose minimum element is to be determined
   * @throws NoSuchElementException if {@code iterator} is empty
   * @throws ClassCastException if the parameters are not <i>mutually
   *     comparable</i> under this ordering.
   *
   * @since 11.0
   */
  public <E extends T> E min(Iterator<E> iterator) {
    // let this throw NoSuchElementException as necessary
    E minSoFar = iterator.next();

    while (iterator.hasNext()) {
      minSoFar = min(minSoFar, iterator.next());
    }

    return minSoFar;
  }

  /**
   * Returns the least of the specified values according to this ordering. If
   * there are multiple least values, the first of those is returned.
   *
   * @param iterable the iterable whose minimum element is to be determined
   * @throws NoSuchElementException if {@code iterable} is empty
   * @throws ClassCastException if the parameters are not <i>mutually
   *     comparable</i> under this ordering.
   */
  public <E extends T> E min(Iterable<E> iterable) {
    return min(iterable.iterator());
  }

  /**
   * Returns the lesser of the two values according to this ordering. If the
   * values compare as 0, the first is returned.
   *
   * <p><b>Implementation note:</b> this method is invoked by the default
   * implementations of the other {@code min} overloads, so overriding it will
   * affect their behavior.
   *
   * @param a value to compare, returned if less than or equal to b.
   * @param b value to compare.
   * @throws ClassCastException if the parameters are not <i>mutually
   *     comparable</i> under this ordering.
   */
  public <E extends T> E min(@Nullable E a, @Nullable E b) {
    return (compare(a, b) <= 0) ? a : b;
  }

  /**
   * Returns the least of the specified values according to this ordering. If
   * there are multiple least values, the first of those is returned.
   *
   * @param a value to compare, returned if less than or equal to the rest.
   * @param b value to compare
   * @param c value to compare
   * @param rest values to compare
   * @throws ClassCastException if the parameters are not <i>mutually
   *     comparable</i> under this ordering.
   */
  public <E extends T> E min(
      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
    E minSoFar = min(min(a, b), c);

    for (E r : rest) {
      minSoFar = min(minSoFar, r);
    }

    return minSoFar;
  }

  /**
   * Returns the greatest of the specified values according to this ordering. If
   * there are multiple greatest values, the first of those is returned. The
   * iterator will be left exhausted: its {@code hasNext()} method will return
   * {@code false}.
   *
   * @param iterator the iterator whose maximum element is to be determined
   * @throws NoSuchElementException if {@code iterator} is empty
   * @throws ClassCastException if the parameters are not <i>mutually
   *     comparable</i> under this ordering.
   *
   * @since 11.0
   */
  public <E extends T> E max(Iterator<E> iterator) {
    // let this throw NoSuchElementException as necessary
    E maxSoFar = iterator.next();

    while (iterator.hasNext()) {
      maxSoFar = max(maxSoFar, iterator.next());
    }

    return maxSoFar;
  }

  /**
   * Returns the greatest of the specified values according to this ordering. If
   * there are multiple greatest values, the first of those is returned.
   *
   * @param iterable the iterable whose maximum element is to be determined
   * @throws NoSuchElementException if {@code iterable} is empty
   * @throws ClassCastException if the parameters are not <i>mutually
   *     comparable</i> under this ordering.
   */
  public <E extends T> E max(Iterable<E> iterable) {
    return max(iterable.iterator());
  }

  /**
   * Returns the greater of the two values according to this ordering. If the
   * values compare as 0, the first is returned.
   *
   * <p><b>Implementation note:</b> this method is invoked by the default
   * implementations of the other {@code max} overloads, so overriding it will
   * affect their behavior.
   *
   * @param a value to compare, returned if greater than or equal to b.
   * @param b value to compare.
   * @throws ClassCastException if the parameters are not <i>mutually
   *     comparable</i> under this ordering.
   */
  public <E extends T> E max(@Nullable E a, @Nullable E b) {
    return (compare(a, b) >= 0) ? a : b;
  }

  /**
   * Returns the greatest of the specified values according to this ordering. If
   * there are multiple greatest values, the first of those is returned.
   *
   * @param a value to compare, returned if greater than or equal to the rest.
   * @param b value to compare
   * @param c value to compare
   * @param rest values to compare
   * @throws ClassCastException if the parameters are not <i>mutually
   *     comparable</i> under this ordering.
   */
  public <E extends T> E max(
      @Nullable E a, @Nullable E b, @Nullable E c, E... rest) {
    E maxSoFar = max(max(a, b), c);

    for (E r : rest) {
      maxSoFar = max(maxSoFar, r);
    }

    return maxSoFar;
  }

  /**
   * Returns the {@code k} least elements of the given iterable according to
   * this ordering, in order from least to greatest.  If there are fewer than
   * {@code k} elements present, all will be included.
   *
   * <p>The implementation does not necessarily use a <i>stable</i> sorting
   * algorithm; when multiple elements are equivalent, it is undefined which
   * will come first.
   *
   * @return an immutable {@code RandomAccess} list of the {@code k} least
   *     elements in ascending order
   * @throws IllegalArgumentException if {@code k} is negative
   * @since 8.0
   */
  public <E extends T> List<E> leastOf(Iterable<E> iterable, int k) {
    if (iterable instanceof Collection) {
      Collection<E> collection = (Collection<E>) iterable;
      if (collection.size() <= 2L * k) {
        // In this case, just dumping the collection to an array and sorting is
        // faster than using the implementation for Iterator, which is
        // specialized for k much smaller than n.

        @SuppressWarnings("unchecked") // c only contains E's and doesn't escape
        E[] array = (E[]) collection.toArray();
        Arrays.sort(array, this);
        if (array.length > k) {
          array = ObjectArrays.arraysCopyOf(array, k);
        }
        return Collections.unmodifiableList(Arrays.asList(array));
      }
    }
    return leastOf(iterable.iterator(), k);
  }

  /**
   * Returns the {@code k} least elements from the given iterator according to
   * this ordering, in order from least to greatest.  If there are fewer than
   * {@code k} elements present, all will be included.
   *
   * <p>The implementation does not necessarily use a <i>stable</i> sorting
   * algorithm; when multiple elements are equivalent, it is undefined which
   * will come first.
   *
   * @return an immutable {@code RandomAccess} list of the {@code k} least
   *     elements in ascending order
   * @throws IllegalArgumentException if {@code k} is negative
   * @since 14.0
   */
  public <E extends T> List<E> leastOf(Iterator<E> elements, int k) {
    checkNotNull(elements);
    checkArgument(k >= 0, "k (%s) must be nonnegative", k);

    if (k == 0 || !elements.hasNext()) {
      return ImmutableList.of();
    } else if (k >= Integer.MAX_VALUE / 2) {
      // k is really large; just do a straightforward sorted-copy-and-sublist
      ArrayList<E> list = Lists.newArrayList(elements);
      Collections.sort(list, this);
      if (list.size() > k) {
        list.subList(k, list.size()).clear();
      }
      list.trimToSize();
      return Collections.unmodifiableList(list);
    }

    /*
     * Our goal is an O(n) algorithm using only one pass and O(k) additional
     * memory.
     *
     * We use the following algorithm: maintain a buffer of size 2*k. Every time
     * the buffer gets full, find the median and partition around it, keeping
     * only the lowest k elements.  This requires n/k find-median-and-partition
     * steps, each of which take O(k) time with a traditional quickselect.
     *
     * After sorting the output, the whole algorithm is O(n + k log k). It
     * degrades gracefully for worst-case input (descending order), performs
     * competitively or wins outright for randomly ordered input, and doesn't
     * require the whole collection to fit into memory.
     */
    int bufferCap = k * 2;
    @SuppressWarnings("unchecked") // we'll only put E's in
    E[] buffer = (E[]) new Object[bufferCap];
    E threshold = elements.next();
    buffer[0] = threshold;
    int bufferSize = 1;
    // threshold is the kth smallest element seen so far.  Once bufferSize >= k,
    // anything larger than threshold can be ignored immediately.

    while (bufferSize < k && elements.hasNext()) {
      E e = elements.next();
      buffer[bufferSize++] = e;
      threshold = max(threshold, e);
    }

    while (elements.hasNext()) {
      E e = elements.next();
      if (compare(e, threshold) >= 0) {
        continue;
      }

      buffer[bufferSize++] = e;
      if (bufferSize == bufferCap) {
        // We apply the quickselect algorithm to partition about the median,
        // and then ignore the last k elements.
        int left = 0;
        int right = bufferCap - 1;

        int minThresholdPosition = 0;
        // The leftmost position at which the greatest of the k lower elements
        // -- the new value of threshold -- might be found.

        while (left < right) {
          int pivotIndex = (left + right + 1) >>> 1;
          int pivotNewIndex = partition(buffer, left, right, pivotIndex);
          if (pivotNewIndex > k) {
            right = pivotNewIndex - 1;
          } else if (pivotNewIndex < k) {
            left = Math.max(pivotNewIndex, left + 1);
            minThresholdPosition = pivotNewIndex;
          } else {
            break;
          }
        }
        bufferSize = k;

        threshold = buffer[minThresholdPosition];
        for (int i = minThresholdPosition + 1; i < bufferSize; i++) {
          threshold = max(threshold, buffer[i]);
        }
      }
    }

    Arrays.sort(buffer, 0, bufferSize, this);

    bufferSize = Math.min(bufferSize, k);
    return Collections.unmodifiableList(
        Arrays.asList(ObjectArrays.arraysCopyOf(buffer, bufferSize)));
    // We can't use ImmutableList; we have to be null-friendly!
  }

  private <E extends T> int partition(
      E[] values, int left, int right, int pivotIndex) {
    E pivotValue = values[pivotIndex];

    values[pivotIndex] = values[right];
    values[right] = pivotValue;

    int storeIndex = left;
    for (int i = left; i < right; i++) {
      if (compare(values[i], pivotValue) < 0) {
        ObjectArrays.swap(values, storeIndex, i);
        storeIndex++;
      }
    }
    ObjectArrays.swap(values, right, storeIndex);
    return storeIndex;
  }

  /**
   * Returns the {@code k} greatest elements of the given iterable according to
   * this ordering, in order from greatest to least. If there are fewer than
   * {@code k} elements present, all will be included.
   *
   * <p>The implementation does not necessarily use a <i>stable</i> sorting
   * algorithm; when multiple elements are equivalent, it is undefined which
   * will come first.
   *
   * @return an immutable {@code RandomAccess} list of the {@code k} greatest
   *     elements in <i>descending order</i>
   * @throws IllegalArgumentException if {@code k} is negative
   * @since 8.0
   */
  public <E extends T> List<E> greatestOf(Iterable<E> iterable, int k) {
    // TODO(kevinb): see if delegation is hurting performance noticeably
    // TODO(kevinb): if we change this implementation, add full unit tests.
    return reverse().leastOf(iterable, k);
  }

  /**
   * Returns the {@code k} greatest elements from the given iterator according to
   * this ordering, in order from greatest to least. If there are fewer than
   * {@code k} elements present, all will be included.
   *
   * <p>The implementation does not necessarily use a <i>stable</i> sorting
   * algorithm; when multiple elements are equivalent, it is undefined which
   * will come first.
   *
   * @return an immutable {@code RandomAccess} list of the {@code k} greatest
   *     elements in <i>descending order</i>
   * @throws IllegalArgumentException if {@code k} is negative
   * @since 14.0
   */
  public <E extends T> List<E> greatestOf(Iterator<E> iterator, int k) {
    return reverse().leastOf(iterator, k);
  }

  /**
   * Returns a copy of the given iterable sorted by this ordering. The input is
   * not modified. The returned list is modifiable, serializable, and has random
   * access.
   *
   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
   * elements that are duplicates according to the comparator. The sort
   * performed is <i>stable</i>, meaning that such elements will appear in the
   * resulting list in the same order they appeared in the input.
   *
   * @param iterable the elements to be copied and sorted
   * @return a new list containing the given elements in sorted order
   */
  public <E extends T> List<E> sortedCopy(Iterable<E> iterable) {
    @SuppressWarnings("unchecked") // does not escape, and contains only E's
    E[] array = (E[]) Iterables.toArray(iterable);
    Arrays.sort(array, this);
    return Lists.newArrayList(Arrays.asList(array));
  }

  /**
   * Returns an <i>immutable</i> copy of the given iterable sorted by this
   * ordering. The input is not modified.
   *
   * <p>Unlike {@link Sets#newTreeSet(Iterable)}, this method does not discard
   * elements that are duplicates according to the comparator. The sort
   * performed is <i>stable</i>, meaning that such elements will appear in the
   * resulting list in the same order they appeared in the input.
   *
   * @param iterable the elements to be copied and sorted
   * @return a new immutable list containing the given elements in sorted order
   * @throws NullPointerException if {@code iterable} or any of its elements is
   *     null
   * @since 3.0
   */
  public <E extends T> ImmutableList<E> immutableSortedCopy(
      Iterable<E> iterable) {
    @SuppressWarnings("unchecked") // we'll only ever have E's in here
    E[] elements = (E[]) Iterables.toArray(iterable);
    for (E e : elements) {
      checkNotNull(e);
    }
    Arrays.sort(elements, this);
    return ImmutableList.asImmutableList(elements);
  }

  /**
   * Returns {@code true} if each element in {@code iterable} after the first is
   * greater than or equal to the element that preceded it, according to this
   * ordering. Note that this is always true when the iterable has fewer than
   * two elements.
   */
  public boolean isOrdered(Iterable<? extends T> iterable) {
    Iterator<? extends T> it = iterable.iterator();
    if (it.hasNext()) {
      T prev = it.next();
      while (it.hasNext()) {
        T next = it.next();
        if (compare(prev, next) > 0) {
          return false;
        }
        prev = next;
      }
    }
    return true;
  }

  /**
   * Returns {@code true} if each element in {@code iterable} after the first is
   * <i>strictly</i> greater than the element that preceded it, according to
   * this ordering. Note that this is always true when the iterable has fewer
   * than two elements.
   */
  public boolean isStrictlyOrdered(Iterable<? extends T> iterable) {
    Iterator<? extends T> it = iterable.iterator();
    if (it.hasNext()) {
      T prev = it.next();
      while (it.hasNext()) {
        T next = it.next();
        if (compare(prev, next) >= 0) {
          return false;
        }
        prev = next;
      }
    }
    return true;
  }

  /**
   * {@link Collections#binarySearch(List, Object, Comparator) Searches}
   * {@code sortedList} for {@code key} using the binary search algorithm. The
   * list must be sorted using this ordering.
   *
   * @param sortedList the list to be searched
   * @param key the key to be searched for
   */
  public int binarySearch(List<? extends T> sortedList, @Nullable T key) {
    return Collections.binarySearch(sortedList, key, this);
  }

  /**
   * Exception thrown by a {@link Ordering#explicit(List)} or {@link
   * Ordering#explicit(Object, Object[])} comparator when comparing a value
   * outside the set of values it can compare. Extending {@link
   * ClassCastException} may seem odd, but it is required.
   */
  // TODO(kevinb): make this public, document it right
  @VisibleForTesting
  static class IncomparableValueException extends ClassCastException {
    final Object value;

    IncomparableValueException(Object value) {
      super("Cannot compare value: " + value);
      this.value = value;
    }

    private static final long serialVersionUID = 0;
  }

  // Never make these public
  static final int LEFT_IS_GREATER = 1;
  static final int RIGHT_IS_GREATER = -1;
}