aboutsummaryrefslogtreecommitdiffstats
path: root/guava-gwt/src-super/com/google/common/collect/super/com/google/common/collect/Sets.java
blob: be31363bcf68cc16ae53d58d8ac41c51ffc64874 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.Beta;
import com.google.common.annotations.GwtCompatible;
import com.google.common.base.Function;
import com.google.common.base.Objects;
import com.google.common.base.Preconditions;
import com.google.common.base.Predicate;
import com.google.common.base.Predicates;
import com.google.common.collect.Collections2.FilteredCollection;
import com.google.common.math.IntMath;

import java.io.Serializable;
import java.util.AbstractSet;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.EnumSet;
import java.util.HashSet;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;

import javax.annotation.Nullable;

/**
 * Static utility methods pertaining to {@link Set} instances. Also see this
 * class's counterparts {@link Lists} and {@link Maps}.
 *
 * @author Kevin Bourrillion
 * @author Jared Levy
 * @author Chris Povirk
 * @since 2.0 (imported from Google Collections Library)
 */
@GwtCompatible(emulated = true)
public final class Sets {
  private Sets() {}

  /**
   * Returns an immutable set instance containing the given enum elements.
   * Internally, the returned set will be backed by an {@link EnumSet}.
   *
   * <p>The iteration order of the returned set follows the enum's iteration
   * order, not the order in which the elements are provided to the method.
   *
   * @param anElement one of the elements the set should contain
   * @param otherElements the rest of the elements the set should contain
   * @return an immutable set containing those elements, minus duplicates
   */
  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
  @GwtCompatible(serializable = true)
  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
      E anElement, E... otherElements) {
    return new ImmutableEnumSet<E>(EnumSet.of(anElement, otherElements));
  }

  /**
   * Returns an immutable set instance containing the given enum elements.
   * Internally, the returned set will be backed by an {@link EnumSet}.
   *
   * <p>The iteration order of the returned set follows the enum's iteration
   * order, not the order in which the elements appear in the given collection.
   *
   * @param elements the elements, all of the same {@code enum} type, that the
   *     set should contain
   * @return an immutable set containing those elements, minus duplicates
   */
  // http://code.google.com/p/google-web-toolkit/issues/detail?id=3028
  @GwtCompatible(serializable = true)
  public static <E extends Enum<E>> ImmutableSet<E> immutableEnumSet(
      Iterable<E> elements) {
    Iterator<E> iterator = elements.iterator();
    if (!iterator.hasNext()) {
      return ImmutableSet.of();
    }
    if (elements instanceof EnumSet) {
      EnumSet<E> enumSetClone = EnumSet.copyOf((EnumSet<E>) elements);
      return new ImmutableEnumSet<E>(enumSetClone);
    }
    E first = iterator.next();
    EnumSet<E> set = EnumSet.of(first);
    while (iterator.hasNext()) {
      set.add(iterator.next());
    }
    return new ImmutableEnumSet<E>(set);
  }

  /**
   * Returns a new {@code EnumSet} instance containing the given elements.
   * Unlike {@link EnumSet#copyOf(Collection)}, this method does not produce an
   * exception on an empty collection, and it may be called on any iterable, not
   * just a {@code Collection}.
   */
  public static <E extends Enum<E>> EnumSet<E> newEnumSet(Iterable<E> iterable,
      Class<E> elementType) {
    /*
     * TODO(cpovirk): noneOf() and addAll() will both throw
     * NullPointerExceptions when appropriate. However, NullPointerTester will
     * fail on this method because it passes in Class.class instead of an enum
     * type. This means that, when iterable is null but elementType is not,
     * noneOf() will throw a ClassCastException before addAll() has a chance to
     * throw a NullPointerException. NullPointerTester considers this a failure.
     * Ideally the test would be fixed, but it would require a special case for
     * Class<E> where E extends Enum. Until that happens (if ever), leave
     * checkNotNull() here. For now, contemplate the irony that checking
     * elementType, the problem argument, is harmful, while checking iterable,
     * the innocent bystander, is effective.
     */
    checkNotNull(iterable);
    EnumSet<E> set = EnumSet.noneOf(elementType);
    Iterables.addAll(set, iterable);
    return set;
  }

  // HashSet

  /**
   * Creates a <i>mutable</i>, empty {@code HashSet} instance.
   *
   * <p><b>Note:</b> if mutability is not required, use {@link
   * ImmutableSet#of()} instead.
   *
   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link
   * EnumSet#noneOf} instead.
   *
   * @return a new, empty {@code HashSet}
   */
  public static <E> HashSet<E> newHashSet() {
    return new HashSet<E>();
  }

  /**
   * Creates a <i>mutable</i> {@code HashSet} instance containing the given
   * elements in unspecified order.
   *
   * <p><b>Note:</b> if mutability is not required and the elements are
   * non-null, use an overload of {@link ImmutableSet#of()} (for varargs) or
   * {@link ImmutableSet#copyOf(Object[])} (for an array) instead.
   *
   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use {@link
   * EnumSet#of(Enum, Enum[])} instead.
   *
   * @param elements the elements that the set should contain
   * @return a new {@code HashSet} containing those elements (minus duplicates)
   */
  public static <E> HashSet<E> newHashSet(E... elements) {
    HashSet<E> set = newHashSetWithExpectedSize(elements.length);
    Collections.addAll(set, elements);
    return set;
  }

  /**
   * Creates a {@code HashSet} instance, with a high enough "initial capacity"
   * that it <i>should</i> hold {@code expectedSize} elements without growth.
   * This behavior cannot be broadly guaranteed, but it is observed to be true
   * for OpenJDK 1.6. It also can't be guaranteed that the method isn't
   * inadvertently <i>oversizing</i> the returned set.
   *
   * @param expectedSize the number of elements you expect to add to the
   *        returned set
   * @return a new, empty {@code HashSet} with enough capacity to hold {@code
   *         expectedSize} elements without resizing
   * @throws IllegalArgumentException if {@code expectedSize} is negative
   */
  public static <E> HashSet<E> newHashSetWithExpectedSize(int expectedSize) {
    return new HashSet<E>(Maps.capacity(expectedSize));
  }

  /**
   * Creates a <i>mutable</i> {@code HashSet} instance containing the given
   * elements in unspecified order.
   *
   * <p><b>Note:</b> if mutability is not required and the elements are
   * non-null, use {@link ImmutableSet#copyOf(Iterable)} instead.
   *
   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, use
   * {@link #newEnumSet(Iterable, Class)} instead.
   *
   * @param elements the elements that the set should contain
   * @return a new {@code HashSet} containing those elements (minus duplicates)
   */
  public static <E> HashSet<E> newHashSet(Iterable<? extends E> elements) {
    return (elements instanceof Collection)
        ? new HashSet<E>(Collections2.cast(elements))
        : newHashSet(elements.iterator());
  }

  /**
   * Creates a <i>mutable</i> {@code HashSet} instance containing the given
   * elements in unspecified order.
   *
   * <p><b>Note:</b> if mutability is not required and the elements are
   * non-null, use {@link ImmutableSet#copyOf(Iterable)} instead.
   *
   * <p><b>Note:</b> if {@code E} is an {@link Enum} type, you should create an
   * {@link EnumSet} instead.
   *
   * @param elements the elements that the set should contain
   * @return a new {@code HashSet} containing those elements (minus duplicates)
   */
  public static <E> HashSet<E> newHashSet(Iterator<? extends E> elements) {
    HashSet<E> set = newHashSet();
    while (elements.hasNext()) {
      set.add(elements.next());
    }
    return set;
  }

  // LinkedHashSet

  /**
   * Creates a <i>mutable</i>, empty {@code LinkedHashSet} instance.
   *
   * <p><b>Note:</b> if mutability is not required, use {@link
   * ImmutableSet#of()} instead.
   *
   * @return a new, empty {@code LinkedHashSet}
   */
  public static <E> LinkedHashSet<E> newLinkedHashSet() {
    return new LinkedHashSet<E>();
  }

  /**
   * Creates a {@code LinkedHashSet} instance, with a high enough "initial
   * capacity" that it <i>should</i> hold {@code expectedSize} elements without
   * growth. This behavior cannot be broadly guaranteed, but it is observed to
   * be true for OpenJDK 1.6. It also can't be guaranteed that the method isn't
   * inadvertently <i>oversizing</i> the returned set.
   *
   * @param expectedSize the number of elements you expect to add to the
   *        returned set
   * @return a new, empty {@code LinkedHashSet} with enough capacity to hold
   *         {@code expectedSize} elements without resizing
   * @throws IllegalArgumentException if {@code expectedSize} is negative
   * @since 11.0
   */
  public static <E> LinkedHashSet<E> newLinkedHashSetWithExpectedSize(
      int expectedSize) {
    return new LinkedHashSet<E>(Maps.capacity(expectedSize));
  }

  /**
   * Creates a <i>mutable</i> {@code LinkedHashSet} instance containing the
   * given elements in order.
   *
   * <p><b>Note:</b> if mutability is not required and the elements are
   * non-null, use {@link ImmutableSet#copyOf(Iterable)} instead.
   *
   * @param elements the elements that the set should contain, in order
   * @return a new {@code LinkedHashSet} containing those elements (minus
   *     duplicates)
   */
  public static <E> LinkedHashSet<E> newLinkedHashSet(
      Iterable<? extends E> elements) {
    if (elements instanceof Collection) {
      return new LinkedHashSet<E>(Collections2.cast(elements));
    }
    LinkedHashSet<E> set = newLinkedHashSet();
    for (E element : elements) {
      set.add(element);
    }
    return set;
  }

  // TreeSet

  /**
   * Creates a <i>mutable</i>, empty {@code TreeSet} instance sorted by the
   * natural sort ordering of its elements.
   *
   * <p><b>Note:</b> if mutability is not required, use {@link
   * ImmutableSortedSet#of()} instead.
   *
   * @return a new, empty {@code TreeSet}
   */
  public static <E extends Comparable> TreeSet<E> newTreeSet() {
    return new TreeSet<E>();
  }

  /**
   * Creates a <i>mutable</i> {@code TreeSet} instance containing the given
   * elements sorted by their natural ordering.
   *
   * <p><b>Note:</b> if mutability is not required, use {@link
   * ImmutableSortedSet#copyOf(Iterable)} instead.
   *
   * <p><b>Note:</b> If {@code elements} is a {@code SortedSet} with an explicit
   * comparator, this method has different behavior than
   * {@link TreeSet#TreeSet(SortedSet)}, which returns a {@code TreeSet} with
   * that comparator.
   *
   * @param elements the elements that the set should contain
   * @return a new {@code TreeSet} containing those elements (minus duplicates)
   */
  public static <E extends Comparable> TreeSet<E> newTreeSet(
      Iterable<? extends E> elements) {
    TreeSet<E> set = newTreeSet();
    for (E element : elements) {
      set.add(element);
    }
    return set;
  }

  /**
   * Creates a <i>mutable</i>, empty {@code TreeSet} instance with the given
   * comparator.
   *
   * <p><b>Note:</b> if mutability is not required, use {@code
   * ImmutableSortedSet.orderedBy(comparator).build()} instead.
   *
   * @param comparator the comparator to use to sort the set
   * @return a new, empty {@code TreeSet}
   * @throws NullPointerException if {@code comparator} is null
   */
  public static <E> TreeSet<E> newTreeSet(Comparator<? super E> comparator) {
    return new TreeSet<E>(checkNotNull(comparator));
  }

  /**
   * Creates an empty {@code Set} that uses identity to determine equality. It
   * compares object references, instead of calling {@code equals}, to
   * determine whether a provided object matches an element in the set. For
   * example, {@code contains} returns {@code false} when passed an object that
   * equals a set member, but isn't the same instance. This behavior is similar
   * to the way {@code IdentityHashMap} handles key lookups.
   *
   * @since 8.0
   */
  public static <E> Set<E> newIdentityHashSet() {
    return Sets.newSetFromMap(Maps.<E, Boolean>newIdentityHashMap());
  }

  /**
   * Creates an {@code EnumSet} consisting of all enum values that are not in
   * the specified collection. If the collection is an {@link EnumSet}, this
   * method has the same behavior as {@link EnumSet#complementOf}. Otherwise,
   * the specified collection must contain at least one element, in order to
   * determine the element type. If the collection could be empty, use
   * {@link #complementOf(Collection, Class)} instead of this method.
   *
   * @param collection the collection whose complement should be stored in the
   *     enum set
   * @return a new, modifiable {@code EnumSet} containing all values of the enum
   *     that aren't present in the given collection
   * @throws IllegalArgumentException if {@code collection} is not an
   *     {@code EnumSet} instance and contains no elements
   */
  public static <E extends Enum<E>> EnumSet<E> complementOf(
      Collection<E> collection) {
    if (collection instanceof EnumSet) {
      return EnumSet.complementOf((EnumSet<E>) collection);
    }
    checkArgument(!collection.isEmpty(),
        "collection is empty; use the other version of this method");
    Class<E> type = collection.iterator().next().getDeclaringClass();
    return makeComplementByHand(collection, type);
  }

  /**
   * Creates an {@code EnumSet} consisting of all enum values that are not in
   * the specified collection. This is equivalent to
   * {@link EnumSet#complementOf}, but can act on any input collection, as long
   * as the elements are of enum type.
   *
   * @param collection the collection whose complement should be stored in the
   *     {@code EnumSet}
   * @param type the type of the elements in the set
   * @return a new, modifiable {@code EnumSet} initially containing all the
   *     values of the enum not present in the given collection
   */
  public static <E extends Enum<E>> EnumSet<E> complementOf(
      Collection<E> collection, Class<E> type) {
    checkNotNull(collection);
    return (collection instanceof EnumSet)
        ? EnumSet.complementOf((EnumSet<E>) collection)
        : makeComplementByHand(collection, type);
  }

  private static <E extends Enum<E>> EnumSet<E> makeComplementByHand(
      Collection<E> collection, Class<E> type) {
    EnumSet<E> result = EnumSet.allOf(type);
    result.removeAll(collection);
    return result;
  }

  /*
   * Regarding newSetForMap() and SetFromMap:
   *
   * Written by Doug Lea with assistance from members of JCP JSR-166
   * Expert Group and released to the public domain, as explained at
   * http://creativecommons.org/licenses/publicdomain
   */

  /**
   * Returns a set backed by the specified map. The resulting set displays
   * the same ordering, concurrency, and performance characteristics as the
   * backing map. In essence, this factory method provides a {@link Set}
   * implementation corresponding to any {@link Map} implementation. There is no
   * need to use this method on a {@link Map} implementation that already has a
   * corresponding {@link Set} implementation (such as {@link java.util.HashMap}
   * or {@link java.util.TreeMap}).
   *
   * <p>Each method invocation on the set returned by this method results in
   * exactly one method invocation on the backing map or its {@code keySet}
   * view, with one exception. The {@code addAll} method is implemented as a
   * sequence of {@code put} invocations on the backing map.
   *
   * <p>The specified map must be empty at the time this method is invoked,
   * and should not be accessed directly after this method returns. These
   * conditions are ensured if the map is created empty, passed directly
   * to this method, and no reference to the map is retained, as illustrated
   * in the following code fragment: <pre>  {@code
   *
   *   Set<Object> identityHashSet = Sets.newSetFromMap(
   *       new IdentityHashMap<Object, Boolean>());}</pre>
   *
   * This method has the same behavior as the JDK 6 method
   * {@code Collections.newSetFromMap()}. The returned set is serializable if
   * the backing map is.
   *
   * @param map the backing map
   * @return the set backed by the map
   * @throws IllegalArgumentException if {@code map} is not empty
   */
  public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
    return new SetFromMap<E>(map);
  }

  private static class SetFromMap<E> extends AbstractSet<E>
      implements Set<E>, Serializable {
    private final Map<E, Boolean> m; // The backing map
    private transient Set<E> s; // Its keySet

    SetFromMap(Map<E, Boolean> map) {
      checkArgument(map.isEmpty(), "Map is non-empty");
      m = map;
      s = map.keySet();
    }

    @Override public void clear() {
      m.clear();
    }
    @Override public int size() {
      return m.size();
    }
    @Override public boolean isEmpty() {
      return m.isEmpty();
    }
    @Override public boolean contains(Object o) {
      return m.containsKey(o);
    }
    @Override public boolean remove(Object o) {
      return m.remove(o) != null;
    }
    @Override public boolean add(E e) {
      return m.put(e, Boolean.TRUE) == null;
    }
    @Override public Iterator<E> iterator() {
      return s.iterator();
    }
    @Override public Object[] toArray() {
      return s.toArray();
    }
    @Override public <T> T[] toArray(T[] a) {
      return s.toArray(a);
    }
    @Override public String toString() {
      return s.toString();
    }
    @Override public int hashCode() {
      return s.hashCode();
    }
    @Override public boolean equals(@Nullable Object object) {
      return this == object || this.s.equals(object);
    }
    @Override public boolean containsAll(Collection<?> c) {
      return s.containsAll(c);
    }
    @Override public boolean removeAll(Collection<?> c) {
      return s.removeAll(c);
    }
    @Override public boolean retainAll(Collection<?> c) {
      return s.retainAll(c);
    }

    // addAll is the only inherited implementation
  }

  /**
   * An unmodifiable view of a set which may be backed by other sets; this view
   * will change as the backing sets do. Contains methods to copy the data into
   * a new set which will then remain stable. There is usually no reason to
   * retain a reference of type {@code SetView}; typically, you either use it
   * as a plain {@link Set}, or immediately invoke {@link #immutableCopy} or
   * {@link #copyInto} and forget the {@code SetView} itself.
   *
   * @since 2.0 (imported from Google Collections Library)
   */
  public abstract static class SetView<E> extends AbstractSet<E> {
    private SetView() {} // no subclasses but our own

    /**
     * Returns an immutable copy of the current contents of this set view.
     * Does not support null elements.
     *
     * <p><b>Warning:</b> this may have unexpected results if a backing set of
     * this view uses a nonstandard notion of equivalence, for example if it is
     * a {@link TreeSet} using a comparator that is inconsistent with {@link
     * Object#equals(Object)}.
     */
    public ImmutableSet<E> immutableCopy() {
      return ImmutableSet.copyOf(this);
    }

    /**
     * Copies the current contents of this set view into an existing set. This
     * method has equivalent behavior to {@code set.addAll(this)}, assuming that
     * all the sets involved are based on the same notion of equivalence.
     *
     * @return a reference to {@code set}, for convenience
     */
    // Note: S should logically extend Set<? super E> but can't due to either
    // some javac bug or some weirdness in the spec, not sure which.
    public <S extends Set<E>> S copyInto(S set) {
      set.addAll(this);
      return set;
    }
  }

  /**
   * Returns an unmodifiable <b>view</b> of the union of two sets. The returned
   * set contains all elements that are contained in either backing set.
   * Iterating over the returned set iterates first over all the elements of
   * {@code set1}, then over each element of {@code set2}, in order, that is not
   * contained in {@code set1}.
   *
   * <p>Results are undefined if {@code set1} and {@code set2} are sets based on
   * different equivalence relations (as {@link HashSet}, {@link TreeSet}, and
   * the {@link Map#keySet} of an {@code IdentityHashMap} all are).
   *
   * <p><b>Note:</b> The returned view performs better when {@code set1} is the
   * smaller of the two sets. If you have reason to believe one of your sets
   * will generally be smaller than the other, pass it first.
   */
  public static <E> SetView<E> union(
      final Set<? extends E> set1, final Set<? extends E> set2) {
    checkNotNull(set1, "set1");
    checkNotNull(set2, "set2");

    final Set<? extends E> set2minus1 = difference(set2, set1);

    return new SetView<E>() {
      @Override public int size() {
        return set1.size() + set2minus1.size();
      }
      @Override public boolean isEmpty() {
        return set1.isEmpty() && set2.isEmpty();
      }
      @Override public Iterator<E> iterator() {
        return Iterators.unmodifiableIterator(
            Iterators.concat(set1.iterator(), set2minus1.iterator()));
      }
      @Override public boolean contains(Object object) {
        return set1.contains(object) || set2.contains(object);
      }
      @Override public <S extends Set<E>> S copyInto(S set) {
        set.addAll(set1);
        set.addAll(set2);
        return set;
      }
      @Override public ImmutableSet<E> immutableCopy() {
        return new ImmutableSet.Builder<E>()
            .addAll(set1).addAll(set2).build();
      }
    };
  }

  /**
   * Returns an unmodifiable <b>view</b> of the intersection of two sets. The
   * returned set contains all elements that are contained by both backing sets.
   * The iteration order of the returned set matches that of {@code set1}.
   *
   * <p>Results are undefined if {@code set1} and {@code set2} are sets based
   * on different equivalence relations (as {@code HashSet}, {@code TreeSet},
   * and the keySet of an {@code IdentityHashMap} all are).
   *
   * <p><b>Note:</b> The returned view performs slightly better when {@code
   * set1} is the smaller of the two sets. If you have reason to believe one of
   * your sets will generally be smaller than the other, pass it first.
   * Unfortunately, since this method sets the generic type of the returned set
   * based on the type of the first set passed, this could in rare cases force
   * you to make a cast, for example: <pre>   {@code
   *
   *   Set<Object> aFewBadObjects = ...
   *   Set<String> manyBadStrings = ...
   *
   *   // impossible for a non-String to be in the intersection
   *   SuppressWarnings("unchecked")
   *   Set<String> badStrings = (Set) Sets.intersection(
   *       aFewBadObjects, manyBadStrings);}</pre>
   *
   * This is unfortunate, but should come up only very rarely.
   */
  public static <E> SetView<E> intersection(
      final Set<E> set1, final Set<?> set2) {
    checkNotNull(set1, "set1");
    checkNotNull(set2, "set2");

    final Predicate<Object> inSet2 = Predicates.in(set2);
    return new SetView<E>() {
      @Override public Iterator<E> iterator() {
        return Iterators.filter(set1.iterator(), inSet2);
      }
      @Override public int size() {
        return Iterators.size(iterator());
      }
      @Override public boolean isEmpty() {
        return !iterator().hasNext();
      }
      @Override public boolean contains(Object object) {
        return set1.contains(object) && set2.contains(object);
      }
      @Override public boolean containsAll(Collection<?> collection) {
        return set1.containsAll(collection)
            && set2.containsAll(collection);
      }
    };
  }

  /**
   * Returns an unmodifiable <b>view</b> of the difference of two sets. The
   * returned set contains all elements that are contained by {@code set1} and
   * not contained by {@code set2}. {@code set2} may also contain elements not
   * present in {@code set1}; these are simply ignored. The iteration order of
   * the returned set matches that of {@code set1}.
   *
   * <p>Results are undefined if {@code set1} and {@code set2} are sets based
   * on different equivalence relations (as {@code HashSet}, {@code TreeSet},
   * and the keySet of an {@code IdentityHashMap} all are).
   */
  public static <E> SetView<E> difference(
      final Set<E> set1, final Set<?> set2) {
    checkNotNull(set1, "set1");
    checkNotNull(set2, "set2");

    final Predicate<Object> notInSet2 = Predicates.not(Predicates.in(set2));
    return new SetView<E>() {
      @Override public Iterator<E> iterator() {
        return Iterators.filter(set1.iterator(), notInSet2);
      }
      @Override public int size() {
        return Iterators.size(iterator());
      }
      @Override public boolean isEmpty() {
        return set2.containsAll(set1);
      }
      @Override public boolean contains(Object element) {
        return set1.contains(element) && !set2.contains(element);
      }
    };
  }

  /**
   * Returns an unmodifiable <b>view</b> of the symmetric difference of two
   * sets. The returned set contains all elements that are contained in either
   * {@code set1} or {@code set2} but not in both. The iteration order of the
   * returned set is undefined.
   *
   * <p>Results are undefined if {@code set1} and {@code set2} are sets based
   * on different equivalence relations (as {@code HashSet}, {@code TreeSet},
   * and the keySet of an {@code IdentityHashMap} all are).
   *
   * @since 3.0
   */
  public static <E> SetView<E> symmetricDifference(
      Set<? extends E> set1, Set<? extends E> set2) {
    checkNotNull(set1, "set1");
    checkNotNull(set2, "set2");

    // TODO(kevinb): Replace this with a more efficient implementation
    return difference(union(set1, set2), intersection(set1, set2));
  }

  /**
   * Returns the elements of {@code unfiltered} that satisfy a predicate. The
   * returned set is a live view of {@code unfiltered}; changes to one affect
   * the other.
   *
   * <p>The resulting set's iterator does not support {@code remove()}, but all
   * other set methods are supported. When given an element that doesn't satisfy
   * the predicate, the set's {@code add()} and {@code addAll()} methods throw
   * an {@link IllegalArgumentException}. When methods such as {@code
   * removeAll()} and {@code clear()} are called on the filtered set, only
   * elements that satisfy the filter will be removed from the underlying set.
   *
   * <p>The returned set isn't threadsafe or serializable, even if
   * {@code unfiltered} is.
   *
   * <p>Many of the filtered set's methods, such as {@code size()}, iterate
   * across every element in the underlying set and determine which elements
   * satisfy the filter. When a live view is <i>not</i> needed, it may be faster
   * to copy {@code Iterables.filter(unfiltered, predicate)} and use the copy.
   *
   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
   * as documented at {@link Predicate#apply}. Do not provide a predicate such
   * as {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent
   * with equals. (See {@link Iterables#filter(Iterable, Class)} for related
   * functionality.)
   */
  // TODO(kevinb): how to omit that last sentence when building GWT javadoc?
  public static <E> Set<E> filter(
      Set<E> unfiltered, Predicate<? super E> predicate) {
    if (unfiltered instanceof SortedSet) {
      return filter((SortedSet<E>) unfiltered, predicate);
    }
    if (unfiltered instanceof FilteredSet) {
      // Support clear(), removeAll(), and retainAll() when filtering a filtered
      // collection.
      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
      Predicate<E> combinedPredicate
          = Predicates.<E>and(filtered.predicate, predicate);
      return new FilteredSet<E>(
          (Set<E>) filtered.unfiltered, combinedPredicate);
    }

    return new FilteredSet<E>(
        checkNotNull(unfiltered), checkNotNull(predicate));
  }

  private static class FilteredSet<E> extends FilteredCollection<E>
      implements Set<E> {
    FilteredSet(Set<E> unfiltered, Predicate<? super E> predicate) {
      super(unfiltered, predicate);
    }

    @Override public boolean equals(@Nullable Object object) {
      return equalsImpl(this, object);
    }

    @Override public int hashCode() {
      return hashCodeImpl(this);
    }
  }

  /**
   * Returns the elements of a {@code SortedSet}, {@code unfiltered}, that
   * satisfy a predicate. The returned set is a live view of {@code unfiltered};
   * changes to one affect the other.
   *
   * <p>The resulting set's iterator does not support {@code remove()}, but all
   * other set methods are supported. When given an element that doesn't satisfy
   * the predicate, the set's {@code add()} and {@code addAll()} methods throw
   * an {@link IllegalArgumentException}. When methods such as
   * {@code removeAll()} and {@code clear()} are called on the filtered set,
   * only elements that satisfy the filter will be removed from the underlying
   * set.
   *
   * <p>The returned set isn't threadsafe or serializable, even if
   * {@code unfiltered} is.
   *
   * <p>Many of the filtered set's methods, such as {@code size()}, iterate across
   * every element in the underlying set and determine which elements satisfy
   * the filter. When a live view is <i>not</i> needed, it may be faster to copy
   * {@code Iterables.filter(unfiltered, predicate)} and use the copy.
   *
   * <p><b>Warning:</b> {@code predicate} must be <i>consistent with equals</i>,
   * as documented at {@link Predicate#apply}. Do not provide a predicate such as
   * {@code Predicates.instanceOf(ArrayList.class)}, which is inconsistent with
   * equals. (See {@link Iterables#filter(Iterable, Class)} for related
   * functionality.)
   *
   * @since 11.0
   */
  @Beta
  @SuppressWarnings("unchecked")
  public static <E> SortedSet<E> filter(
      SortedSet<E> unfiltered, Predicate<? super E> predicate) {
    if (unfiltered instanceof FilteredSet) {
      // Support clear(), removeAll(), and retainAll() when filtering a filtered
      // collection.
      FilteredSet<E> filtered = (FilteredSet<E>) unfiltered;
      Predicate<E> combinedPredicate
          = Predicates.<E>and(filtered.predicate, predicate);
      return new FilteredSortedSet<E>(
          (SortedSet<E>) filtered.unfiltered, combinedPredicate);
    }

    return new FilteredSortedSet<E>(
        checkNotNull(unfiltered), checkNotNull(predicate));
  }

  private static class FilteredSortedSet<E> extends FilteredCollection<E>
      implements SortedSet<E> {

    FilteredSortedSet(SortedSet<E> unfiltered, Predicate<? super E> predicate) {
      super(unfiltered, predicate);
    }

    @Override public boolean equals(@Nullable Object object) {
      return equalsImpl(this, object);
    }

    @Override public int hashCode() {
      return hashCodeImpl(this);
    }

    @Override
    public Comparator<? super E> comparator() {
      return ((SortedSet<E>) unfiltered).comparator();
    }

    @Override
    public SortedSet<E> subSet(E fromElement, E toElement) {
      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).subSet(fromElement, toElement),
          predicate);
    }

    @Override
    public SortedSet<E> headSet(E toElement) {
      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).headSet(toElement), predicate);
    }

    @Override
    public SortedSet<E> tailSet(E fromElement) {
      return new FilteredSortedSet<E>(((SortedSet<E>) unfiltered).tailSet(fromElement), predicate);
    }

    @Override
    public E first() {
      return iterator().next();
    }

    @Override
    public E last() {
      SortedSet<E> sortedUnfiltered = (SortedSet<E>) unfiltered;
      while (true) {
        E element = sortedUnfiltered.last();
        if (predicate.apply(element)) {
          return element;
        }
        sortedUnfiltered = sortedUnfiltered.headSet(element);
      }
    }
  }

  /**
   * Returns every possible list that can be formed by choosing one element
   * from each of the given sets in order; the "n-ary
   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
   * product</a>" of the sets. For example: <pre>   {@code
   *
   *   Sets.cartesianProduct(ImmutableList.of(
   *       ImmutableSet.of(1, 2),
   *       ImmutableSet.of("A", "B", "C")))}</pre>
   *
   * returns a set containing six lists:
   *
   * <ul>
   * <li>{@code ImmutableList.of(1, "A")}
   * <li>{@code ImmutableList.of(1, "B")}
   * <li>{@code ImmutableList.of(1, "C")}
   * <li>{@code ImmutableList.of(2, "A")}
   * <li>{@code ImmutableList.of(2, "B")}
   * <li>{@code ImmutableList.of(2, "C")}
   * </ul>
   *
   * The order in which these lists are returned is not guaranteed, however the
   * position of an element inside a tuple always corresponds to the position of
   * the set from which it came in the input list. Note that if any input set is
   * empty, the Cartesian product will also be empty. If no sets at all are
   * provided (an empty list), the resulting Cartesian product has one element,
   * an empty list (counter-intuitive, but mathematically consistent).
   *
   * <p><i>Performance notes:</i> while the cartesian product of sets of size
   * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
   * consumption is much smaller. When the cartesian set is constructed, the
   * input sets are merely copied. Only as the resulting set is iterated are the
   * individual lists created, and these are not retained after iteration.
   *
   * @param sets the sets to choose elements from, in the order that
   *     the elements chosen from those sets should appear in the resulting
   *     lists
   * @param <B> any common base class shared by all axes (often just {@link
   *     Object})
   * @return the Cartesian product, as an immutable set containing immutable
   *     lists
   * @throws NullPointerException if {@code sets}, any one of the {@code sets},
   *     or any element of a provided set is null
   * @since 2.0
   */
  public static <B> Set<List<B>> cartesianProduct(
      List<? extends Set<? extends B>> sets) {
    for (Set<? extends B> set : sets) {
      if (set.isEmpty()) {
        return ImmutableSet.of();
      }
    }
    CartesianSet<B> cartesianSet = new CartesianSet<B>(sets);
    return cartesianSet;
  }

  /**
   * Returns every possible list that can be formed by choosing one element
   * from each of the given sets in order; the "n-ary
   * <a href="http://en.wikipedia.org/wiki/Cartesian_product">Cartesian
   * product</a>" of the sets. For example: <pre>   {@code
   *
   *   Sets.cartesianProduct(
   *       ImmutableSet.of(1, 2),
   *       ImmutableSet.of("A", "B", "C"))}</pre>
   *
   * returns a set containing six lists:
   *
   * <ul>
   * <li>{@code ImmutableList.of(1, "A")}
   * <li>{@code ImmutableList.of(1, "B")}
   * <li>{@code ImmutableList.of(1, "C")}
   * <li>{@code ImmutableList.of(2, "A")}
   * <li>{@code ImmutableList.of(2, "B")}
   * <li>{@code ImmutableList.of(2, "C")}
   * </ul>
   *
   * The order in which these lists are returned is not guaranteed, however the
   * position of an element inside a tuple always corresponds to the position of
   * the set from which it came in the input list. Note that if any input set is
   * empty, the Cartesian product will also be empty. If no sets at all are
   * provided, the resulting Cartesian product has one element, an empty list
   * (counter-intuitive, but mathematically consistent).
   *
   * <p><i>Performance notes:</i> while the cartesian product of sets of size
   * {@code m, n, p} is a set of size {@code m x n x p}, its actual memory
   * consumption is much smaller. When the cartesian set is constructed, the
   * input sets are merely copied. Only as the resulting set is iterated are the
   * individual lists created, and these are not retained after iteration.
   *
   * @param sets the sets to choose elements from, in the order that
   *     the elements chosen from those sets should appear in the resulting
   *     lists
   * @param <B> any common base class shared by all axes (often just {@link
   *     Object})
   * @return the Cartesian product, as an immutable set containing immutable
   *     lists
   * @throws NullPointerException if {@code sets}, any one of the {@code sets},
   *     or any element of a provided set is null
   * @since 2.0
   */
  public static <B> Set<List<B>> cartesianProduct(
      Set<? extends B>... sets) {
    return cartesianProduct(Arrays.asList(sets));
  }

  private static class CartesianSet<B> extends AbstractSet<List<B>> {
    final ImmutableList<Axis> axes;
    final int size;

    CartesianSet(List<? extends Set<? extends B>> sets) {
      int dividend = 1;
      ImmutableList.Builder<Axis> builder = ImmutableList.builder();
      try {
        for (Set<? extends B> set : sets) {
          Axis axis = new Axis(set, dividend);
          builder.add(axis);
          dividend = IntMath.checkedMultiply(dividend, axis.size());
        }
      } catch (ArithmeticException overflow) {
        throw new IllegalArgumentException("cartesian product too big");
      }
      this.axes = builder.build();
      size = dividend;
    }

    @Override public int size() {
      return size;
    }

    @Override public UnmodifiableIterator<List<B>> iterator() {
      return new UnmodifiableIterator<List<B>>() {
        int index;

        @Override
        public boolean hasNext() {
          return index < size;
        }

        @Override
        public List<B> next() {
          if (!hasNext()) {
            throw new NoSuchElementException();
          }

          Object[] tuple = new Object[axes.size()];
          for (int i = 0 ; i < tuple.length; i++) {
            tuple[i] = axes.get(i).getForIndex(index);
          }
          index++;

          @SuppressWarnings("unchecked") // only B's are put in here
          List<B> result = (ImmutableList<B>) ImmutableList.copyOf(tuple);
          return result;
        }
      };
    }

    @Override public boolean contains(Object element) {
      if (!(element instanceof List<?>)) {
        return false;
      }
      List<?> tuple = (List<?>) element;
      int dimensions = axes.size();
      if (tuple.size() != dimensions) {
        return false;
      }
      for (int i = 0; i < dimensions; i++) {
        if (!axes.get(i).contains(tuple.get(i))) {
          return false;
        }
      }
      return true;
    }

    @Override public boolean equals(@Nullable Object object) {
      // Warning: this is broken if size() == 0, so it is critical that we
      // substitute an empty ImmutableSet to the user in place of this
      if (object instanceof CartesianSet) {
        CartesianSet<?> that = (CartesianSet<?>) object;
        return this.axes.equals(that.axes);
      }
      return super.equals(object);
    }

    @Override public int hashCode() {
      // Warning: this is broken if size() == 0, so it is critical that we
      // substitute an empty ImmutableSet to the user in place of this

      // It's a weird formula, but tests prove it works.
      int adjust = size - 1;
      for (int i = 0; i < axes.size(); i++) {
        adjust *= 31;
      }
      return axes.hashCode() + adjust;
    }

    private class Axis {
      final ImmutableSet<? extends B> choices;
      final ImmutableList<? extends B> choicesList;
      final int dividend;

      Axis(Set<? extends B> set, int dividend) {
        choices = ImmutableSet.copyOf(set);
        choicesList = choices.asList();
        this.dividend = dividend;
      }

      int size() {
        return choices.size();
      }

      B getForIndex(int index) {
        return choicesList.get(index / dividend % size());
      }

      boolean contains(Object target) {
        return choices.contains(target);
      }

      @Override public boolean equals(Object obj) {
        if (obj instanceof CartesianSet.Axis) {
          CartesianSet.Axis that = (CartesianSet.Axis) obj;
          return this.choices.equals(that.choices);
          // dividends must be equal or we wouldn't have gotten this far
        }
        return false;
      }

      @Override public int hashCode() {
        // Because Axis instances are not exposed, we can
        // opportunistically choose whatever bizarre formula happens
        // to make CartesianSet.hashCode() as simple as possible.
        return size / choices.size() * choices.hashCode();
      }
    }
  }

  /**
   * Returns the set of all possible subsets of {@code set}. For example,
   * {@code powerSet(ImmutableSet.of(1, 2))} returns the set {@code {{},
   * {1}, {2}, {1, 2}}}.
   *
   * <p>Elements appear in these subsets in the same iteration order as they
   * appeared in the input set. The order in which these subsets appear in the
   * outer set is undefined. Note that the power set of the empty set is not the
   * empty set, but a one-element set containing the empty set.
   *
   * <p>The returned set and its constituent sets use {@code equals} to decide
   * whether two elements are identical, even if the input set uses a different
   * concept of equivalence.
   *
   * <p><i>Performance notes:</i> while the power set of a set with size {@code
   * n} is of size {@code 2^n}, its memory usage is only {@code O(n)}. When the
   * power set is constructed, the input set is merely copied. Only as the
   * power set is iterated are the individual subsets created, and these subsets
   * themselves occupy only a few bytes of memory regardless of their size.
   *
   * @param set the set of elements to construct a power set from
   * @return the power set, as an immutable set of immutable sets
   * @throws IllegalArgumentException if {@code set} has more than 30 unique
   *     elements (causing the power set size to exceed the {@code int} range)
   * @throws NullPointerException if {@code set} is or contains {@code null}
   * @see <a href="http://en.wikipedia.org/wiki/Power_set">Power set article at
   *      Wikipedia</a>
   * @since 4.0
   */
  @GwtCompatible(serializable = false)
  public static <E> Set<Set<E>> powerSet(Set<E> set) {
    ImmutableSet<E> input = ImmutableSet.copyOf(set);
    checkArgument(input.size() <= 30,
        "Too many elements to create power set: %s > 30", input.size());
    return new PowerSet<E>(input);
  }

  private static final class PowerSet<E> extends AbstractSet<Set<E>> {
    final ImmutableSet<E> inputSet;
    final ImmutableList<E> inputList;
    final int powerSetSize;

    PowerSet(ImmutableSet<E> input) {
      this.inputSet = input;
      this.inputList = input.asList();
      this.powerSetSize = 1 << input.size();
    }

    @Override public int size() {
      return powerSetSize;
    }

    @Override public boolean isEmpty() {
      return false;
    }

    @Override public Iterator<Set<E>> iterator() {
      return new AbstractIndexedListIterator<Set<E>>(powerSetSize) {
        @Override protected Set<E> get(final int setBits) {
          return new AbstractSet<E>() {
            @Override public int size() {
              return Integer.bitCount(setBits);
            }
            @Override public Iterator<E> iterator() {
              return new BitFilteredSetIterator<E>(inputList, setBits);
            }
          };
        }
      };
    }

    private static final class BitFilteredSetIterator<E>
        extends UnmodifiableIterator<E> {
      final ImmutableList<E> input;
      int remainingSetBits;

      BitFilteredSetIterator(ImmutableList<E> input, int allSetBits) {
        this.input = input;
        this.remainingSetBits = allSetBits;
      }

      @Override public boolean hasNext() {
        return remainingSetBits != 0;
      }

      @Override public E next() {
        int index = Integer.numberOfTrailingZeros(remainingSetBits);
        if (index == 32) {
          throw new NoSuchElementException();
        }

        int currentElementMask = 1 << index;
        remainingSetBits &= ~currentElementMask;
        return input.get(index);
      }
    }

    @Override public boolean contains(@Nullable Object obj) {
      if (obj instanceof Set) {
        Set<?> set = (Set<?>) obj;
        return inputSet.containsAll(set);
      }
      return false;
    }

    @Override public boolean equals(@Nullable Object obj) {
      if (obj instanceof PowerSet) {
        PowerSet<?> that = (PowerSet<?>) obj;
        return inputSet.equals(that.inputSet);
      }
      return super.equals(obj);
    }

    @Override public int hashCode() {
      /*
       * The sum of the sums of the hash codes in each subset is just the sum of
       * each input element's hash code times the number of sets that element
       * appears in. Each element appears in exactly half of the 2^n sets, so:
       */
      return inputSet.hashCode() << (inputSet.size() - 1);
    }

    @Override public String toString() {
      return "powerSet(" + inputSet + ")";
    }
  }

  /**
   * An implementation for {@link Set#hashCode()}.
   */
  static int hashCodeImpl(Set<?> s) {
    int hashCode = 0;
    for (Object o : s) {
      hashCode += o != null ? o.hashCode() : 0;
    }
    return hashCode;
  }

  /**
   * An implementation for {@link Set#equals(Object)}.
   */
  static boolean equalsImpl(Set<?> s, @Nullable Object object){
    if (s == object) {
      return true;
    }
    if (object instanceof Set) {
      Set<?> o = (Set<?>) object;

      try {
        return s.size() == o.size() && s.containsAll(o);
      } catch (NullPointerException ignored) {
        return false;
      } catch (ClassCastException ignored) {
        return false;
      }
    }
    return false;
  }

  /**
   * Creates a view of Set<B> for a Set<A>, given a bijection between A and B.
   * (Modelled for now as InvertibleFunction<A, B>, can't be Converter<A, B>
   * because that's not in Guava, though both designs are less than optimal).
   * Note that the bijection is treated as undefined for values not in the
   * given Set<A> - it doesn't have to define a true bijection for those.
   *
   * <p>Note that the returned Set's contains method is unsafe -
   * you *must* pass an instance of B to it, since the bijection
   * can only invert B's (not any Object) back to A, so we can
   * then delegate the call to the original Set<A>.
   */
  static <A, B> Set<B> transform(
      Set<A> set, InvertibleFunction<A, B> bijection) {
    return new TransformedSet<A, B>(
        Preconditions.checkNotNull(set, "set"),
        Preconditions.checkNotNull(bijection, "bijection")
    );
  }

  /**
   * Stop-gap measure since there is no bijection related type in Guava.
   */
  abstract static class InvertibleFunction<A, B> implements Function<A, B> {
    abstract A invert(B b);

    public InvertibleFunction<B, A> inverse() {
      return new InvertibleFunction<B, A>() {
        @Override public A apply(B b) {
          return InvertibleFunction.this.invert(b);
        }

        @Override B invert(A a) {
          return InvertibleFunction.this.apply(a);
        }

        // Not required per se, but just for good karma.
        @Override public InvertibleFunction<A, B> inverse() {
          return InvertibleFunction.this;
        }
      };
    }
  }

  private static class TransformedSet<A, B> extends AbstractSet<B> {
    final Set<A> delegate;
    final InvertibleFunction<A, B> bijection;

    TransformedSet(Set<A> delegate, InvertibleFunction<A, B> bijection) {
      this.delegate = delegate;
      this.bijection = bijection;
    }

    @Override public Iterator<B> iterator() {
      return Iterators.transform(delegate.iterator(), bijection);
    }

    @Override public int size() {
      return delegate.size();
    }

    @SuppressWarnings("unchecked") // unsafe, passed object *must* be B
    @Override public boolean contains(Object o) {
      B b = (B) o;
      A a = bijection.invert(b);
      /*
       * Mathematically, Converter<A, B> defines a bijection between ALL A's
       * on ALL B's. Here we concern ourselves with a subset
       * of this relation: we only want the part that is defined by a *subset*
       * of all A's (defined by that Set<A> delegate), and the image
       * of *that* on B (which is this set). We don't care whether
       * the converter is *not* a bijection for A's that are not in Set<A>
       * or B's not in this Set<B>.
       *
       * We only want to return true if and only f the user passes a B instance
       * that is contained in precisely in the image of Set<A>.
       *
       * The first test is whether the inverse image of this B is indeed
       * in Set<A>. But we don't know whether that B belongs in this Set<B>
       * or not; if not, the converter is free to return
       * anything it wants, even an element of Set<A> (and this relationship
       * is not part of the Set<A> <--> Set<B> bijection), and we must not
       * be confused by that. So we have to do a final check to see if the
       * image of that A is really equivalent to the passed B, which proves
       * that the given B belongs indeed in the image of Set<A>.
       */
      return delegate.contains(a) && Objects.equal(bijection.apply(a), o);
    }

    @Override public boolean add(B b) {
      return delegate.add(bijection.invert(b));
    }

    @SuppressWarnings("unchecked") // unsafe, passed object *must* be B
    @Override public boolean remove(Object o) {
      return contains(o) && delegate.remove(bijection.invert((B) o));
    }

    @Override public void clear() {
      delegate.clear();
    }
  }

  /**
   * Remove each element in an iterable from a set.
   */
  static boolean removeAllImpl(Set<?> set, Iterable<?> iterable) {
    // TODO(jlevy): Have ForwardingSet.standardRemoveAll() call this method.
    boolean changed = false;
    for (Object o : iterable) {
      changed |= set.remove(o);
    }
    return changed;
  }
}