aboutsummaryrefslogtreecommitdiffstats
path: root/guava/src/com/google/common/cache/CacheBuilder.java
blob: 105ff7396546c2cf3788492087034b8111b34bc8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
/*
 * Copyright (C) 2009 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.cache;

import static com.google.common.base.Objects.firstNonNull;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Ascii;
import com.google.common.base.Equivalence;
import com.google.common.base.Objects;
import com.google.common.base.Supplier;
import com.google.common.base.Suppliers;
import com.google.common.base.Ticker;
import com.google.common.cache.AbstractCache.SimpleStatsCounter;
import com.google.common.cache.AbstractCache.StatsCounter;
import com.google.common.cache.LocalCache.Strength;

import java.lang.ref.SoftReference;
import java.lang.ref.WeakReference;
import java.util.ConcurrentModificationException;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.TimeUnit;
import java.util.logging.Level;
import java.util.logging.Logger;

import javax.annotation.CheckReturnValue;

/**
 * <p>A builder of {@link LoadingCache} and {@link Cache} instances having any combination of the
 * following features:
 *
 * <ul>
 * <li>automatic loading of entries into the cache
 * <li>least-recently-used eviction when a maximum size is exceeded
 * <li>time-based expiration of entries, measured since last access or last write
 * <li>keys automatically wrapped in {@linkplain WeakReference weak} references
 * <li>values automatically wrapped in {@linkplain WeakReference weak} or
 *     {@linkplain SoftReference soft} references
 * <li>notification of evicted (or otherwise removed) entries
 * <li>accumulation of cache access statistics
 * </ul>
 *
 * These features are all optional; caches can be created using all or none of them. By default
 * cache instances created by {@code CacheBuilder} will not perform any type of eviction.
 *
 * <p>Usage example: <pre>   {@code
 *
 *   LoadingCache<Key, Graph> graphs = CacheBuilder.newBuilder()
 *       .maximumSize(10000)
 *       .expireAfterWrite(10, TimeUnit.MINUTES)
 *       .removalListener(MY_LISTENER)
 *       .build(
 *           new CacheLoader<Key, Graph>() {
 *             public Graph load(Key key) throws AnyException {
 *               return createExpensiveGraph(key);
 *             }
 *           });}</pre>
 *
 * Or equivalently, <pre>   {@code
 *
 *   // In real life this would come from a command-line flag or config file
 *   String spec = "maximumSize=10000,expireAfterWrite=10m";
 *
 *   LoadingCache<Key, Graph> graphs = CacheBuilder.from(spec)
 *       .removalListener(MY_LISTENER)
 *       .build(
 *           new CacheLoader<Key, Graph>() {
 *             public Graph load(Key key) throws AnyException {
 *               return createExpensiveGraph(key);
 *             }
 *           });}</pre>
 *
 * <p>The returned cache is implemented as a hash table with similar performance characteristics to
 * {@link ConcurrentHashMap}. It implements all optional operations of the {@link LoadingCache} and
 * {@link Cache} interfaces. The {@code asMap} view (and its collection views) have <i>weakly
 * consistent iterators</i>. This means that they are safe for concurrent use, but if other threads
 * modify the cache after the iterator is created, it is undefined which of these changes, if any,
 * are reflected in that iterator. These iterators never throw {@link
 * ConcurrentModificationException}.
 *
 * <p><b>Note:</b> by default, the returned cache uses equality comparisons (the
 * {@link Object#equals equals} method) to determine equality for keys or values. However, if
 * {@link #weakKeys} was specified, the cache uses identity ({@code ==})
 * comparisons instead for keys. Likewise, if {@link #weakValues} or {@link #softValues} was
 * specified, the cache uses identity comparisons for values.
 *
 * <p>Entries are automatically evicted from the cache when any of
 * {@linkplain #maximumSize(long) maximumSize}, {@linkplain #maximumWeight(long) maximumWeight},
 * {@linkplain #expireAfterWrite expireAfterWrite},
 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys},
 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} are requested.
 *
 * <p>If {@linkplain #maximumSize(long) maximumSize} or
 * {@linkplain #maximumWeight(long) maximumWeight} is requested entries may be evicted on each cache
 * modification.
 *
 * <p>If {@linkplain #expireAfterWrite expireAfterWrite} or
 * {@linkplain #expireAfterAccess expireAfterAccess} is requested entries may be evicted on each
 * cache modification, on occasional cache accesses, or on calls to {@link Cache#cleanUp}. Expired
 * entries may be counted in {@link Cache#size}, but will never be visible to read or write
 * operations.
 *
 * <p>If {@linkplain #weakKeys weakKeys}, {@linkplain #weakValues weakValues}, or
 * {@linkplain #softValues softValues} are requested, it is possible for a key or value present in
 * the cache to be reclaimed by the garbage collector. Entries with reclaimed keys or values may be
 * removed from the cache on each cache modification, on occasional cache accesses, or on calls to
 * {@link Cache#cleanUp}; such entries may be counted in {@link Cache#size}, but will never be
 * visible to read or write operations.
 *
 * <p>Certain cache configurations will result in the accrual of periodic maintenance tasks which
 * will be performed during write operations, or during occasional read operations in the absense of
 * writes. The {@link Cache#cleanUp} method of the returned cache will also perform maintenance, but
 * calling it should not be necessary with a high throughput cache. Only caches built with
 * {@linkplain #removalListener removalListener}, {@linkplain #expireAfterWrite expireAfterWrite},
 * {@linkplain #expireAfterAccess expireAfterAccess}, {@linkplain #weakKeys weakKeys},
 * {@linkplain #weakValues weakValues}, or {@linkplain #softValues softValues} perform periodic
 * maintenance.
 *
 * <p>The caches produced by {@code CacheBuilder} are serializable, and the deserialized caches
 * retain all the configuration properties of the original cache. Note that the serialized form does
 * <i>not</i> include cache contents, but only configuration.
 *
 * <p>See the Guava User Guide article on <a href=
 * "http://code.google.com/p/guava-libraries/wiki/CachesExplained">caching</a> for a higher-level
 * explanation.
 *
 * @param <K> the base key type for all caches created by this builder
 * @param <V> the base value type for all caches created by this builder
 * @author Charles Fry
 * @author Kevin Bourrillion
 * @since 10.0
 */
@GwtCompatible(emulated = true)
public final class CacheBuilder<K, V> {
  private static final int DEFAULT_INITIAL_CAPACITY = 16;
  private static final int DEFAULT_CONCURRENCY_LEVEL = 4;
  private static final int DEFAULT_EXPIRATION_NANOS = 0;
  private static final int DEFAULT_REFRESH_NANOS = 0;

  static final Supplier<? extends StatsCounter> NULL_STATS_COUNTER = Suppliers.ofInstance(
      new StatsCounter() {
        @Override
        public void recordHits(int count) {}

        @Override
        public void recordMisses(int count) {}

        @Override
        public void recordLoadSuccess(long loadTime) {}

        @Override
        public void recordLoadException(long loadTime) {}

        @Override
        public void recordEviction() {}

        @Override
        public CacheStats snapshot() {
          return EMPTY_STATS;
        }
      });
  static final CacheStats EMPTY_STATS = new CacheStats(0, 0, 0, 0, 0, 0);

  static final Supplier<StatsCounter> CACHE_STATS_COUNTER =
      new Supplier<StatsCounter>() {
    @Override
    public StatsCounter get() {
      return new SimpleStatsCounter();
    }
  };

  enum NullListener implements RemovalListener<Object, Object> {
    INSTANCE;

    @Override
    public void onRemoval(RemovalNotification<Object, Object> notification) {}
  }

  enum OneWeigher implements Weigher<Object, Object> {
    INSTANCE;

    @Override
    public int weigh(Object key, Object value) {
      return 1;
    }
  }

  static final Ticker NULL_TICKER = new Ticker() {
    @Override
    public long read() {
      return 0;
    }
  };

  private static final Logger logger = Logger.getLogger(CacheBuilder.class.getName());

  static final int UNSET_INT = -1;

  boolean strictParsing = true;

  int initialCapacity = UNSET_INT;
  int concurrencyLevel = UNSET_INT;
  long maximumSize = UNSET_INT;
  long maximumWeight = UNSET_INT;
  Weigher<? super K, ? super V> weigher;

  Strength keyStrength;
  Strength valueStrength;

  long expireAfterWriteNanos = UNSET_INT;
  long expireAfterAccessNanos = UNSET_INT;
  long refreshNanos = UNSET_INT;

  Equivalence<Object> keyEquivalence;
  Equivalence<Object> valueEquivalence;

  RemovalListener<? super K, ? super V> removalListener;
  Ticker ticker;

  Supplier<? extends StatsCounter> statsCounterSupplier = NULL_STATS_COUNTER;

  // TODO(fry): make constructor private and update tests to use newBuilder
  CacheBuilder() {}

  /**
   * Constructs a new {@code CacheBuilder} instance with default settings, including strong keys,
   * strong values, and no automatic eviction of any kind.
   */
  public static CacheBuilder<Object, Object> newBuilder() {
    return new CacheBuilder<Object, Object>();
  }

  /**
   * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}.
   *
   * @since 12.0
   */
  @Beta
  @GwtIncompatible("To be supported")
  public static CacheBuilder<Object, Object> from(CacheBuilderSpec spec) {
    return spec.toCacheBuilder()
        .lenientParsing();
  }

  /**
   * Constructs a new {@code CacheBuilder} instance with the settings specified in {@code spec}.
   * This is especially useful for command-line configuration of a {@code CacheBuilder}.
   *
   * @param spec a String in the format specified by {@link CacheBuilderSpec}
   * @since 12.0
   */
  @Beta
  @GwtIncompatible("To be supported")
  public static CacheBuilder<Object, Object> from(String spec) {
    return from(CacheBuilderSpec.parse(spec));
  }

  /**
   * Enables lenient parsing. Useful for tests and spec parsing.
   */
  @GwtIncompatible("To be supported")
  CacheBuilder<K, V> lenientParsing() {
    strictParsing = false;
    return this;
  }

  /**
   * Sets a custom {@code Equivalence} strategy for comparing keys.
   *
   * <p>By default, the cache uses {@link Equivalence#identity} to determine key equality when
   * {@link #weakKeys} is specified, and {@link Equivalence#equals()} otherwise.
   */
  @GwtIncompatible("To be supported")
  CacheBuilder<K, V> keyEquivalence(Equivalence<Object> equivalence) {
    checkState(keyEquivalence == null, "key equivalence was already set to %s", keyEquivalence);
    keyEquivalence = checkNotNull(equivalence);
    return this;
  }

  Equivalence<Object> getKeyEquivalence() {
    return firstNonNull(keyEquivalence, getKeyStrength().defaultEquivalence());
  }

  /**
   * Sets a custom {@code Equivalence} strategy for comparing values.
   *
   * <p>By default, the cache uses {@link Equivalence#identity} to determine value equality when
   * {@link #weakValues} or {@link #softValues} is specified, and {@link Equivalence#equals()}
   * otherwise.
   */
  @GwtIncompatible("To be supported")
  CacheBuilder<K, V> valueEquivalence(Equivalence<Object> equivalence) {
    checkState(valueEquivalence == null,
        "value equivalence was already set to %s", valueEquivalence);
    this.valueEquivalence = checkNotNull(equivalence);
    return this;
  }

  Equivalence<Object> getValueEquivalence() {
    return firstNonNull(valueEquivalence, getValueStrength().defaultEquivalence());
  }

  /**
   * Sets the minimum total size for the internal hash tables. For example, if the initial capacity
   * is {@code 60}, and the concurrency level is {@code 8}, then eight segments are created, each
   * having a hash table of size eight. Providing a large enough estimate at construction time
   * avoids the need for expensive resizing operations later, but setting this value unnecessarily
   * high wastes memory.
   *
   * @throws IllegalArgumentException if {@code initialCapacity} is negative
   * @throws IllegalStateException if an initial capacity was already set
   */
  public CacheBuilder<K, V> initialCapacity(int initialCapacity) {
    checkState(this.initialCapacity == UNSET_INT, "initial capacity was already set to %s",
        this.initialCapacity);
    checkArgument(initialCapacity >= 0);
    this.initialCapacity = initialCapacity;
    return this;
  }

  int getInitialCapacity() {
    return (initialCapacity == UNSET_INT) ? DEFAULT_INITIAL_CAPACITY : initialCapacity;
  }

  /**
   * Guides the allowed concurrency among update operations. Used as a hint for internal sizing. The
   * table is internally partitioned to try to permit the indicated number of concurrent updates
   * without contention. Because assignment of entries to these partitions is not necessarily
   * uniform, the actual concurrency observed may vary. Ideally, you should choose a value to
   * accommodate as many threads as will ever concurrently modify the table. Using a significantly
   * higher value than you need can waste space and time, and a significantly lower value can lead
   * to thread contention. But overestimates and underestimates within an order of magnitude do not
   * usually have much noticeable impact. A value of one permits only one thread to modify the cache
   * at a time, but since read operations and cache loading computations can proceed concurrently,
   * this still yields higher concurrency than full synchronization.
   *
   * <p> Defaults to 4. <b>Note:</b>The default may change in the future. If you care about this
   * value, you should always choose it explicitly.
   *
   * <p>The current implementation uses the concurrency level to create a fixed number of hashtable
   * segments, each governed by its own write lock. The segment lock is taken once for each explicit
   * write, and twice for each cache loading computation (once prior to loading the new value,
   * and once after loading completes). Much internal cache management is performed at the segment
   * granularity. For example, access queues and write queues are kept per segment when they are
   * required by the selected eviction algorithm. As such, when writing unit tests it is not
   * uncommon to specify {@code concurrencyLevel(1)} in order to achieve more deterministic eviction
   * behavior.
   *
   * <p>Note that future implementations may abandon segment locking in favor of more advanced
   * concurrency controls.
   *
   * @throws IllegalArgumentException if {@code concurrencyLevel} is nonpositive
   * @throws IllegalStateException if a concurrency level was already set
   */
  public CacheBuilder<K, V> concurrencyLevel(int concurrencyLevel) {
    checkState(this.concurrencyLevel == UNSET_INT, "concurrency level was already set to %s",
        this.concurrencyLevel);
    checkArgument(concurrencyLevel > 0);
    this.concurrencyLevel = concurrencyLevel;
    return this;
  }

  int getConcurrencyLevel() {
    return (concurrencyLevel == UNSET_INT) ? DEFAULT_CONCURRENCY_LEVEL : concurrencyLevel;
  }

  /**
   * Specifies the maximum number of entries the cache may contain. Note that the cache <b>may evict
   * an entry before this limit is exceeded</b>. As the cache size grows close to the maximum, the
   * cache evicts entries that are less likely to be used again. For example, the cache may evict an
   * entry because it hasn't been used recently or very often.
   *
   * <p>When {@code size} is zero, elements will be evicted immediately after being loaded into the
   * cache. This can be useful in testing, or to disable caching temporarily without a code change.
   *
   * <p>This feature cannot be used in conjunction with {@link #maximumWeight}.
   *
   * @param size the maximum size of the cache
   * @throws IllegalArgumentException if {@code size} is negative
   * @throws IllegalStateException if a maximum size or weight was already set
   */
  public CacheBuilder<K, V> maximumSize(long size) {
    checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s",
        this.maximumSize);
    checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s",
        this.maximumWeight);
    checkState(this.weigher == null, "maximum size can not be combined with weigher");
    checkArgument(size >= 0, "maximum size must not be negative");
    this.maximumSize = size;
    return this;
  }

  /**
   * Specifies the maximum weight of entries the cache may contain. Weight is determined using the
   * {@link Weigher} specified with {@link #weigher}, and use of this method requires a
   * corresponding call to {@link #weigher} prior to calling {@link #build}.
   *
   * <p>Note that the cache <b>may evict an entry before this limit is exceeded</b>. As the cache
   * size grows close to the maximum, the cache evicts entries that are less likely to be used
   * again. For example, the cache may evict an entry because it hasn't been used recently or very
   * often.
   *
   * <p>When {@code weight} is zero, elements will be evicted immediately after being loaded into
   * cache. This can be useful in testing, or to disable caching temporarily without a code
   * change.
   *
   * <p>Note that weight is only used to determine whether the cache is over capacity; it has no
   * effect on selecting which entry should be evicted next.
   *
   * <p>This feature cannot be used in conjunction with {@link #maximumSize}.
   *
   * @param weight the maximum total weight of entries the cache may contain
   * @throws IllegalArgumentException if {@code weight} is negative
   * @throws IllegalStateException if a maximum weight or size was already set
   * @since 11.0
   */
  @GwtIncompatible("To be supported")
  public CacheBuilder<K, V> maximumWeight(long weight) {
    checkState(this.maximumWeight == UNSET_INT, "maximum weight was already set to %s",
        this.maximumWeight);
    checkState(this.maximumSize == UNSET_INT, "maximum size was already set to %s",
        this.maximumSize);
    this.maximumWeight = weight;
    checkArgument(weight >= 0, "maximum weight must not be negative");
    return this;
  }

  /**
   * Specifies the weigher to use in determining the weight of entries. Entry weight is taken
   * into consideration by {@link #maximumWeight(long)} when determining which entries to evict, and
   * use of this method requires a corresponding call to {@link #maximumWeight(long)} prior to
   * calling {@link #build}. Weights are measured and recorded when entries are inserted into the
   * cache, and are thus effectively static during the lifetime of a cache entry.
   *
   * <p>When the weight of an entry is zero it will not be considered for size-based eviction
   * (though it still may be evicted by other means).
   *
   * <p><b>Important note:</b> Instead of returning <em>this</em> as a {@code CacheBuilder}
   * instance, this method returns {@code CacheBuilder<K1, V1>}. From this point on, either the
   * original reference or the returned reference may be used to complete configuration and build
   * the cache, but only the "generic" one is type-safe. That is, it will properly prevent you from
   * building caches whose key or value types are incompatible with the types accepted by the
   * weigher already provided; the {@code CacheBuilder} type cannot do this. For best results,
   * simply use the standard method-chaining idiom, as illustrated in the documentation at top,
   * configuring a {@code CacheBuilder} and building your {@link Cache} all in a single statement.
   *
   * <p><b>Warning:</b> if you ignore the above advice, and use this {@code CacheBuilder} to build
   * a cache whose key or value type is incompatible with the weigher, you will likely experience
   * a {@link ClassCastException} at some <i>undefined</i> point in the future.
   *
   * @param weigher the weigher to use in calculating the weight of cache entries
   * @throws IllegalArgumentException if {@code size} is negative
   * @throws IllegalStateException if a maximum size was already set
   * @since 11.0
   */
  @GwtIncompatible("To be supported")
  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> weigher(
      Weigher<? super K1, ? super V1> weigher) {
    checkState(this.weigher == null);
    if (strictParsing) {
      checkState(this.maximumSize == UNSET_INT, "weigher can not be combined with maximum size",
          this.maximumSize);
    }

    // safely limiting the kinds of caches this can produce
    @SuppressWarnings("unchecked")
    CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
    me.weigher = checkNotNull(weigher);
    return me;
  }

  long getMaximumWeight() {
    if (expireAfterWriteNanos == 0 || expireAfterAccessNanos == 0) {
      return 0;
    }
    return (weigher == null) ? maximumSize : maximumWeight;
  }

  // Make a safe contravariant cast now so we don't have to do it over and over.
  @SuppressWarnings("unchecked")
  <K1 extends K, V1 extends V> Weigher<K1, V1> getWeigher() {
    return (Weigher<K1, V1>) Objects.firstNonNull(weigher, OneWeigher.INSTANCE);
  }

  /**
   * Specifies that each key (not value) stored in the cache should be wrapped in a {@link
   * WeakReference} (by default, strong references are used).
   *
   * <p><b>Warning:</b> when this method is used, the resulting cache will use identity ({@code ==})
   * comparison to determine equality of keys.
   *
   * <p>Entries with keys that have been garbage collected may be counted in {@link Cache#size},
   * but will never be visible to read or write operations; such entries are cleaned up as part of
   * the routine maintenance described in the class javadoc.
   *
   * @throws IllegalStateException if the key strength was already set
   */
  @GwtIncompatible("java.lang.ref.WeakReference")
  public CacheBuilder<K, V> weakKeys() {
    return setKeyStrength(Strength.WEAK);
  }

  CacheBuilder<K, V> setKeyStrength(Strength strength) {
    checkState(keyStrength == null, "Key strength was already set to %s", keyStrength);
    keyStrength = checkNotNull(strength);
    return this;
  }

  Strength getKeyStrength() {
    return firstNonNull(keyStrength, Strength.STRONG);
  }

  /**
   * Specifies that each value (not key) stored in the cache should be wrapped in a
   * {@link WeakReference} (by default, strong references are used).
   *
   * <p>Weak values will be garbage collected once they are weakly reachable. This makes them a poor
   * candidate for caching; consider {@link #softValues} instead.
   *
   * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==})
   * comparison to determine equality of values.
   *
   * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size},
   * but will never be visible to read or write operations; such entries are cleaned up as part of
   * the routine maintenance described in the class javadoc.
   *
   * @throws IllegalStateException if the value strength was already set
   */
  @GwtIncompatible("java.lang.ref.WeakReference")
  public CacheBuilder<K, V> weakValues() {
    return setValueStrength(Strength.WEAK);
  }

  /**
   * Specifies that each value (not key) stored in the cache should be wrapped in a
   * {@link SoftReference} (by default, strong references are used). Softly-referenced objects will
   * be garbage-collected in a <i>globally</i> least-recently-used manner, in response to memory
   * demand.
   *
   * <p><b>Warning:</b> in most circumstances it is better to set a per-cache {@linkplain
   * #maximumSize(long) maximum size} instead of using soft references. You should only use this
   * method if you are well familiar with the practical consequences of soft references.
   *
   * <p><b>Note:</b> when this method is used, the resulting cache will use identity ({@code ==})
   * comparison to determine equality of values.
   *
   * <p>Entries with values that have been garbage collected may be counted in {@link Cache#size},
   * but will never be visible to read or write operations; such entries are cleaned up as part of
   * the routine maintenance described in the class javadoc.
   *
   * @throws IllegalStateException if the value strength was already set
   */
  @GwtIncompatible("java.lang.ref.SoftReference")
  public CacheBuilder<K, V> softValues() {
    return setValueStrength(Strength.SOFT);
  }

  CacheBuilder<K, V> setValueStrength(Strength strength) {
    checkState(valueStrength == null, "Value strength was already set to %s", valueStrength);
    valueStrength = checkNotNull(strength);
    return this;
  }

  Strength getValueStrength() {
    return firstNonNull(valueStrength, Strength.STRONG);
  }

  /**
   * Specifies that each entry should be automatically removed from the cache once a fixed duration
   * has elapsed after the entry's creation, or the most recent replacement of its value.
   *
   * <p>When {@code duration} is zero, this method hands off to
   * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum
   * size or weight. This can be useful in testing, or to disable caching temporarily without a code
   * change.
   *
   * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
   * write operations. Expired entries are cleaned up as part of the routine maintenance described
   * in the class javadoc.
   *
   * @param duration the length of time after an entry is created that it should be automatically
   *     removed
   * @param unit the unit that {@code duration} is expressed in
   * @throws IllegalArgumentException if {@code duration} is negative
   * @throws IllegalStateException if the time to live or time to idle was already set
   */
  public CacheBuilder<K, V> expireAfterWrite(long duration, TimeUnit unit) {
    checkState(expireAfterWriteNanos == UNSET_INT, "expireAfterWrite was already set to %s ns",
        expireAfterWriteNanos);
    checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
    this.expireAfterWriteNanos = unit.toNanos(duration);
    return this;
  }

  long getExpireAfterWriteNanos() {
    return (expireAfterWriteNanos == UNSET_INT) ? DEFAULT_EXPIRATION_NANOS : expireAfterWriteNanos;
  }

  /**
   * Specifies that each entry should be automatically removed from the cache once a fixed duration
   * has elapsed after the entry's creation, the most recent replacement of its value, or its last
   * access. Access time is reset by all cache read and write operations (including
   * {@code Cache.asMap().get(Object)} and {@code Cache.asMap().put(K, V)}), but not by operations
   * on the collection-views of {@link Cache#asMap}.
   *
   * <p>When {@code duration} is zero, this method hands off to
   * {@link #maximumSize(long) maximumSize}{@code (0)}, ignoring any otherwise-specificed maximum
   * size or weight. This can be useful in testing, or to disable caching temporarily without a code
   * change.
   *
   * <p>Expired entries may be counted in {@link Cache#size}, but will never be visible to read or
   * write operations. Expired entries are cleaned up as part of the routine maintenance described
   * in the class javadoc.
   *
   * @param duration the length of time after an entry is last accessed that it should be
   *     automatically removed
   * @param unit the unit that {@code duration} is expressed in
   * @throws IllegalArgumentException if {@code duration} is negative
   * @throws IllegalStateException if the time to idle or time to live was already set
   */
  public CacheBuilder<K, V> expireAfterAccess(long duration, TimeUnit unit) {
    checkState(expireAfterAccessNanos == UNSET_INT, "expireAfterAccess was already set to %s ns",
        expireAfterAccessNanos);
    checkArgument(duration >= 0, "duration cannot be negative: %s %s", duration, unit);
    this.expireAfterAccessNanos = unit.toNanos(duration);
    return this;
  }

  long getExpireAfterAccessNanos() {
    return (expireAfterAccessNanos == UNSET_INT)
        ? DEFAULT_EXPIRATION_NANOS : expireAfterAccessNanos;
  }

  /**
   * Specifies that active entries are eligible for automatic refresh once a fixed duration has
   * elapsed after the entry's creation, or the most recent replacement of its value. The semantics
   * of refreshes are specified in {@link LoadingCache#refresh}, and are performed by calling
   * {@link CacheLoader#reload}.
   *
   * <p>As the default implementation of {@link CacheLoader#reload} is synchronous, it is
   * recommended that users of this method override {@link CacheLoader#reload} with an asynchronous
   * implementation; otherwise refreshes will be performed during unrelated cache read and write
   * operations.
   *
   * <p>Currently automatic refreshes are performed when the first stale request for an entry
   * occurs. The request triggering refresh will make a blocking call to {@link CacheLoader#reload}
   * and immediately return the new value if the returned future is complete, and the old value
   * otherwise.
   *
   * <p><b>Note:</b> <i>all exceptions thrown during refresh will be logged and then swallowed</i>.
   *
   * @param duration the length of time after an entry is created that it should be considered
   *     stale, and thus eligible for refresh
   * @param unit the unit that {@code duration} is expressed in
   * @throws IllegalArgumentException if {@code duration} is negative
   * @throws IllegalStateException if the refresh interval was already set
   * @since 11.0
   */
  @Beta
  @GwtIncompatible("To be supported (synchronously).")
  public CacheBuilder<K, V> refreshAfterWrite(long duration, TimeUnit unit) {
    checkNotNull(unit);
    checkState(refreshNanos == UNSET_INT, "refresh was already set to %s ns", refreshNanos);
    checkArgument(duration > 0, "duration must be positive: %s %s", duration, unit);
    this.refreshNanos = unit.toNanos(duration);
    return this;
  }

  long getRefreshNanos() {
    return (refreshNanos == UNSET_INT) ? DEFAULT_REFRESH_NANOS : refreshNanos;
  }

  /**
   * Specifies a nanosecond-precision time source for use in determining when entries should be
   * expired. By default, {@link System#nanoTime} is used.
   *
   * <p>The primary intent of this method is to facilitate testing of caches which have been
   * configured with {@link #expireAfterWrite} or {@link #expireAfterAccess}.
   *
   * @throws IllegalStateException if a ticker was already set
   */
  public CacheBuilder<K, V> ticker(Ticker ticker) {
    checkState(this.ticker == null);
    this.ticker = checkNotNull(ticker);
    return this;
  }

  Ticker getTicker(boolean recordsTime) {
    if (ticker != null) {
      return ticker;
    }
    return recordsTime ? Ticker.systemTicker() : NULL_TICKER;
  }

  /**
   * Specifies a listener instance that caches should notify each time an entry is removed for any
   * {@linkplain RemovalCause reason}. Each cache created by this builder will invoke this listener
   * as part of the routine maintenance described in the class documentation above.
   *
   * <p><b>Warning:</b> after invoking this method, do not continue to use <i>this</i> cache
   * builder reference; instead use the reference this method <i>returns</i>. At runtime, these
   * point to the same instance, but only the returned reference has the correct generic type
   * information so as to ensure type safety. For best results, use the standard method-chaining
   * idiom illustrated in the class documentation above, configuring a builder and building your
   * cache in a single statement. Failure to heed this advice can result in a {@link
   * ClassCastException} being thrown by a cache operation at some <i>undefined</i> point in the
   * future.
   *
   * <p><b>Warning:</b> any exception thrown by {@code listener} will <i>not</i> be propagated to
   * the {@code Cache} user, only logged via a {@link Logger}.
   *
   * @return the cache builder reference that should be used instead of {@code this} for any
   *     remaining configuration and cache building
   * @throws IllegalStateException if a removal listener was already set
   */
  @CheckReturnValue
  public <K1 extends K, V1 extends V> CacheBuilder<K1, V1> removalListener(
      RemovalListener<? super K1, ? super V1> listener) {
    checkState(this.removalListener == null);

    // safely limiting the kinds of caches this can produce
    @SuppressWarnings("unchecked")
    CacheBuilder<K1, V1> me = (CacheBuilder<K1, V1>) this;
    me.removalListener = checkNotNull(listener);
    return me;
  }

  // Make a safe contravariant cast now so we don't have to do it over and over.
  @SuppressWarnings("unchecked")
  <K1 extends K, V1 extends V> RemovalListener<K1, V1> getRemovalListener() {
    return (RemovalListener<K1, V1>) Objects.firstNonNull(removalListener, NullListener.INSTANCE);
  }

  /**
   * Enable the accumulation of {@link CacheStats} during the operation of the cache. Without this
   * {@link Cache#stats} will return zero for all statistics. Note that recording stats requires
   * bookkeeping to be performed with each operation, and thus imposes a performance penalty on
   * cache operation.
   *
   * @since 12.0 (previously, stats collection was automatic)
   */
  public CacheBuilder<K, V> recordStats() {
    statsCounterSupplier = CACHE_STATS_COUNTER;
    return this;
  }

  Supplier<? extends StatsCounter> getStatsCounterSupplier() {
    return statsCounterSupplier;
  }

  /**
   * Builds a cache, which either returns an already-loaded value for a given key or atomically
   * computes or retrieves it using the supplied {@code CacheLoader}. If another thread is currently
   * loading the value for this key, simply waits for that thread to finish and returns its
   * loaded value. Note that multiple threads can concurrently load values for distinct keys.
   *
   * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
   * invoked again to create multiple independent caches.
   *
   * @param loader the cache loader used to obtain new values
   * @return a cache having the requested features
   */
  public <K1 extends K, V1 extends V> LoadingCache<K1, V1> build(
      CacheLoader<? super K1, V1> loader) {
    checkWeightWithWeigher();
    return new LocalCache.LocalLoadingCache<K1, V1>(this, loader);
  }

  /**
   * Builds a cache which does not automatically load values when keys are requested.
   *
   * <p>Consider {@link #build(CacheLoader)} instead, if it is feasible to implement a
   * {@code CacheLoader}.
   *
   * <p>This method does not alter the state of this {@code CacheBuilder} instance, so it can be
   * invoked again to create multiple independent caches.
   *
   * @return a cache having the requested features
   * @since 11.0
   */
  public <K1 extends K, V1 extends V> Cache<K1, V1> build() {
    checkWeightWithWeigher();
    checkNonLoadingCache();
    return new LocalCache.LocalManualCache<K1, V1>(this);
  }

  private void checkNonLoadingCache() {
    checkState(refreshNanos == UNSET_INT, "refreshAfterWrite requires a LoadingCache");
  }

  private void checkWeightWithWeigher() {
    if (weigher == null) {
      checkState(maximumWeight == UNSET_INT, "maximumWeight requires weigher");
    } else {
      if (strictParsing) {
        checkState(maximumWeight != UNSET_INT, "weigher requires maximumWeight");
      } else {
        if (maximumWeight == UNSET_INT) {
          logger.log(Level.WARNING, "ignoring weigher specified without maximumWeight");
        }
      }
    }
  }

  /**
   * Returns a string representation for this CacheBuilder instance. The exact form of the returned
   * string is not specified.
   */
  @Override
  public String toString() {
    Objects.ToStringHelper s = Objects.toStringHelper(this);
    if (initialCapacity != UNSET_INT) {
      s.add("initialCapacity", initialCapacity);
    }
    if (concurrencyLevel != UNSET_INT) {
      s.add("concurrencyLevel", concurrencyLevel);
    }
    if (maximumSize != UNSET_INT) {
      s.add("maximumSize", maximumSize);
    }
    if (maximumWeight != UNSET_INT) {
      s.add("maximumWeight", maximumWeight);
    }
    if (expireAfterWriteNanos != UNSET_INT) {
      s.add("expireAfterWrite", expireAfterWriteNanos + "ns");
    }
    if (expireAfterAccessNanos != UNSET_INT) {
      s.add("expireAfterAccess", expireAfterAccessNanos + "ns");
    }
    if (keyStrength != null) {
      s.add("keyStrength", Ascii.toLowerCase(keyStrength.toString()));
    }
    if (valueStrength != null) {
      s.add("valueStrength", Ascii.toLowerCase(valueStrength.toString()));
    }
    if (keyEquivalence != null) {
      s.addValue("keyEquivalence");
    }
    if (valueEquivalence != null) {
      s.addValue("valueEquivalence");
    }
    if (removalListener != null) {
      s.addValue("removalListener");
    }
    return s.toString();
  }
}