aboutsummaryrefslogtreecommitdiffstats
path: root/guava-tests/test/com/google/common/util/concurrent/CycleDetectingLockFactoryTest.java
blob: b39601ffa86e9ece675bfc8c2233ade196c4d1ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.util.concurrent;

import com.google.common.base.Joiner;
import com.google.common.util.concurrent.CycleDetectingLockFactory.OrderedLockGraphNodesCreator;
import com.google.common.util.concurrent.CycleDetectingLockFactory.Policies;
import com.google.common.util.concurrent.CycleDetectingLockFactory.Policy;
import com.google.common.util.concurrent.CycleDetectingLockFactory.PotentialDeadlockException;

import junit.framework.TestCase;

import java.util.concurrent.CountDownLatch;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

/**
 * Unittests for {@link CycleDetectingLockFactory}.
 *
 * @author Darick Tong
 */
public class CycleDetectingLockFactoryTest extends TestCase {

  private ReentrantLock lockA;
  private ReentrantLock lockB;
  private ReentrantLock lockC;
  private ReentrantReadWriteLock.ReadLock readLockA;
  private ReentrantReadWriteLock.ReadLock readLockB;
  private ReentrantReadWriteLock.ReadLock readLockC;
  private ReentrantReadWriteLock.WriteLock writeLockA;
  private ReentrantReadWriteLock.WriteLock writeLockB;
  private ReentrantReadWriteLock.WriteLock writeLockC;
  private ReentrantLock lock1;
  private ReentrantLock lock2;
  private ReentrantLock lock3;
  private ReentrantLock lock01;
  private ReentrantLock lock02;
  private ReentrantLock lock03;

  @Override
  protected void setUp() throws Exception {
    super.setUp();
    CycleDetectingLockFactory factory =
        CycleDetectingLockFactory.newInstance(Policies.THROW);
    lockA = factory.newReentrantLock("LockA");
    lockB = factory.newReentrantLock("LockB");
    lockC = factory.newReentrantLock("LockC");
    ReentrantReadWriteLock readWriteLockA =
        factory.newReentrantReadWriteLock("ReadWriteA");
    ReentrantReadWriteLock readWriteLockB =
        factory.newReentrantReadWriteLock("ReadWriteB");
    ReentrantReadWriteLock readWriteLockC =
        factory.newReentrantReadWriteLock("ReadWriteC");
    readLockA = readWriteLockA.readLock();
    readLockB = readWriteLockB.readLock();
    readLockC = readWriteLockC.readLock();
    writeLockA = readWriteLockA.writeLock();
    writeLockB = readWriteLockB.writeLock();
    writeLockC = readWriteLockC.writeLock();

    CycleDetectingLockFactory.WithExplicitOrdering<MyOrder> factory2 =
        newInstanceWithExplicitOrdering(MyOrder.class, Policies.THROW);
    lock1 = factory2.newReentrantLock(MyOrder.FIRST);
    lock2 = factory2.newReentrantLock(MyOrder.SECOND);
    lock3 = factory2.newReentrantLock(MyOrder.THIRD);

    CycleDetectingLockFactory.WithExplicitOrdering<OtherOrder> factory3 =
        newInstanceWithExplicitOrdering(OtherOrder.class, Policies.THROW);
    lock01 = factory3.newReentrantLock(OtherOrder.FIRST);
    lock02 = factory3.newReentrantLock(OtherOrder.SECOND);
    lock03 = factory3.newReentrantLock(OtherOrder.THIRD);
  }

  // In the unittest, create each ordered factory with its own set of lock
  // graph nodes (as opposed to using the static per-Enum map) to avoid
  // conflicts across different test runs.
  private <E extends Enum<E>> CycleDetectingLockFactory.WithExplicitOrdering<E>
      newInstanceWithExplicitOrdering(Class<E> enumClass, Policy policy) {
    OrderedLockGraphNodesCreator nodeCreator =
        new OrderedLockGraphNodesCreator();
    return new CycleDetectingLockFactory.WithExplicitOrdering<E>(
        policy, nodeCreator.createNodesFor(enumClass));
  }

  public void testDeadlock_twoLocks() {
    // Establish an acquisition order of lockA -> lockB.
    lockA.lock();
    lockB.lock();
    lockA.unlock();
    lockB.unlock();

    // The opposite order should fail (Policies.THROW).
    PotentialDeadlockException firstException = null;
    lockB.lock();
    try {
      lockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(expected, "LockB -> LockA", "LockA -> LockB");
      firstException = expected;
    }

    // Second time should also fail, with a cached causal chain.
    try {
      lockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(expected, "LockB -> LockA", "LockA -> LockB");
      // The causal chain should be cached.
      assertSame(firstException.getCause(), expected.getCause());
    }

    // lockA should work after lockB is released.
    lockB.unlock();
    lockA.lock();
  }

  // Tests transitive deadlock detection.
  public void testDeadlock_threeLocks() {
    // Establish an ordering from lockA -> lockB.
    lockA.lock();
    lockB.lock();
    lockB.unlock();
    lockA.unlock();

    // Establish an ordering from lockB -> lockC.
    lockB.lock();
    lockC.lock();
    lockB.unlock();

    // lockC -> lockA should fail.
    try {
      lockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected, "LockC -> LockA", "LockB -> LockC", "LockA -> LockB");
    }
  }

  public void testReentrancy_noDeadlock() {
    lockA.lock();
    lockB.lock();
    lockA.lock();  // Should not assert on lockB -> reentrant(lockA)
  }

  public void testExplicitOrdering_noViolations() {
    lock1.lock();
    lock3.lock();
    lock3.unlock();
    lock2.lock();
    lock3.lock();
  }

  public void testExplicitOrdering_violations() {
    lock3.lock();
    try {
      lock2.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(expected, "MyOrder.THIRD -> MyOrder.SECOND");
    }

    try {
      lock1.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(expected, "MyOrder.THIRD -> MyOrder.FIRST");
    }

    lock3.unlock();
    lock2.lock();

    try {
      lock1.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(expected, "MyOrder.SECOND -> MyOrder.FIRST");
    }
  }

  public void testDifferentOrderings_noViolations() {
    lock3.lock();   // MyOrder, ordinal() == 3
    lock01.lock();  // OtherOrder, ordinal() == 1
  }

  public void testExplicitOrderings_generalCycleDetection() {
    lock3.lock();   // MyOrder, ordinal() == 3
    lock01.lock();  // OtherOrder, ordinal() == 1

    lock3.unlock();
    try {
      lock3.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected,
          "OtherOrder.FIRST -> MyOrder.THIRD",
          "MyOrder.THIRD -> OtherOrder.FIRST");
    }

    lockA.lock();
    lock01.unlock();
    lockB.lock();
    lockA.unlock();

    try {
      lock01.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected,
          "LockB -> OtherOrder.FIRST",
          "LockA -> LockB",
          "OtherOrder.FIRST -> LockA");
    }
  }

  public void testExplicitOrdering_cycleWithUnorderedLock() {
    Lock myLock = CycleDetectingLockFactory.newInstance(Policies.THROW)
        .newReentrantLock("MyLock");
    lock03.lock();
    myLock.lock();
    lock03.unlock();

    try {
      lock01.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected,
          "MyLock -> OtherOrder.FIRST",
          "OtherOrder.THIRD -> MyLock",
          "OtherOrder.FIRST -> OtherOrder.THIRD");
    }
  }

  public void testExplicitOrdering_reentrantAcquisition() {
    CycleDetectingLockFactory.WithExplicitOrdering<OtherOrder> factory =
        newInstanceWithExplicitOrdering(OtherOrder.class, Policies.THROW);
    Lock lockA = factory.newReentrantReadWriteLock(OtherOrder.FIRST).readLock();
    Lock lockB = factory.newReentrantLock(OtherOrder.SECOND);

    lockA.lock();
    lockA.lock();
    lockB.lock();
    lockB.lock();
    lockA.unlock();
    lockA.unlock();
    lockB.unlock();
    lockB.unlock();
  }

  public void testExplicitOrdering_acquiringMultipleLocksWithSameRank() {
    CycleDetectingLockFactory.WithExplicitOrdering<OtherOrder> factory =
        newInstanceWithExplicitOrdering(OtherOrder.class, Policies.THROW);
    Lock lockA = factory.newReentrantLock(OtherOrder.FIRST);
    Lock lockB = factory.newReentrantReadWriteLock(OtherOrder.FIRST).readLock();

    lockA.lock();
    try {
      lockB.lock();
      fail("Expected IllegalStateException");
    } catch (IllegalStateException expected) {
    }

    lockA.unlock();
    lockB.lock();
  }

  public void testReadLock_deadlock() {
    readLockA.lock();  // Establish an ordering from readLockA -> lockB.
    lockB.lock();
    lockB.unlock();
    readLockA.unlock();

    lockB.lock();
    try {
      readLockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(expected, "LockB -> ReadWriteA", "ReadWriteA -> LockB");
    }
  }

  public void testReadLock_transitive() {
    readLockA.lock();  // Establish an ordering from readLockA -> lockB.
    lockB.lock();
    lockB.unlock();
    readLockA.unlock();

    // Establish an ordering from lockB -> readLockC.
    lockB.lock();
    readLockC.lock();
    lockB.unlock();
    readLockC.unlock();

    // readLockC -> readLockA
    readLockC.lock();
    try {
      readLockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected,
          "ReadWriteC -> ReadWriteA",
          "LockB -> ReadWriteC",
          "ReadWriteA -> LockB");
    }
  }

  public void testWriteLock_threeLockDeadLock() {
    // Establish an ordering from writeLockA -> writeLockB.
    writeLockA.lock();
    writeLockB.lock();
    writeLockB.unlock();
    writeLockA.unlock();

    // Establish an ordering from writeLockB -> writeLockC.
    writeLockB.lock();
    writeLockC.lock();
    writeLockB.unlock();

    // writeLockC -> writeLockA should fail.
    try {
      writeLockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected,
          "ReadWriteC -> ReadWriteA",
          "ReadWriteB -> ReadWriteC",
          "ReadWriteA -> ReadWriteB");
    }
  }

  public void testWriteToReadLockDowngrading() {
    writeLockA.lock();  // writeLockA downgrades to readLockA
    readLockA.lock();
    writeLockA.unlock();

    lockB.lock();  // readLockA -> lockB
    readLockA.unlock();

    // lockB -> writeLockA should fail
    try {
      writeLockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected, "LockB -> ReadWriteA", "ReadWriteA -> LockB");
    }
  }

  public void testReadWriteLockDeadlock() {
    writeLockA.lock();  // Establish an ordering from writeLockA -> lockB
    lockB.lock();
    writeLockA.unlock();
    lockB.unlock();

    // lockB -> readLockA should fail.
    lockB.lock();
    try {
      readLockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected, "LockB -> ReadWriteA", "ReadWriteA -> LockB");
    }
  }

  public void testReadWriteLockDeadlock_transitive() {
    readLockA.lock();  // Establish an ordering from readLockA -> lockB
    lockB.lock();
    readLockA.unlock();
    lockB.unlock();

    // Establish an ordering from lockB -> lockC
    lockB.lock();
    lockC.lock();
    lockB.unlock();
    lockC.unlock();

    // lockC -> writeLockA should fail.
    lockC.lock();
    try {
      writeLockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected,
          "LockC -> ReadWriteA",
          "LockB -> LockC",
          "ReadWriteA -> LockB");
    }
  }

  public void testReadWriteLockDeadlock_treatedEquivalently() {
    readLockA.lock();  // readLockA -> writeLockB
    writeLockB.lock();
    readLockA.unlock();
    writeLockB.unlock();

    // readLockB -> writeLockA should fail.
    readLockB.lock();
    try {
      writeLockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(
          expected, "ReadWriteB -> ReadWriteA", "ReadWriteA -> ReadWriteB");
    }
  }

  public void testDifferentLockFactories() {
    CycleDetectingLockFactory otherFactory =
        CycleDetectingLockFactory.newInstance(Policies.WARN);
    ReentrantLock lockD = otherFactory.newReentrantLock("LockD");

    // lockA -> lockD
    lockA.lock();
    lockD.lock();
    lockA.unlock();
    lockD.unlock();

    // lockD -> lockA should fail even though lockD is from a different factory.
    lockD.lock();
    try {
      lockA.lock();
      fail("Expected PotentialDeadlockException");
    } catch (PotentialDeadlockException expected) {
      checkMessage(expected, "LockD -> LockA", "LockA -> LockD");
    }
  }

  public void testDifferentLockFactories_policyExecution() {
    CycleDetectingLockFactory otherFactory =
        CycleDetectingLockFactory.newInstance(Policies.WARN);
    ReentrantLock lockD = otherFactory.newReentrantLock("LockD");

    // lockD -> lockA
    lockD.lock();
    lockA.lock();
    lockA.unlock();
    lockD.unlock();

    // lockA -> lockD should warn but otherwise succeed because lockD was
    // created by a factory with the WARN policy.
    lockA.lock();
    lockD.lock();
  }

  public void testReentrantLock_tryLock() throws Exception {
    LockingThread thread = new LockingThread(lockA);
    thread.start();

    thread.waitUntilHoldingLock();
    assertFalse(lockA.tryLock());

    thread.releaseLockAndFinish();
    assertTrue(lockA.tryLock());
  }

  public void testReentrantWriteLock_tryLock() throws Exception {
    LockingThread thread = new LockingThread(writeLockA);
    thread.start();

    thread.waitUntilHoldingLock();
    assertFalse(writeLockA.tryLock());
    assertFalse(readLockA.tryLock());

    thread.releaseLockAndFinish();
    assertTrue(writeLockA.tryLock());
    assertTrue(readLockA.tryLock());
  }

  public void testReentrantReadLock_tryLock() throws Exception {
    LockingThread thread = new LockingThread(readLockA);
    thread.start();

    thread.waitUntilHoldingLock();
    assertFalse(writeLockA.tryLock());
    assertTrue(readLockA.tryLock());
    readLockA.unlock();

    thread.releaseLockAndFinish();
    assertTrue(writeLockA.tryLock());
    assertTrue(readLockA.tryLock());
  }

  private static class LockingThread extends Thread {
    final CountDownLatch locked = new CountDownLatch(1);
    final CountDownLatch finishLatch = new CountDownLatch(1);
    final Lock lock;

    LockingThread(Lock lock) {
      this.lock = lock;
    }

    @Override
    public void run() {
      lock.lock();
      try {
        locked.countDown();
        finishLatch.await(1, TimeUnit.MINUTES);
      } catch (InterruptedException e) {
        fail(e.toString());
      } finally {
        lock.unlock();
      }
    }

    void waitUntilHoldingLock() throws InterruptedException {
      locked.await(1, TimeUnit.MINUTES);
    }

    void releaseLockAndFinish() throws InterruptedException {
      finishLatch.countDown();
      this.join(10000);
      assertFalse(this.isAlive());
    }
  }

  public void testReentrantReadWriteLock_implDoesNotExposeShadowedLocks() {
    assertEquals(
        "Unexpected number of public methods in ReentrantReadWriteLock. " +
        "The correctness of CycleDetectingReentrantReadWriteLock depends on " +
        "the fact that the shadowed ReadLock and WriteLock are never used or " +
        "exposed by the superclass implementation. If the implementation has " +
        "changed, the code must be re-inspected to ensure that the " +
        "assumption is still valid.",
        24, ReentrantReadWriteLock.class.getMethods().length);
  }

  private enum MyOrder {
    FIRST, SECOND, THIRD;
  }

  private enum OtherOrder {
    FIRST, SECOND, THIRD;
  }

  // Given a sequence of lock acquisition descriptions
  // (e.g. "LockA -> LockB", "LockB -> LockC", ...)
  // Checks that the exception.getMessage() matches a regex of the form:
  // "LockA -> LockB \b.*\b LockB -> LockC \b.*\b LockC -> LockA"
  private void checkMessage(
      IllegalStateException exception, String... expectedLockCycle) {
    String regex = Joiner.on("\\b.*\\b").join(expectedLockCycle);
    assertContainsRegex(regex, exception.getMessage());
  }

  // TODO(cpovirk): consider adding support for regex to Truth
  private static void assertContainsRegex(String expectedRegex, String actual) {
    Pattern pattern = Pattern.compile(expectedRegex);
    Matcher matcher = pattern.matcher(actual);
    if (!matcher.find()) {
      String actualDesc = (actual == null) ? "null" : ('<' + actual + '>');
      fail("expected to contain regex:<" + expectedRegex + "> but was:"
          + actualDesc);
    }
  }
}