summaryrefslogtreecommitdiffstats
path: root/src/src/ldgeneric.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/src/ldgeneric.c')
-rw-r--r--src/src/ldgeneric.c7140
1 files changed, 7140 insertions, 0 deletions
diff --git a/src/src/ldgeneric.c b/src/src/ldgeneric.c
new file mode 100644
index 00000000..98bdc225
--- /dev/null
+++ b/src/src/ldgeneric.c
@@ -0,0 +1,7140 @@
+/* Copyright (C) 2001-2011 Red Hat, Inc.
+ This file is part of Red Hat elfutils.
+ Written by Ulrich Drepper <drepper@redhat.com>, 2001.
+
+ Red Hat elfutils is free software; you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by the
+ Free Software Foundation; version 2 of the License.
+
+ Red Hat elfutils is distributed in the hope that it will be useful, but
+ WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ General Public License for more details.
+
+ You should have received a copy of the GNU General Public License along
+ with Red Hat elfutils; if not, write to the Free Software Foundation,
+ Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA.
+
+ Red Hat elfutils is an included package of the Open Invention Network.
+ An included package of the Open Invention Network is a package for which
+ Open Invention Network licensees cross-license their patents. No patent
+ license is granted, either expressly or impliedly, by designation as an
+ included package. Should you wish to participate in the Open Invention
+ Network licensing program, please visit www.openinventionnetwork.com
+ <http://www.openinventionnetwork.com>. */
+
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+#include <assert.h>
+#include <ctype.h>
+#include <dlfcn.h>
+#include <errno.h>
+#include <error.h>
+#include <fcntl.h>
+#include <fnmatch.h>
+#include <gelf.h>
+#include <inttypes.h>
+#include <libintl.h>
+#include <stdbool.h>
+#include <stdio_ext.h>
+#include <stdlib.h>
+#include <string.h>
+#include <unistd.h>
+#include <sys/param.h>
+#include <sys/stat.h>
+
+#include <elf-knowledge.h>
+#include "ld.h"
+#include "list.h"
+#include <md5.h>
+#include <sha1.h>
+#include <system.h>
+
+
+/* Header of .eh_frame_hdr section. */
+struct unw_eh_frame_hdr
+{
+ unsigned char version;
+ unsigned char eh_frame_ptr_enc;
+ unsigned char fde_count_enc;
+ unsigned char table_enc;
+};
+#define EH_FRAME_HDR_VERSION 1
+
+
+/* Prototypes for local functions. */
+static const char **ld_generic_lib_extensions (struct ld_state *)
+ __attribute__ ((__const__));
+static int ld_generic_file_close (struct usedfiles *fileinfo,
+ struct ld_state *statep);
+static int ld_generic_file_process (int fd, struct usedfiles *fileinfo,
+ struct ld_state *statep,
+ struct usedfiles **nextp);
+static void ld_generic_generate_sections (struct ld_state *statep);
+static void ld_generic_create_sections (struct ld_state *statep);
+static int ld_generic_flag_unresolved (struct ld_state *statep);
+static int ld_generic_open_outfile (struct ld_state *statep, int machine,
+ int class, int data);
+static int ld_generic_create_outfile (struct ld_state *statep);
+static void ld_generic_relocate_section (struct ld_state *statep,
+ Elf_Scn *outscn,
+ struct scninfo *firstp,
+ const Elf32_Word *dblindirect);
+static int ld_generic_finalize (struct ld_state *statep);
+static bool ld_generic_special_section_number_p (struct ld_state *statep,
+ size_t number);
+static bool ld_generic_section_type_p (struct ld_state *statep,
+ XElf_Word type);
+static XElf_Xword ld_generic_dynamic_section_flags (struct ld_state *statep);
+static void ld_generic_initialize_plt (struct ld_state *statep, Elf_Scn *scn);
+static void ld_generic_initialize_pltrel (struct ld_state *statep,
+ Elf_Scn *scn);
+static void ld_generic_initialize_got (struct ld_state *statep, Elf_Scn *scn);
+static void ld_generic_initialize_gotplt (struct ld_state *statep,
+ Elf_Scn *scn);
+static void ld_generic_finalize_plt (struct ld_state *statep, size_t nsym,
+ size_t nsym_dyn,
+ struct symbol **ndxtosymp);
+static int ld_generic_rel_type (struct ld_state *statep);
+static void ld_generic_count_relocations (struct ld_state *statep,
+ struct scninfo *scninfo);
+static void ld_generic_create_relocations (struct ld_state *statep,
+ const Elf32_Word *dblindirect);
+
+static int file_process2 (struct usedfiles *fileinfo);
+static void mark_section_used (struct scninfo *scninfo, Elf32_Word shndx,
+ struct scninfo **grpscnp);
+
+
+/* Map symbol index to struct symbol record. */
+static struct symbol **ndxtosym;
+
+/* String table reference to all symbols in the symbol table. */
+static struct Ebl_Strent **symstrent;
+
+
+/* Check whether file associated with FD is a DSO. */
+static bool
+is_dso_p (int fd)
+{
+ /* We have to read the 'e_type' field. It has the same size (16
+ bits) in 32- and 64-bit ELF. */
+ XElf_Half e_type;
+
+ return (pread (fd, &e_type, sizeof (e_type), offsetof (XElf_Ehdr, e_type))
+ == sizeof (e_type)
+ && e_type == ET_DYN);
+}
+
+
+/* Print the complete name of a file, including the archive it is
+ contained in. */
+static int
+print_file_name (FILE *s, struct usedfiles *fileinfo, int first_level,
+ int newline)
+{
+ int npar = 0;
+
+ if (fileinfo->archive_file != NULL)
+ {
+ npar = print_file_name (s, fileinfo->archive_file, 0, 0) + 1;
+ fputc_unlocked ('(', s);
+ fputs_unlocked (fileinfo->rfname, s);
+
+ if (first_level)
+ while (npar-- > 0)
+ fputc_unlocked (')', s);
+ }
+ else
+ fputs_unlocked (fileinfo->rfname, s);
+
+ if (first_level && newline)
+ fputc_unlocked ('\n', s);
+
+ return npar;
+}
+
+
+/* Function to determine whether an object will be dynamically linked. */
+bool
+dynamically_linked_p (void)
+{
+ return (ld_state.file_type == dso_file_type || ld_state.nplt > 0
+ || ld_state.ngot > 0);
+}
+
+
+bool
+linked_from_dso_p (struct scninfo *scninfo, size_t symidx)
+{
+ struct usedfiles *file = scninfo->fileinfo;
+
+ /* If this symbol is not undefined in this file it cannot come from
+ a DSO. */
+ if (symidx < file->nlocalsymbols)
+ return false;
+
+ struct symbol *sym = file->symref[symidx];
+
+ return sym->defined && sym->in_dso;
+}
+
+
+/* Initialize state object. This callback function is called after the
+ parameters are parsed but before any file is searched for. */
+int
+ld_prepare_state (const char *emulation)
+{
+ /* When generating DSO we normally allow undefined symbols. */
+ ld_state.nodefs = true;
+
+ /* To be able to detect problems we add a .comment section entry by
+ default. */
+ ld_state.add_ld_comment = true;
+
+ /* XXX We probably should find a better place for this. The index
+ of the first user-defined version is 2. */
+ ld_state.nextveridx = 2;
+
+ /* Pick an not too small number for the initial size of the tables. */
+ ld_symbol_tab_init (&ld_state.symbol_tab, 1027);
+ ld_section_tab_init (&ld_state.section_tab, 67);
+ ld_version_str_tab_init (&ld_state.version_str_tab, 67);
+
+ /* Initialize the section header string table. */
+ ld_state.shstrtab = ebl_strtabinit (true);
+ if (ld_state.shstrtab == NULL)
+ error (EXIT_FAILURE, errno, gettext ("cannot create string table"));
+
+ /* Initialize the callbacks. These are the defaults, the appropriate
+ backend can later install its own callbacks. */
+ ld_state.callbacks.lib_extensions = ld_generic_lib_extensions;
+ ld_state.callbacks.file_process = ld_generic_file_process;
+ ld_state.callbacks.file_close = ld_generic_file_close;
+ ld_state.callbacks.generate_sections = ld_generic_generate_sections;
+ ld_state.callbacks.create_sections = ld_generic_create_sections;
+ ld_state.callbacks.flag_unresolved = ld_generic_flag_unresolved;
+ ld_state.callbacks.open_outfile = ld_generic_open_outfile;
+ ld_state.callbacks.create_outfile = ld_generic_create_outfile;
+ ld_state.callbacks.relocate_section = ld_generic_relocate_section;
+ ld_state.callbacks.finalize = ld_generic_finalize;
+ ld_state.callbacks.special_section_number_p =
+ ld_generic_special_section_number_p;
+ ld_state.callbacks.section_type_p = ld_generic_section_type_p;
+ ld_state.callbacks.dynamic_section_flags = ld_generic_dynamic_section_flags;
+ ld_state.callbacks.initialize_plt = ld_generic_initialize_plt;
+ ld_state.callbacks.initialize_pltrel = ld_generic_initialize_pltrel;
+ ld_state.callbacks.initialize_got = ld_generic_initialize_got;
+ ld_state.callbacks.initialize_gotplt = ld_generic_initialize_gotplt;
+ ld_state.callbacks.finalize_plt = ld_generic_finalize_plt;
+ ld_state.callbacks.rel_type = ld_generic_rel_type;
+ ld_state.callbacks.count_relocations = ld_generic_count_relocations;
+ ld_state.callbacks.create_relocations = ld_generic_create_relocations;
+
+#ifndef BASE_ELF_NAME
+ /* Find the ld backend library. Use EBL to determine the name if
+ the user hasn't provided one on the command line. */
+ if (emulation == NULL)
+ {
+ emulation = ebl_backend_name (ld_state.ebl);
+ assert (emulation != NULL);
+ }
+ size_t emulation_len = strlen (emulation);
+
+ /* Construct the file name. */
+ char *fname = (char *) alloca (sizeof "libld_" - 1 + emulation_len
+ + sizeof ".so");
+ strcpy (mempcpy (stpcpy (fname, "libld_"), emulation, emulation_len), ".so");
+
+ /* Try loading. */
+ void *h = dlopen (fname, RTLD_LAZY);
+ if (h == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot load ld backend library '%s': %s"),
+ fname, dlerror ());
+
+ /* Find the initializer. It must be present. */
+ char *initname = (char *) alloca (emulation_len + sizeof "_ld_init");
+ strcpy (mempcpy (initname, emulation, emulation_len), "_ld_init");
+ int (*initfct) (struct ld_state *)
+ = (int (*) (struct ld_state *)) dlsym (h, initname);
+
+ if (initfct == NULL)
+ error (EXIT_FAILURE, 0, gettext ("\
+cannot find init function in ld backend library '%s': %s"),
+ fname, dlerror ());
+
+ /* Store the handle. */
+ ld_state.ldlib = h;
+
+ /* Call the init function. */
+ return initfct (&ld_state);
+#else
+# define INIT_FCT_NAME(base) _INIT_FCT_NAME(base)
+# define _INIT_FCT_NAME(base) base##_ld_init
+ /* Declare and call the initialization function. */
+ extern int INIT_FCT_NAME(BASE_ELF_NAME) (struct ld_state *);
+ return INIT_FCT_NAME(BASE_ELF_NAME) (&ld_state);
+#endif
+}
+
+
+static int
+check_for_duplicate2 (struct usedfiles *newp, struct usedfiles *list)
+{
+ struct usedfiles *first;
+
+ if (list == NULL)
+ return 0;
+
+ list = first = list->next;
+ do
+ {
+ /* When searching the needed list we might come across entries
+ for files which are not yet opened. Stop then, there is
+ nothing more to test. */
+ if (likely (list->status == not_opened))
+ break;
+
+ if (unlikely (list->ino == newp->ino)
+ && unlikely (list->dev == newp->dev))
+ {
+ close (newp->fd);
+ newp->fd = -1;
+ newp->status = closed;
+ if (newp->file_type == relocatable_file_type)
+ error (0, 0, gettext ("%s listed more than once as input"),
+ newp->rfname);
+
+ return 1;
+ }
+ list = list->next;
+ }
+ while (likely (list != first));
+
+ return 0;
+}
+
+
+static int
+check_for_duplicate (struct usedfiles *newp)
+{
+ struct stat st;
+
+ if (unlikely (fstat (newp->fd, &st) < 0))
+ {
+ close (newp->fd);
+ return errno;
+ }
+
+ newp->dev = st.st_dev;
+ newp->ino = st.st_ino;
+
+ return (check_for_duplicate2 (newp, ld_state.relfiles)
+ || check_for_duplicate2 (newp, ld_state.dsofiles)
+ || check_for_duplicate2 (newp, ld_state.needed));
+}
+
+
+/* Find a file along the path described in the state. */
+static int
+open_along_path2 (struct usedfiles *fileinfo, struct pathelement *path)
+{
+ const char *fname = fileinfo->fname;
+ size_t fnamelen = strlen (fname);
+ int err = ENOENT;
+ struct pathelement *firstp = path;
+
+ if (path == NULL)
+ /* Cannot find anything since we have no path. */
+ return ENOENT;
+
+ do
+ {
+ if (likely (path->exist >= 0))
+ {
+ /* Create the file name. */
+ char *rfname = NULL;
+ size_t dirlen = strlen (path->pname);
+ int fd = -1;
+
+ if (fileinfo->file_type == archive_file_type)
+ {
+ const char **exts = (ld_state.statically
+ ? (const char *[2]) { ".a", NULL }
+ : LIB_EXTENSION (&ld_state));
+
+ /* We have to create the actual file name. We prepend "lib"
+ and add one of the extensions the platform has. */
+ while (*exts != NULL)
+ {
+ size_t extlen = strlen (*exts);
+ rfname = (char *) alloca (dirlen + 5 + fnamelen + extlen);
+ memcpy (mempcpy (stpcpy (mempcpy (rfname, path->pname,
+ dirlen),
+ "/lib"),
+ fname, fnamelen),
+ *exts, extlen + 1);
+
+ fd = open (rfname, O_RDONLY);
+ if (likely (fd != -1) || errno != ENOENT)
+ {
+ err = fd == -1 ? errno : 0;
+ break;
+ }
+
+ /* Next extension. */
+ ++exts;
+ }
+ }
+ else
+ {
+ assert (fileinfo->file_type == dso_file_type
+ || fileinfo->file_type == dso_needed_file_type);
+
+ rfname = (char *) alloca (dirlen + 1 + fnamelen + 1);
+ memcpy (stpcpy (mempcpy (rfname, path->pname, dirlen), "/"),
+ fname, fnamelen + 1);
+
+ fd = open (rfname, O_RDONLY);
+ if (unlikely (fd == -1))
+ err = errno;
+ }
+
+ if (likely (fd != -1))
+ {
+ /* We found the file. This also means the directory
+ exists. */
+ fileinfo->fd = fd;
+ path->exist = 1;
+
+ /* Check whether we have this file already loaded. */
+ if (unlikely (check_for_duplicate (fileinfo) != 0))
+ return EAGAIN;
+
+ /* Make a copy of the name. */
+ fileinfo->rfname = obstack_strdup (&ld_state.smem, rfname);
+
+ if (unlikely (ld_state.trace_files))
+ printf (fileinfo->file_type == archive_file_type
+ ? gettext ("%s (for -l%s)\n")
+ : gettext ("%s (for DT_NEEDED %s)\n"),
+ rfname, fname);
+
+ return 0;
+ }
+
+ /* The file does not exist. Maybe the whole directory doesn't.
+ Check it unless we know it exists. */
+ if (unlikely (path->exist == 0))
+ {
+ struct stat st;
+
+ /* Keep only the directory name. Note that the path
+ might be relative. This doesn't matter here. We do
+ the test in any case even if there is the chance that
+ somebody wants to change the programs working
+ directory at some point which would make the result
+ of this test void. Since changing the working
+ directory is completely wrong we are not taking this
+ case into account. */
+ rfname[dirlen] = '\0';
+ if (unlikely (stat (rfname, &st) < 0) || ! S_ISDIR (st.st_mode))
+ /* The directory does not exist or the named file is no
+ directory. */
+ path->exist = -1;
+ else
+ path->exist = 1;
+ }
+ }
+
+ /* Next path element. */
+ path = path->next;
+ }
+ while (likely (err == ENOENT && path != firstp));
+
+ return err;
+}
+
+
+static int
+open_along_path (struct usedfiles *fileinfo)
+{
+ const char *fname = fileinfo->fname;
+ int err = ENOENT;
+
+ if (fileinfo->file_type == relocatable_file_type)
+ {
+ /* Only libraries are searched along the path. */
+ fileinfo->fd = open (fname, O_RDONLY);
+
+ if (likely (fileinfo->fd != -1))
+ {
+ /* We found the file. */
+ if (unlikely (ld_state.trace_files))
+ print_file_name (stdout, fileinfo, 1, 1);
+
+ return check_for_duplicate (fileinfo);
+ }
+
+ /* If the name is an absolute path we are done. */
+ err = errno;
+ }
+ else
+ {
+ /* If the user specified two parts to the LD_LIBRARY_PATH variable
+ try the first part now. */
+ err = open_along_path2 (fileinfo, ld_state.ld_library_path1);
+
+ /* Try the user-specified path next. */
+ if (err == ENOENT)
+ err = open_along_path2 (fileinfo,
+ fileinfo->file_type == archive_file_type
+ ? ld_state.paths : ld_state.rpath_link);
+
+ /* Then the second part of the LD_LIBRARY_PATH value. */
+ if (unlikely (err == ENOENT))
+ {
+ err = open_along_path2 (fileinfo, ld_state.ld_library_path2);
+
+ /* In case we look for a DSO handle now the RUNPATH. */
+ if (err == ENOENT)
+ {
+ if (fileinfo->file_type == dso_file_type)
+ err = open_along_path2 (fileinfo, ld_state.runpath_link);
+
+ /* Finally the path from the default linker script. */
+ if (err == ENOENT)
+ err = open_along_path2 (fileinfo, ld_state.default_paths);
+ }
+ }
+ }
+
+ if (unlikely (err != 0)
+ && (err != EAGAIN || fileinfo->file_type == relocatable_file_type))
+ error (0, err, gettext ("cannot open %s"), fileinfo->fname);
+
+ return err;
+}
+
+
+static int
+matching_group_comdat_scn (const XElf_Sym *sym, size_t shndx,
+ struct usedfiles *fileinfo, struct symbol *oldp)
+{
+ if ((shndx >= SHN_LORESERVE && shndx <= SHN_HIRESERVE)
+ || (oldp->scndx >= SHN_LORESERVE && oldp->scndx <= SHN_HIRESERVE))
+ /* Cannot be a group COMDAT section. */
+ return 0;
+
+ size_t newgrpid = fileinfo->scninfo[shndx].grpid;
+ size_t oldgrpid = oldp->file->scninfo[oldp->scndx].grpid;
+ if (newgrpid == 0 || oldgrpid == 0)
+ return 0;
+
+ assert (SCNINFO_SHDR (fileinfo->scninfo[newgrpid].shdr).sh_type
+ == SHT_GROUP);
+ assert (SCNINFO_SHDR (oldp->file->scninfo[oldgrpid].shdr).sh_type
+ == SHT_GROUP);
+
+ if (! fileinfo->scninfo[newgrpid].comdat_group
+ || ! oldp->file->scninfo[oldgrpid].comdat_group)
+ return 0;
+
+ if (strcmp (fileinfo->scninfo[newgrpid].symbols->name,
+ oldp->file->scninfo[oldgrpid].symbols->name) != 0)
+ return 0;
+
+ /* This is a matching, duplicate COMDAT group section. Ignore it. */
+ return 1;
+}
+
+
+static void
+check_type_and_size (const XElf_Sym *sym, struct usedfiles *fileinfo,
+ struct symbol *oldp)
+{
+ /* We check the type and size of the symbols. In both cases the
+ information can be missing (size is zero, type is STT_NOTYPE) in
+ which case we issue no warnings. Otherwise everything must
+ match. If the type does not match there is no point in checking
+ the size. */
+
+ if (XELF_ST_TYPE (sym->st_info) != STT_NOTYPE && oldp->type != STT_NOTYPE
+ && unlikely (oldp->type != XELF_ST_TYPE (sym->st_info)))
+ {
+ char buf1[64];
+ char buf2[64];
+
+ error (0, 0, gettext ("\
+Warning: type of `%s' changed from %s in %s to %s in %s"),
+ oldp->name,
+ ebl_symbol_type_name (ld_state.ebl, oldp->type,
+ buf1, sizeof (buf1)),
+ oldp->file->rfname,
+ ebl_symbol_type_name (ld_state.ebl, XELF_ST_TYPE (sym->st_info),
+ buf2, sizeof (buf2)),
+ fileinfo->rfname);
+ }
+ else if (XELF_ST_TYPE (sym->st_info) == STT_OBJECT
+ && oldp->size != 0
+ && unlikely (oldp->size != sym->st_size))
+ error (0, 0, gettext ("\
+Warning: size of `%s' changed from %" PRIu64 " in %s to %" PRIu64 " in %s"),
+ oldp->name, (uint64_t) oldp->size, oldp->file->rfname,
+ (uint64_t) sym->st_size, fileinfo->rfname);
+}
+
+
+static int
+check_definition (const XElf_Sym *sym, size_t shndx, size_t symidx,
+ struct usedfiles *fileinfo, struct symbol *oldp)
+{
+ int result = 0;
+ bool old_in_dso = FILEINFO_EHDR (oldp->file->ehdr).e_type == ET_DYN;
+ bool new_in_dso = FILEINFO_EHDR (fileinfo->ehdr).e_type == ET_DYN;
+ bool use_new_def = false;
+
+ if (shndx != SHN_UNDEF
+ && (! oldp->defined
+ || (shndx != SHN_COMMON && oldp->common && ! new_in_dso)
+ || (old_in_dso && ! new_in_dso)))
+ {
+ /* We found a definition for a previously undefined symbol or a
+ real definition for a previous common-only definition or a
+ redefinition of a symbol definition in an object file
+ previously defined in a DSO. First perform some tests which
+ will show whether the common is really matching the
+ definition. */
+ check_type_and_size (sym, fileinfo, oldp);
+
+ /* We leave the next element intact to not interrupt the list
+ with the unresolved symbols. Whoever walks the list will
+ have to check the `defined' flag. But we remember that this
+ list element is not unresolved anymore. */
+ if (! oldp->defined)
+ {
+ /* Remove from the list. */
+ --ld_state.nunresolved;
+ if (! oldp->weak)
+ --ld_state.nunresolved_nonweak;
+ CDBL_LIST_DEL (ld_state.unresolved, oldp);
+ }
+ else if (oldp->common)
+ /* Remove from the list. */
+ CDBL_LIST_DEL (ld_state.common_syms, oldp);
+
+ /* Use the values of the definition from now on. */
+ use_new_def = true;
+ }
+ else if (shndx != SHN_UNDEF
+ && oldp->defined
+ && matching_group_comdat_scn (sym, shndx, fileinfo, oldp))
+ /* The duplicate symbol is in a group COMDAT section with the same
+ signature as the one containing the original definition.
+ Just ignore the second definition. */
+ /* nothing */;
+ else if (shndx != SHN_UNDEF
+ && unlikely (! oldp->common)
+ && oldp->defined
+ && shndx != SHN_COMMON
+ /* Multiple definitions are no fatal errors if the -z muldefs flag
+ is used. We don't warn about the multiple definition unless we
+ are told to be verbose. */
+ && (!ld_state.muldefs || verbose)
+ && ! old_in_dso && fileinfo->file_type == relocatable_file_type)
+ {
+ /* We have a double definition. This is a problem. */
+ char buf[64];
+ XElf_Sym_vardef (oldsym);
+ struct usedfiles *oldfile;
+ const char *scnname;
+ Elf32_Word xndx;
+ size_t shnum;
+
+ if (elf_getshdrnum (fileinfo->elf, &shnum) < 0)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot determine number of sections: %s"),
+ elf_errmsg (-1));
+
+ /* XXX Use only ebl_section_name. */
+ if (shndx < SHN_LORESERVE || (shndx > SHN_HIRESERVE && shndx < shnum))
+ scnname = elf_strptr (fileinfo->elf,
+ fileinfo->shstrndx,
+ SCNINFO_SHDR (fileinfo->scninfo[shndx].shdr).sh_name);
+ else
+ // XXX extended section
+ scnname = ebl_section_name (ld_state.ebl, shndx, 0, buf, sizeof (buf),
+ NULL, shnum);
+
+ /* XXX Print source file and line number. */
+ print_file_name (stderr, fileinfo, 1, 0);
+ fprintf (stderr,
+ gettext ("(%s+%#" PRIx64 "): multiple definition of %s `%s'\n"),
+ scnname,
+ (uint64_t) sym->st_value,
+ ebl_symbol_type_name (ld_state.ebl, XELF_ST_TYPE (sym->st_info),
+ buf, sizeof (buf)),
+ oldp->name);
+
+ oldfile = oldp->file;
+ xelf_getsymshndx (oldfile->symtabdata, oldfile->xndxdata, oldp->symidx,
+ oldsym, xndx);
+ assert (oldsym != NULL);
+
+ /* XXX Use only ebl_section_name. */
+ if (oldp->scndx < SHN_LORESERVE || oldp->scndx > SHN_HIRESERVE)
+ scnname = elf_strptr (oldfile->elf,
+ oldfile->shstrndx,
+ SCNINFO_SHDR (oldfile->scninfo[shndx].shdr).sh_name);
+ else
+ scnname = ebl_section_name (ld_state.ebl, oldp->scndx, oldp->scndx,
+ buf, sizeof (buf), NULL, shnum);
+
+ /* XXX Print source file and line number. */
+ print_file_name (stderr, oldfile, 1, 0);
+ fprintf (stderr, gettext ("(%s+%#" PRIx64 "): first defined here\n"),
+ scnname, (uint64_t) oldsym->st_value);
+
+ if (likely (!ld_state.muldefs))
+ result = 1;
+ }
+ else if (old_in_dso && fileinfo->file_type == relocatable_file_type
+ && shndx != SHN_UNDEF)
+ /* We use the definition from a normal relocatable file over the
+ definition in a DSO. This is what the dynamic linker would
+ do, too. */
+ use_new_def = true;
+ else if (old_in_dso && !new_in_dso && oldp->defined && !oldp->on_dsolist)
+ {
+ CDBL_LIST_ADD_REAR (ld_state.from_dso, oldp);
+ ++ld_state.nfrom_dso;
+
+ /* If the object is a function we allocate a PLT entry,
+ otherwise only a GOT entry. */
+ if (oldp->type == STT_FUNC)
+ ++ld_state.nplt;
+ else
+ ++ld_state.ngot;
+
+ oldp->on_dsolist = 1;
+ }
+ else if (oldp->common && shndx == SHN_COMMON)
+ {
+ /* The symbol size is the largest of all common definitions. */
+ oldp->size = MAX (oldp->size, sym->st_size);
+ /* Similarly for the alignment. */
+ oldp->merge.value = MAX (oldp->merge.value, sym->st_value);
+ }
+
+ if (unlikely (use_new_def))
+ {
+ /* Adjust the symbol record appropriately and remove
+ the symbol from the list of symbols which are taken from DSOs. */
+ if (old_in_dso && fileinfo->file_type == relocatable_file_type)
+ {
+ CDBL_LIST_DEL (ld_state.from_dso, oldp);
+ --ld_state.nfrom_dso;
+
+ if (likely (oldp->type == STT_FUNC))
+ --ld_state.nplt;
+ else
+ --ld_state.ngot;
+
+ oldp->on_dsolist = 0;
+ }
+
+ /* Use the values of the definition from now on. */
+ oldp->size = sym->st_size;
+ oldp->type = XELF_ST_TYPE (sym->st_info);
+ oldp->symidx = symidx;
+ oldp->scndx = shndx;
+ //oldp->symscndx = THESYMSCNDX must be passed;
+ oldp->file = fileinfo;
+ oldp->defined = 1;
+ oldp->in_dso = new_in_dso;
+ oldp->common = shndx == SHN_COMMON;
+ if (likely (fileinfo->file_type == relocatable_file_type))
+ {
+ /* If the definition comes from a DSO we pertain the weak flag
+ and it's indicating whether the reference is weak or not. */
+ oldp->weak = XELF_ST_BIND (sym->st_info) == STB_WEAK;
+
+ // XXX Really exclude SHN_ABS?
+ if (shndx != SHN_COMMON && shndx != SHN_ABS)
+ {
+ struct scninfo *ignore;
+ mark_section_used (&fileinfo->scninfo[shndx], shndx, &ignore);
+ }
+ }
+
+ /* Add to the list of symbols used from DSOs if necessary. */
+ if (new_in_dso && !old_in_dso)
+ {
+ CDBL_LIST_ADD_REAR (ld_state.from_dso, oldp);
+ ++ld_state.nfrom_dso;
+
+ /* If the object is a function we allocate a PLT entry,
+ otherwise only a GOT entry. */
+ if (oldp->type == STT_FUNC)
+ ++ld_state.nplt;
+ else
+ ++ld_state.ngot;
+
+ oldp->on_dsolist = 1;
+ }
+ else if (shndx == SHN_COMMON)
+ {
+ /* Store the alignment. */
+ oldp->merge.value = sym->st_value;
+
+ CDBL_LIST_ADD_REAR (ld_state.common_syms, oldp);
+ }
+ }
+
+ return result;
+}
+
+
+static struct scninfo *
+find_section_group (struct usedfiles *fileinfo, Elf32_Word shndx,
+ Elf_Data **datap)
+{
+ struct scninfo *runp;
+
+ for (runp = fileinfo->groups; runp != NULL; runp = runp->next)
+ if (!runp->used)
+ {
+ Elf32_Word *grpref;
+ size_t cnt;
+ Elf_Data *data;
+
+ data = elf_getdata (runp->scn, NULL);
+ if (data == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("%s: cannot get section group data: %s"),
+ fileinfo->fname, elf_errmsg (-1));
+
+ /* There cannot be another data block. */
+ assert (elf_getdata (runp->scn, data) == NULL);
+
+ grpref = (Elf32_Word *) data->d_buf;
+ cnt = data->d_size / sizeof (Elf32_Word);
+ /* Note that we stop after looking at index 1 since index 0
+ contains the flags for the section group. */
+ while (cnt > 1)
+ if (grpref[--cnt] == shndx)
+ {
+ *datap = data;
+ return runp;
+ }
+ }
+
+ /* If we come here no section group contained the given section
+ despite the SHF_GROUP flag. This is an error in the input
+ file. */
+ error (EXIT_FAILURE, 0, gettext ("\
+%s: section '%s' with group flag set does not belong to any group"),
+ fileinfo->fname,
+ elf_strptr (fileinfo->elf, fileinfo->shstrndx,
+ SCNINFO_SHDR (fileinfo->scninfo[shndx].shdr).sh_name));
+ return NULL;
+}
+
+
+/* Mark all sections which belong to the same group as section SHNDX
+ as used. */
+static void
+mark_section_group (struct usedfiles *fileinfo, Elf32_Word shndx,
+ struct scninfo **grpscnp)
+{
+ /* First locate the section group. There can be several (many) of
+ them. */
+ size_t cnt;
+ Elf32_Word *grpref;
+ Elf_Data *data;
+ struct scninfo *grpscn = find_section_group (fileinfo, shndx, &data);
+ *grpscnp = grpscn;
+
+ /* Mark all the sections as used.
+
+ XXX Two possible problems here:
+
+ - the gABI says "The section must be referenced by a section of type
+ SHT_GROUP". I hope everybody reads this as "exactly one section".
+
+ - section groups are also useful to mark the debugging section which
+ belongs to a text section. Unconditionally adding debugging sections
+ is therefore probably not what is wanted if stripping is required. */
+
+ /* Mark the section group as handled. */
+ grpscn->used = true;
+
+ grpref = (Elf32_Word *) data->d_buf;
+ cnt = data->d_size / sizeof (Elf32_Word);
+ while (cnt > 1)
+ {
+ Elf32_Word idx = grpref[--cnt];
+ XElf_Shdr *shdr = &SCNINFO_SHDR (fileinfo->scninfo[idx].shdr);
+
+ if (fileinfo->scninfo[idx].grpid != grpscn->grpid)
+ error (EXIT_FAILURE, 0, gettext ("\
+%s: section [%2d] '%s' is not in the correct section group"),
+ fileinfo->fname, (int) idx,
+ elf_strptr (fileinfo->elf, fileinfo->shstrndx, shdr->sh_name));
+
+ if (ld_state.strip == strip_none
+ /* If we are stripping, remove debug sections. */
+ || (!ebl_debugscn_p (ld_state.ebl,
+ elf_strptr (fileinfo->elf, fileinfo->shstrndx,
+ shdr->sh_name))
+ /* And the relocation sections for the debug sections. */
+ && ((shdr->sh_type != SHT_RELA && shdr->sh_type != SHT_REL)
+ || !ebl_debugscn_p (ld_state.ebl,
+ elf_strptr (fileinfo->elf,
+ fileinfo->shstrndx,
+ SCNINFO_SHDR (fileinfo->scninfo[shdr->sh_info].shdr).sh_name)))))
+ {
+ struct scninfo *ignore;
+
+ mark_section_used (&fileinfo->scninfo[idx], idx, &ignore);
+ }
+ }
+}
+
+
+static void
+mark_section_used (struct scninfo *scninfo, Elf32_Word shndx,
+ struct scninfo **grpscnp)
+{
+ if (likely (scninfo->used))
+ /* Nothing to be done. */
+ return;
+
+ /* We need this section. */
+ scninfo->used = true;
+
+ /* Make sure the section header has been read from the file. */
+ XElf_Shdr *shdr = &SCNINFO_SHDR (scninfo->shdr);
+#if NATIVE_ELF
+ if (unlikely (scninfo->shdr == NULL))
+#else
+ if (unlikely (scninfo->shdr.sh_type == SHT_NULL))
+#endif
+ {
+#if NATIVE_ELF != 0
+ shdr = xelf_getshdr (scninfo->scn, scninfo->shdr);
+#else
+ xelf_getshdr_copy (scninfo->scn, shdr, scninfo->shdr);
+#endif
+ if (unlikely (shdr == NULL))
+ /* Something is very wrong. The calling code will notice it
+ soon and print a message. */
+ return;
+ }
+
+ /* Handle section linked by 'sh_link'. */
+ if (unlikely (shdr->sh_link != 0))
+ {
+ struct scninfo *ignore;
+ mark_section_used (&scninfo->fileinfo->scninfo[shdr->sh_link],
+ shdr->sh_link, &ignore);
+ }
+
+ /* Handle section linked by 'sh_info'. */
+ if (unlikely (shdr->sh_info != 0) && (shdr->sh_flags & SHF_INFO_LINK))
+ {
+ struct scninfo *ignore;
+ mark_section_used (&scninfo->fileinfo->scninfo[shdr->sh_info],
+ shdr->sh_info, &ignore);
+ }
+
+ if (unlikely (shdr->sh_flags & SHF_GROUP) && ld_state.gc_sections)
+ /* Find the section group which contains this section. */
+ mark_section_group (scninfo->fileinfo, shndx, grpscnp);
+}
+
+
+/* We collect all sections in a hashing table. All sections with the
+ same name are collected in a list. Note that we do not determine
+ which sections are finally collected in the same output section
+ here. This would be terribly inefficient. It will be done later. */
+static void
+add_section (struct usedfiles *fileinfo, struct scninfo *scninfo)
+{
+ struct scnhead *queued;
+ struct scnhead search;
+ unsigned long int hval;
+ XElf_Shdr *shdr = &SCNINFO_SHDR (scninfo->shdr);
+ struct scninfo *grpscn = NULL;
+ Elf_Data *grpscndata = NULL;
+
+ /* See whether we can determine right away whether we need this
+ section in the output.
+
+ XXX I assume here that --gc-sections only affects extraction
+ from an archive. If it also affects objects files given on
+ the command line then somebody must explain to me how the
+ dependency analysis should work. Should the entry point be
+ the root? What if it is a numeric value? */
+ if (!scninfo->used
+ && (ld_state.strip == strip_none
+ || (shdr->sh_flags & SHF_ALLOC) != 0
+ || shdr->sh_type == SHT_NOTE
+ || (shdr->sh_type == SHT_PROGBITS
+ && strcmp (elf_strptr (fileinfo->elf,
+ fileinfo->shstrndx,
+ shdr->sh_name), ".comment") == 0))
+ && (fileinfo->status != in_archive || !ld_state.gc_sections))
+ /* Mark as used and handle reference recursively if necessary. */
+ mark_section_used (scninfo, elf_ndxscn (scninfo->scn), &grpscn);
+
+ if ((shdr->sh_flags & SHF_GROUP) && grpscn == NULL)
+ /* Determine the symbol which name constitutes the signature
+ for the section group. */
+ grpscn = find_section_group (fileinfo, elf_ndxscn (scninfo->scn),
+ &grpscndata);
+ assert (grpscn == NULL || grpscn->symbols->name != NULL);
+
+ /* Determine the section name. */
+ search.name = elf_strptr (fileinfo->elf, fileinfo->shstrndx, shdr->sh_name);
+ search.type = shdr->sh_type;
+ search.flags = shdr->sh_flags;
+ search.entsize = shdr->sh_entsize;
+ search.grp_signature = grpscn != NULL ? grpscn->symbols->name : NULL;
+ search.kind = scn_normal;
+ hval = elf_hash (search.name);
+
+ /* Find already queued sections. */
+ queued = ld_section_tab_find (&ld_state.section_tab, hval, &search);
+ if (queued != NULL)
+ {
+ bool is_comdat = false;
+
+ /* If this section is part of a COMDAT section group we simply
+ ignore it since we already have a copy. */
+ if (unlikely (shdr->sh_flags & SHF_GROUP))
+ {
+ /* Get the data of the section group section. */
+ if (grpscndata == NULL)
+ {
+ grpscndata = elf_getdata (grpscn->scn, NULL);
+ assert (grpscndata != NULL);
+ }
+
+ /* XXX Possibly unaligned memory access. */
+ if ((((Elf32_Word *) grpscndata->d_buf)[0] & GRP_COMDAT) != 0)
+ {
+ /* We have to compare the group signatures. There might
+ be sections with the same name but belonging to
+ groups with different signatures. This means we have
+ to compare the new group signature with all those
+ already collected. There might also be some
+ non-group sections in the mix. */
+ struct scninfo *runp = queued->last;
+ do
+ {
+ if (SCNINFO_SHDR (runp->shdr).sh_flags & SHF_GROUP)
+ {
+ struct scninfo *grpscn2
+ = find_section_group (runp->fileinfo,
+ elf_ndxscn (runp->scn),
+ &grpscndata);
+
+ if (strcmp (grpscn->symbols->name,
+ grpscn2->symbols->name) == 0)
+ {
+ scninfo->unused_comdat = is_comdat = true;
+ break;
+ }
+ }
+
+ runp = runp->next;
+ }
+ while (runp != queued->last);
+ }
+ }
+
+ if (!is_comdat)
+ {
+ /* No COMDAT section, we use the data. */
+ scninfo->next = queued->last->next;
+ queued->last = queued->last->next = scninfo;
+
+ queued->flags = ebl_sh_flags_combine (ld_state.ebl, queued->flags,
+ shdr->sh_flags);
+ queued->align = MAX (queued->align, shdr->sh_addralign);
+ }
+ }
+ else
+ {
+ /* We do not use obstacks here since the memory might be
+ deallocated. */
+ queued = (struct scnhead *) xcalloc (sizeof (struct scnhead), 1);
+ queued->kind = scn_normal;
+ queued->name = search.name;
+ queued->type = shdr->sh_type;
+ queued->flags = shdr->sh_flags;
+ queued->align = shdr->sh_addralign;
+ queued->entsize = shdr->sh_entsize;
+ queued->grp_signature = grpscn != NULL ? grpscn->symbols->name : NULL;
+ queued->segment_nr = ~0;
+ queued->last = scninfo->next = scninfo;
+
+ /* Check whether we need a TLS segment. */
+ ld_state.need_tls |= (shdr->sh_flags & SHF_TLS) != 0;
+
+ /* Add to the hash table and possibly overwrite existing value. */
+ ld_section_tab_insert (&ld_state.section_tab, hval, queued);
+ }
+}
+
+
+static int
+add_relocatable_file (struct usedfiles *fileinfo, GElf_Word secttype)
+{
+ size_t scncnt;
+ size_t cnt;
+ Elf_Data *symtabdata = NULL;
+ Elf_Data *xndxdata = NULL;
+ Elf_Data *versymdata = NULL;
+ Elf_Data *verdefdata = NULL;
+ Elf_Data *verneeddata = NULL;
+ size_t symstridx = 0;
+ size_t nsymbols = 0;
+ size_t nlocalsymbols = 0;
+ bool has_merge_sections = false;
+ bool has_tls_symbols = false;
+ /* Unless we have different information we assume the code needs
+ an executable stack. */
+ enum execstack execstack = execstack_true;
+
+ /* Prerequisites. */
+ assert (fileinfo->elf != NULL);
+
+ /* Allocate memory for the sections. */
+ if (unlikely (elf_getshdrnum (fileinfo->elf, &scncnt) < 0))
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot determine number of sections: %s"),
+ elf_errmsg (-1));
+
+ fileinfo->scninfo = (struct scninfo *)
+ obstack_calloc (&ld_state.smem, scncnt * sizeof (struct scninfo));
+
+ /* Read all the section headers and find the symbol table. Note
+ that we don't skip the section with index zero. Even though the
+ section itself is always empty the section header contains
+ informaton for the case when the section index for the section
+ header string table is too large to fit in the ELF header. */
+ for (cnt = 0; cnt < scncnt; ++cnt)
+ {
+ /* Store the handle for the section. */
+ fileinfo->scninfo[cnt].scn = elf_getscn (fileinfo->elf, cnt);
+
+ /* Get the ELF section header and data. */
+ XElf_Shdr *shdr;
+#if NATIVE_ELF != 0
+ if (fileinfo->scninfo[cnt].shdr == NULL)
+#else
+ if (fileinfo->scninfo[cnt].shdr.sh_type == SHT_NULL)
+#endif
+ {
+#if NATIVE_ELF != 0
+ shdr = xelf_getshdr (fileinfo->scninfo[cnt].scn,
+ fileinfo->scninfo[cnt].shdr);
+#else
+ xelf_getshdr_copy (fileinfo->scninfo[cnt].scn, shdr,
+ fileinfo->scninfo[cnt].shdr);
+#endif
+ if (shdr == NULL)
+ {
+ /* This should never happen. */
+ fprintf (stderr, gettext ("%s: invalid ELF file (%s:%d)\n"),
+ fileinfo->rfname, __FILE__, __LINE__);
+ return 1;
+ }
+ }
+ else
+ shdr = &SCNINFO_SHDR (fileinfo->scninfo[cnt].shdr);
+
+ Elf_Data *data = elf_getdata (fileinfo->scninfo[cnt].scn, NULL);
+
+ /* Check whether this section is marked as merge-able. */
+ has_merge_sections |= (shdr->sh_flags & SHF_MERGE) != 0;
+ has_tls_symbols |= (shdr->sh_flags & SHF_TLS) != 0;
+
+ /* Get the ELF section header and data. */
+ /* Make the file structure available. */
+ fileinfo->scninfo[cnt].fileinfo = fileinfo;
+
+ if (unlikely (shdr->sh_type == SHT_SYMTAB)
+ || unlikely (shdr->sh_type == SHT_DYNSYM))
+ {
+ if (shdr->sh_type == SHT_SYMTAB)
+ {
+ assert (fileinfo->symtabdata == NULL);
+ fileinfo->symtabdata = data;
+ fileinfo->nsymtab = shdr->sh_size / shdr->sh_entsize;
+ fileinfo->nlocalsymbols = shdr->sh_info;
+ fileinfo->symstridx = shdr->sh_link;
+ }
+ else
+ {
+ assert (fileinfo->dynsymtabdata == NULL);
+ fileinfo->dynsymtabdata = data;
+ fileinfo->ndynsymtab = shdr->sh_size / shdr->sh_entsize;
+ fileinfo->dynsymstridx = shdr->sh_link;
+ }
+
+ /* If we are looking for the normal symbol table we just
+ found it. */
+ if (secttype == shdr->sh_type)
+ {
+ assert (symtabdata == NULL);
+ symtabdata = data;
+ symstridx = shdr->sh_link;
+ nsymbols = shdr->sh_size / shdr->sh_entsize;
+ nlocalsymbols = shdr->sh_info;
+ }
+ }
+ else if (unlikely (shdr->sh_type == SHT_SYMTAB_SHNDX))
+ {
+ assert (xndxdata == NULL);
+ fileinfo->xndxdata = xndxdata = data;
+ }
+ else if (unlikely (shdr->sh_type == SHT_GNU_versym))
+ {
+ assert (versymdata == 0);
+ fileinfo->versymdata = versymdata = data;
+ }
+ else if (unlikely (shdr->sh_type == SHT_GNU_verdef))
+ {
+ size_t nversions;
+
+ assert (verdefdata == 0);
+ fileinfo->verdefdata = verdefdata = data;
+
+ /* Allocate the arrays flagging the use of the version and
+ to track of allocated names. */
+ fileinfo->nverdef = nversions = shdr->sh_info;
+ /* We have NVERSIONS + 1 because the indeces used to access the
+ sectino start with one; zero represents local binding. */
+ fileinfo->verdefused = (XElf_Versym *)
+ obstack_calloc (&ld_state.smem,
+ sizeof (XElf_Versym) * (nversions + 1));
+ fileinfo->verdefent = (struct Ebl_Strent **)
+ obstack_alloc (&ld_state.smem,
+ sizeof (struct Ebl_Strent *) * (nversions + 1));
+ }
+ else if (unlikely (shdr->sh_type == SHT_GNU_verneed))
+ {
+ assert (verneeddata == 0);
+ fileinfo->verneeddata = verneeddata = data;
+ }
+ else if (unlikely (shdr->sh_type == SHT_DYNAMIC))
+ {
+ assert (fileinfo->dynscn == NULL);
+ fileinfo->dynscn = fileinfo->scninfo[cnt].scn;
+ }
+ else if (unlikely (shdr->sh_type == SHT_GROUP))
+ {
+ Elf_Scn *symscn;
+ XElf_Shdr_vardef (symshdr);
+ Elf_Data *symdata;
+
+ if (FILEINFO_EHDR (fileinfo->ehdr).e_type != ET_REL)
+ error (EXIT_FAILURE, 0, gettext ("\
+%s: only files of type ET_REL might contain section groups"),
+ fileinfo->fname);
+
+ fileinfo->scninfo[cnt].next = fileinfo->groups;
+ fileinfo->scninfo[cnt].grpid = cnt;
+ fileinfo->groups = &fileinfo->scninfo[cnt];
+
+ /* Determine the signature. We create a symbol record for
+ it. Only the name element is important. */
+ fileinfo->scninfo[cnt].symbols = (struct symbol *)
+ obstack_calloc (&ld_state.smem, sizeof (struct symbol));
+
+ symscn = elf_getscn (fileinfo->elf, shdr->sh_link);
+ xelf_getshdr (symscn, symshdr);
+ symdata = elf_getdata (symscn, NULL);
+
+ if (symshdr != NULL)
+ {
+ XElf_Sym_vardef (sym);
+
+ /* We don't need the section index and therefore we don't
+ have to use 'xelf_getsymshndx'. */
+ xelf_getsym (symdata, shdr->sh_info, sym);
+ if (sym != NULL)
+ {
+ struct symbol *symbol = fileinfo->scninfo[cnt].symbols;
+
+#ifndef NO_HACKS
+ if (XELF_ST_TYPE (sym->st_info) == STT_SECTION)
+ {
+ XElf_Shdr_vardef (buggyshdr);
+ xelf_getshdr (elf_getscn (fileinfo->elf, sym->st_shndx),
+ buggyshdr);
+
+ symbol->name = elf_strptr (fileinfo->elf,
+ FILEINFO_EHDR (fileinfo->ehdr).e_shstrndx,
+ buggyshdr->sh_name);
+ symbol->symidx = -1;
+ }
+ else
+#endif
+ {
+ symbol->name = elf_strptr (fileinfo->elf,
+ symshdr->sh_link,
+ sym->st_name);
+ symbol->symidx = shdr->sh_info;
+ }
+ symbol->file = fileinfo;
+ }
+ }
+ if (fileinfo->scninfo[cnt].symbols->name == NULL)
+ error (EXIT_FAILURE, 0, gettext ("\
+%s: cannot determine signature of section group [%2zd] '%s': %s"),
+ fileinfo->fname,
+ elf_ndxscn (fileinfo->scninfo[cnt].scn),
+ elf_strptr (fileinfo->elf, fileinfo->shstrndx,
+ shdr->sh_name),
+ elf_errmsg (-1));
+
+
+ /* For all the sections which are part of this group, add
+ the reference. */
+ if (data == NULL)
+ error (EXIT_FAILURE, 0, gettext ("\
+%s: cannot get content of section group [%2zd] '%s': %s'"),
+ fileinfo->fname, elf_ndxscn (fileinfo->scninfo[cnt].scn),
+ elf_strptr (fileinfo->elf, fileinfo->shstrndx,
+ shdr->sh_name),
+ elf_errmsg (-1));
+
+ Elf32_Word *grpdata = (Elf32_Word *) data->d_buf;
+ if (grpdata[0] & GRP_COMDAT)
+ fileinfo->scninfo[cnt].comdat_group = true;
+ for (size_t inner = 1; inner < data->d_size / sizeof (Elf32_Word);
+ ++inner)
+ {
+ if (grpdata[inner] >= scncnt)
+ error (EXIT_FAILURE, 0, gettext ("\
+%s: group member %zu of section group [%2zd] '%s' has too high index: %" PRIu32),
+ fileinfo->fname,
+ inner, elf_ndxscn (fileinfo->scninfo[cnt].scn),
+ elf_strptr (fileinfo->elf, fileinfo->shstrndx,
+ shdr->sh_name),
+ grpdata[inner]);
+
+ fileinfo->scninfo[grpdata[inner]].grpid = cnt;
+ }
+
+ /* The 'used' flag is used to indicate when the information
+ in the section group is used to mark all other sections
+ as used. So it must not be true yet. */
+ assert (fileinfo->scninfo[cnt].used == false);
+ }
+ else if (! SECTION_TYPE_P (&ld_state, shdr->sh_type)
+ && unlikely ((shdr->sh_flags & SHF_OS_NONCONFORMING) != 0))
+ /* According to the gABI it is a fatal error if the file contains
+ a section with unknown type and the SHF_OS_NONCONFORMING flag
+ set. */
+ error (EXIT_FAILURE, 0,
+ gettext ("%s: section '%s' has unknown type: %d"),
+ fileinfo->fname,
+ elf_strptr (fileinfo->elf, fileinfo->shstrndx,
+ shdr->sh_name),
+ (int) shdr->sh_type);
+ /* We don't have to add a few section types here. These will be
+ generated from scratch for the new output file. We also
+ don't add the sections of DSOs here since these sections are
+ not used in the resulting object file. */
+ else if (likely (fileinfo->file_type == relocatable_file_type)
+ && likely (cnt > 0)
+ && likely (shdr->sh_type == SHT_PROGBITS
+ || shdr->sh_type == SHT_RELA
+ || shdr->sh_type == SHT_REL
+ || shdr->sh_type == SHT_NOTE
+ || shdr->sh_type == SHT_NOBITS
+ || shdr->sh_type == SHT_INIT_ARRAY
+ || shdr->sh_type == SHT_FINI_ARRAY
+ || shdr->sh_type == SHT_PREINIT_ARRAY))
+ {
+ /* Check whether the section needs to be executable. */
+ if (shdr->sh_type == SHT_PROGBITS
+ && (shdr->sh_flags & SHF_EXECINSTR) == 0
+ && strcmp (elf_strptr (fileinfo->elf, fileinfo->shstrndx,
+ shdr->sh_name),
+ ".note.GNU-stack") == 0)
+ execstack = execstack_false;
+
+ add_section (fileinfo, &fileinfo->scninfo[cnt]);
+ }
+ }
+
+ /* Now we know more about the requirements for an executable stack
+ of the result. */
+ if (fileinfo->file_type == relocatable_file_type
+ && execstack == execstack_true
+ && ld_state.execstack != execstack_false_force)
+ ld_state.execstack = execstack_true;
+
+ /* Handle the symbols. Record defined and undefined symbols in the
+ hash table. In theory there can be a file without any symbol
+ table. */
+ if (likely (symtabdata != NULL))
+ {
+ /* In case this file contains merge-able sections we have to
+ locate the symbols which are in these sections. */
+ fileinfo->has_merge_sections = has_merge_sections;
+ if (likely (has_merge_sections || has_tls_symbols))
+ {
+ fileinfo->symref = (struct symbol **)
+ obstack_calloc (&ld_state.smem,
+ nsymbols * sizeof (struct symbol *));
+
+ /* Only handle the local symbols here. */
+ for (cnt = 0; cnt < nlocalsymbols; ++cnt)
+ {
+ Elf32_Word shndx;
+ XElf_Sym_vardef (sym);
+
+ xelf_getsymshndx (symtabdata, xndxdata, cnt, sym, shndx);
+ if (sym == NULL)
+ {
+ /* This should never happen. */
+ fprintf (stderr, gettext ("%s: invalid ELF file (%s:%d)\n"),
+ fileinfo->rfname, __FILE__, __LINE__);
+ return 1;
+ }
+
+ if (likely (shndx != SHN_XINDEX))
+ shndx = sym->st_shndx;
+ else if (unlikely (shndx == 0))
+ {
+ fprintf (stderr, gettext ("%s: invalid ELF file (%s:%d)\n"),
+ fileinfo->rfname, __FILE__, __LINE__);
+ return 1;
+ }
+
+ if (XELF_ST_TYPE (sym->st_info) != STT_SECTION
+ && (shndx < SHN_LORESERVE || shndx > SHN_HIRESERVE)
+ && ((SCNINFO_SHDR (fileinfo->scninfo[shndx].shdr).sh_flags
+ & SHF_MERGE)
+ || XELF_ST_TYPE (sym->st_info) == STT_TLS))
+ {
+ /* Create a symbol record for this symbol and add it
+ to the list for this section. */
+ struct symbol *newp;
+
+ newp = (struct symbol *)
+ obstack_calloc (&ld_state.smem, sizeof (struct symbol));
+
+ newp->symidx = cnt;
+ newp->scndx = shndx;
+ newp->file = fileinfo;
+ newp->defined = 1;
+ fileinfo->symref[cnt] = newp;
+
+ if (fileinfo->scninfo[shndx].symbols == NULL)
+ fileinfo->scninfo[shndx].symbols = newp->next_in_scn
+ = newp;
+ else
+ {
+ newp->next_in_scn
+ = fileinfo->scninfo[shndx].symbols->next_in_scn;
+ fileinfo->scninfo[shndx].symbols
+ = fileinfo->scninfo[shndx].symbols->next_in_scn = newp;
+ }
+ }
+ }
+ }
+ else
+ /* Create array with pointers to the symbol definitions. Note
+ that we only allocate memory for the non-local symbols
+ since we have no merge-able sections. But we store the
+ pointer as if it was for the whole symbol table. This
+ saves some memory. */
+ fileinfo->symref = (struct symbol **)
+ obstack_calloc (&ld_state.smem, ((nsymbols - nlocalsymbols)
+ * sizeof (struct symbol *)))
+ - nlocalsymbols;
+
+ /* Don't handle local symbols here. It's either not necessary
+ at all or has already happened. */
+ for (cnt = nlocalsymbols; cnt < nsymbols; ++cnt)
+ {
+ XElf_Sym_vardef (sym);
+ Elf32_Word shndx;
+ xelf_getsymshndx (symtabdata, xndxdata, cnt, sym, shndx);
+
+ if (sym == NULL)
+ {
+ /* This should never happen. */
+ fprintf (stderr, gettext ("%s: invalid ELF file (%s:%d)\n"),
+ fileinfo->rfname, __FILE__, __LINE__);
+ return 1;
+ }
+
+ if (likely (shndx != SHN_XINDEX))
+ shndx = sym->st_shndx;
+ else if (unlikely (shndx == 0))
+ {
+ fprintf (stderr, gettext ("%s: invalid ELF file (%s:%d)\n"),
+ fileinfo->rfname, __FILE__, __LINE__);
+ return 1;
+ }
+
+ /* We ignore ABS symbols from DSOs. */
+ // XXX Is this correct?
+ if (unlikely (shndx == SHN_ABS) && secttype == SHT_DYNSYM)
+ continue;
+
+ if ((shndx < SHN_LORESERVE || shndx > SHN_HIRESERVE)
+ && fileinfo->scninfo[shndx].unused_comdat)
+ /* The symbol is not used. */
+ continue;
+
+ /* If the DSO uses symbol versions determine whether this is
+ the default version. Otherwise we'll ignore the symbol. */
+ if (versymdata != NULL)
+ {
+ XElf_Versym versym;
+
+ if (xelf_getversym_copy (versymdata, cnt, versym) == NULL)
+ /* XXX Should we handle faulty input files more graceful? */
+ assert (! "xelf_getversym failed");
+
+ if ((versym & 0x8000) != 0)
+ /* Ignore the symbol, it's not the default version. */
+ continue;
+ }
+
+ /* See whether we know anything about this symbol. */
+ struct symbol search;
+ search.name = elf_strptr (fileinfo->elf, symstridx, sym->st_name);
+ unsigned long int hval = elf_hash (search.name);
+
+ /* We ignore the symbols the linker generates. This are
+ _GLOBAL_OFFSET_TABLE_, _DYNAMIC. */
+ // XXX This loop is hot and the following tests hardly ever match.
+ // XXX Maybe move the tests somewhere they are executed less often.
+ if (((unlikely (hval == 165832675ul)
+ && strcmp (search.name, "_DYNAMIC") == 0)
+ || (unlikely (hval == 102264335ul)
+ && strcmp (search.name, "_GLOBAL_OFFSET_TABLE_") == 0))
+ && sym->st_shndx != SHN_UNDEF
+ /* If somebody defines such a variable in a relocatable we
+ don't ignore it. Let the user get what s/he deserves. */
+ && fileinfo->file_type != relocatable_file_type)
+ continue;
+
+ struct symbol *oldp = ld_symbol_tab_find (&ld_state.symbol_tab,
+ hval, &search);
+ struct symbol *newp;
+ if (likely (oldp == NULL))
+ {
+ /* No symbol of this name known. Add it. */
+ newp = (struct symbol *) obstack_alloc (&ld_state.smem,
+ sizeof (*newp));
+ newp->name = search.name;
+ newp->size = sym->st_size;
+ newp->type = XELF_ST_TYPE (sym->st_info);
+ newp->symidx = cnt;
+ newp->outsymidx = 0;
+ newp->outdynsymidx = 0;
+ newp->scndx = shndx;
+ newp->file = fileinfo;
+ newp->defined = newp->scndx != SHN_UNDEF;
+ newp->common = newp->scndx == SHN_COMMON;
+ newp->weak = XELF_ST_BIND (sym->st_info) == STB_WEAK;
+ newp->added = 0;
+ newp->merged = 0;
+ newp->local = 0;
+ newp->hidden = 0;
+ newp->need_copy = 0;
+ newp->on_dsolist = 0;
+ newp->in_dso = secttype == SHT_DYNSYM;
+ newp->next_in_scn = NULL;
+#ifndef NDEBUG
+ newp->next = NULL;
+ newp->previous = NULL;
+#endif
+
+ if (newp->scndx == SHN_UNDEF)
+ {
+ CDBL_LIST_ADD_REAR (ld_state.unresolved, newp);
+ ++ld_state.nunresolved;
+ if (! newp->weak)
+ ++ld_state.nunresolved_nonweak;
+ }
+ else if (newp->scndx == SHN_COMMON)
+ {
+ /* Store the alignment requirement. */
+ newp->merge.value = sym->st_value;
+
+ CDBL_LIST_ADD_REAR (ld_state.common_syms, newp);
+ }
+
+ /* Insert the new symbol. */
+ if (unlikely (ld_symbol_tab_insert (&ld_state.symbol_tab,
+ hval, newp) != 0))
+ /* This cannot happen. */
+ abort ();
+
+ fileinfo->symref[cnt] = newp;
+
+ /* We have a few special symbols to recognize. The symbols
+ _init and _fini are the initialization and finalization
+ functions respectively. They have to be made known in
+ the dynamic section and therefore we have to find out
+ now whether these functions exist or not. */
+ if (hval == 6685956 && strcmp (newp->name, "_init") == 0)
+ ld_state.init_symbol = newp;
+ else if (hval == 6672457 && strcmp (newp->name, "_fini") == 0)
+ ld_state.fini_symbol = newp;
+ }
+ else if (unlikely (check_definition (sym, shndx, cnt, fileinfo, oldp)
+ != 0))
+ /* A fatal error (multiple definition of a symbol)
+ occurred, no need to continue. */
+ return 1;
+ else
+ /* Use the previously allocated symbol record. It has
+ been updated in check_definition(), if necessary. */
+ newp = fileinfo->symref[cnt] = oldp;
+
+ /* Mark the section the symbol we need comes from as used. */
+ if (shndx != SHN_UNDEF
+ && (shndx < SHN_LORESERVE || shndx > SHN_HIRESERVE))
+ {
+ struct scninfo *ignore;
+
+#ifndef NDEBUG
+ size_t shnum;
+ assert (elf_getshdrnum (fileinfo->elf, &shnum) == 0);
+ assert (shndx < shnum);
+#endif
+
+ /* Mark section (and all dependencies) as used. */
+ mark_section_used (&fileinfo->scninfo[shndx], shndx, &ignore);
+
+ /* Check whether the section is merge-able. In this case we
+ have to record the symbol. */
+ if (SCNINFO_SHDR (fileinfo->scninfo[shndx].shdr).sh_flags
+ & SHF_MERGE)
+ {
+ if (fileinfo->scninfo[shndx].symbols == NULL)
+ fileinfo->scninfo[shndx].symbols = newp->next_in_scn
+ = newp;
+ else
+ {
+ newp->next_in_scn
+ = fileinfo->scninfo[shndx].symbols->next_in_scn;
+ fileinfo->scninfo[shndx].symbols
+ = fileinfo->scninfo[shndx].symbols->next_in_scn = newp;
+ }
+ }
+ }
+ }
+
+ /* This file is used. */
+ if (likely (fileinfo->file_type == relocatable_file_type))
+ {
+ if (unlikely (ld_state.relfiles == NULL))
+ ld_state.relfiles = fileinfo->next = fileinfo;
+ else
+ {
+ fileinfo->next = ld_state.relfiles->next;
+ ld_state.relfiles = ld_state.relfiles->next = fileinfo;
+ }
+
+ /* Update some summary information in the state structure. */
+ ld_state.nsymtab += fileinfo->nsymtab;
+ ld_state.nlocalsymbols += fileinfo->nlocalsymbols;
+ }
+ else if (likely (fileinfo->file_type == dso_file_type))
+ {
+ CSNGL_LIST_ADD_REAR (ld_state.dsofiles, fileinfo);
+ ++ld_state.ndsofiles;
+
+ if (fileinfo->lazyload)
+ /* We have to create another dynamic section entry for the
+ DT_POSFLAG_1 entry.
+
+ XXX Once more functionality than the lazyloading flag
+ are suppported the test must be extended. */
+ ++ld_state.ndsofiles;
+ }
+ }
+
+ return 0;
+}
+
+
+int
+ld_handle_filename_list (struct filename_list *fnames)
+{
+ struct filename_list *runp;
+ int res = 0;
+
+ for (runp = fnames; runp != NULL; runp = runp->next)
+ {
+ struct usedfiles *curp;
+
+ /* Create a record for the new file. */
+ curp = runp->real = ld_new_inputfile (runp->name, relocatable_file_type);
+
+ /* Set flags for group handling. */
+ curp->group_start = runp->group_start;
+ curp->group_end = runp->group_end;
+
+ /* Set as-needed flag from the file, not the command line. */
+ curp->as_needed = runp->as_needed;
+
+ /* Read the file and everything else which comes up, including
+ handling groups. */
+ do
+ res |= FILE_PROCESS (-1, curp, &ld_state, &curp);
+ while (curp != NULL);
+ }
+
+ /* Free the list. */
+ while (fnames != NULL)
+ {
+ runp = fnames;
+ fnames = fnames->next;
+ free (runp);
+ }
+
+ return res;
+}
+
+
+/* Handle opening of the given file with ELF descriptor. */
+static int
+open_elf (struct usedfiles *fileinfo, Elf *elf)
+{
+ int res = 0;
+
+ if (elf == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot get descriptor for ELF file (%s:%d): %s\n"),
+ __FILE__, __LINE__, elf_errmsg (-1));
+
+ if (unlikely (elf_kind (elf) == ELF_K_NONE))
+ {
+ struct filename_list *fnames;
+
+ /* We don't have to look at this file again. */
+ fileinfo->status = closed;
+
+ /* Let's see whether this is a linker script. */
+ if (fileinfo->fd != -1)
+ /* Create a stream from the file handle we know. */
+ ldin = fdopen (fileinfo->fd, "r");
+ else
+ {
+ /* Get the memory for the archive member. */
+ char *content;
+ size_t contentsize;
+
+ /* Get the content of the file. */
+ content = elf_rawfile (elf, &contentsize);
+ if (content == NULL)
+ {
+ fprintf (stderr, gettext ("%s: invalid ELF file (%s:%d)\n"),
+ fileinfo->rfname, __FILE__, __LINE__);
+ return 1;
+ }
+
+ /* The content of the file is available in memory. Read the
+ memory region as a stream. */
+ ldin = fmemopen (content, contentsize, "r");
+ }
+
+ /* No need for locking. */
+ __fsetlocking (ldin, FSETLOCKING_BYCALLER);
+
+ if (ldin == NULL)
+ error (EXIT_FAILURE, errno, gettext ("cannot open '%s'"),
+ fileinfo->rfname);
+
+ /* Parse the file. If it is a linker script no problems will be
+ reported. */
+ ld_state.srcfiles = NULL;
+ ldlineno = 1;
+ ld_scan_version_script = 0;
+ ldin_fname = fileinfo->rfname;
+ res = ldparse ();
+
+ fclose (ldin);
+ if (fileinfo->fd != -1 && !fileinfo->fd_passed)
+ {
+ /* We won't need the file descriptor again. */
+ close (fileinfo->fd);
+ fileinfo->fd = -1;
+ }
+
+ elf_end (elf);
+
+ if (unlikely (res != 0))
+ /* Something went wrong during parsing. */
+ return 1;
+
+ /* This is no ELF file. */
+ fileinfo->elf = NULL;
+
+ /* Now we have to handle eventual INPUT and GROUP statements in
+ the script. Read the files mentioned. */
+ fnames = ld_state.srcfiles;
+ if (fnames != NULL)
+ {
+ struct filename_list *oldp;
+
+ /* Convert the list into a normal single-linked list. */
+ oldp = fnames;
+ fnames = fnames->next;
+ oldp->next = NULL;
+
+ /* Remove the list from the state structure. */
+ ld_state.srcfiles = NULL;
+
+ if (unlikely (ld_handle_filename_list (fnames) != 0))
+ return 1;
+ }
+
+ return 0;
+ }
+
+ /* Store the file info. */
+ fileinfo->elf = elf;
+
+ /* The file is ready for action. */
+ fileinfo->status = opened;
+
+ return 0;
+}
+
+
+static int
+add_whole_archive (struct usedfiles *fileinfo)
+{
+ Elf *arelf;
+ Elf_Cmd cmd = ELF_C_READ_MMAP_PRIVATE;
+ int res = 0;
+
+ while ((arelf = elf_begin (fileinfo->fd, cmd, fileinfo->elf)) != NULL)
+ {
+ Elf_Arhdr *arhdr = elf_getarhdr (arelf);
+ struct usedfiles *newp;
+
+ if (arhdr == NULL)
+ abort ();
+
+ /* Just to be sure; since these are no files in the archive
+ these names should never be returned. */
+ assert (strcmp (arhdr->ar_name, "/") != 0);
+ assert (strcmp (arhdr->ar_name, "//") != 0);
+
+ newp = ld_new_inputfile (arhdr->ar_name, relocatable_file_type);
+ newp->archive_file = fileinfo;
+
+ if (unlikely (ld_state.trace_files))
+ print_file_name (stdout, newp, 1, 1);
+
+ /* This shows that this file is contained in an archive. */
+ newp->fd = -1;
+ /* Store the ELF descriptor. */
+ newp->elf = arelf;
+ /* Show that we are open for business. */
+ newp->status = opened;
+
+ /* Proces the file, add all the symbols etc. */
+ res = file_process2 (newp);
+ if (unlikely (res != 0))
+ break;
+
+ /* Advance to the next archive element. */
+ cmd = elf_next (arelf);
+ }
+
+ return res;
+}
+
+
+static int
+extract_from_archive (struct usedfiles *fileinfo)
+{
+ static int archive_seq;
+ int res = 0;
+
+ if (fileinfo->archive_seq == 0)
+ /* This is an archive we are not using completely. Give it a
+ unique number. */
+ fileinfo->archive_seq = ++archive_seq;
+
+ /* If there are no unresolved symbols don't do anything. */
+ assert (ld_state.extract_rule == defaultextract
+ || ld_state.extract_rule == weakextract);
+ if ((likely (ld_state.extract_rule == defaultextract)
+ ? ld_state.nunresolved_nonweak : ld_state.nunresolved) == 0)
+ return 0;
+
+ Elf_Arsym *syms;
+ size_t nsyms;
+
+ /* Get all the symbols. */
+ syms = elf_getarsym (fileinfo->elf, &nsyms);
+ if (syms == NULL)
+ {
+ cannot_read_archive:
+ error (0, 0, gettext ("cannot read archive `%s': %s"),
+ fileinfo->rfname, elf_errmsg (-1));
+
+ /* We cannot use this archive anymore. */
+ fileinfo->status = closed;
+
+ return 1;
+ }
+
+ /* Now add all the symbols to the hash table. Note that there
+ can potentially be duplicate definitions. We'll always use
+ the first definition. */
+ // XXX Is this a compatible behavior?
+ bool any_used;
+ do
+ {
+ any_used = false;
+
+ size_t cnt;
+ for (cnt = 0; cnt < nsyms; ++cnt)
+ {
+ struct symbol search = { .name = syms[cnt].as_name };
+ struct symbol *sym = ld_symbol_tab_find (&ld_state.symbol_tab,
+ syms[cnt].as_hash, &search);
+ if (sym != NULL && ! sym->defined)
+ {
+ /* The symbol is referenced and not defined. */
+ Elf *arelf;
+ Elf_Arhdr *arhdr;
+ struct usedfiles *newp;
+
+ /* Find the archive member for this symbol. */
+ if (unlikely (elf_rand (fileinfo->elf, syms[cnt].as_off)
+ != syms[cnt].as_off))
+ goto cannot_read_archive;
+
+ /* Note: no test of a failing 'elf_begin' call. That's fine
+ since 'elf'getarhdr' will report the problem. */
+ arelf = elf_begin (fileinfo->fd, ELF_C_READ_MMAP_PRIVATE,
+ fileinfo->elf);
+ arhdr = elf_getarhdr (arelf);
+ if (arhdr == NULL)
+ goto cannot_read_archive;
+
+ /* We have all the information and an ELF handle for the
+ archive member. Create the normal data structure for
+ a file now. */
+ newp = ld_new_inputfile (obstack_strdup (&ld_state.smem,
+ arhdr->ar_name),
+ relocatable_file_type);
+ newp->archive_file = fileinfo;
+
+ if (unlikely (ld_state.trace_files))
+ print_file_name (stdout, newp, 1, 1);
+
+ /* This shows that this file is contained in an archive. */
+ newp->fd = -1;
+ /* Store the ELF descriptor. */
+ newp->elf = arelf;
+ /* Show that we are open for business. */
+ newp->status = in_archive;
+
+ /* Now read the file and add all the symbols. */
+ res = file_process2 (newp);
+ if (unlikely (res != 0))
+ return res;
+
+ any_used = true;
+ }
+ }
+
+ if (any_used)
+ {
+ /* This is an archive therefore it must have a number. */
+ assert (fileinfo->archive_seq != 0);
+ ld_state.last_archive_used = fileinfo->archive_seq;
+ }
+ }
+ while (any_used);
+
+ return res;
+}
+
+
+static int
+file_process2 (struct usedfiles *fileinfo)
+{
+ int res;
+
+ if (likely (elf_kind (fileinfo->elf) == ELF_K_ELF))
+ {
+ /* The first time we get here we read the ELF header. */
+#if NATIVE_ELF != 0
+ if (likely (fileinfo->ehdr == NULL))
+#else
+ if (likely (FILEINFO_EHDR (fileinfo->ehdr).e_type == ET_NONE))
+#endif
+ {
+ XElf_Ehdr *ehdr;
+#if NATIVE_ELF != 0
+ ehdr = xelf_getehdr (fileinfo->elf, fileinfo->ehdr);
+#else
+ xelf_getehdr_copy (fileinfo->elf, ehdr, fileinfo->ehdr);
+#endif
+ if (ehdr == NULL)
+ {
+ fprintf (stderr, gettext ("%s: invalid ELF file (%s:%d)\n"),
+ fileinfo->rfname, __FILE__, __LINE__);
+ fileinfo->status = closed;
+ return 1;
+ }
+
+ if (FILEINFO_EHDR (fileinfo->ehdr).e_type != ET_REL
+ && unlikely (FILEINFO_EHDR (fileinfo->ehdr).e_type != ET_DYN))
+ /* XXX Add ebl* function to query types which are allowed
+ to link in. */
+ {
+ char buf[64];
+
+ print_file_name (stderr, fileinfo, 1, 0);
+ fprintf (stderr,
+ gettext ("file of type %s cannot be linked in\n"),
+ ebl_object_type_name (ld_state.ebl,
+ FILEINFO_EHDR (fileinfo->ehdr).e_type,
+ buf, sizeof (buf)));
+ fileinfo->status = closed;
+ return 1;
+ }
+
+ /* Make sure the file type matches the backend. */
+ if (FILEINFO_EHDR (fileinfo->ehdr).e_machine
+ != ebl_get_elfmachine (ld_state.ebl))
+ {
+ fprintf (stderr, gettext ("\
+%s: input file incompatible with ELF machine type %s\n"),
+ fileinfo->rfname,
+ ebl_backend_name (ld_state.ebl));
+ fileinfo->status = closed;
+ return 1;
+ }
+
+ /* Determine the section header string table section index. */
+ if (unlikely (elf_getshdrstrndx (fileinfo->elf, &fileinfo->shstrndx)
+ < 0))
+ {
+ fprintf (stderr, gettext ("\
+%s: cannot get section header string table index: %s\n"),
+ fileinfo->rfname, elf_errmsg (-1));
+ fileinfo->status = closed;
+ return 1;
+ }
+ }
+
+ /* Now handle the different types of files. */
+ if (FILEINFO_EHDR (fileinfo->ehdr).e_type == ET_REL)
+ {
+ /* Add all the symbol. Relocatable files have symbol
+ tables. */
+ res = add_relocatable_file (fileinfo, SHT_SYMTAB);
+ }
+ else
+ {
+ bool has_l_name = fileinfo->file_type == archive_file_type;
+
+ assert (FILEINFO_EHDR (fileinfo->ehdr).e_type == ET_DYN);
+
+ /* If the file is a DT_NEEDED dependency then the type is
+ already correctly specified. */
+ if (fileinfo->file_type != dso_needed_file_type)
+ fileinfo->file_type = dso_file_type;
+
+ /* We cannot use DSOs when generating relocatable objects. */
+ if (ld_state.file_type == relocatable_file_type)
+ {
+ error (0, 0, gettext ("\
+cannot use DSO '%s' when generating relocatable object file"),
+ fileinfo->fname);
+ return 1;
+ }
+
+ /* Add all the symbols. For DSOs we are looking at the
+ dynamic symbol table. */
+ res = add_relocatable_file (fileinfo, SHT_DYNSYM);
+
+ /* We always have to have a dynamic section. */
+ assert (fileinfo->dynscn != NULL);
+
+ /* We have to remember the dependencies for this object. It
+ is necessary to look them up. */
+ XElf_Shdr_vardef (dynshdr);
+ xelf_getshdr (fileinfo->dynscn, dynshdr);
+
+ Elf_Data *dyndata = elf_getdata (fileinfo->dynscn, NULL);
+ /* XXX Should we flag the failure to get the dynamic section? */
+ if (dynshdr != NULL)
+ {
+ int cnt = dynshdr->sh_size / dynshdr->sh_entsize;
+ XElf_Dyn_vardef (dyn);
+
+ while (--cnt >= 0)
+ {
+ xelf_getdyn (dyndata, cnt, dyn);
+ if (dyn != NULL)
+ {
+ if(dyn->d_tag == DT_NEEDED)
+ {
+ struct usedfiles *newp;
+
+ newp = ld_new_inputfile (elf_strptr (fileinfo->elf,
+ dynshdr->sh_link,
+ dyn->d_un.d_val),
+ dso_needed_file_type);
+
+ /* Enqueue the newly found dependencies. */
+ // XXX Check that there not already a file with the
+ // same name.
+ CSNGL_LIST_ADD_REAR (ld_state.needed, newp);
+ }
+ else if (dyn->d_tag == DT_SONAME)
+ {
+ /* We use the DT_SONAME (this is what's there
+ for). */
+ fileinfo->soname = elf_strptr (fileinfo->elf,
+ dynshdr->sh_link,
+ dyn->d_un.d_val);
+ has_l_name = false;
+ }
+ }
+ }
+ }
+
+ /* Construct the file name if the DSO has no SONAME and the
+ file name comes from a -lXX parameter on the comment
+ line. */
+ if (unlikely (has_l_name))
+ {
+ /* The FNAME is the parameter the user specified on the
+ command line. We prepend "lib" and append ".so". */
+ size_t len = strlen (fileinfo->fname) + 7;
+ char *newp;
+
+ newp = (char *) obstack_alloc (&ld_state.smem, len);
+ strcpy (stpcpy (stpcpy (newp, "lib"), fileinfo->fname), ".so");
+
+ fileinfo->soname = newp;
+ }
+ }
+ }
+ else if (likely (elf_kind (fileinfo->elf) == ELF_K_AR))
+ {
+ if (unlikely (ld_state.extract_rule == allextract))
+ /* Which this option enabled we have to add all the object
+ files in the archive. */
+ res = add_whole_archive (fileinfo);
+ else if (ld_state.file_type == relocatable_file_type)
+ {
+ /* When generating a relocatable object we don't find files
+ in archives. */
+ if (verbose)
+ error (0, 0, gettext ("input file '%s' ignored"), fileinfo->fname);
+
+ res = 0;
+ }
+ else
+ {
+ if (ld_state.group_start_requested
+ && ld_state.group_start_archive == NULL)
+ ld_state.group_start_archive = fileinfo;
+
+ if (ld_state.archives == NULL)
+ ld_state.archives = fileinfo;
+
+ if (ld_state.tailarchives != NULL)
+ ld_state.tailarchives->next = fileinfo;
+ ld_state.tailarchives = fileinfo;
+
+ /* Extract only the members from the archive which are
+ currently referenced by unresolved symbols. */
+ res = extract_from_archive (fileinfo);
+ }
+ }
+ else
+ /* This should never happen, we know about no other types. */
+ abort ();
+
+ return res;
+}
+
+
+/* Process a given file. The first parameter is a file descriptor for
+ the file which can be -1 to indicate the file has not yet been
+ found. The second parameter describes the file to be opened, the
+ last one is the state of the linker which among other information
+ contain the paths we look at. */
+static int
+ld_generic_file_process (int fd, struct usedfiles *fileinfo,
+ struct ld_state *statep, struct usedfiles **nextp)
+{
+ int res = 0;
+
+ /* By default we go to the next file in the list. */
+ *nextp = fileinfo->next;
+
+ /* Set the flag to signal we are looking for a group start. */
+ if (unlikely (fileinfo->group_start))
+ {
+ ld_state.group_start_requested = true;
+ fileinfo->group_start = false;
+ }
+
+ /* If the file isn't open yet, open it now. */
+ if (likely (fileinfo->status == not_opened))
+ {
+ bool fd_passed = true;
+
+ if (likely (fd == -1))
+ {
+ /* Find the file ourselves. */
+ int err = open_along_path (fileinfo);
+ if (unlikely (err != 0))
+ /* We allow libraries and DSOs to be named more than once.
+ Don't report an error to the caller. */
+ return err == EAGAIN ? 0 : err;
+
+ fd_passed = false;
+ }
+ else
+ fileinfo->fd = fd;
+
+ /* Remember where we got the descriptor from. */
+ fileinfo->fd_passed = fd_passed;
+
+ /* We found the file. Now test whether it is a file type we can
+ handle.
+
+ XXX Do we need to have the ability to start from a given
+ position in the search path again to look for another file if
+ the one found has not the right type? */
+ res = open_elf (fileinfo, elf_begin (fileinfo->fd,
+ is_dso_p (fileinfo->fd)
+ ? ELF_C_READ_MMAP
+ : ELF_C_READ_MMAP_PRIVATE, NULL));
+ if (unlikely (res != 0))
+ return res;
+ }
+
+ /* Now that we have opened the file start processing it. */
+ if (likely (fileinfo->status != closed))
+ res = file_process2 (fileinfo);
+
+ /* Determine which file to look at next. */
+ if (unlikely (fileinfo->group_backref != NULL))
+ {
+ /* We only go back if an archive other than the one we would go
+ back to has been used in the last round. */
+ if (ld_state.last_archive_used > fileinfo->group_backref->archive_seq)
+ {
+ *nextp = fileinfo->group_backref;
+ ld_state.last_archive_used = 0;
+ }
+ else
+ {
+ /* If we come here this means that the archives we read so
+ far are not needed anymore. We can free some of the data
+ now. */
+ struct usedfiles *runp = ld_state.archives;
+
+ do
+ {
+ /* We don't need the ELF descriptor anymore. Unless there
+ are no files from the archive used this will not free
+ the whole file but only some data structures. */
+ elf_end (runp->elf);
+ runp->elf = NULL;
+
+ runp = runp->next;
+ }
+ while (runp != fileinfo->next);
+
+ /* Do not do this again. */
+ ld_state.archives = NULL;
+
+ /* Do not move on to the next archive. */
+ *nextp = fileinfo->next = NULL;
+ }
+ }
+ else if (unlikely (fileinfo->group_end))
+ {
+ /* This is the end of a group. We possibly have to go back.
+ Determine which file we would go back to and see whether it
+ makes sense. If there has not been an archive we don't have
+ to do anything. */
+ if (ld_state.group_start_requested)
+ {
+ if (ld_state.group_start_archive != ld_state.tailarchives)
+ /* The loop includes more than one archive, add the pointer. */
+ {
+ *nextp = ld_state.tailarchives->group_backref =
+ ld_state.group_start_archive;
+ ld_state.last_archive_used = 0;
+ }
+ else
+ /* We might still have to go back to the beginning of the
+ group if since the last archive other files have been
+ added. But we go back exactly once. */
+ if (ld_state.tailarchives != fileinfo)
+ {
+ *nextp = ld_state.group_start_archive;
+ ld_state.last_archive_used = 0;
+ }
+ }
+
+ /* Clear the flags. */
+ ld_state.group_start_requested = false;
+ ld_state.group_start_archive = NULL;
+ fileinfo->group_end = false;
+ }
+
+ return res;
+}
+
+
+/* Library names passed to the linker as -lXX represent files named
+ libXX.YY. The YY part can have different forms, depending on the
+ platform. The generic set is .so and .a (in this order). */
+static const char **
+ld_generic_lib_extensions (struct ld_state *statep __attribute__ ((__unused__)))
+{
+ static const char *exts[] =
+ {
+ ".so", ".a", NULL
+ };
+
+ return exts;
+}
+
+
+/* Flag unresolved symbols. */
+static int
+ld_generic_flag_unresolved (struct ld_state *statep)
+{
+ int retval = 0;
+
+ if (ld_state.nunresolved_nonweak > 0)
+ {
+ /* Go through the list and determine the unresolved symbols. */
+ struct symbol *first;
+ struct symbol *s;
+
+ s = first = ld_state.unresolved->next;
+ do
+ {
+ if (! s->defined && ! s->weak)
+ {
+ /* Two special symbol we recognize: the symbol for the
+ GOT and the dynamic section. */
+ if (strcmp (s->name, "_GLOBAL_OFFSET_TABLE_") == 0
+ || strcmp (s->name, "_DYNAMIC") == 0)
+ {
+ /* We will have to fill in more information later. */
+ ld_state.need_got = true;
+
+ /* Remember that we found it. */
+ if (s->name[1] == 'G')
+ ld_state.got_symbol = s;
+ else
+ ld_state.dyn_symbol = s;
+ }
+ else if (ld_state.file_type != dso_file_type || !ld_state.nodefs)
+ {
+ /* XXX The error message should get better. It should use
+ the debugging information if present to tell where in the
+ sources the undefined reference is. */
+ error (0, 0, gettext ("undefined symbol `%s' in %s"),
+ s->name, s->file->fname);
+
+ retval = 1;
+ }
+ }
+
+ /* We cannot decide here what to do with undefined
+ references which will come from DSO since we do not know
+ what kind of symbol we expect. Only when looking at the
+ relocations we can see whether we need a PLT entry or
+ only a GOT entry. */
+
+ s = s->next;
+ }
+ while (s != first);
+ }
+
+ return retval;
+}
+
+
+/* Close the given file. */
+static int
+ld_generic_file_close (struct usedfiles *fileinfo, struct ld_state *statep)
+{
+ /* Close the ELF descriptor. */
+ elf_end (fileinfo->elf);
+
+ /* If we have opened the file descriptor close it. But we might
+ have done this already in which case FD is -1. */
+ if (!fileinfo->fd_passed && fileinfo->fd != -1)
+ close (fileinfo->fd);
+
+ /* We allocated the resolved file name. */
+ if (fileinfo->fname != fileinfo->rfname)
+ free ((char *) fileinfo->rfname);
+
+ return 0;
+}
+
+
+static void
+new_generated_scn (enum scn_kind kind, const char *name, int type, int flags,
+ int entsize, int align)
+{
+ struct scnhead *newp;
+
+ newp = (struct scnhead *) obstack_calloc (&ld_state.smem,
+ sizeof (struct scnhead));
+ newp->kind = kind;
+ newp->name = name;
+ newp->nameent = ebl_strtabadd (ld_state.shstrtab, name, 0);
+ newp->type = type;
+ newp->flags = flags;
+ newp->entsize = entsize;
+ newp->align = align;
+ newp->grp_signature = NULL;
+ newp->used = true;
+
+ /* All is well. Create now the data for the section and insert it
+ into the section table. */
+ ld_section_tab_insert (&ld_state.section_tab, elf_hash (name), newp);
+}
+
+
+/* Create the sections which are generated by the linker and are not
+ present in the input file. */
+static void
+ld_generic_generate_sections (struct ld_state *statep)
+{
+ /* The relocation section type. */
+ int rel_type = REL_TYPE (&ld_state) == DT_REL ? SHT_REL : SHT_RELA;
+
+ /* When requested, every output file will have a build ID section. */
+ if (statep->build_id != NULL)
+ new_generated_scn (scn_dot_note_gnu_build_id, ".note.gnu.build-id",
+ SHT_NOTE, SHF_ALLOC, 0, 4);
+
+ /* When building dynamically linked object we have to include a
+ section containing a string describing the interpreter. This
+ should be at the very beginning of the file together with the
+ other information the ELF loader (kernel or wherever) has to look
+ at. We put it as the first section in the file.
+
+ We also have to create the dynamic segment which is a special
+ section the dynamic linker locates through an entry in the
+ program header. */
+ if (dynamically_linked_p ())
+ {
+ /* Use any versioning (defined or required)? */
+ bool use_versioning = false;
+ /* Use version requirements? */
+ bool need_version = false;
+
+ /* First the .interp section. */
+ if (ld_state.interp != NULL || ld_state.file_type != dso_file_type)
+ new_generated_scn (scn_dot_interp, ".interp", SHT_PROGBITS, SHF_ALLOC,
+ 0, 1);
+
+ /* Now the .dynamic section. */
+ new_generated_scn (scn_dot_dynamic, ".dynamic", SHT_DYNAMIC,
+ DYNAMIC_SECTION_FLAGS (&ld_state),
+ xelf_fsize (ld_state.outelf, ELF_T_DYN, 1),
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1));
+
+ /* We will need in any case the dynamic symbol table (even in
+ the unlikely case that no symbol is exported or referenced
+ from a DSO). */
+ ld_state.need_dynsym = true;
+ new_generated_scn (scn_dot_dynsym, ".dynsym", SHT_DYNSYM, SHF_ALLOC,
+ xelf_fsize (ld_state.outelf, ELF_T_SYM, 1),
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1));
+ /* It comes with a string table. */
+ new_generated_scn (scn_dot_dynstr, ".dynstr", SHT_STRTAB, SHF_ALLOC,
+ 0, 1);
+ /* And a hashing table. */
+ // XXX For Linux/Alpha we need other sizes unless they change...
+ if (GENERATE_SYSV_HASH)
+ new_generated_scn (scn_dot_hash, ".hash", SHT_HASH, SHF_ALLOC,
+ sizeof (Elf32_Word), sizeof (Elf32_Word));
+ if (GENERATE_GNU_HASH)
+ new_generated_scn (scn_dot_gnu_hash, ".gnu.hash", SHT_GNU_HASH,
+ SHF_ALLOC, sizeof (Elf32_Word),
+ sizeof (Elf32_Word));
+
+ /* Create the section associated with the PLT if necessary. */
+ if (ld_state.nplt > 0)
+ {
+ /* Create the .plt section. */
+ /* XXX We might need a function which returns the section flags. */
+ new_generated_scn (scn_dot_plt, ".plt", SHT_PROGBITS,
+ SHF_ALLOC | SHF_EXECINSTR,
+ /* XXX Is the size correct? */
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1),
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1));
+
+ /* Create the relocation section for the .plt. This is always
+ separate even if the other relocation sections are combined. */
+ new_generated_scn (scn_dot_pltrel, ".rel.plt", rel_type, SHF_ALLOC,
+ rel_type == SHT_REL
+ ? xelf_fsize (ld_state.outelf, ELF_T_REL, 1)
+ : xelf_fsize (ld_state.outelf, ELF_T_RELA, 1),
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1));
+
+ /* XXX We might need a function which returns the section flags. */
+ new_generated_scn (scn_dot_gotplt, ".got.plt", SHT_PROGBITS,
+ SHF_ALLOC | SHF_WRITE,
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1),
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1));
+
+ /* Mark all used DSOs as used. Determine whether any referenced
+ object uses symbol versioning. */
+ if (ld_state.from_dso != NULL)
+ {
+ struct symbol *srunp = ld_state.from_dso;
+
+ do
+ {
+ srunp->file->used = true;
+
+ if (srunp->file->verdefdata != NULL)
+ {
+ XElf_Versym versym;
+
+ /* The input DSO uses versioning. */
+ use_versioning = true;
+ /* We reference versions. */
+ need_version = true;
+
+ if (xelf_getversym_copy (srunp->file->versymdata,
+ srunp->symidx, versym) == NULL)
+ assert (! "xelf_getversym failed");
+
+ /* We cannot link explicitly with an older
+ version of a symbol. */
+ assert ((versym & 0x8000) == 0);
+ /* We cannot reference local (index 0) or plain
+ global (index 1) versions. */
+ assert (versym > 1);
+
+ /* Check whether we have already seen the
+ version and if not add it to the referenced
+ versions in the output file. */
+ if (! srunp->file->verdefused[versym])
+ {
+ srunp->file->verdefused[versym] = 1;
+
+ if (++srunp->file->nverdefused == 1)
+ /* Count the file if it is using versioning. */
+ ++ld_state.nverdeffile;
+ ++ld_state.nverdefused;
+ }
+ }
+ }
+ while ((srunp = srunp->next) != ld_state.from_dso);
+ }
+
+ /* Create the sections used to record version dependencies. */
+ if (need_version)
+ new_generated_scn (scn_dot_version_r, ".gnu.version_r",
+ SHT_GNU_verneed, SHF_ALLOC, 0,
+ xelf_fsize (ld_state.outelf, ELF_T_WORD, 1));
+ }
+
+ /* Now count the used DSOs since this is what the user
+ wants. */
+ int ndt_needed = 0;
+ if (ld_state.ndsofiles > 0)
+ {
+ struct usedfiles *frunp = ld_state.dsofiles;
+
+ do
+ if (! frunp->as_needed || frunp->used)
+ {
+ ++ndt_needed;
+ if (frunp->lazyload)
+ /* We have to create another dynamic section
+ entry for the DT_POSFLAG_1 entry.
+
+ XXX Once more functionality than the lazyloading
+ flag are suppported the test must be
+ extended. */
+ ++ndt_needed;
+ }
+ while ((frunp = frunp->next) != ld_state.dsofiles);
+ }
+
+ if (use_versioning)
+ new_generated_scn (scn_dot_version, ".gnu.version", SHT_GNU_versym,
+ SHF_ALLOC,
+ xelf_fsize (ld_state.outelf, ELF_T_HALF, 1),
+ xelf_fsize (ld_state.outelf, ELF_T_HALF, 1));
+
+ /* We need some entries all the time. */
+ ld_state.ndynamic = (7 + (ld_state.runpath != NULL
+ || ld_state.rpath != NULL)
+ + ndt_needed
+ + (ld_state.init_symbol != NULL ? 1 : 0)
+ + (ld_state.fini_symbol != NULL ? 1 : 0)
+ + (use_versioning ? 1 : 0)
+ + (need_version ? 2 : 0)
+ + (ld_state.nplt > 0 ? 4 : 0)
+ + (ld_state.relsize_total > 0 ? 3 : 0));
+ }
+
+ /* When creating a relocatable file or when we are not stripping the
+ output file we create a symbol table. */
+ ld_state.need_symtab = (ld_state.file_type == relocatable_file_type
+ || ld_state.strip == strip_none);
+
+ /* Add the .got section if needed. */
+ if (ld_state.need_got)
+ /* XXX We might need a function which returns the section flags. */
+ new_generated_scn (scn_dot_got, ".got", SHT_PROGBITS,
+ SHF_ALLOC | SHF_WRITE,
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1),
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1));
+
+ /* Add the .rel.dyn section. */
+ if (ld_state.relsize_total > 0)
+ new_generated_scn (scn_dot_dynrel, ".rel.dyn", rel_type, SHF_ALLOC,
+ rel_type == SHT_REL
+ ? xelf_fsize (ld_state.outelf, ELF_T_REL, 1)
+ : xelf_fsize (ld_state.outelf, ELF_T_RELA, 1),
+ xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1));
+}
+
+
+/* Callback function registered with on_exit to make sure the temporary
+ files gets removed if something goes wrong. */
+static void
+remove_tempfile (int status, void *arg)
+{
+ if (status != 0 && ld_state.tempfname != NULL)
+ unlink (ld_state.tempfname);
+}
+
+
+/* Create the output file. The file name is given or "a.out". We
+ create as much of the ELF structure as possible. */
+static int
+ld_generic_open_outfile (struct ld_state *statep, int machine, int klass,
+ int data)
+{
+ /* We do not create the new file right away with the final name.
+ This would destroy an existing file with this name before a
+ replacement is finalized. We create instead a temporary file in
+ the same directory. */
+ if (ld_state.outfname == NULL)
+ ld_state.outfname = "a.out";
+
+ size_t outfname_len = strlen (ld_state.outfname);
+ char *tempfname = (char *) obstack_alloc (&ld_state.smem,
+ outfname_len + sizeof (".XXXXXX"));
+ ld_state.tempfname = tempfname;
+
+ int fd;
+ int try = 0;
+ while (1)
+ {
+ strcpy (mempcpy (tempfname, ld_state.outfname, outfname_len), ".XXXXXX");
+
+ /* The use of mktemp() here is fine. We do not want to use
+ mkstemp() since then the umask isn't used. And the output
+ file will have these permissions anyhow. Any intruder could
+ change the file later if it would be possible now. */
+ if (mktemp (tempfname) != NULL
+ && (fd = open (tempfname, O_RDWR | O_EXCL | O_CREAT | O_NOFOLLOW,
+ ld_state.file_type == relocatable_file_type
+ ? DEFFILEMODE : ACCESSPERMS)) != -1)
+ break;
+
+ /* Failed this round. We keep trying a number of times. */
+ if (++try >= 10)
+ error (EXIT_FAILURE, errno, gettext ("cannot create output file"));
+ }
+ ld_state.outfd = fd;
+
+ /* Make sure we remove the temporary file in case something goes
+ wrong. */
+ on_exit (remove_tempfile, NULL);
+
+ /* Create the ELF file data for the output file. */
+ Elf *elf = ld_state.outelf = elf_begin (fd,
+ conserve_memory
+ ? ELF_C_WRITE : ELF_C_WRITE_MMAP,
+ NULL);
+ if (elf == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create ELF descriptor for output file: %s"),
+ elf_errmsg (-1));
+
+ /* Create the basic data structures. */
+ if (! xelf_newehdr (elf, klass))
+ /* Couldn't create the ELF header. Very bad. */
+ error (EXIT_FAILURE, 0,
+ gettext ("could not create ELF header for output file: %s"),
+ elf_errmsg (-1));
+
+ /* And get the current header so that we can modify it. */
+ XElf_Ehdr_vardef (ehdr);
+ xelf_getehdr (elf, ehdr);
+ assert (ehdr != NULL);
+
+ /* Set the machine type. */
+ ehdr->e_machine = machine;
+
+ /* Modify it according to the info we have here and now. */
+ if (ld_state.file_type == executable_file_type)
+ ehdr->e_type = ET_EXEC;
+ else if (ld_state.file_type == dso_file_type)
+ ehdr->e_type = ET_DYN;
+ else
+ {
+ assert (ld_state.file_type == relocatable_file_type);
+ ehdr->e_type = ET_REL;
+ }
+
+ /* Set the ELF version. */
+ ehdr->e_version = EV_CURRENT;
+
+ /* Set the endianness. */
+ ehdr->e_ident[EI_DATA] = data;
+
+ /* Write the ELF header information back. */
+ (void) xelf_update_ehdr (elf, ehdr);
+
+ return 0;
+}
+
+
+/* We compute the offsets of the various copied objects and the total
+ size of the memory needed. */
+// XXX The method used here is simple: go from front to back and pack
+// the objects in this order. A more space efficient way would
+// actually trying to pack the objects as dense as possible. But this
+// is more expensive.
+static void
+compute_copy_reloc_offset (XElf_Shdr *shdr)
+{
+ struct symbol *runp = ld_state.from_dso;
+ assert (runp != NULL);
+
+ XElf_Off maxalign = 1;
+ XElf_Off offset = 0;
+
+ do
+ if (runp->need_copy)
+ {
+ /* Determine alignment for the symbol. */
+ // XXX The question is how? The symbol record itself does not
+ // have the information. So we have to be conservative and
+ // assume the alignment of the section the symbol is in.
+
+ // XXX We can be more precise. Use the offset from the beginning
+ // of the section and determine the largest power of two with
+ // module zero.
+ XElf_Off symalign = MAX (SCNINFO_SHDR (runp->file->scninfo[runp->scndx].shdr).sh_addralign, 1);
+ /* Keep track of the maximum alignment requirement. */
+ maxalign = MAX (maxalign, symalign);
+
+ /* Align current position. */
+ offset = (offset + symalign - 1) & ~(symalign - 1);
+
+ runp->merge.value = offset;
+
+ offset += runp->size;
+ }
+ while ((runp = runp->next) != ld_state.from_dso);
+
+ shdr->sh_type = SHT_NOBITS;
+ shdr->sh_size = offset;
+ shdr->sh_addralign = maxalign;
+}
+
+
+static void
+compute_common_symbol_offset (XElf_Shdr *shdr)
+{
+ struct symbol *runp = ld_state.common_syms;
+ assert (runp != NULL);
+
+ XElf_Off maxalign = 1;
+ XElf_Off offset = 0;
+
+ do
+ {
+ /* Determine alignment for the symbol. */
+ XElf_Off symalign = runp->merge.value;
+
+ /* Keep track of the maximum alignment requirement. */
+ maxalign = MAX (maxalign, symalign);
+
+ /* Align current position. */
+ offset = (offset + symalign - 1) & ~(symalign - 1);
+
+ runp->merge.value = offset;
+
+ offset += runp->size;
+ }
+ while ((runp = runp->next) != ld_state.common_syms);
+
+ shdr->sh_type = SHT_NOBITS;
+ shdr->sh_size = offset;
+ shdr->sh_addralign = maxalign;
+}
+
+
+static void
+sort_sections_generic (void)
+{
+ /* XXX TBI */
+ abort ();
+}
+
+
+static int
+match_section (const char *osectname, struct filemask_section_name *sectmask,
+ struct scnhead **scnhead, bool new_section, size_t segment_nr)
+{
+ struct scninfo *prevp;
+ struct scninfo *runp;
+ struct scninfo *notused;
+
+ if (fnmatch (sectmask->section_name->name, (*scnhead)->name, 0) != 0)
+ /* The section name does not match. */
+ return new_section;
+
+ /* If this is a section generated by the linker it doesn't contain
+ the regular information (i.e., input section data etc) and must
+ be handle special. */
+ if ((*scnhead)->kind != scn_normal)
+ {
+ (*scnhead)->name = osectname;
+ (*scnhead)->segment_nr = segment_nr;
+
+ /* We have to count note section since they get their own
+ program header entry. */
+ if ((*scnhead)->type == SHT_NOTE)
+ ++ld_state.nnotesections;
+
+ ld_state.allsections[ld_state.nallsections++] = (*scnhead);
+ return true;
+ }
+
+ /* Now we have to match the file names of the input files. Some of
+ the sections here might not match. */
+ runp = (*scnhead)->last->next;
+ prevp = (*scnhead)->last;
+ notused = NULL;
+
+ do
+ {
+ /* Base of the file name the section comes from. */
+ const char *brfname = basename (runp->fileinfo->rfname);
+
+ /* If the section isn't used, the name doesn't match the positive
+ inclusion list, or the name does match the negative inclusion
+ list, ignore the section. */
+ if (!runp->used
+ || (sectmask->filemask != NULL
+ && fnmatch (sectmask->filemask, brfname, 0) != 0)
+ || (sectmask->excludemask != NULL
+ && fnmatch (sectmask->excludemask, brfname, 0) == 0))
+ {
+ /* This file does not match the file name masks. */
+ if (notused == NULL)
+ notused = runp;
+
+ prevp = runp;
+ runp = runp->next;
+ if (runp == notused)
+ runp = NULL;
+ }
+ /* The section fulfills all requirements, add it to the output
+ file with the correct section name etc. */
+ else
+ {
+ struct scninfo *found = runp;
+
+ /* Remove this input section data buffer from the list. */
+ if (prevp != runp)
+ runp = prevp->next = runp->next;
+ else
+ {
+ free (*scnhead);
+ *scnhead = NULL;
+ runp = NULL;
+ }
+
+ /* Create a new section for the output file if the 'new_section'
+ flag says so. Otherwise append the buffer to the last
+ section which we created in one of the last calls. */
+ if (new_section)
+ {
+ struct scnhead *newp;
+
+ newp = (struct scnhead *) obstack_calloc (&ld_state.smem,
+ sizeof (*newp));
+ newp->kind = scn_normal;
+ newp->name = osectname;
+ newp->type = SCNINFO_SHDR (found->shdr).sh_type;
+ /* Executable or DSO do not have section groups. Drop that
+ information. */
+ newp->flags = SCNINFO_SHDR (found->shdr).sh_flags & ~SHF_GROUP;
+ newp->segment_nr = segment_nr;
+ newp->last = found->next = found;
+ newp->used = true;
+ newp->relsize = found->relsize;
+ newp->entsize = SCNINFO_SHDR (found->shdr).sh_entsize;
+
+ /* We have to count note section since they get their own
+ program header entry. */
+ if (newp->type == SHT_NOTE)
+ ++ld_state.nnotesections;
+
+ ld_state.allsections[ld_state.nallsections++] = newp;
+ new_section = false;
+ }
+ else
+ {
+ struct scnhead *queued;
+
+ queued = ld_state.allsections[ld_state.nallsections - 1];
+
+ found->next = queued->last->next;
+ queued->last = queued->last->next = found;
+
+ /* If the linker script forces us to add incompatible
+ sections together do so. But reflect this in the
+ type and flags of the resulting file. */
+ if (queued->type != SCNINFO_SHDR (found->shdr).sh_type)
+ /* XXX Any better choice? */
+ queued->type = SHT_PROGBITS;
+ if (queued->flags != SCNINFO_SHDR (found->shdr).sh_flags)
+ /* Executable or DSO do not have section groups. Drop that
+ information. */
+ queued->flags = ebl_sh_flags_combine (ld_state.ebl,
+ queued->flags,
+ SCNINFO_SHDR (found->shdr).sh_flags
+ & ~SHF_GROUP);
+
+ /* Accumulate the relocation section size. */
+ queued->relsize += found->relsize;
+ }
+ }
+ }
+ while (runp != NULL);
+
+ return new_section;
+}
+
+
+static void
+sort_sections_lscript (void)
+{
+ struct scnhead *temp[ld_state.nallsections];
+
+ /* Make a copy of the section head pointer array. */
+ memcpy (temp, ld_state.allsections,
+ ld_state.nallsections * sizeof (temp[0]));
+ size_t nallsections = ld_state.nallsections;
+
+ /* Convert the output segment list in a single-linked list. */
+ struct output_segment *segment = ld_state.output_segments->next;
+ ld_state.output_segments->next = NULL;
+ ld_state.output_segments = segment;
+
+ /* Put the sections in the correct order in the array in the state
+ structure. This might involve merging of sections and also
+ renaming the containing section in the output file. */
+ ld_state.nallsections = 0;
+ size_t segment_nr;
+ size_t last_writable = ~0ul;
+ for (segment_nr = 0; segment != NULL; segment = segment->next, ++segment_nr)
+ {
+ struct output_rule *orule;
+
+ for (orule = segment->output_rules; orule != NULL; orule = orule->next)
+ if (orule->tag == output_section)
+ {
+ struct input_rule *irule;
+ bool new_section = true;
+
+ for (irule = orule->val.section.input; irule != NULL;
+ irule = irule->next)
+ if (irule->tag == input_section)
+ {
+ size_t cnt;
+
+ for (cnt = 0; cnt < nallsections; ++cnt)
+ if (temp[cnt] != NULL)
+ new_section =
+ match_section (orule->val.section.name,
+ irule->val.section, &temp[cnt],
+ new_section, segment_nr);
+ }
+ }
+
+ if ((segment->mode & PF_W) != 0)
+ last_writable = ld_state.nallsections - 1;
+ }
+
+ /* In case we have to create copy relocations or we have common
+ symbols, find the last writable segment and add one more data
+ block. It will be a NOBITS block and take up no disk space.
+ This is why it is important to get the last block. */
+ if (ld_state.ncopy > 0 || ld_state.common_syms != NULL)
+ {
+ if (last_writable == ~0ul)
+ error (EXIT_FAILURE, 0, "no writable segment");
+
+ if (ld_state.allsections[last_writable]->type != SHT_NOBITS)
+ {
+ /* Make room in the ALLSECTIONS array for a new section.
+ There is guaranteed room in the array. We add the new
+ entry after the last writable section. */
+ ++last_writable;
+ memmove (&ld_state.allsections[last_writable + 1],
+ &ld_state.allsections[last_writable],
+ (ld_state.nallsections - last_writable)
+ * sizeof (ld_state.allsections[0]));
+
+ ld_state.allsections[last_writable] = (struct scnhead *)
+ obstack_calloc (&ld_state.smem, sizeof (struct scnhead));
+
+ /* Name for the new section. */
+ ld_state.allsections[last_writable]->name = ".bss";
+ /* Type: NOBITS. */
+ ld_state.allsections[last_writable]->type = SHT_NOBITS;
+ /* Same segment as the last writable section. */
+ ld_state.allsections[last_writable]->segment_nr
+ = ld_state.allsections[last_writable - 1]->segment_nr;
+ }
+ }
+
+ /* Create common symbol data block. */
+ if (ld_state.ncopy > 0)
+ {
+#if NATIVE_ELF
+ struct scninfo *si = (struct scninfo *)
+ obstack_calloc (&ld_state.smem, sizeof (*si) + sizeof (XElf_Shdr));
+ si->shdr = (XElf_Shdr *) (si + 1);
+#else
+ struct scninfo *si = (struct scninfo *) obstack_calloc (&ld_state.smem,
+ sizeof (*si));
+#endif
+
+ /* Get the information regarding the symbols with copy relocations. */
+ compute_copy_reloc_offset (&SCNINFO_SHDR (si->shdr));
+
+ /* This section is needed. */
+ si->used = true;
+ /* Remember for later the section data structure. */
+ ld_state.copy_section = si;
+
+ if (likely (ld_state.allsections[last_writable]->last != NULL))
+ {
+ si->next = ld_state.allsections[last_writable]->last->next;
+ ld_state.allsections[last_writable]->last->next = si;
+ ld_state.allsections[last_writable]->last = si;
+ }
+ else
+ ld_state.allsections[last_writable]->last = si->next = si;
+ }
+
+ /* Create common symbol data block. */
+ if (ld_state.common_syms != NULL)
+ {
+#if NATIVE_ELF
+ struct scninfo *si = (struct scninfo *)
+ obstack_calloc (&ld_state.smem, sizeof (*si) + sizeof (XElf_Shdr));
+ si->shdr = (XElf_Shdr *) (si + 1);
+#else
+ struct scninfo *si = (struct scninfo *) obstack_calloc (&ld_state.smem,
+ sizeof (*si));
+#endif
+
+ /* Get the information regarding the symbols with copy relocations. */
+ compute_common_symbol_offset (&SCNINFO_SHDR (si->shdr));
+
+ /* This section is needed. */
+ si->used = true;
+ /* Remember for later the section data structure. */
+ ld_state.common_section = si;
+
+ if (likely (ld_state.allsections[last_writable]->last != NULL))
+ {
+ si->next = ld_state.allsections[last_writable]->last->next;
+ ld_state.allsections[last_writable]->last->next = si;
+ ld_state.allsections[last_writable]->last = si;
+ }
+ else
+ ld_state.allsections[last_writable]->last = si->next = si;
+ }
+}
+
+
+/* Create the output sections now. This requires knowledge about all
+ the sections we will need. It may be necessary to sort sections in
+ the order they are supposed to appear in the executable. The
+ sorting use many different kinds of information to optimize the
+ resulting binary. Important is to respect segment boundaries and
+ the needed alignment. The mode of the segments will be determined
+ afterwards automatically by the output routines.
+
+ The generic sorting routines work in one of two possible ways:
+
+ - if a linker script specifies the sections to be used in the
+ output and assigns them to a segment this information is used;
+
+ - otherwise the linker will order the sections based on permissions
+ and some special knowledge about section names.*/
+static void
+ld_generic_create_sections (struct ld_state *statep)
+{
+ struct scngroup *groups;
+ size_t cnt;
+
+ /* For relocatable object we don't have to bother sorting the
+ sections and we do want to preserve the relocation sections as
+ they appear in the input files. */
+ if (ld_state.file_type != relocatable_file_type)
+ {
+ /* Collect all the relocation sections. They are handled
+ separately. */
+ struct scninfo *list = NULL;
+ for (cnt = 0; cnt < ld_state.nallsections; ++cnt)
+ if ((ld_state.allsections[cnt]->type == SHT_REL
+ || ld_state.allsections[cnt]->type == SHT_RELA)
+ /* The generated relocation sections are not of any
+ interest here. */
+ && ld_state.allsections[cnt]->last != NULL)
+ {
+ if (list == NULL)
+ list = ld_state.allsections[cnt]->last;
+ else
+ {
+ /* Merge the sections list. */
+ struct scninfo *first = list->next;
+ list->next = ld_state.allsections[cnt]->last->next;
+ ld_state.allsections[cnt]->last->next = first;
+ list = ld_state.allsections[cnt]->last;
+ }
+
+ /* Remove the entry from the section list. */
+ ld_state.allsections[cnt] = NULL;
+ }
+ ld_state.rellist = list;
+
+ if (ld_state.output_segments == NULL)
+ /* Sort using builtin rules. */
+ sort_sections_generic ();
+ else
+ sort_sections_lscript ();
+ }
+
+ /* Now iterate over the input sections and create the sections in the
+ order they are required in the output file. */
+ for (cnt = 0; cnt < ld_state.nallsections; ++cnt)
+ {
+ struct scnhead *head = ld_state.allsections[cnt];
+ Elf_Scn *scn;
+ XElf_Shdr_vardef (shdr);
+
+ /* Don't handle unused sections. */
+ if (!head->used)
+ continue;
+
+ /* We first have to create the section group if necessary.
+ Section group sections must come (in section index order)
+ before any of the section contained. This all is necessary
+ only for relocatable object as other object types are not
+ allowed to contain section groups. */
+ if (ld_state.file_type == relocatable_file_type
+ && unlikely (head->flags & SHF_GROUP))
+ {
+ /* There is at least one section which is contained in a
+ section group in the input file. This means we must
+ create a section group here as well. The only problem is
+ that not all input files have to have to same kind of
+ partitioning of the sections. I.e., sections A and B in
+ one input file and sections B and C in another input file
+ can be in one group. That will result in a group
+ containing the sections A, B, and C in the output
+ file. */
+ struct scninfo *runp;
+ Elf32_Word here_groupidx = 0;
+ struct scngroup *here_group;
+ struct member *newp;
+
+ /* First check whether any section is already in a group.
+ In this case we have to add this output section, too. */
+ runp = head->last;
+ do
+ {
+ assert (runp->grpid != 0);
+
+ here_groupidx = runp->fileinfo->scninfo[runp->grpid].outscnndx;
+ if (here_groupidx != 0)
+ break;
+ }
+ while ((runp = runp->next) != head->last);
+
+ if (here_groupidx == 0)
+ {
+ /* We need a new section group section. */
+ scn = elf_newscn (ld_state.outelf);
+ xelf_getshdr (scn, shdr);
+ if (shdr == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ here_group = (struct scngroup *) xmalloc (sizeof (*here_group));
+ here_group->outscnidx = here_groupidx = elf_ndxscn (scn);
+ here_group->nscns = 0;
+ here_group->member = NULL;
+ here_group->next = ld_state.groups;
+ /* Pick a name for the section. To keep it meaningful
+ we use a name used in the input files. If the
+ section group in the output file should contain
+ section which were in section groups of different
+ names in the input files this is the users
+ problem. */
+ here_group->nameent
+ = ebl_strtabadd (ld_state.shstrtab,
+ elf_strptr (runp->fileinfo->elf,
+ runp->fileinfo->shstrndx,
+ SCNINFO_SHDR (runp->shdr).sh_name),
+ 0);
+ /* Signature symbol. */
+ here_group->symbol
+ = runp->fileinfo->scninfo[runp->grpid].symbols;
+
+ ld_state.groups = here_group;
+ }
+ else
+ {
+ /* Search for the group with this index. */
+ here_group = ld_state.groups;
+ while (here_group->outscnidx != here_groupidx)
+ here_group = here_group->next;
+ }
+
+ /* Add the new output section. */
+ newp = (struct member *) alloca (sizeof (*newp));
+ newp->scn = head;
+#ifndef NDT_NEEDED
+ newp->next = NULL;
+#endif
+ CSNGL_LIST_ADD_REAR (here_group->member, newp);
+ ++here_group->nscns;
+
+ /* Store the section group index in all input files. */
+ runp = head->last;
+ do
+ {
+ assert (runp->grpid != 0);
+
+ if (runp->fileinfo->scninfo[runp->grpid].outscnndx == 0)
+ runp->fileinfo->scninfo[runp->grpid].outscnndx = here_groupidx;
+ else
+ assert (runp->fileinfo->scninfo[runp->grpid].outscnndx
+ == here_groupidx);
+ }
+ while ((runp = runp->next) != head->last);
+ }
+
+ /* We'll use this section so get it's name in the section header
+ string table. */
+ if (head->kind == scn_normal)
+ head->nameent = ebl_strtabadd (ld_state.shstrtab, head->name, 0);
+
+ /* Create a new section in the output file and add all data
+ from all the sections we read. */
+ scn = elf_newscn (ld_state.outelf);
+ head->scnidx = elf_ndxscn (scn);
+ xelf_getshdr (scn, shdr);
+ if (shdr == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ assert (head->type != SHT_NULL);
+ assert (head->type != SHT_SYMTAB);
+ assert (head->type != SHT_DYNSYM || head->kind != scn_normal);
+ assert (head->type != SHT_STRTAB || head->kind != scn_normal);
+ assert (head->type != SHT_GROUP);
+ shdr->sh_type = head->type;
+ shdr->sh_flags = head->flags;
+ shdr->sh_addralign = head->align;
+ shdr->sh_entsize = head->entsize;
+ assert (shdr->sh_entsize != 0 || (shdr->sh_flags & SHF_MERGE) == 0);
+ (void) xelf_update_shdr (scn, shdr);
+
+ /* We have to know the section index of the dynamic symbol table
+ right away. */
+ if (head->kind == scn_dot_dynsym)
+ ld_state.dynsymscnidx = elf_ndxscn (scn);
+ }
+
+ /* Actually create the section group sections. */
+ groups = ld_state.groups;
+ while (groups != NULL)
+ {
+ Elf_Scn *scn;
+ Elf_Data *data;
+ Elf32_Word *grpdata;
+ struct member *runp;
+
+ scn = elf_getscn (ld_state.outelf, groups->outscnidx);
+ assert (scn != NULL);
+
+ data = elf_newdata (scn);
+ if (data == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ data->d_size = (groups->nscns + 1) * sizeof (Elf32_Word);
+ data->d_buf = grpdata = (Elf32_Word *) xmalloc (data->d_size);
+ data->d_type = ELF_T_WORD;
+ data->d_version = EV_CURRENT;
+ data->d_off = 0;
+ /* XXX What better to use? */
+ data->d_align = sizeof (Elf32_Word);
+
+ /* The first word in the section is the flag word. */
+ /* XXX Set COMDATA flag is necessary. */
+ grpdata[0] = 0;
+
+ runp = groups->member->next;
+ cnt = 1;
+ do
+ /* Fill in the index of the section. */
+ grpdata[cnt++] = runp->scn->scnidx;
+ while ((runp = runp->next) != groups->member->next);
+
+ groups = groups->next;
+ }
+}
+
+
+static bool
+reduce_symbol_p (XElf_Sym *sym, struct Ebl_Strent *strent)
+{
+ const char *str;
+ const char *version;
+ struct id_list search;
+ struct id_list *verp;
+ bool result = ld_state.default_bind_local;
+
+ if (XELF_ST_BIND (sym->st_info) == STB_LOCAL || sym->st_shndx == SHN_UNDEF)
+ /* We don't have to do anything to local symbols here. */
+ /* XXX Any section value in [SHN_LORESERVER,SHN_XINDEX) need
+ special treatment? */
+ return false;
+
+ /* XXX Handle other symbol bindings. */
+ assert (XELF_ST_BIND (sym->st_info) == STB_GLOBAL
+ || XELF_ST_BIND (sym->st_info) == STB_WEAK);
+
+ str = ebl_string (strent);
+ version = strchr (str, VER_CHR);
+ if (version != NULL)
+ {
+ search.id = strndupa (str, version - str);
+ if (*++version == VER_CHR)
+ /* Skip the second '@' signaling a default definition. */
+ ++version;
+ }
+ else
+ {
+ search.id = str;
+ version = "";
+ }
+
+ verp = ld_version_str_tab_find (&ld_state.version_str_tab,
+ elf_hash (search.id), &search);
+ while (verp != NULL)
+ {
+ /* We have this symbol in the version hash table. Now match the
+ version name. */
+ if (strcmp (verp->u.s.versionname, version) == 0)
+ /* Match! */
+ return verp->u.s.local;
+
+ verp = verp->next;
+ }
+
+ /* XXX Add test for wildcard version symbols. */
+
+ return result;
+}
+
+
+static XElf_Addr
+eval_expression (struct expression *expr, XElf_Addr addr)
+{
+ XElf_Addr val = ~((XElf_Addr) 0);
+
+ switch (expr->tag)
+ {
+ case exp_num:
+ val = expr->val.num;
+ break;
+
+ case exp_sizeof_headers:
+ {
+ /* The 'elf_update' call determine the offset of the first
+ section. The the size of the header. */
+ XElf_Shdr_vardef (shdr);
+
+ xelf_getshdr (elf_getscn (ld_state.outelf, 1), shdr);
+ assert (shdr != NULL);
+
+ val = shdr->sh_offset;
+ }
+ break;
+
+ case exp_pagesize:
+ val = ld_state.pagesize;
+ break;
+
+ case exp_id:
+ /* We are here computing only address expressions. It seems not
+ to be necessary to handle any variable but ".". Let's avoid
+ the complication. If it turns up to be needed we can add
+ it. */
+ if (strcmp (expr->val.str, ".") != 0)
+ error (EXIT_FAILURE, 0, gettext ("\
+address computation expression contains variable '%s'"),
+ expr->val.str);
+
+ val = addr;
+ break;
+
+ case exp_mult:
+ val = (eval_expression (expr->val.binary.left, addr)
+ * eval_expression (expr->val.binary.right, addr));
+ break;
+
+ case exp_div:
+ val = (eval_expression (expr->val.binary.left, addr)
+ / eval_expression (expr->val.binary.right, addr));
+ break;
+
+ case exp_mod:
+ val = (eval_expression (expr->val.binary.left, addr)
+ % eval_expression (expr->val.binary.right, addr));
+ break;
+
+ case exp_plus:
+ val = (eval_expression (expr->val.binary.left, addr)
+ + eval_expression (expr->val.binary.right, addr));
+ break;
+
+ case exp_minus:
+ val = (eval_expression (expr->val.binary.left, addr)
+ - eval_expression (expr->val.binary.right, addr));
+ break;
+
+ case exp_and:
+ val = (eval_expression (expr->val.binary.left, addr)
+ & eval_expression (expr->val.binary.right, addr));
+ break;
+
+ case exp_or:
+ val = (eval_expression (expr->val.binary.left, addr)
+ | eval_expression (expr->val.binary.right, addr));
+ break;
+
+ case exp_align:
+ val = eval_expression (expr->val.child, addr);
+ if ((val & (val - 1)) != 0)
+ error (EXIT_FAILURE, 0, gettext ("argument '%" PRIuMAX "' of ALIGN in address computation expression is no power of two"),
+ (uintmax_t) val);
+ val = (addr + val - 1) & ~(val - 1);
+ break;
+ }
+
+ return val;
+}
+
+
+/* Find a good as possible size for the hash table so that all the
+ non-zero entries in HASHCODES don't collide too much and the table
+ isn't too large. There is no exact formular for this so we use a
+ heuristic. Depending on the optimization level the search is
+ longer or shorter. */
+static size_t
+optimal_bucket_size (Elf32_Word *hashcodes, size_t maxcnt, int optlevel)
+{
+ size_t minsize;
+ size_t maxsize;
+ size_t bestsize;
+ uint64_t bestcost;
+ size_t size;
+ uint32_t *counts;
+ uint32_t *lengths;
+
+ if (maxcnt == 0)
+ return 0;
+
+ /* When we are not optimizing we run only very few tests. */
+ if (optlevel <= 0)
+ {
+ minsize = maxcnt;
+ maxsize = maxcnt + 10000 / maxcnt;
+ }
+ else
+ {
+ /* Does not make much sense to start with a smaller table than
+ one which has at least four collisions. */
+ minsize = MAX (1, maxcnt / 4);
+ /* We look for a best fit in the range of up to eigth times the
+ number of elements. */
+ maxsize = 2 * maxcnt + (6 * MIN (optlevel, 100) * maxcnt) / 100;
+ }
+ bestsize = maxcnt;
+ bestcost = UINT_MAX;
+
+ /* Array for counting the collisions and chain lengths. */
+ counts = (uint32_t *) xmalloc ((maxcnt + 1 + maxsize) * sizeof (uint32_t));
+ lengths = &counts[maxcnt + 1];
+
+ for (size = minsize; size <= maxsize; ++size)
+ {
+ size_t inner;
+ uint64_t cost;
+ uint32_t maxlength;
+ uint64_t success;
+ uint32_t acc;
+ double factor;
+
+ memset (lengths, '\0', size * sizeof (uint32_t));
+ memset (counts, '\0', (maxcnt + 1) * sizeof (uint32_t));
+
+ /* Determine how often each hash bucket is used. */
+ assert (hashcodes[0] == 0);
+ for (inner = 1; inner < maxcnt; ++inner)
+ ++lengths[hashcodes[inner] % size];
+
+ /* Determine the lengths. */
+ maxlength = 0;
+ for (inner = 0; inner < size; ++inner)
+ {
+ ++counts[lengths[inner]];
+
+ if (lengths[inner] > maxlength)
+ maxlength = lengths[inner];
+ }
+
+ /* Determine successful lookup length. */
+ acc = 0;
+ success = 0;
+ for (inner = 0; inner <= maxlength; ++inner)
+ {
+ acc += inner;
+ success += counts[inner] * acc;
+ }
+
+ /* We can compute two factors now: the average length of a
+ positive search and the average length of a negative search.
+ We count the number of comparisons which have to look at the
+ names themselves. Recognizing that the chain ended is not
+ accounted for since it's almost for free.
+
+ Which lookup is more important depends on the kind of DSO.
+ If it is a system DSO like libc it is expected that most
+ lookups succeed. Otherwise most lookups fail. */
+ if (ld_state.is_system_library)
+ factor = (1.0 * (double) success / (double) maxcnt
+ + 0.3 * (double) maxcnt / (double) size);
+ else
+ factor = (0.3 * (double) success / (double) maxcnt
+ + 1.0 * (double) maxcnt / (double) size);
+
+ /* Combine the lookup cost factor. The 1/16th addend adds
+ penalties for too large table sizes. */
+ cost = (2 + maxcnt + size) * (factor + 1.0 / 16.0);
+
+#if 0
+ printf ("maxcnt = %d, size = %d, cost = %Ld, success = %g, fail = %g, factor = %g\n",
+ maxcnt, size, cost, (double) success / (double) maxcnt, (double) maxcnt / (double) size, factor);
+#endif
+
+ /* Compare with current best results. */
+ if (cost < bestcost)
+ {
+ bestcost = cost;
+ bestsize = size;
+ }
+ }
+
+ free (counts);
+
+ return bestsize;
+}
+
+
+static void
+optimal_gnu_hash_size (Elf32_Word *hashcodes, size_t maxcnt, int optlevel,
+ size_t *bitmask_nwords, size_t *shift, size_t *nbuckets)
+{
+ // XXX Implement something real
+ *bitmask_nwords = 256;
+ *shift = 6;
+ *nbuckets = 3 * maxcnt / 2;
+}
+
+
+static XElf_Addr
+find_entry_point (void)
+{
+ XElf_Addr result;
+
+ if (ld_state.entry != NULL)
+ {
+ struct symbol search = { .name = ld_state.entry };
+ struct symbol *syment;
+
+ syment = ld_symbol_tab_find (&ld_state.symbol_tab,
+ elf_hash (ld_state.entry), &search);
+ if (syment != NULL && syment->defined)
+ {
+ /* We found the symbol. */
+ Elf_Data *data = elf_getdata (elf_getscn (ld_state.outelf,
+ ld_state.symscnidx), NULL);
+
+ XElf_Sym_vardef (sym);
+
+ sym = NULL;
+ if (data != NULL)
+ xelf_getsym (data, ld_state.dblindirect[syment->outsymidx], sym);
+
+ if (sym == NULL && ld_state.need_dynsym && syment->outdynsymidx != 0)
+ {
+ /* Use the dynamic symbol table if available. */
+ data = elf_getdata (elf_getscn (ld_state.outelf,
+ ld_state.dynsymscnidx), NULL);
+
+ sym = NULL;
+ if (data != NULL)
+ xelf_getsym (data, syment->outdynsymidx, sym);
+ }
+
+ if (sym != NULL)
+ return sym->st_value;
+
+ /* XXX What to do if the output has no non-dynamic symbol
+ table and the dynamic symbol table does not contain the
+ symbol? */
+ assert (ld_state.need_symtab);
+ assert (ld_state.symscnidx != 0);
+ }
+ }
+
+ /* We couldn't find the symbol or none was given. Use the first
+ address of the ".text" section then. */
+
+
+ result = 0;
+
+ /* In DSOs this is no fatal error. They usually have no entry
+ points. In this case we set the entry point to zero, which makes
+ sure it will always fail. */
+ if (ld_state.file_type == executable_file_type)
+ {
+ if (ld_state.entry != NULL)
+ error (0, 0, gettext ("\
+cannot find entry symbol '%s': defaulting to %#0*" PRIx64),
+ ld_state.entry,
+ xelf_getclass (ld_state.outelf) == ELFCLASS32 ? 10 : 18,
+ (uint64_t) result);
+ else
+ error (0, 0, gettext ("\
+no entry symbol specified: defaulting to %#0*" PRIx64),
+ xelf_getclass (ld_state.outelf) == ELFCLASS32 ? 10 : 18,
+ (uint64_t) result);
+ }
+
+ return result;
+}
+
+
+static void
+fillin_special_symbol (struct symbol *symst, size_t scnidx, size_t nsym,
+ Elf_Data *symdata, struct Ebl_Strtab *strtab)
+{
+ assert (ld_state.file_type != relocatable_file_type);
+
+ XElf_Sym_vardef (sym);
+ xelf_getsym_ptr (symdata, nsym, sym);
+
+ /* The name offset will be filled in later. */
+ sym->st_name = 0;
+ /* Traditionally: globally visible. */
+ sym->st_info = XELF_ST_INFO (symst->local ? STB_LOCAL : STB_GLOBAL,
+ symst->type);
+ sym->st_other = symst->hidden ? STV_HIDDEN : STV_DEFAULT;
+ /* Reference to the GOT or dynamic section. Since the GOT and
+ dynamic section are only created for executables and DSOs it
+ cannot be that the section index is too large. */
+ assert (scnidx != 0);
+ assert (scnidx < SHN_LORESERVE || scnidx == SHN_ABS);
+ sym->st_shndx = scnidx;
+ /* We want the beginning of the section. */
+ sym->st_value = 0;
+ // XXX What size?
+ sym->st_size = 0;
+
+ /* Determine the size of the section. */
+ if (scnidx != SHN_ABS)
+ {
+ Elf_Data *data = elf_getdata (elf_getscn (ld_state.outelf, scnidx),
+ NULL);
+ assert (data != NULL);
+ sym->st_size = data->d_size;
+ /* Make sure there is no second data block. */
+ assert (elf_getdata (elf_getscn (ld_state.outelf, scnidx), data)
+ == NULL);
+ }
+
+ /* Insert symbol into the symbol table. Note that we do not have to
+ use xelf_update_symshdx. */
+ (void) xelf_update_sym (symdata, nsym, sym);
+
+ /* Cross-references. */
+ ndxtosym[nsym] = symst;
+ symst->outsymidx = nsym;
+
+ /* Add the name to the string table. */
+ symstrent[nsym] = ebl_strtabadd (strtab, symst->name, 0);
+}
+
+
+static void
+new_dynamic_entry (Elf_Data *data, int idx, XElf_Sxword tag, XElf_Addr val)
+{
+ XElf_Dyn_vardef (dyn);
+ xelf_getdyn_ptr (data, idx, dyn);
+ dyn->d_tag = tag;
+ dyn->d_un.d_ptr = val;
+ (void) xelf_update_dyn (data, idx, dyn);
+}
+
+
+static void
+allocate_version_names (struct usedfiles *runp, struct Ebl_Strtab *dynstrtab)
+{
+ /* If this DSO has no versions skip it. */
+ if (runp->status != opened || runp->verdefdata == NULL)
+ return;
+
+ /* Add the object name. */
+ int offset = 0;
+ while (1)
+ {
+ XElf_Verdef_vardef (def);
+ XElf_Verdaux_vardef (aux);
+
+ /* Get data at the next offset. */
+ xelf_getverdef (runp->verdefdata, offset, def);
+ assert (def != NULL);
+ xelf_getverdaux (runp->verdefdata, offset + def->vd_aux, aux);
+ assert (aux != NULL);
+
+ assert (def->vd_ndx <= runp->nverdef);
+ if (def->vd_ndx == 1 || runp->verdefused[def->vd_ndx] != 0)
+ {
+ runp->verdefent[def->vd_ndx]
+ = ebl_strtabadd (dynstrtab, elf_strptr (runp->elf,
+ runp->dynsymstridx,
+ aux->vda_name), 0);
+
+ if (def->vd_ndx > 1)
+ runp->verdefused[def->vd_ndx] = ld_state.nextveridx++;
+ }
+
+ if (def->vd_next == 0)
+ /* That were all versions. */
+ break;
+
+ offset += def->vd_next;
+ }
+}
+
+
+static XElf_Off
+create_verneed_data (XElf_Off offset, Elf_Data *verneeddata,
+ struct usedfiles *runp, int *ntotal)
+{
+ size_t verneed_size = xelf_fsize (ld_state.outelf, ELF_T_VNEED, 1);
+ size_t vernaux_size = xelf_fsize (ld_state.outelf, ELF_T_VNAUX, 1);
+ int need_offset;
+ bool filled = false;
+ GElf_Verneed verneed;
+ GElf_Vernaux vernaux;
+ int ndef = 0;
+ size_t cnt;
+
+ /* If this DSO has no versions skip it. */
+ if (runp->nverdefused == 0)
+ return offset;
+
+ /* We fill in the Verneed record last. Remember the offset. */
+ need_offset = offset;
+ offset += verneed_size;
+
+ for (cnt = 2; cnt <= runp->nverdef; ++cnt)
+ if (runp->verdefused[cnt] != 0)
+ {
+ assert (runp->verdefent[cnt] != NULL);
+
+ if (filled)
+ {
+ vernaux.vna_next = vernaux_size;
+ (void) gelf_update_vernaux (verneeddata, offset, &vernaux);
+ offset += vernaux_size;
+ }
+
+ vernaux.vna_hash = elf_hash (ebl_string (runp->verdefent[cnt]));
+ vernaux.vna_flags = 0;
+ vernaux.vna_other = runp->verdefused[cnt];
+ vernaux.vna_name = ebl_strtaboffset (runp->verdefent[cnt]);
+ filled = true;
+ ++ndef;
+ }
+
+ assert (filled);
+ vernaux.vna_next = 0;
+ (void) gelf_update_vernaux (verneeddata, offset, &vernaux);
+ offset += vernaux_size;
+
+ verneed.vn_version = VER_NEED_CURRENT;
+ verneed.vn_cnt = ndef;
+ verneed.vn_file = ebl_strtaboffset (runp->verdefent[1]);
+ /* The first auxiliary entry is always found directly
+ after the verneed entry. */
+ verneed.vn_aux = verneed_size;
+ verneed.vn_next = --*ntotal > 0 ? offset - need_offset : 0;
+ (void) gelf_update_verneed (verneeddata, need_offset, &verneed);
+
+ return offset;
+}
+
+
+/* Callback for qsort to sort dynamic string table. */
+static Elf32_Word *global_hashcodes;
+static size_t global_nbuckets;
+static int
+sortfct_hashval (const void *p1, const void *p2)
+{
+ size_t idx1 = *(size_t *) p1;
+ size_t idx2 = *(size_t *) p2;
+
+ int def1 = ndxtosym[idx1]->defined && !ndxtosym[idx1]->in_dso;
+ int def2 = ndxtosym[idx2]->defined && !ndxtosym[idx2]->in_dso;
+
+ if (! def1 && def2)
+ return -1;
+ if (def1 && !def2)
+ return 1;
+ if (! def1)
+ return 0;
+
+ Elf32_Word hval1 = (global_hashcodes[ndxtosym[idx1]->outdynsymidx]
+ % global_nbuckets);
+ Elf32_Word hval2 = (global_hashcodes[ndxtosym[idx2]->outdynsymidx]
+ % global_nbuckets);
+
+ if (hval1 < hval2)
+ return -1;
+ if (hval1 > hval2)
+ return 1;
+ return 0;
+}
+
+
+/* Sort the dynamic symbol table. The GNU hash table lookup assumes
+ that all symbols with the same hash value module the bucket table
+ size follow one another. This avoids the extra hash chain table.
+ There is no need (and no way) to perform this operation if we do
+ not use the new hash table format. */
+static void
+create_gnu_hash (size_t nsym_local, size_t nsym, size_t nsym_dyn,
+ Elf32_Word *gnuhashcodes)
+{
+ size_t gnu_bitmask_nwords = 0;
+ size_t gnu_shift = 0;
+ size_t gnu_nbuckets = 0;
+ Elf32_Word *gnu_bitmask = NULL;
+ Elf32_Word *gnu_buckets = NULL;
+ Elf32_Word *gnu_chain = NULL;
+ XElf_Shdr_vardef (shdr);
+
+ /* Determine the "optimal" bucket size. */
+ optimal_gnu_hash_size (gnuhashcodes, nsym_dyn, ld_state.optlevel,
+ &gnu_bitmask_nwords, &gnu_shift, &gnu_nbuckets);
+
+ /* Create the .gnu.hash section data structures. */
+ Elf_Scn *hashscn = elf_getscn (ld_state.outelf, ld_state.gnuhashscnidx);
+ xelf_getshdr (hashscn, shdr);
+ Elf_Data *hashdata = elf_newdata (hashscn);
+ if (shdr == NULL || hashdata == NULL)
+ error (EXIT_FAILURE, 0, gettext ("\
+cannot create GNU hash table section for output file: %s"),
+ elf_errmsg (-1));
+
+ shdr->sh_link = ld_state.dynsymscnidx;
+ (void) xelf_update_shdr (hashscn, shdr);
+
+ hashdata->d_size = (xelf_fsize (ld_state.outelf, ELF_T_ADDR,
+ gnu_bitmask_nwords)
+ + (4 + gnu_nbuckets + nsym_dyn) * sizeof (Elf32_Word));
+ hashdata->d_buf = xcalloc (1, hashdata->d_size);
+ hashdata->d_align = sizeof (Elf32_Word);
+ hashdata->d_type = ELF_T_WORD;
+ hashdata->d_off = 0;
+
+ ((Elf32_Word *) hashdata->d_buf)[0] = gnu_nbuckets;
+ ((Elf32_Word *) hashdata->d_buf)[2] = gnu_bitmask_nwords;
+ ((Elf32_Word *) hashdata->d_buf)[3] = gnu_shift;
+ gnu_bitmask = &((Elf32_Word *) hashdata->d_buf)[4];
+ gnu_buckets = &gnu_bitmask[xelf_fsize (ld_state.outelf, ELF_T_ADDR,
+ gnu_bitmask_nwords)
+ / sizeof (*gnu_buckets)];
+ gnu_chain = &gnu_buckets[gnu_nbuckets];
+#ifndef NDEBUG
+ void *endp = &gnu_chain[nsym_dyn];
+#endif
+ assert (endp == (void *) ((char *) hashdata->d_buf + hashdata->d_size));
+
+
+ size_t *remap = xmalloc (nsym_dyn * sizeof (size_t));
+#ifndef NDEBUG
+ size_t nsym_dyn_cnt = 1;
+#endif
+ for (size_t cnt = nsym_local; cnt < nsym; ++cnt)
+ if (symstrent[cnt] != NULL)
+ {
+ assert (ndxtosym[cnt]->outdynsymidx > 0);
+ assert (ndxtosym[cnt]->outdynsymidx < nsym_dyn);
+ remap[ndxtosym[cnt]->outdynsymidx] = cnt;
+#ifndef NDEBUG
+ ++nsym_dyn_cnt;
+#endif
+ }
+ assert (nsym_dyn_cnt == nsym_dyn);
+
+ // XXX Until we can rely on qsort_r use global variables.
+ global_hashcodes = gnuhashcodes;
+ global_nbuckets = gnu_nbuckets;
+ qsort (remap + 1, nsym_dyn - 1, sizeof (size_t), sortfct_hashval);
+
+ bool bm32 = (xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1)
+ == sizeof (Elf32_Word));
+
+ size_t first_defined = 0;
+ Elf64_Word bitmask_idxbits = gnu_bitmask_nwords - 1;
+ Elf32_Word last_bucket = 0;
+ for (size_t cnt = 1; cnt < nsym_dyn; ++cnt)
+ {
+ if (first_defined == 0)
+ {
+ if (! ndxtosym[remap[cnt]]->defined
+ || ndxtosym[remap[cnt]]->in_dso)
+ goto next;
+
+ ((Elf32_Word *) hashdata->d_buf)[1] = first_defined = cnt;
+ }
+
+ Elf32_Word hval = gnuhashcodes[ndxtosym[remap[cnt]]->outdynsymidx];
+
+ if (bm32)
+ {
+ Elf32_Word *bsw = &gnu_bitmask[(hval / 32) & bitmask_idxbits];
+ assert ((void *) gnu_bitmask <= (void *) bsw);
+ assert ((void *) bsw < (void *) gnu_buckets);
+ *bsw |= 1 << (hval & 31);
+ *bsw |= 1 << ((hval >> gnu_shift) & 31);
+ }
+ else
+ {
+ Elf64_Word *bsw = &((Elf64_Word *) gnu_bitmask)[(hval / 64)
+ & bitmask_idxbits];
+ assert ((void *) gnu_bitmask <= (void *) bsw);
+ assert ((void *) bsw < (void *) gnu_buckets);
+ *bsw |= 1 << (hval & 63);
+ *bsw |= 1 << ((hval >> gnu_shift) & 63);
+ }
+
+ size_t this_bucket = hval % gnu_nbuckets;
+ if (cnt == first_defined || this_bucket != last_bucket)
+ {
+ if (cnt != first_defined)
+ {
+ /* Terminate the previous chain. */
+ assert ((void *) &gnu_chain[cnt - first_defined - 1] < endp);
+ gnu_chain[cnt - first_defined - 1] |= 1;
+ }
+
+ assert (this_bucket < gnu_nbuckets);
+ gnu_buckets[this_bucket] = cnt;
+ last_bucket = this_bucket;
+ }
+
+ assert (cnt >= first_defined);
+ assert (cnt - first_defined < nsym_dyn);
+ gnu_chain[cnt - first_defined] = hval & ~1u;
+
+ next:
+ ndxtosym[remap[cnt]]->outdynsymidx = cnt;
+ }
+
+ /* Terminate the last chain. */
+ if (first_defined != 0)
+ {
+ assert (nsym_dyn > first_defined);
+ assert (nsym_dyn - first_defined - 1 < nsym_dyn);
+ gnu_chain[nsym_dyn - first_defined - 1] |= 1;
+
+ hashdata->d_size -= first_defined * sizeof (Elf32_Word);
+ }
+ else
+ /* We do not need any hash table. */
+ // XXX
+ do { } while (0);
+
+ free (remap);
+}
+
+
+/* Create the SysV-style hash table. */
+static void
+create_hash (size_t nsym_local, size_t nsym, size_t nsym_dyn,
+ Elf32_Word *hashcodes)
+{
+ size_t nbucket = 0;
+ Elf32_Word *bucket = NULL;
+ Elf32_Word *chain = NULL;
+ XElf_Shdr_vardef (shdr);
+
+ /* Determine the "optimal" bucket size. If we also generate the
+ new-style hash function there is no need to waste effort and
+ space on the old one which should not be used. Make it as small
+ as possible. */
+ if (GENERATE_GNU_HASH)
+ nbucket = 1;
+ else
+ nbucket = optimal_bucket_size (hashcodes, nsym_dyn, ld_state.optlevel);
+ /* Create the .hash section data structures. */
+ Elf_Scn *hashscn = elf_getscn (ld_state.outelf, ld_state.hashscnidx);
+ xelf_getshdr (hashscn, shdr);
+ Elf_Data *hashdata = elf_newdata (hashscn);
+ if (shdr == NULL || hashdata == NULL)
+ error (EXIT_FAILURE, 0, gettext ("\
+cannot create hash table section for output file: %s"),
+ elf_errmsg (-1));
+
+ shdr->sh_link = ld_state.dynsymscnidx;
+ (void) xelf_update_shdr (hashscn, shdr);
+
+ hashdata->d_size = (2 + nsym_dyn + nbucket) * sizeof (Elf32_Word);
+ hashdata->d_buf = xcalloc (1, hashdata->d_size);
+ hashdata->d_align = sizeof (Elf32_Word);
+ hashdata->d_type = ELF_T_WORD;
+ hashdata->d_off = 0;
+
+ ((Elf32_Word *) hashdata->d_buf)[0] = nbucket;
+ ((Elf32_Word *) hashdata->d_buf)[1] = nsym_dyn;
+ bucket = &((Elf32_Word *) hashdata->d_buf)[2];
+ chain = &((Elf32_Word *) hashdata->d_buf)[2 + nbucket];
+
+ for (size_t cnt = nsym_local; cnt < nsym; ++cnt)
+ if (symstrent[cnt] != NULL)
+ {
+ size_t dynidx = ndxtosym[cnt]->outdynsymidx;
+ size_t hashidx = hashcodes[dynidx] % nbucket;
+ if (bucket[hashidx] == 0)
+ bucket[hashidx] = dynidx;
+ else
+ {
+ hashidx = bucket[hashidx];
+ while (chain[hashidx] != 0)
+ hashidx = chain[hashidx];
+
+ chain[hashidx] = dynidx;
+ }
+ }
+}
+
+
+static void
+create_build_id_section (Elf_Scn *scn)
+{
+ /* We know how large the section will be so we can create it now. */
+ Elf_Data *d = elf_newdata (scn);
+ if (d == NULL)
+ error (EXIT_FAILURE, 0, gettext ("cannot create build ID section: %s"),
+ elf_errmsg (-1));
+
+ d->d_type = ELF_T_BYTE;
+ d->d_version = EV_CURRENT;
+
+ /* The note section header. */
+ assert (sizeof (Elf32_Nhdr) == sizeof (Elf64_Nhdr));
+ d->d_size = sizeof (GElf_Nhdr);
+ /* The string is four bytes long. */
+ d->d_size += sizeof (ELF_NOTE_GNU);
+ assert (d->d_size % 4 == 0);
+
+ if (strcmp (ld_state.build_id, "md5") == 0
+ || strcmp (ld_state.build_id, "uuid") == 0)
+ d->d_size += 16;
+ else if (strcmp (ld_state.build_id, "sha1") == 0)
+ d->d_size += 20;
+ else
+ {
+ assert (ld_state.build_id[0] == '0' && ld_state.build_id[1] == 'x');
+ /* Use an upper limit of the possible number of bytes generated
+ from the string. */
+ d->d_size += strlen (ld_state.build_id) / 2;
+ }
+
+ d->d_buf = xcalloc (d->d_size, 1);
+ d->d_off = 0;
+ d->d_align = 0;
+}
+
+
+static void
+compute_hash_sum (void (*hashfct) (const void *, size_t, void *), void *ctx)
+{
+ /* The call cannot fail. */
+ size_t shstrndx;
+ (void) elf_getshdrstrndx (ld_state.outelf, &shstrndx);
+
+ const char *ident = elf_getident (ld_state.outelf, NULL);
+ bool same_byte_order = ((ident[EI_DATA] == ELFDATA2LSB
+ && __BYTE_ORDER == __LITTLE_ENDIAN)
+ || (ident[EI_DATA] == ELFDATA2MSB
+ && __BYTE_ORDER == __BIG_ENDIAN));
+
+ /* Iterate over all sections to find those which are not strippable. */
+ Elf_Scn *scn = NULL;
+ while ((scn = elf_nextscn (ld_state.outelf, scn)) != NULL)
+ {
+ /* Get the section header. */
+ GElf_Shdr shdr_mem;
+ GElf_Shdr *shdr = gelf_getshdr (scn, &shdr_mem);
+ assert (shdr != NULL);
+
+ if (SECTION_STRIP_P (shdr, elf_strptr (ld_state.outelf, shstrndx,
+ shdr->sh_name), true))
+ /* The section can be stripped. Don't use it. */
+ continue;
+
+ /* Do not look at NOBITS sections. */
+ if (shdr->sh_type == SHT_NOBITS)
+ continue;
+
+ /* Iterate through the list of data blocks. */
+ Elf_Data *data = NULL;
+ while ((data = INTUSE(elf_getdata) (scn, data)) != NULL)
+ /* If the file byte order is the same as the host byte order
+ process the buffer directly. If the data is just a stream
+ of bytes which the library will not convert we can use it
+ as well. */
+ if (likely (same_byte_order) || data->d_type == ELF_T_BYTE)
+ hashfct (data->d_buf, data->d_size, ctx);
+ else
+ {
+ /* Convert the data to file byte order. */
+ if (gelf_xlatetof (ld_state.outelf, data, data, ident[EI_DATA])
+ == NULL)
+ error (EXIT_FAILURE, 0, gettext ("\
+cannot convert section data to file format: %s"),
+ elf_errmsg (-1));
+
+ hashfct (data->d_buf, data->d_size, ctx);
+
+ /* And convert it back. */
+ if (gelf_xlatetom (ld_state.outelf, data, data, ident[EI_DATA])
+ == NULL)
+ error (EXIT_FAILURE, 0, gettext ("\
+cannot convert section data to memory format: %s"),
+ elf_errmsg (-1));
+ }
+ }
+}
+
+
+/* Iterate over the sections */
+static void
+compute_build_id (void)
+{
+ Elf_Data *d = elf_getdata (elf_getscn (ld_state.outelf,
+ ld_state.buildidscnidx), NULL);
+ assert (d != NULL);
+
+ GElf_Nhdr *hdr = d->d_buf;
+ hdr->n_namesz = sizeof (ELF_NOTE_GNU);
+ hdr->n_type = NT_GNU_BUILD_ID;
+ char *dp = mempcpy (hdr + 1, ELF_NOTE_GNU, sizeof (ELF_NOTE_GNU));
+
+ if (strcmp (ld_state.build_id, "sha1") == 0)
+ {
+ /* Compute the SHA1 sum of various parts of the generated file.
+ We compute the hash sum over the external representation. */
+ struct sha1_ctx ctx;
+ sha1_init_ctx (&ctx);
+
+ /* Compute the hash sum by running over all sections. */
+ compute_hash_sum ((void (*) (const void *, size_t, void *)) sha1_process_bytes,
+ &ctx);
+
+ /* We are done computing the checksum. */
+ (void) sha1_finish_ctx (&ctx, dp);
+
+ hdr->n_descsz = SHA1_DIGEST_SIZE;
+ }
+ else if (strcmp (ld_state.build_id, "md5") == 0)
+ {
+ /* Compute the MD5 sum of various parts of the generated file.
+ We compute the hash sum over the external representation. */
+ struct md5_ctx ctx;
+ md5_init_ctx (&ctx);
+
+ /* Compute the hash sum by running over all sections. */
+ compute_hash_sum ((void (*) (const void *, size_t, void *)) md5_process_bytes,
+ &ctx);
+
+ /* We are done computing the checksum. */
+ (void) md5_finish_ctx (&ctx, dp);
+
+ hdr->n_descsz = MD5_DIGEST_SIZE;
+ }
+ else if (strcmp (ld_state.build_id, "uuid") == 0)
+ {
+ int fd = open ("/dev/urandom", O_RDONLY);
+ if (fd == -1)
+ error (EXIT_FAILURE, errno, gettext ("cannot open '%s'"),
+ "/dev/urandom");
+
+ if (TEMP_FAILURE_RETRY (read (fd, dp, 16)) != 16)
+ error (EXIT_FAILURE, 0, gettext ("cannot read enough data for UUID"));
+
+ close (fd);
+
+ hdr->n_descsz = 16;
+ }
+ else
+ {
+ const char *cp = ld_state.build_id + 2;
+
+ /* The form of the string has been verified before so here we can
+ simplify the scanning. */
+ do
+ {
+ if (isxdigit (cp[0]))
+ {
+ char ch1 = tolower (cp[0]);
+ char ch2 = tolower (cp[1]);
+
+ *dp++ = (((isdigit (ch1) ? ch1 - '0' : ch1 - 'a' + 10) << 4)
+ | (isdigit (ch2) ? ch2 - '0' : ch2 - 'a' + 10));
+ }
+ else
+ ++cp;
+ }
+ while (*cp != '\0');
+ }
+}
+
+
+/* Create the output file.
+
+ For relocatable files what basically has to happen is that all
+ sections from all input files are written into the output file.
+ Sections with the same name are combined (offsets adjusted
+ accordingly). The symbol tables are combined in one single table.
+ When stripping certain symbol table entries are omitted.
+
+ For executables (shared or not) we have to create the program header,
+ additional sections like the .interp, eventually (in addition) create
+ a dynamic symbol table and a dynamic section. Also the relocations
+ have to be processed differently. */
+static int
+ld_generic_create_outfile (struct ld_state *statep)
+{
+ struct scnlist
+ {
+ size_t scnidx;
+ struct scninfo *scninfo;
+ struct scnlist *next;
+ };
+ struct scnlist *rellist = NULL;
+ size_t cnt;
+ Elf_Scn *symscn = NULL;
+ Elf_Scn *xndxscn = NULL;
+ Elf_Scn *strscn = NULL;
+ struct Ebl_Strtab *strtab = NULL;
+ struct Ebl_Strtab *dynstrtab = NULL;
+ XElf_Shdr_vardef (shdr);
+ Elf_Data *data;
+ Elf_Data *symdata = NULL;
+ Elf_Data *xndxdata = NULL;
+ struct usedfiles *file;
+ size_t nsym;
+ size_t nsym_local;
+ size_t nsym_allocated;
+ size_t nsym_dyn = 0;
+ Elf32_Word *dblindirect = NULL;
+#ifndef NDEBUG
+ bool need_xndx;
+#endif
+ Elf_Scn *shstrtab_scn;
+ size_t shstrtab_ndx;
+ XElf_Ehdr_vardef (ehdr);
+ struct Ebl_Strent *symtab_ent = NULL;
+ struct Ebl_Strent *xndx_ent = NULL;
+ struct Ebl_Strent *strtab_ent = NULL;
+ struct Ebl_Strent *shstrtab_ent;
+ struct scngroup *groups;
+ Elf_Scn *dynsymscn = NULL;
+ Elf_Data *dynsymdata = NULL;
+ Elf_Data *dynstrdata = NULL;
+ Elf32_Word *hashcodes = NULL;
+ Elf32_Word *gnuhashcodes = NULL;
+ size_t nsym_dyn_allocated = 0;
+ Elf_Scn *versymscn = NULL;
+ Elf_Data *versymdata = NULL;
+
+ if (ld_state.need_symtab)
+ {
+ /* First create the symbol table. We need the symbol section itself
+ and the string table for it. */
+ symscn = elf_newscn (ld_state.outelf);
+ ld_state.symscnidx = elf_ndxscn (symscn);
+ symdata = elf_newdata (symscn);
+ if (symdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create symbol table for output file: %s"),
+ elf_errmsg (-1));
+
+ symdata->d_type = ELF_T_SYM;
+ /* This is an estimated size, but it will definitely cap the real value.
+ We might have to adjust the number later. */
+ nsym_allocated = (1 + ld_state.nsymtab + ld_state.nplt + ld_state.ngot
+ + ld_state.nusedsections + ld_state.nlscript_syms);
+ symdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_SYM,
+ nsym_allocated);
+
+ /* Optionally the extended section table. */
+ /* XXX Is SHN_LORESERVE correct? Do we need some other sections? */
+ if (unlikely (ld_state.nusedsections >= SHN_LORESERVE))
+ {
+ xndxscn = elf_newscn (ld_state.outelf);
+ ld_state.xndxscnidx = elf_ndxscn (xndxscn);
+
+ xndxdata = elf_newdata (xndxscn);
+ if (xndxdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create symbol table for output file: %s"),
+ elf_errmsg (-1));
+
+ /* The following relies on the fact that Elf32_Word and Elf64_Word
+ have the same size. */
+ xndxdata->d_type = ELF_T_WORD;
+ /* This is an estimated size, but it will definitely cap the
+ real value. we might have to adjust the number later. */
+ xndxdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_WORD,
+ nsym_allocated);
+ /* The first entry is left empty, clear it here and now. */
+ xndxdata->d_buf = memset (xmalloc (xndxdata->d_size), '\0',
+ xelf_fsize (ld_state.outelf, ELF_T_WORD,
+ 1));
+ xndxdata->d_off = 0;
+ /* XXX Should use an ebl function. */
+ xndxdata->d_align = sizeof (Elf32_Word);
+ }
+ }
+ else
+ {
+ assert (ld_state.need_dynsym);
+
+ /* First create the symbol table. We need the symbol section itself
+ and the string table for it. */
+ symscn = elf_getscn (ld_state.outelf, ld_state.dynsymscnidx);
+ symdata = elf_newdata (symscn);
+ if (symdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create symbol table for output file: %s"),
+ elf_errmsg (-1));
+
+ symdata->d_version = EV_CURRENT;
+ symdata->d_type = ELF_T_SYM;
+ /* This is an estimated size, but it will definitely cap the real value.
+ We might have to adjust the number later. */
+ nsym_allocated = (1 + ld_state.nsymtab + ld_state.nplt + ld_state.ngot
+ - ld_state.nlocalsymbols + ld_state.nlscript_syms);
+ symdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_SYM,
+ nsym_allocated);
+ }
+
+ /* The first entry is left empty, clear it here and now. */
+ symdata->d_buf = memset (xmalloc (symdata->d_size), '\0',
+ xelf_fsize (ld_state.outelf, ELF_T_SYM, 1));
+ symdata->d_off = 0;
+ /* XXX This is ugly but how else can it be done. */
+ symdata->d_align = xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1);
+
+ /* Allocate another array to keep track of the handles for the symbol
+ names. */
+ symstrent = (struct Ebl_Strent **) xcalloc (nsym_allocated,
+ sizeof (struct Ebl_Strent *));
+
+ /* By starting at 1 we effectively add a null entry. */
+ nsym = 1;
+
+ /* Iteration over all sections. */
+ for (cnt = 0; cnt < ld_state.nallsections; ++cnt)
+ {
+ struct scnhead *head = ld_state.allsections[cnt];
+ Elf_Scn *scn;
+ struct scninfo *runp;
+ XElf_Off offset;
+ Elf32_Word xndx;
+
+ /* Don't handle unused sections at all. */
+ if (!head->used)
+ continue;
+
+ /* Get the section handle. */
+ scn = elf_getscn (ld_state.outelf, head->scnidx);
+
+ if (unlikely (head->kind == scn_dot_interp))
+ {
+ Elf_Data *outdata = elf_newdata (scn);
+ if (outdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ /* This is the string we'll put in the section. */
+ const char *interp = ld_state.interp ?: "/lib/ld.so.1";
+
+ /* Create the section data. */
+ outdata->d_buf = (void *) interp;
+ outdata->d_size = strlen (interp) + 1;
+ outdata->d_type = ELF_T_BYTE;
+ outdata->d_off = 0;
+ outdata->d_align = 1;
+ outdata->d_version = EV_CURRENT;
+
+ /* Remember the index of this section. */
+ ld_state.interpscnidx = head->scnidx;
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_got))
+ {
+ /* Remember the index of this section. */
+ ld_state.gotscnidx = elf_ndxscn (scn);
+
+ /* Give the backend the change to initialize the section. */
+ INITIALIZE_GOT (&ld_state, scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_gotplt))
+ {
+ /* Remember the index of this section. */
+ ld_state.gotpltscnidx = elf_ndxscn (scn);
+
+ /* Give the backend the change to initialize the section. */
+ INITIALIZE_GOTPLT (&ld_state, scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_dynrel))
+ {
+ Elf_Data *outdata;
+
+ outdata = elf_newdata (scn);
+ if (outdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ outdata->d_size = ld_state.relsize_total;
+ outdata->d_buf = xmalloc (outdata->d_size);
+ outdata->d_type = (REL_TYPE (&ld_state) == DT_REL
+ ? ELF_T_REL : ELF_T_RELA);
+ outdata->d_off = 0;
+ outdata->d_align = xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1);
+
+ /* Remember the index of this section. */
+ ld_state.reldynscnidx = elf_ndxscn (scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_dynamic))
+ {
+ /* Only create the data for now. */
+ Elf_Data *outdata;
+
+ /* Account for a few more entries we have to add. */
+ if (ld_state.dt_flags != 0)
+ ++ld_state.ndynamic;
+ if (ld_state.dt_flags_1 != 0)
+ ++ld_state.ndynamic;
+ if (ld_state.dt_feature_1 != 0)
+ ++ld_state.ndynamic;
+
+ outdata = elf_newdata (scn);
+ if (outdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ /* Create the section data. */
+ outdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_DYN,
+ ld_state.ndynamic);
+ outdata->d_buf = xcalloc (1, outdata->d_size);
+ outdata->d_type = ELF_T_DYN;
+ outdata->d_off = 0;
+ outdata->d_align = xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1);
+
+ /* Remember the index of this section. */
+ ld_state.dynamicscnidx = elf_ndxscn (scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_dynsym))
+ {
+ /* We already know the section index. */
+ assert (ld_state.dynsymscnidx == elf_ndxscn (scn));
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_dynstr))
+ {
+ /* Remember the index of this section. */
+ ld_state.dynstrscnidx = elf_ndxscn (scn);
+
+ /* Create the string table. */
+ dynstrtab = ebl_strtabinit (true);
+
+ /* XXX TBI
+ We have to add all the strings which are needed in the
+ dynamic section here. This means DT_FILTER,
+ DT_AUXILIARY, ... entries. */
+ if (ld_state.ndsofiles > 0)
+ {
+ struct usedfiles *frunp = ld_state.dsofiles;
+
+ do
+ if (! frunp->as_needed || frunp->used)
+ frunp->sonameent = ebl_strtabadd (dynstrtab, frunp->soname,
+ 0);
+ while ((frunp = frunp->next) != ld_state.dsofiles);
+ }
+
+
+ /* Add the runtime path information. The strings are stored
+ in the .dynstr section. If both rpath and runpath are defined
+ the runpath information is used. */
+ if (ld_state.runpath != NULL || ld_state.rpath != NULL)
+ {
+ struct pathelement *startp;
+ struct pathelement *prunp;
+ int tag;
+ size_t len;
+ char *str;
+ char *cp;
+
+ if (ld_state.runpath != NULL)
+ {
+ startp = ld_state.runpath;
+ tag = DT_RUNPATH;
+ }
+ else
+ {
+ startp = ld_state.rpath;
+ tag = DT_RPATH;
+ }
+
+ /* Determine how long the string will be. */
+ for (len = 0, prunp = startp; prunp != NULL; prunp = prunp->next)
+ len += strlen (prunp->pname) + 1;
+
+ cp = str = (char *) obstack_alloc (&ld_state.smem, len);
+ /* Copy the string. */
+ for (prunp = startp; prunp != NULL; prunp = prunp->next)
+ {
+ cp = stpcpy (cp, prunp->pname);
+ *cp++ = ':';
+ }
+ /* Remove the last colon. */
+ cp[-1] = '\0';
+
+ /* Remember the values until we can generate the dynamic
+ section. */
+ ld_state.rxxpath_strent = ebl_strtabadd (dynstrtab, str, len);
+ ld_state.rxxpath_tag = tag;
+ }
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_hash))
+ {
+ /* Remember the index of this section. */
+ ld_state.hashscnidx = elf_ndxscn (scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_gnu_hash))
+ {
+ /* Remember the index of this section. */
+ ld_state.gnuhashscnidx = elf_ndxscn (scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_plt))
+ {
+ /* Remember the index of this section. */
+ ld_state.pltscnidx = elf_ndxscn (scn);
+
+ /* Give the backend the change to initialize the section. */
+ INITIALIZE_PLT (&ld_state, scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_pltrel))
+ {
+ /* Remember the index of this section. */
+ ld_state.pltrelscnidx = elf_ndxscn (scn);
+
+ /* Give the backend the change to initialize the section. */
+ INITIALIZE_PLTREL (&ld_state, scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_version))
+ {
+ /* Remember the index of this section. */
+ ld_state.versymscnidx = elf_ndxscn (scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_version_r))
+ {
+ /* Remember the index of this section. */
+ ld_state.verneedscnidx = elf_ndxscn (scn);
+
+ continue;
+ }
+
+ if (unlikely (head->kind == scn_dot_note_gnu_build_id))
+ {
+ /* Remember the index of this section. */
+ ld_state.buildidscnidx = elf_ndxscn (scn);
+
+ create_build_id_section (scn);
+
+ continue;
+ }
+
+ /* If we come here we must be handling a normal section. */
+ assert (head->kind == scn_normal);
+
+ /* Create an STT_SECTION entry in the symbol table. But not for
+ the symbolic symbol table. */
+ if (ld_state.need_symtab)
+ {
+ /* XXX Can we be cleverer and do this only if needed? */
+ XElf_Sym_vardef (sym);
+
+ /* Optimization ahead: in the native linker we get a pointer
+ to the final location so that the following code writes
+ directly in the correct place. Otherwise we write into
+ the local variable first. */
+ xelf_getsym_ptr (symdata, nsym, sym);
+
+ /* Usual section symbol: local, no specific information,
+ except the section index. The offset here is zero, the
+ start address will later be added. */
+ sym->st_name = 0;
+ sym->st_info = XELF_ST_INFO (STB_LOCAL, STT_SECTION);
+ sym->st_other = 0;
+ sym->st_value = 0;
+ sym->st_size = 0;
+ /* In relocatable files the section index can be too big for
+ the ElfXX_Sym struct. we have to deal with the extended
+ symbol table. */
+ if (likely (head->scnidx < SHN_LORESERVE))
+ {
+ sym->st_shndx = head->scnidx;
+ xndx = 0;
+ }
+ else
+ {
+ sym->st_shndx = SHN_XINDEX;
+ xndx = head->scnidx;
+ }
+ /* Commit the change. See the optimization above, this does
+ not change the symbol table entry. But the extended
+ section index table entry is always written, if there is
+ such a table. */
+ assert (nsym < nsym_allocated);
+ xelf_update_symshndx (symdata, xndxdata, nsym, sym, xndx, 0);
+
+ /* Remember the symbol's index in the symbol table. */
+ head->scnsymidx = nsym++;
+ }
+
+ if (head->type == SHT_REL || head->type == SHT_RELA)
+ {
+ /* Remember that we have to fill in the symbol table section
+ index. */
+ if (ld_state.file_type == relocatable_file_type)
+ {
+ struct scnlist *newp;
+
+ newp = (struct scnlist *) alloca (sizeof (*newp));
+ newp->scnidx = head->scnidx;
+ newp->scninfo = head->last->next;
+#ifndef NDEBUG
+ newp->next = NULL;
+#endif
+ SNGL_LIST_PUSH (rellist, newp);
+ }
+ else
+ {
+ /* When we create an executable or a DSO we don't simply
+ copy the existing relocations. Instead many will be
+ resolved, others will be converted. Create a data buffer
+ large enough to contain the contents which we will fill
+ in later. */
+ int type = head->type == SHT_REL ? ELF_T_REL : ELF_T_RELA;
+
+ data = elf_newdata (scn);
+ if (data == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ data->d_size = xelf_fsize (ld_state.outelf, type, head->relsize);
+ data->d_buf = xcalloc (data->d_size, 1);
+ data->d_type = type;
+ data->d_align = xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1);
+ data->d_off = 0;
+
+ continue;
+ }
+ }
+
+ /* Recognize string and merge flag and handle them. */
+ if (head->flags & SHF_MERGE)
+ {
+ /* We merge the contents of the sections. For this we do
+ not look at the contents of section directly. Instead we
+ look at the symbols of the section. */
+ Elf_Data *outdata;
+
+ /* Concatenate the lists of symbols for all sections.
+
+ XXX In case any input section has no symbols associated
+ (this happens for debug sections) we cannot use this
+ method. Implement parsing the other debug sections and
+ find the string pointers. For now we don't merge. */
+ runp = head->last->next;
+ if (runp->symbols == NULL)
+ {
+ head->flags &= ~SHF_MERGE;
+ goto no_merge;
+ }
+ head->symbols = runp->symbols;
+
+ while ((runp = runp->next) != head->last->next)
+ {
+ if (runp->symbols == NULL)
+ {
+ head->flags &= ~SHF_MERGE;
+ head->symbols = NULL;
+ goto no_merge;
+ }
+
+ struct symbol *oldhead = head->symbols->next_in_scn;
+
+ head->symbols->next_in_scn = runp->symbols->next_in_scn;
+ runp->symbols->next_in_scn = oldhead;
+ head->symbols = runp->symbols;
+ }
+
+ /* Create the output section. */
+ outdata = elf_newdata (scn);
+ if (outdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ /* We use different merging algorithms for performance
+ reasons. We can easily handle single-byte and
+ wchar_t-wide character strings. All other cases (which
+ really should happen in real life) are handled by the
+ generic code. */
+ if (SCNINFO_SHDR (head->last->shdr).sh_entsize == 1
+ && (head->flags & SHF_STRINGS))
+ {
+ /* Simple, single-byte string matching. */
+ struct Ebl_Strtab *mergestrtab;
+ struct symbol *symrunp;
+ Elf_Data *locsymdata = NULL;
+ Elf_Data *locdata = NULL;
+
+ mergestrtab = ebl_strtabinit (false);
+
+ symrunp = head->symbols->next_in_scn;
+ file = NULL;
+ do
+ {
+ /* Accelarate the loop. We cache the file
+ information since it might very well be the case
+ that the previous entry was from the same
+ file. */
+ if (symrunp->file != file)
+ {
+ /* Remember the file. */
+ file = symrunp->file;
+ /* Symbol table data from that file. */
+ locsymdata = file->symtabdata;
+ /* String section data. */
+ locdata = elf_rawdata (file->scninfo[symrunp->scndx].scn,
+ NULL);
+ assert (locdata != NULL);
+ /* While we are at it, remember the output
+ section. If we don't access the string data
+ section the section won't be in the output
+ file. So it is sufficient to do the work
+ here. */
+ file->scninfo[symrunp->scndx].outscnndx = head->scnidx;
+ }
+
+ /* Get the symbol information. This provides us the
+ offset into the string data section. */
+ XElf_Sym_vardef (sym);
+ xelf_getsym (locsymdata, symrunp->symidx, sym);
+ assert (sym != NULL);
+
+ /* Get the data from the file. Note that we access
+ the raw section data; no endian-ness issues with
+ single-byte strings. */
+ symrunp->merge.handle
+ = ebl_strtabadd (mergestrtab,
+ (char *) locdata->d_buf + sym->st_value,
+ 0);
+ }
+ while ((symrunp = symrunp->next_in_scn)
+ != head->symbols->next_in_scn);
+
+ /* All strings have been added. Create the final table. */
+ ebl_strtabfinalize (mergestrtab, outdata);
+
+ /* Compute the final offsets in the section. */
+ symrunp = runp->symbols;
+ do
+ {
+ symrunp->merge.value
+ = ebl_strtaboffset (symrunp->merge.handle);
+ symrunp->merged = 1;
+ }
+ while ((symrunp = symrunp->next_in_scn) != runp->symbols);
+
+ /* We don't need the string table anymore. */
+ ebl_strtabfree (mergestrtab);
+ }
+ else if (likely (SCNINFO_SHDR (head->last->shdr).sh_entsize
+ == sizeof (wchar_t))
+ && likely (head->flags & SHF_STRINGS))
+ {
+ /* Simple, wchar_t string merging. */
+ struct Ebl_WStrtab *mergestrtab;
+ struct symbol *symrunp;
+ Elf_Data *locsymdata = NULL;
+ Elf_Data *locdata = NULL;
+
+ mergestrtab = ebl_wstrtabinit (false);
+
+ symrunp = runp->symbols;
+ file = NULL;
+ do
+ {
+ /* Accelarate the loop. We cache the file
+ information since it might very well be the case
+ that the previous entry was from the same
+ file. */
+ if (symrunp->file != file)
+ {
+ /* Remember the file. */
+ file = symrunp->file;
+ /* Symbol table data from that file. */
+ locsymdata = file->symtabdata;
+ /* String section data. */
+ locdata = elf_rawdata (file->scninfo[symrunp->scndx].scn,
+ NULL);
+ assert (locdata != NULL);
+
+ /* While we are at it, remember the output
+ section. If we don't access the string data
+ section the section won't be in the output
+ file. So it is sufficient to do the work
+ here. */
+ file->scninfo[symrunp->scndx].outscnndx = head->scnidx;
+ }
+
+ /* Get the symbol information. This provides us the
+ offset into the string data section. */
+ XElf_Sym_vardef (sym);
+ xelf_getsym (locsymdata, symrunp->symidx, sym);
+ assert (sym != NULL);
+
+ /* Get the data from the file. Using the raw
+ section data here is possible since we don't
+ interpret the string themselves except for
+ looking for the wide NUL character. The NUL
+ character has fortunately the same representation
+ regardless of the byte order. */
+ symrunp->merge.handle
+ = ebl_wstrtabadd (mergestrtab,
+ (wchar_t *) ((char *) locdata->d_buf
+ + sym->st_value), 0);
+ }
+ while ((symrunp = symrunp->next_in_scn) != runp->symbols);
+
+ /* All strings have been added. Create the final table. */
+ ebl_wstrtabfinalize (mergestrtab, outdata);
+
+ /* Compute the final offsets in the section. */
+ symrunp = runp->symbols;
+ do
+ {
+ symrunp->merge.value
+ = ebl_wstrtaboffset (symrunp->merge.handle);
+ symrunp->merged = 1;
+ }
+ while ((symrunp = symrunp->next_in_scn) != runp->symbols);
+
+ /* We don't need the string table anymore. */
+ ebl_wstrtabfree (mergestrtab);
+ }
+ else
+ {
+ /* Non-standard merging. */
+ struct Ebl_GStrtab *mergestrtab;
+ struct symbol *symrunp;
+ Elf_Data *locsymdata = NULL;
+ Elf_Data *locdata = NULL;
+ /* If this is no string section the length of each "string"
+ is always one. */
+ unsigned int len = (head->flags & SHF_STRINGS) ? 0 : 1;
+
+ /* This is the generic string table functionality. Much
+ slower than the specialized code. */
+ mergestrtab
+ = ebl_gstrtabinit (SCNINFO_SHDR (head->last->shdr).sh_entsize,
+ false);
+
+ symrunp = runp->symbols;
+ file = NULL;
+ do
+ {
+ /* Accelarate the loop. We cache the file
+ information since it might very well be the case
+ that the previous entry was from the same
+ file. */
+ if (symrunp->file != file)
+ {
+ /* Remember the file. */
+ file = symrunp->file;
+ /* Symbol table data from that file. */
+ locsymdata = file->symtabdata;
+ /* String section data. */
+ locdata = elf_rawdata (file->scninfo[symrunp->scndx].scn,
+ NULL);
+ assert (locdata != NULL);
+
+ /* While we are at it, remember the output
+ section. If we don't access the string data
+ section the section won't be in the output
+ file. So it is sufficient to do the work
+ here. */
+ file->scninfo[symrunp->scndx].outscnndx = head->scnidx;
+ }
+
+ /* Get the symbol information. This provides us the
+ offset into the string data section. */
+ XElf_Sym_vardef (sym);
+ xelf_getsym (locsymdata, symrunp->symidx, sym);
+ assert (sym != NULL);
+
+ /* Get the data from the file. Using the raw
+ section data here is possible since we don't
+ interpret the string themselves except for
+ looking for the wide NUL character. The NUL
+ character has fortunately the same representation
+ regardless of the byte order. */
+ symrunp->merge.handle
+ = ebl_gstrtabadd (mergestrtab,
+ (char *) locdata->d_buf + sym->st_value,
+ len);
+ }
+ while ((symrunp = symrunp->next_in_scn) != runp->symbols);
+
+ /* Create the final table. */
+ ebl_gstrtabfinalize (mergestrtab, outdata);
+
+ /* Compute the final offsets in the section. */
+ symrunp = runp->symbols;
+ do
+ {
+ symrunp->merge.value
+ = ebl_gstrtaboffset (symrunp->merge.handle);
+ symrunp->merged = 1;
+ }
+ while ((symrunp = symrunp->next_in_scn) != runp->symbols);
+
+ /* We don't need the string table anymore. */
+ ebl_gstrtabfree (mergestrtab);
+ }
+ }
+ else
+ {
+ no_merge:
+ assert (head->scnidx == elf_ndxscn (scn));
+
+ /* It is important to start with the first list entry (and
+ not just any one) to add the sections in the correct
+ order. */
+ runp = head->last->next;
+ offset = 0;
+ do
+ {
+ Elf_Data *outdata = elf_newdata (scn);
+ if (outdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ /* Exceptional case: if we synthesize a data block SCN
+ is NULL and the sectio header info must be for a
+ SHT_NOBITS block and the size and alignment are
+ filled in. */
+ if (likely (runp->scn != NULL))
+ {
+ data = elf_getdata (runp->scn, NULL);
+ assert (data != NULL);
+
+ /* We reuse the data buffer in the input file. */
+ *outdata = *data;
+
+ /* Given that we read the input file from disk we know there
+ cannot be another data part. */
+ assert (elf_getdata (runp->scn, data) == NULL);
+ }
+ else
+ {
+ /* Must be a NOBITS section. */
+ assert (SCNINFO_SHDR (runp->shdr).sh_type == SHT_NOBITS);
+
+ outdata->d_buf = NULL; /* Not needed. */
+ outdata->d_type = ELF_T_BYTE;
+ outdata->d_version = EV_CURRENT;
+ outdata->d_size = SCNINFO_SHDR (runp->shdr).sh_size;
+ outdata->d_align = SCNINFO_SHDR (runp->shdr).sh_addralign;
+ }
+
+ XElf_Off align = MAX (1, outdata->d_align);
+ assert (powerof2 (align));
+ offset = ((offset + align - 1) & ~(align - 1));
+
+ runp->offset = offset;
+ runp->outscnndx = head->scnidx;
+ runp->allsectionsidx = cnt;
+
+ outdata->d_off = offset;
+
+ offset += outdata->d_size;
+ }
+ while ((runp = runp->next) != head->last->next);
+
+ /* If necessary add the additional line to the .comment section. */
+ if (ld_state.add_ld_comment
+ && head->flags == 0
+ && head->type == SHT_PROGBITS
+ && strcmp (head->name, ".comment") == 0
+ && head->entsize == 0)
+ {
+ Elf_Data *outdata = elf_newdata (scn);
+
+ if (outdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ outdata->d_buf = (void *) "\0ld (" PACKAGE_NAME ") " PACKAGE_VERSION;
+ outdata->d_size = strlen ((char *) outdata->d_buf + 1) + 2;
+ outdata->d_off = offset;
+ outdata->d_type = ELF_T_BYTE;
+ outdata->d_align = 1;
+ }
+ /* XXX We should create a .comment section if none exists.
+ This requires that we early on detect that no such
+ section exists. This should probably be implemented
+ together with some merging of the section contents.
+ Currently identical entries are not merged. */
+ }
+ }
+
+ /* The table we collect the strings in. */
+ strtab = ebl_strtabinit (true);
+ if (strtab == NULL)
+ error (EXIT_FAILURE, errno, gettext ("cannot create string table"));
+
+
+#ifndef NDEBUG
+ /* Keep track of the use of the XINDEX. */
+ need_xndx = false;
+#endif
+
+ /* We we generate a normal symbol table for an executable and the
+ --export-dynamic option is not given, we need an extra table
+ which keeps track of the symbol entry belonging to the symbol
+ table entry. Note that EXPORT_ALL_DYNAMIC is always set if we
+ generate a DSO so we do not have to test this separately. */
+ ndxtosym = (struct symbol **) xcalloc (nsym_allocated,
+ sizeof (struct symbol));
+
+ /* Create the special symbol for the GOT section. */
+ if (ld_state.got_symbol != NULL)
+ {
+ assert (nsym < nsym_allocated);
+ // XXX Fix so that it works even if no PLT is needed.
+ fillin_special_symbol (ld_state.got_symbol, ld_state.gotpltscnidx,
+ nsym++, symdata, strtab);
+ }
+
+ /* Similarly for the dynamic section symbol. */
+ if (ld_state.dyn_symbol != NULL)
+ {
+ assert (nsym < nsym_allocated);
+ fillin_special_symbol (ld_state.dyn_symbol, ld_state.dynamicscnidx,
+ nsym++, symdata, strtab);
+ }
+
+ /* Create symbol table entries for the symbols defined in the linker
+ script. */
+ if (ld_state.lscript_syms != NULL)
+ {
+ struct symbol *rsym = ld_state.lscript_syms;
+ do
+ {
+ assert (nsym < nsym_allocated);
+ fillin_special_symbol (rsym, SHN_ABS, nsym++, symdata, strtab);
+ }
+ while ((rsym = rsym->next) != NULL);
+ }
+
+ /* Iterate over all input files to collect the symbols. */
+ file = ld_state.relfiles->next;
+ symdata = elf_getdata (elf_getscn (ld_state.outelf, ld_state.symscnidx),
+ NULL);
+
+ do
+ {
+ size_t maxcnt;
+ Elf_Data *insymdata;
+ Elf_Data *inxndxdata;
+
+ /* There must be no dynamic symbol table when creating
+ relocatable files. */
+ assert (ld_state.file_type != relocatable_file_type
+ || file->dynsymtabdata == NULL);
+
+ insymdata = file->symtabdata;
+ assert (insymdata != NULL);
+ inxndxdata = file->xndxdata;
+
+ maxcnt = file->nsymtab;
+
+ file->symindirect = (Elf32_Word *) xcalloc (maxcnt, sizeof (Elf32_Word));
+
+ /* The dynamic symbol table does not contain local symbols. So
+ we skip those entries. */
+ for (cnt = ld_state.need_symtab ? 1 : file->nlocalsymbols; cnt < maxcnt;
+ ++cnt)
+ {
+ XElf_Sym_vardef (sym);
+ Elf32_Word xndx;
+ struct symbol *defp = NULL;
+
+ xelf_getsymshndx (insymdata, inxndxdata, cnt, sym, xndx);
+ assert (sym != NULL);
+
+ if (unlikely (XELF_ST_TYPE (sym->st_info) == STT_SECTION))
+ {
+ /* Section symbols should always be local but who knows... */
+ if (ld_state.need_symtab)
+ {
+ /* Determine the real section index in the source file.
+ Use the XINDEX section content if necessary. We don't
+ add this information to the dynamic symbol table. */
+ if (sym->st_shndx != SHN_XINDEX)
+ xndx = sym->st_shndx;
+
+ assert (file->scninfo[xndx].allsectionsidx
+ < ld_state.nallsections);
+ file->symindirect[cnt] = ld_state.allsections[file->scninfo[xndx].allsectionsidx]->scnsymidx;
+ /* Note that the resulting index can be zero here. There is
+ no guarantee that the output file will contain all the
+ sections the input file did. */
+ }
+ continue;
+ }
+
+ if ((ld_state.strip >= strip_all || !ld_state.need_symtab)
+ /* XXX Do we need these entries? */
+ && XELF_ST_TYPE (sym->st_info) == STT_FILE)
+ continue;
+
+#if NATIVE_ELF != 0
+ /* Copy old data. We create a temporary copy because the
+ symbol might still be discarded. */
+ XElf_Sym sym_mem;
+ sym_mem = *sym;
+ sym = &sym_mem;
+#endif
+
+ if (sym->st_shndx != SHN_UNDEF
+ && (sym->st_shndx < SHN_LORESERVE
+ || sym->st_shndx == SHN_XINDEX))
+ {
+ /* If we are creating an executable with no normal
+ symbol table and we do not export all symbols and
+ this symbol is not defined in a DSO as well, ignore
+ it. */
+ if (!ld_state.export_all_dynamic && !ld_state.need_symtab)
+ {
+ assert (cnt >= file->nlocalsymbols);
+ defp = file->symref[cnt];
+ assert (defp != NULL);
+
+ if (!defp->in_dso)
+ /* Ignore it. */
+ continue;
+ }
+
+ /* Determine the real section index in the source file. Use
+ the XINDEX section content if necessary. */
+ if (sym->st_shndx != SHN_XINDEX)
+ xndx = sym->st_shndx;
+
+ sym->st_value += file->scninfo[xndx].offset;
+
+ assert (file->scninfo[xndx].outscnndx < SHN_LORESERVE
+ || file->scninfo[xndx].outscnndx > SHN_HIRESERVE);
+ if (unlikely (file->scninfo[xndx].outscnndx > SHN_LORESERVE))
+ {
+ /* It is not possible to have an extended section index
+ table for the dynamic symbol table. */
+ if (!ld_state.need_symtab)
+ error (EXIT_FAILURE, 0, gettext ("\
+section index too large in dynamic symbol table"));
+
+ assert (xndxdata != NULL);
+ sym->st_shndx = SHN_XINDEX;
+ xndx = file->scninfo[xndx].outscnndx;
+#ifndef NDEBUG
+ need_xndx = true;
+#endif
+ }
+ else
+ {
+ sym->st_shndx = file->scninfo[xndx].outscnndx;
+ xndx = 0;
+ }
+ }
+ else if (sym->st_shndx == SHN_COMMON || sym->st_shndx == SHN_UNDEF)
+ {
+ /* Check whether we have a (real) definition for this
+ symbol. If this is the case we skip this symbol
+ table entry. */
+ assert (cnt >= file->nlocalsymbols);
+ defp = file->symref[cnt];
+ assert (defp != NULL);
+
+ assert (sym->st_shndx != SHN_COMMON || defp->defined);
+
+ if ((sym->st_shndx == SHN_COMMON && !defp->common)
+ || (sym->st_shndx == SHN_UNDEF && defp->defined)
+ || defp->added)
+ /* Ignore this symbol table entry, there is a
+ "better" one or we already added it. */
+ continue;
+
+ /* Remember that we already added this symbol. */
+ defp->added = 1;
+
+ /* Adjust the section number for common symbols. */
+ if (sym->st_shndx == SHN_COMMON)
+ {
+ sym->st_value = (ld_state.common_section->offset
+ + file->symref[cnt]->merge.value);
+ assert (ld_state.common_section->outscnndx < SHN_LORESERVE);
+ sym->st_shndx = ld_state.common_section->outscnndx;
+ xndx = 0;
+ }
+ }
+ else if (unlikely (sym->st_shndx != SHN_ABS))
+ {
+ if (SPECIAL_SECTION_NUMBER_P (&ld_state, sym->st_shndx))
+ /* XXX Add code to handle machine specific special
+ sections. */
+ abort ();
+ }
+
+ /* Add the symbol name to the string table. If the user
+ chooses the highest level of stripping avoid adding names
+ for local symbols in the string table. */
+ if (sym->st_name != 0
+ && (ld_state.strip < strip_everything
+ || XELF_ST_BIND (sym->st_info) != STB_LOCAL))
+ symstrent[nsym] = ebl_strtabadd (strtab,
+ elf_strptr (file->elf,
+ file->symstridx,
+ sym->st_name), 0);
+
+ /* Once we know the name this field will get the correct
+ offset. For now set it to zero which means no name
+ associated. */
+ GElf_Word st_name = sym->st_name;
+ sym->st_name = 0;
+
+ /* If we had to merge sections we have a completely new
+ offset for the symbol. */
+ if (file->has_merge_sections && file->symref[cnt] != NULL
+ && file->symref[cnt]->merged)
+ sym->st_value = file->symref[cnt]->merge.value;
+
+ /* Create the record in the output sections. */
+ assert (nsym < nsym_allocated);
+ xelf_update_symshndx (symdata, xndxdata, nsym, sym, xndx, 1);
+
+ /* Add the reference to the symbol record in case we need it.
+ Find the symbol if this has not happened yet. We do
+ not need the information for local symbols. */
+ if (defp == NULL && cnt >= file->nlocalsymbols)
+ {
+ defp = file->symref[cnt];
+
+ if (defp == NULL)
+ {
+ /* This is a symbol in a discarded COMDAT section.
+ Find the definition we actually use. */
+ // XXX The question is: do we have to do this here
+ // XXX or can we do it earlier when we discard the
+ // XXX section.
+ struct symbol search;
+ search.name = elf_strptr (file->elf, file->symstridx,
+ st_name);
+ struct symbol *realp
+ = ld_symbol_tab_find (&ld_state.symbol_tab,
+ elf_hash (search.name), &search);
+ if (realp == NULL)
+ // XXX What to do here?
+ error (EXIT_FAILURE, 0,
+ "couldn't find symbol from COMDAT section");
+
+ file->symref[cnt] = realp;
+
+ continue;
+ }
+ }
+
+ /* Store the reference to the symbol record. The sorting
+ code will have to keep this array in the correct order, too. */
+ ndxtosym[nsym] = defp;
+
+ /* One more entry finished. */
+ if (cnt >= file->nlocalsymbols)
+ {
+ assert (file->symref[cnt]->outsymidx == 0);
+ file->symref[cnt]->outsymidx = nsym;
+ }
+ file->symindirect[cnt] = nsym++;
+ }
+ }
+ while ((file = file->next) != ld_state.relfiles->next);
+ /* Make sure we didn't create the extended section index table for
+ nothing. */
+ assert (xndxdata == NULL || need_xndx);
+
+ /* Create the version related sections. */
+ if (ld_state.verneedscnidx != 0)
+ {
+ /* We know the number of input files and total number of
+ referenced versions. This allows us to allocate the memory
+ and then we iterate over the DSOs to get the version
+ information. */
+ struct usedfiles *runp;
+
+ runp = ld_state.dsofiles->next;
+ do
+ allocate_version_names (runp, dynstrtab);
+ while ((runp = runp->next) != ld_state.dsofiles->next);
+
+ if (ld_state.needed != NULL)
+ {
+ runp = ld_state.needed->next;
+ do
+ allocate_version_names (runp, dynstrtab);
+ while ((runp = runp->next) != ld_state.needed->next);
+ }
+ }
+
+ /* At this point we should hide symbols and so on. */
+ if (ld_state.default_bind_local || ld_state.version_str_tab.filled > 0)
+ /* XXX Add one more test when handling of wildcard symbol names
+ is supported. */
+ {
+ /* Check all non-local symbols whether they are on the export list. */
+ bool any_reduced = false;
+
+ for (cnt = 1; cnt < nsym; ++cnt)
+ {
+ XElf_Sym_vardef (sym);
+
+ /* Note that we don't have to use 'xelf_getsymshndx' since we
+ only need the binding and the symbol name. */
+ xelf_getsym (symdata, cnt, sym);
+ assert (sym != NULL);
+
+ if (reduce_symbol_p (sym, symstrent[cnt]))
+ {
+ // XXX Check whether this is correct...
+ assert (ndxtosym[cnt]->outdynsymidx != 0);
+ ndxtosym[cnt]->outdynsymidx = 0;
+
+ sym->st_info = XELF_ST_INFO (STB_LOCAL,
+ XELF_ST_TYPE (sym->st_info));
+ (void) xelf_update_sym (symdata, cnt, sym);
+
+ /* Show that we don't need this string anymore. */
+ if (ld_state.strip == strip_everything)
+ {
+ symstrent[cnt] = NULL;
+ any_reduced = true;
+ }
+ }
+ }
+
+ if (unlikely (any_reduced))
+ {
+ /* Since we will not write names of local symbols in the
+ output file and we have reduced the binding of some
+ symbols the string table previously constructed contains
+ too many string. Correct it. */
+ struct Ebl_Strtab *newp = ebl_strtabinit (true);
+
+ for (cnt = 1; cnt < nsym; ++cnt)
+ if (symstrent[cnt] != NULL)
+ symstrent[cnt] = ebl_strtabadd (newp,
+ ebl_string (symstrent[cnt]), 0);
+
+ ebl_strtabfree (strtab);
+ strtab = newp;
+ }
+ }
+
+ /* Add the references to DSOs. We can add these entries this late
+ (after sorting out versioning) because references to DSOs are not
+ effected. */
+ if (ld_state.from_dso != NULL)
+ {
+ struct symbol *runp;
+ size_t plt_base = nsym + ld_state.nfrom_dso - ld_state.nplt;
+ size_t plt_idx = 0;
+ size_t obj_idx = 0;
+
+ assert (ld_state.nfrom_dso >= ld_state.nplt);
+ runp = ld_state.from_dso;
+ do
+ {
+ // XXX What about functions which are only referenced via
+ // pointers and not PLT entries? Can we distinguish such uses?
+ size_t idx;
+ if (runp->type == STT_FUNC)
+ {
+ /* Store the PLT entry number. */
+ runp->merge.value = plt_idx + 1;
+ idx = plt_base + plt_idx++;
+ }
+ else
+ idx = nsym + obj_idx++;
+
+ XElf_Sym_vardef (sym);
+ xelf_getsym_ptr (symdata, idx, sym);
+
+ sym->st_value = 0;
+ sym->st_size = runp->size;
+ sym->st_info = XELF_ST_INFO (runp->weak ? STB_WEAK : STB_GLOBAL,
+ runp->type);
+ sym->st_other = STV_DEFAULT;
+ sym->st_shndx = SHN_UNDEF;
+
+ /* Create the record in the output sections. */
+ xelf_update_symshndx (symdata, xndxdata, idx, sym, 0, 0);
+
+ const char *name = runp->name;
+ size_t namelen = 0;
+
+ if (runp->file->verdefdata != NULL)
+ {
+ // XXX Is it useful to add the versym value to struct symbol?
+ XElf_Versym versym;
+
+ (void) xelf_getversym_copy (runp->file->versymdata, runp->symidx,
+ versym);
+
+ /* One can only link with the default version. */
+ assert ((versym & 0x8000) == 0);
+
+ const char *versname
+ = ebl_string (runp->file->verdefent[versym]);
+
+ size_t versname_len = strlen (versname) + 1;
+ namelen = strlen (name) + versname_len + 2;
+ char *newp = (char *) obstack_alloc (&ld_state.smem, namelen);
+ memcpy (stpcpy (stpcpy (newp, name), "@@"),
+ versname, versname_len);
+ name = newp;
+ }
+
+ symstrent[idx] = ebl_strtabadd (strtab, name, namelen);
+
+ /* Record the initial index in the symbol table. */
+ runp->outsymidx = idx;
+
+ /* Remember the symbol record this ELF symbol came from. */
+ ndxtosym[idx] = runp;
+ }
+ while ((runp = runp->next) != ld_state.from_dso);
+
+ assert (nsym + obj_idx == plt_base);
+ assert (plt_idx == ld_state.nplt);
+ nsym = plt_base + plt_idx;
+ }
+
+ /* Now we know how many symbols will be in the output file. Adjust
+ the count in the section data. */
+ symdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_SYM, nsym);
+ if (unlikely (xndxdata != NULL))
+ xndxdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_WORD, nsym);
+
+ /* Create the symbol string table section. */
+ strscn = elf_newscn (ld_state.outelf);
+ ld_state.strscnidx = elf_ndxscn (strscn);
+ data = elf_newdata (strscn);
+ xelf_getshdr (strscn, shdr);
+ if (data == NULL || shdr == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ /* Create a compact string table, allocate the memory for it, and
+ fill in the section data information. */
+ ebl_strtabfinalize (strtab, data);
+
+ shdr->sh_type = SHT_STRTAB;
+ assert (shdr->sh_entsize == 0);
+
+ if (unlikely (xelf_update_shdr (strscn, shdr) == 0))
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section for output file: %s"),
+ elf_errmsg (-1));
+
+ /* Fill in the offsets of the symbol names. */
+ for (cnt = 1; cnt < nsym; ++cnt)
+ if (symstrent[cnt] != NULL)
+ {
+ XElf_Sym_vardef (sym);
+
+ /* Note that we don't have to use 'xelf_getsymshndx' since we don't
+ modify the section index. */
+ xelf_getsym (symdata, cnt, sym);
+ /* This better worked, we did it before. */
+ assert (sym != NULL);
+ sym->st_name = ebl_strtaboffset (symstrent[cnt]);
+ (void) xelf_update_sym (symdata, cnt, sym);
+ }
+
+ /* Since we are going to reorder the symbol table but still have to
+ be able to find the new position based on the old one (since the
+ latter is stored in 'symindirect' information of the input file
+ data structure) we have to create yet another indirection
+ table. */
+ ld_state.dblindirect = dblindirect
+ = (Elf32_Word *) xmalloc (nsym * sizeof (Elf32_Word));
+
+ /* Sort the symbol table so that the local symbols come first. */
+ /* XXX We don't use stable sorting here. It seems not necessary and
+ would be more expensive. If it turns out to be necessary this can
+ be fixed easily. */
+ nsym_local = 1;
+ cnt = nsym - 1;
+ while (nsym_local < cnt)
+ {
+ XElf_Sym_vardef (locsym);
+ Elf32_Word locxndx;
+ XElf_Sym_vardef (globsym);
+ Elf32_Word globxndx;
+
+ do
+ {
+ xelf_getsymshndx (symdata, xndxdata, nsym_local, locsym, locxndx);
+ /* This better works. */
+ assert (locsym != NULL);
+
+ if (XELF_ST_BIND (locsym->st_info) != STB_LOCAL
+ && (ld_state.need_symtab || ld_state.export_all_dynamic))
+ {
+ do
+ {
+ xelf_getsymshndx (symdata, xndxdata, cnt, globsym, globxndx);
+ /* This better works. */
+ assert (globsym != NULL);
+
+ if (unlikely (XELF_ST_BIND (globsym->st_info) == STB_LOCAL))
+ {
+ /* We swap the two entries. */
+#if NATIVE_ELF != 0
+ /* Since we directly modify the data in the ELF
+ data structure we have to make a copy of one
+ of the entries. */
+ XElf_Sym locsym_copy = *locsym;
+ locsym = &locsym_copy;
+#endif
+ xelf_update_symshndx (symdata, xndxdata, nsym_local,
+ globsym, globxndx, 1);
+ xelf_update_symshndx (symdata, xndxdata, cnt,
+ locsym, locxndx, 1);
+
+ /* Also swap the cross references. */
+ dblindirect[nsym_local] = cnt;
+ dblindirect[cnt] = nsym_local;
+
+ /* And the entries for the symbol names. */
+ struct Ebl_Strent *strtmp = symstrent[nsym_local];
+ symstrent[nsym_local] = symstrent[cnt];
+ symstrent[cnt] = strtmp;
+
+ /* And the mapping from symbol table entry to
+ struct symbol record. */
+ struct symbol *symtmp = ndxtosym[nsym_local];
+ ndxtosym[nsym_local] = ndxtosym[cnt];
+ ndxtosym[cnt] = symtmp;
+
+ /* Go to the next entry. */
+ ++nsym_local;
+ --cnt;
+
+ break;
+ }
+
+ dblindirect[cnt] = cnt;
+ }
+ while (nsym_local < --cnt);
+
+ break;
+ }
+
+ dblindirect[nsym_local] = nsym_local;
+ }
+ while (++nsym_local < cnt);
+ }
+
+ /* The symbol 'nsym_local' is currently pointing to might be local,
+ too. Check and increment the variable if this is the case. */
+ if (likely (nsym_local < nsym))
+ {
+ XElf_Sym_vardef (locsym);
+
+ /* This entry isn't moved. */
+ dblindirect[nsym_local] = nsym_local;
+
+ /* Note that it is OK to not use 'xelf_getsymshndx' here. */
+ xelf_getsym (symdata, nsym_local, locsym);
+ /* This better works. */
+ assert (locsym != NULL);
+
+ if (XELF_ST_BIND (locsym->st_info) == STB_LOCAL)
+ ++nsym_local;
+ }
+
+
+ /* We need the versym array right away to keep track of the version
+ symbols. */
+ if (ld_state.versymscnidx != 0)
+ {
+ /* We allocate more memory than we need since the array is morroring
+ the dynamic symbol table and not the normal symbol table. I.e.,
+ no local symbols are present. */
+ versymscn = elf_getscn (ld_state.outelf, ld_state.versymscnidx);
+ versymdata = elf_newdata (versymscn);
+ if (versymdata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create versioning section: %s"),
+ elf_errmsg (-1));
+
+ versymdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_HALF,
+ nsym - nsym_local + 1);
+ versymdata->d_buf = xcalloc (1, versymdata->d_size);
+ versymdata->d_align = xelf_fsize (ld_state.outelf, ELF_T_HALF, 1);
+ versymdata->d_off = 0;
+ versymdata->d_type = ELF_T_HALF;
+ }
+
+
+ /* If we have to construct the dynamic symbol table we must not include
+ the local symbols. If the normal symbol has to be emitted as well
+ we haven't done anything else yet and we can construct it from
+ scratch now. */
+ if (unlikely (!ld_state.need_symtab))
+ {
+ /* Note that the following code works even if there is no entry
+ to remove since the zeroth entry is always local. */
+ size_t reduce = xelf_fsize (ld_state.outelf, ELF_T_SYM, nsym_local - 1);
+
+ XElf_Sym_vardef (nullsym);
+ xelf_getsym_ptr (symdata, nsym_local - 1, nullsym);
+
+ /* Note that we don't have to use 'xelf_update_symshndx' since
+ this is the dynamic symbol table we write. */
+ (void) xelf_update_sym (symdata, nsym_local - 1,
+ memset (nullsym, '\0', sizeof (*nullsym)));
+
+ /* Update the buffer pointer and size in the output data. */
+ symdata->d_buf = (char *) symdata->d_buf + reduce;
+ symdata->d_size -= reduce;
+
+ /* Add the version symbol information. */
+ if (versymdata != NULL)
+ {
+ nsym_dyn = 1;
+ for (cnt = nsym_local; cnt < nsym; ++cnt, ++nsym_dyn)
+ {
+ struct symbol *symp = ndxtosym[cnt];
+
+ if (symp->file->versymdata != NULL)
+ {
+ GElf_Versym versym;
+
+ gelf_getversym (symp->file->versymdata, symp->symidx,
+ &versym);
+
+ (void) gelf_update_versym (versymdata, symp->outdynsymidx,
+ &symp->file->verdefused[versym]);
+ }
+ }
+ }
+
+ /* Since we only created the dynamic symbol table the number of
+ dynamic symbols is the total number of symbols. */
+ nsym_dyn = nsym - nsym_local + 1;
+
+ /* XXX TBI. Create whatever data structure is missing. */
+ abort ();
+ }
+ else if (ld_state.need_dynsym)
+ {
+ /* Create the dynamic symbol table section data along with the
+ string table. We look at all non-local symbols we found for
+ the normal symbol table and add those. */
+ dynsymscn = elf_getscn (ld_state.outelf, ld_state.dynsymscnidx);
+ dynsymdata = elf_newdata (dynsymscn);
+
+ dynstrdata = elf_newdata (elf_getscn (ld_state.outelf,
+ ld_state.dynstrscnidx));
+ if (dynsymdata == NULL || dynstrdata == NULL)
+ error (EXIT_FAILURE, 0, gettext ("\
+cannot create dynamic symbol table for output file: %s"),
+ elf_errmsg (-1));
+
+ nsym_dyn_allocated = nsym - nsym_local + 1;
+ dynsymdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_SYM,
+ nsym_dyn_allocated);
+ dynsymdata->d_buf = memset (xmalloc (dynsymdata->d_size), '\0',
+ xelf_fsize (ld_state.outelf, ELF_T_SYM, 1));
+ dynsymdata->d_type = ELF_T_SYM;
+ dynsymdata->d_off = 0;
+ dynsymdata->d_align = xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1);
+
+ /* We need one more array which contains the hash codes of the
+ symbol names. */
+ hashcodes = (Elf32_Word *) xcalloc (__builtin_popcount ((int) ld_state.hash_style)
+ * nsym_dyn_allocated,
+ sizeof (Elf32_Word));
+ gnuhashcodes = hashcodes;
+ if (GENERATE_SYSV_HASH)
+ gnuhashcodes += nsym_dyn_allocated;
+
+ /* We have and empty entry at the beginning. */
+ nsym_dyn = 1;
+
+ /* Populate the table. */
+ for (cnt = nsym_local; cnt < nsym; ++cnt)
+ {
+ XElf_Sym_vardef (sym);
+
+ xelf_getsym (symdata, cnt, sym);
+ assert (sym != NULL);
+
+ if (sym->st_shndx == SHN_XINDEX)
+ error (EXIT_FAILURE, 0, gettext ("\
+section index too large in dynamic symbol table"));
+
+ /* We do not add the symbol to the dynamic symbol table if
+
+ - the symbol is for a file
+ - it is not externally visible (internal, hidden)
+ - export_all_dynamic is not set and the symbol is only defined
+ in the executable (i.e., it is defined, but not (also) in DSO)
+
+ Set symstrent[cnt] to NULL in case an entry is ignored. */
+ if (XELF_ST_TYPE (sym->st_info) == STT_FILE
+ || XELF_ST_VISIBILITY (sym->st_other) == STV_INTERNAL
+ || XELF_ST_VISIBILITY (sym->st_other) == STV_HIDDEN
+ || (!ld_state.export_all_dynamic
+ && !ndxtosym[cnt]->in_dso && ndxtosym[cnt]->defined))
+ {
+ symstrent[cnt] = NULL;
+ continue;
+ }
+
+ /* Store the index of the symbol in the dynamic symbol
+ table. This is a preliminary value in case we use the
+ GNU-style hash table. */
+ ndxtosym[cnt]->outdynsymidx = nsym_dyn;
+
+ /* Create a new string table entry. */
+ const char *str = ndxtosym[cnt]->name;
+ symstrent[cnt] = ebl_strtabadd (dynstrtab, str, 0);
+ if (GENERATE_SYSV_HASH)
+ hashcodes[nsym_dyn] = elf_hash (str);
+ if (GENERATE_GNU_HASH)
+ gnuhashcodes[nsym_dyn] = elf_gnu_hash (str);
+ ++nsym_dyn;
+ }
+
+ if (ld_state.file_type != relocatable_file_type)
+ {
+ /* Finalize the dynamic string table. */
+ ebl_strtabfinalize (dynstrtab, dynstrdata);
+
+ assert (ld_state.hashscnidx != 0 || ld_state.gnuhashscnidx != 0);
+
+ /* Create the GNU-style hash table. */
+ if (GENERATE_GNU_HASH)
+ create_gnu_hash (nsym_local, nsym, nsym_dyn, gnuhashcodes);
+
+ /* Create the SysV-style hash table. This has to happen
+ after the GNU-style table is created since
+ CREATE-GNU-HASH might reorder the dynamic symbol table. */
+ if (GENERATE_SYSV_HASH)
+ create_hash (nsym_local, nsym, nsym_dyn, hashcodes);
+ }
+
+ /* Add the version information. */
+ if (versymdata != NULL)
+ for (cnt = nsym_local; cnt < nsym; ++cnt)
+ if (symstrent[cnt] != NULL)
+ {
+ struct symbol *symp = ndxtosym[cnt];
+
+ /* Synthetic symbols (i.e., those with no file attached)
+ have no version information. */
+ if (symp->file != NULL && symp->file->verdefdata != NULL)
+ {
+ GElf_Versym versym;
+
+ gelf_getversym (symp->file->versymdata, symp->symidx,
+ &versym);
+
+ (void) gelf_update_versym (versymdata, symp->outdynsymidx,
+ &symp->file->verdefused[versym]);
+ }
+ else
+ {
+ /* XXX Add support for version definitions. */
+ GElf_Versym global = VER_NDX_GLOBAL;
+ (void) gelf_update_versym (versymdata, nsym_dyn, &global);
+ }
+ }
+
+ /* Update the information about the symbol section. */
+ if (versymdata != NULL)
+ {
+ /* Correct the size now that we know how many entries the
+ dynamic symbol table has. */
+ versymdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_HALF,
+ nsym_dyn);
+
+ /* Add the reference to the symbol table. */
+ xelf_getshdr (versymscn, shdr);
+ assert (shdr != NULL);
+
+ shdr->sh_link = ld_state.dynsymscnidx;
+
+ (void) xelf_update_shdr (versymscn, shdr);
+ }
+ }
+
+ if (ld_state.file_type != relocatable_file_type)
+ {
+ /* Now put the names in. */
+ for (cnt = nsym_local; cnt < nsym; ++cnt)
+ if (symstrent[cnt] != NULL)
+ {
+ XElf_Sym_vardef (sym);
+ size_t dynidx = ndxtosym[cnt]->outdynsymidx;
+
+#if NATIVE_ELF != 0
+ XElf_Sym *osym;
+ memcpy (xelf_getsym (dynsymdata, dynidx, sym),
+ xelf_getsym (symdata, cnt, osym),
+ sizeof (XElf_Sym));
+#else
+ xelf_getsym (symdata, cnt, sym);
+ assert (sym != NULL);
+#endif
+
+ sym->st_name = ebl_strtaboffset (symstrent[cnt]);
+
+ (void) xelf_update_sym (dynsymdata, dynidx, sym);
+ }
+
+ free (hashcodes);
+
+ /* Create the required version section. */
+ if (ld_state.verneedscnidx != 0)
+ {
+ Elf_Scn *verneedscn;
+ Elf_Data *verneeddata;
+ struct usedfiles *runp;
+ size_t verneed_size = xelf_fsize (ld_state.outelf, ELF_T_VNEED, 1);
+ size_t vernaux_size = xelf_fsize (ld_state.outelf, ELF_T_VNAUX, 1);
+ size_t offset;
+ int ntotal;
+
+ verneedscn = elf_getscn (ld_state.outelf, ld_state.verneedscnidx);
+ xelf_getshdr (verneedscn, shdr);
+ verneeddata = elf_newdata (verneedscn);
+ if (shdr == NULL || verneeddata == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create versioning data: %s"),
+ elf_errmsg (-1));
+
+ verneeddata->d_size = (ld_state.nverdeffile * verneed_size
+ + ld_state.nverdefused * vernaux_size);
+ verneeddata->d_buf = xmalloc (verneeddata->d_size);
+ verneeddata->d_type = ELF_T_VNEED;
+ verneeddata->d_align = xelf_fsize (ld_state.outelf, ELF_T_WORD, 1);
+ verneeddata->d_off = 0;
+
+ offset = 0;
+ ntotal = ld_state.nverdeffile;
+ runp = ld_state.dsofiles->next;
+ do
+ {
+ offset = create_verneed_data (offset, verneeddata, runp,
+ &ntotal);
+ runp = runp->next;
+ }
+ while (ntotal > 0 && runp != ld_state.dsofiles->next);
+
+ if (ntotal > 0)
+ {
+ runp = ld_state.needed->next;
+ do
+ {
+ offset = create_verneed_data (offset, verneeddata, runp,
+ &ntotal);
+ runp = runp->next;
+ }
+ while (ntotal > 0 && runp != ld_state.needed->next);
+ }
+
+ assert (offset == verneeddata->d_size);
+
+ /* Add the needed information to the section header. */
+ shdr->sh_link = ld_state.dynstrscnidx;
+ shdr->sh_info = ld_state.nverdeffile;
+ (void) xelf_update_shdr (verneedscn, shdr);
+ }
+
+ /* Adjust the section size. */
+ dynsymdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_SYM, nsym_dyn);
+ if (versymdata != NULL)
+ versymdata->d_size = xelf_fsize (ld_state.outelf, ELF_T_HALF,
+ nsym_dyn);
+
+ /* Add the remaining information to the section header. */
+ xelf_getshdr (dynsymscn, shdr);
+ /* There is always exactly one local symbol. */
+ shdr->sh_info = 1;
+ /* Reference the string table. */
+ shdr->sh_link = ld_state.dynstrscnidx;
+ /* Write the updated info back. */
+ (void) xelf_update_shdr (dynsymscn, shdr);
+ }
+
+ /* We don't need the string table anymore. */
+ free (symstrent);
+
+ /* Remember the total number of symbols in the dynamic symbol table. */
+ ld_state.ndynsym = nsym_dyn;
+
+ /* Fill in the section header information. */
+ symscn = elf_getscn (ld_state.outelf, ld_state.symscnidx);
+ xelf_getshdr (symscn, shdr);
+ if (shdr == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create symbol table for output file: %s"),
+ elf_errmsg (-1));
+
+ shdr->sh_type = SHT_SYMTAB;
+ shdr->sh_link = ld_state.strscnidx;
+ shdr->sh_info = nsym_local;
+ shdr->sh_entsize = xelf_fsize (ld_state.outelf, ELF_T_SYM, 1);
+
+ (void) xelf_update_shdr (symscn, shdr);
+
+
+ /* Add names for the generated sections. */
+ if (ld_state.symscnidx != 0)
+ symtab_ent = ebl_strtabadd (ld_state.shstrtab, ".symtab", 8);
+ if (ld_state.xndxscnidx != 0)
+ xndx_ent = ebl_strtabadd (ld_state.shstrtab, ".symtab_shndx", 14);
+ if (ld_state.strscnidx != 0)
+ strtab_ent = ebl_strtabadd (ld_state.shstrtab, ".strtab", 8);
+ /* At this point we would have to test for failures in the
+ allocation. But we skip this. First, the problem will be caught
+ later when doing more allocations for the section header table.
+ Even if this would not be the case all that would happen is that
+ the section names are empty. The binary would still be usable if
+ it is an executable or a DSO. Not adding the test here saves
+ quite a bit of code. */
+
+
+ /* Finally create the section for the section header string table. */
+ shstrtab_scn = elf_newscn (ld_state.outelf);
+ shstrtab_ndx = elf_ndxscn (shstrtab_scn);
+ if (unlikely (shstrtab_ndx == SHN_UNDEF))
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section header string section: %s"),
+ elf_errmsg (-1));
+
+ /* Add the name of the section to the string table. */
+ shstrtab_ent = ebl_strtabadd (ld_state.shstrtab, ".shstrtab", 10);
+ if (unlikely (shstrtab_ent == NULL))
+ error (EXIT_FAILURE, errno,
+ gettext ("cannot create section header string section"));
+
+ /* Finalize the section header string table. */
+ data = elf_newdata (shstrtab_scn);
+ if (data == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section header string section: %s"),
+ elf_errmsg (-1));
+ ebl_strtabfinalize (ld_state.shstrtab, data);
+
+ /* Now we know the string offsets for all section names. */
+ for (cnt = 0; cnt < ld_state.nallsections; ++cnt)
+ if (ld_state.allsections[cnt]->scnidx != 0)
+ {
+ Elf_Scn *scn;
+
+ scn = elf_getscn (ld_state.outelf, ld_state.allsections[cnt]->scnidx);
+
+ xelf_getshdr (scn, shdr);
+ assert (shdr != NULL);
+
+ shdr->sh_name = ebl_strtaboffset (ld_state.allsections[cnt]->nameent);
+
+ if (xelf_update_shdr (scn, shdr) == 0)
+ assert (0);
+ }
+
+ /* Add the names for the generated sections to the respective
+ section headers. */
+ if (symtab_ent != NULL)
+ {
+ Elf_Scn *scn = elf_getscn (ld_state.outelf, ld_state.symscnidx);
+
+ xelf_getshdr (scn, shdr);
+ /* This cannot fail, we already accessed the header before. */
+ assert (shdr != NULL);
+
+ shdr->sh_name = ebl_strtaboffset (symtab_ent);
+
+ (void) xelf_update_shdr (scn, shdr);
+ }
+ if (xndx_ent != NULL)
+ {
+ Elf_Scn *scn = elf_getscn (ld_state.outelf, ld_state.xndxscnidx);
+
+ xelf_getshdr (scn, shdr);
+ /* This cannot fail, we already accessed the header before. */
+ assert (shdr != NULL);
+
+ shdr->sh_name = ebl_strtaboffset (xndx_ent);
+
+ (void) xelf_update_shdr (scn, shdr);
+ }
+ if (strtab_ent != NULL)
+ {
+ Elf_Scn *scn = elf_getscn (ld_state.outelf, ld_state.strscnidx);
+
+ xelf_getshdr (scn, shdr);
+ /* This cannot fail, we already accessed the header before. */
+ assert (shdr != NULL);
+
+ shdr->sh_name = ebl_strtaboffset (strtab_ent);
+
+ (void) xelf_update_shdr (scn, shdr);
+ }
+
+ /* And the section header table section itself. */
+ xelf_getshdr (shstrtab_scn, shdr);
+ if (shdr == NULL)
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section header string section: %s"),
+ elf_errmsg (-1));
+
+ shdr->sh_name = ebl_strtaboffset (shstrtab_ent);
+ shdr->sh_type = SHT_STRTAB;
+
+ if (unlikely (xelf_update_shdr (shstrtab_scn, shdr) == 0))
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot create section header string section: %s"),
+ elf_errmsg (-1));
+
+
+ /* Add the correct section header info to the section group sections. */
+ groups = ld_state.groups;
+ while (groups != NULL)
+ {
+ Elf_Scn *scn = elf_getscn (ld_state.outelf, groups->outscnidx);
+ xelf_getshdr (scn, shdr);
+ assert (shdr != NULL);
+
+ shdr->sh_name = ebl_strtaboffset (groups->nameent);
+ shdr->sh_type = SHT_GROUP;
+ shdr->sh_flags = 0;
+ shdr->sh_link = ld_state.symscnidx;
+ shdr->sh_entsize = sizeof (Elf32_Word);
+
+ /* Determine the index for the signature symbol. */
+ Elf32_Word si
+ = groups->symbol->file->symindirect[groups->symbol->symidx];
+ if (si == 0)
+ {
+ assert (groups->symbol->file->symref[groups->symbol->symidx]
+ != NULL);
+ si = groups->symbol->file->symref[groups->symbol->symidx]->outsymidx;
+ assert (si != 0);
+ }
+ shdr->sh_info = ld_state.dblindirect[si];
+
+ (void) xelf_update_shdr (scn, shdr);
+
+ struct scngroup *oldp = groups;
+ groups = groups->next;
+ free (oldp);
+ }
+
+
+ if (ld_state.file_type != relocatable_file_type)
+ {
+ /* Every executable needs a program header. The number of entries
+ varies. One exists for each segment. Each SHT_NOTE section gets
+ one, too. For dynamically linked executables we have to create
+ one for the program header, the interpreter, and the dynamic
+ section. First count the number of segments.
+
+ XXX Determine whether the segment is non-empty. */
+ size_t nphdr = 0;
+
+ /* We always add a PT_GNU_stack entry. */
+ ++nphdr;
+
+ struct output_segment *segment = ld_state.output_segments;
+ while (segment != NULL)
+ {
+ ++nphdr;
+ segment = segment->next;
+ }
+
+ /* Add the number of SHT_NOTE sections. We counted them earlier. */
+ nphdr += ld_state.nnotesections;
+
+ /* If we create a DSO or the file is linked against DSOs we have
+ at least one more entry: DYNAMIC. If an interpreter is
+ specified we add PHDR and INTERP, too. */
+ if (dynamically_linked_p ())
+ {
+ ++nphdr;
+
+ if (ld_state.interp != NULL || ld_state.file_type != dso_file_type)
+ nphdr += 2;
+ }
+
+ /* If we need a TLS segment we need an entry for that. */
+ if (ld_state.need_tls)
+ ++nphdr;
+
+ /* Create the program header structure. */
+ XElf_Phdr_vardef (phdr);
+ if (xelf_newphdr (ld_state.outelf, nphdr) == 0)
+ error (EXIT_FAILURE, 0, gettext ("cannot create program header: %s"),
+ elf_errmsg (-1));
+
+
+ /* Determine the section sizes and offsets. We have to do this
+ to be able to determine the memory layout (which normally
+ differs from the file layout). */
+ if (elf_update (ld_state.outelf, ELF_C_NULL) == -1)
+ error (EXIT_FAILURE, 0, gettext ("while determining file layout: %s"),
+ elf_errmsg (-1));
+
+
+ /* Now determine the memory addresses of all the sections and
+ segments. */
+ Elf32_Word nsec = 0;
+ Elf_Scn *scn = elf_getscn (ld_state.outelf,
+ ld_state.allsections[nsec]->scnidx);
+ xelf_getshdr (scn, shdr);
+ assert (shdr != NULL);
+
+ /* The address we start with is the offset of the first (not
+ zeroth) section. */
+ XElf_Addr addr = shdr->sh_offset;
+ XElf_Addr tls_offset = 0;
+ XElf_Addr tls_start = ~((XElf_Addr) 0);
+ XElf_Addr tls_end = 0;
+ XElf_Off tls_filesize = 0;
+ XElf_Addr tls_align = 0;
+
+ /* The index of the first loadable segment. */
+ nphdr = 0;
+ if (dynamically_linked_p ())
+ {
+ ++nphdr;
+ if (ld_state.interp != NULL
+ || ld_state.file_type != dso_file_type)
+ nphdr += 2;
+ }
+
+ segment = ld_state.output_segments;
+ while (segment != NULL)
+ {
+ struct output_rule *orule;
+ bool first_section = true;
+ XElf_Off nobits_size = 0;
+ XElf_Off memsize = 0;
+
+ /* The minimum alignment is a page size. */
+ segment->align = ld_state.pagesize;
+
+ for (orule = segment->output_rules; orule != NULL;
+ orule = orule->next)
+ if (orule->tag == output_section)
+ {
+ /* See whether this output rule corresponds to the next
+ section. Yes, this is a pointer comparison. */
+ if (ld_state.allsections[nsec]->name
+ != orule->val.section.name)
+ /* No, ignore this output rule. */
+ continue;
+
+ /* We assign addresses only in segments which are actually
+ loaded. */
+ if (segment->mode != 0)
+ {
+ /* Adjust the offset of the input sections. */
+ struct scninfo *isect;
+ struct scninfo *first;
+
+ isect = first = ld_state.allsections[nsec]->last;
+ if (isect != NULL)
+ do
+ isect->offset += addr;
+ while ((isect = isect->next) != first);
+
+ /* Set the address of current section. */
+ shdr->sh_addr = addr;
+
+ /* Write the result back. */
+ (void) xelf_update_shdr (scn, shdr);
+
+ /* Remember the address. */
+ ld_state.allsections[nsec]->addr = addr;
+
+ /* Handle TLS sections. */
+ if (unlikely (shdr->sh_flags & SHF_TLS))
+ {
+ if (tls_start > addr)
+ {
+ tls_start = addr;
+ tls_offset = shdr->sh_offset;
+ }
+ if (tls_end < addr + shdr->sh_size)
+ tls_end = addr + shdr->sh_size;
+ if (shdr->sh_type != SHT_NOBITS)
+ tls_filesize += shdr->sh_size;
+ if (shdr->sh_addralign > tls_align)
+ tls_align = shdr->sh_addralign;
+ }
+ }
+
+ if (first_section)
+ {
+ /* The first segment starts at offset zero. */
+ if (segment == ld_state.output_segments)
+ {
+ segment->offset = 0;
+ segment->addr = addr - shdr->sh_offset;
+ }
+ else
+ {
+ segment->offset = shdr->sh_offset;
+ segment->addr = addr;
+ }
+
+ /* Determine the maximum alignment requirement. */
+ segment->align = MAX (segment->align, shdr->sh_addralign);
+
+ first_section = false;
+ }
+
+ /* NOBITS TLS sections are not laid out in address space
+ along with the other sections. */
+ if (shdr->sh_type != SHT_NOBITS
+ || (shdr->sh_flags & SHF_TLS) == 0)
+ {
+ memsize = (shdr->sh_offset - segment->offset
+ + shdr->sh_size);
+ if (nobits_size != 0 && shdr->sh_type != SHT_NOTE)
+ error (EXIT_FAILURE, 0, gettext ("\
+internal error: non-nobits section follows nobits section"));
+ if (shdr->sh_type == SHT_NOBITS)
+ nobits_size += shdr->sh_size;
+ }
+
+ /* Determine the new address which is computed using
+ the difference of the offsets on the sections. Note
+ that this assumes that the sections following each
+ other in the section header table are also
+ consecutive in the file. This is true here because
+ libelf constructs files this way. */
+ XElf_Off oldoff = shdr->sh_offset;
+
+ if (++nsec >= ld_state.nallsections)
+ break;
+
+ scn = elf_getscn (ld_state.outelf,
+ ld_state.allsections[nsec]->scnidx);
+ xelf_getshdr (scn, shdr);
+ assert (shdr != NULL);
+
+ /* This is the new address resulting from the offsets
+ in the file. */
+ assert (oldoff <= shdr->sh_offset);
+ addr += shdr->sh_offset - oldoff;
+ }
+ else
+ {
+ assert (orule->tag == output_assignment);
+
+ if (strcmp (orule->val.assignment->variable, ".") == 0)
+ /* This is a change of the address. */
+ addr = eval_expression (orule->val.assignment->expression,
+ addr);
+ else if (orule->val.assignment->sym != NULL)
+ {
+ /* This symbol is used. Update the symbol table
+ entry. */
+ XElf_Sym_vardef (sym);
+ size_t idx;
+
+ /* Note that we do not have to use
+ xelf_getsymshndx since we only update the
+ symbol address, not the section
+ information. */
+ idx = dblindirect[orule->val.assignment->sym->outsymidx];
+ xelf_getsym (symdata, idx, sym);
+ sym->st_value = addr;
+ (void) xelf_update_sym (symdata, idx, sym);
+
+ idx = orule->val.assignment->sym->outdynsymidx;
+ if (idx != 0)
+ {
+ assert (dynsymdata != NULL);
+ xelf_getsym (dynsymdata, idx, sym);
+ sym->st_value = addr;
+ (void) xelf_update_sym (dynsymdata, idx, sym);
+ }
+ }
+ }
+
+ /* Store the segment parameter for loadable segments. */
+ if (segment->mode != 0)
+ {
+ xelf_getphdr_ptr (ld_state.outelf, nphdr, phdr);
+
+ phdr->p_type = PT_LOAD;
+ phdr->p_offset = segment->offset;
+ phdr->p_vaddr = segment->addr;
+ phdr->p_paddr = phdr->p_vaddr;
+ phdr->p_filesz = memsize - nobits_size;
+ phdr->p_memsz = memsize;
+ phdr->p_flags = segment->mode;
+ phdr->p_align = segment->align;
+
+ (void) xelf_update_phdr (ld_state.outelf, nphdr, phdr);
+ ++nphdr;
+ }
+
+ segment = segment->next;
+ }
+
+ /* Create the other program header entries. */
+ xelf_getehdr (ld_state.outelf, ehdr);
+ assert (ehdr != NULL);
+
+ /* Add the TLS information. */
+ if (ld_state.need_tls)
+ {
+ xelf_getphdr_ptr (ld_state.outelf, nphdr, phdr);
+ phdr->p_type = PT_TLS;
+ phdr->p_offset = tls_offset;
+ phdr->p_vaddr = tls_start;
+ phdr->p_paddr = tls_start;
+ phdr->p_filesz = tls_filesize;
+ phdr->p_memsz = tls_end - tls_start;
+ phdr->p_flags = PF_R;
+ phdr->p_align = tls_align;
+ ld_state.tls_tcb = tls_end;
+ ld_state.tls_start = tls_start;
+
+ (void) xelf_update_phdr (ld_state.outelf, nphdr, phdr);
+ ++nphdr;
+ }
+
+ /* Add the stack information. */
+ xelf_getphdr_ptr (ld_state.outelf, nphdr, phdr);
+ phdr->p_type = PT_GNU_STACK;
+ phdr->p_offset = 0;
+ phdr->p_vaddr = 0;
+ phdr->p_paddr = 0;
+ phdr->p_filesz = 0;
+ phdr->p_memsz = 0;
+ phdr->p_flags = (PF_R | PF_W
+ | (ld_state.execstack == execstack_true ? PF_X : 0));
+ phdr->p_align = xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1);
+
+ (void) xelf_update_phdr (ld_state.outelf, nphdr, phdr);
+ ++nphdr;
+
+
+ /* Adjust the addresses in the address fields of the symbol
+ records according to the load addresses of the sections. */
+ if (ld_state.need_symtab)
+ for (cnt = 1; cnt < nsym; ++cnt)
+ {
+ XElf_Sym_vardef (sym);
+ Elf32_Word shndx;
+
+ xelf_getsymshndx (symdata, xndxdata, cnt, sym, shndx);
+ assert (sym != NULL);
+
+ if (sym->st_shndx != SHN_XINDEX)
+ shndx = sym->st_shndx;
+
+ if ((shndx > SHN_UNDEF && shndx < SHN_LORESERVE)
+ || shndx > SHN_HIRESERVE)
+ {
+ /* Note we subtract 1 from the section index since ALLSECTIONS
+ does not store the dummy section with offset zero. */
+ sym->st_value += ld_state.allsections[shndx - 1]->addr;
+
+ /* We don't have to use 'xelf_update_symshndx' since the
+ section number doesn't change. */
+ (void) xelf_update_sym (symdata, cnt, sym);
+ }
+ }
+
+ if (ld_state.need_dynsym)
+ for (cnt = 1; cnt < nsym_dyn; ++cnt)
+ {
+ XElf_Sym_vardef (sym);
+
+ xelf_getsym (dynsymdata, cnt, sym);
+ assert (sym != NULL);
+
+ if (sym->st_shndx > SHN_UNDEF && sym->st_shndx < SHN_LORESERVE)
+ {
+ /* Note we subtract 1 from the section index since ALLSECTIONS
+ does not store the dummy section with offset zero. */
+ sym->st_value += ld_state.allsections[sym->st_shndx - 1]->addr;
+
+ /* We don't have to use 'xelf_update_symshndx' since the
+ section number doesn't change. */
+ (void) xelf_update_sym (dynsymdata, cnt, sym);
+ }
+ }
+
+ /* Now is a good time to determine the values of all the symbols
+ we encountered. */
+ // XXX This loop is very inefficient. The hash tab iterator also
+ // returns all symbols in DSOs.
+ struct symbol *se;
+ void *p = NULL;
+ while ((se = ld_symbol_tab_iterate (&ld_state.symbol_tab, &p)) != NULL)
+ if (! se->in_dso)
+ {
+ XElf_Sym_vardef (sym);
+
+ addr = 0;
+
+ if (se->outdynsymidx != 0)
+ {
+ xelf_getsym (dynsymdata, se->outdynsymidx, sym);
+ assert (sym != NULL);
+ addr = sym->st_value;
+ }
+ else if (se->outsymidx != 0)
+ {
+ assert (dblindirect[se->outsymidx] != 0);
+ xelf_getsym (symdata, dblindirect[se->outsymidx], sym);
+ assert (sym != NULL);
+ addr = sym->st_value;
+ }
+ else
+ abort ();
+
+ se->merge.value = addr;
+ }
+
+ /* Complete the header of the .rel.dyn/.rela.dyn section. Point
+ to the symbol table. The sh_info field is left zero since
+ there is no specific section the contained relocations are
+ for. */
+ if (ld_state.reldynscnidx != 0)
+ {
+ assert (ld_state.dynsymscnidx != 0);
+ scn = elf_getscn (ld_state.outelf, ld_state.reldynscnidx);
+ xelf_getshdr (scn, shdr);
+ assert (shdr != NULL);
+
+ shdr->sh_link = ld_state.dynsymscnidx;
+
+ (void) xelf_update_shdr (scn, shdr);
+ }
+
+ /* Fill in the dynamic segment/section. */
+ if (dynamically_linked_p ())
+ {
+ Elf_Scn *outscn;
+
+ int idx = 0;
+ if (ld_state.interp != NULL || ld_state.file_type != dso_file_type)
+ {
+ assert (ld_state.interpscnidx != 0);
+ xelf_getshdr (elf_getscn (ld_state.outelf,
+ ld_state.interpscnidx), shdr);
+ assert (shdr != NULL);
+
+ xelf_getphdr_ptr (ld_state.outelf, idx, phdr);
+ phdr->p_type = PT_PHDR;
+ phdr->p_offset = ehdr->e_phoff;
+ phdr->p_vaddr = ld_state.output_segments->addr + phdr->p_offset;
+ phdr->p_paddr = phdr->p_vaddr;
+ phdr->p_filesz = ehdr->e_phnum * ehdr->e_phentsize;
+ phdr->p_memsz = phdr->p_filesz;
+ phdr->p_flags = 0; /* No need to set PF_R or so. */
+ phdr->p_align = xelf_fsize (ld_state.outelf, ELF_T_ADDR, 1);
+
+ (void) xelf_update_phdr (ld_state.outelf, idx, phdr);
+ ++idx;
+
+ /* The interpreter string. */
+ xelf_getphdr_ptr (ld_state.outelf, idx, phdr);
+ phdr->p_type = PT_INTERP;
+ phdr->p_offset = shdr->sh_offset;
+ phdr->p_vaddr = shdr->sh_addr;
+ phdr->p_paddr = phdr->p_vaddr;
+ phdr->p_filesz = shdr->sh_size;
+ phdr->p_memsz = phdr->p_filesz;
+ phdr->p_flags = 0; /* No need to set PF_R or so. */
+ phdr->p_align = 1; /* It's a string. */
+
+ (void) xelf_update_phdr (ld_state.outelf, idx, phdr);
+ ++idx;
+ }
+
+ /* The pointer to the dynamic section. We this we need to
+ get the information for the dynamic section first. */
+ assert (ld_state.dynamicscnidx);
+ outscn = elf_getscn (ld_state.outelf, ld_state.dynamicscnidx);
+ xelf_getshdr (outscn, shdr);
+ assert (shdr != NULL);
+
+ xelf_getphdr_ptr (ld_state.outelf, idx, phdr);
+ phdr->p_type = PT_DYNAMIC;
+ phdr->p_offset = shdr->sh_offset;
+ phdr->p_vaddr = shdr->sh_addr;
+ phdr->p_paddr = phdr->p_vaddr;
+ phdr->p_filesz = shdr->sh_size;
+ phdr->p_memsz = phdr->p_filesz;
+ phdr->p_flags = 0; /* No need to set PF_R or so. */
+ phdr->p_align = shdr->sh_addralign;
+
+ (void) xelf_update_phdr (ld_state.outelf, idx, phdr);
+
+ /* Fill in the reference to the .dynstr section. */
+ assert (ld_state.dynstrscnidx != 0);
+ shdr->sh_link = ld_state.dynstrscnidx;
+ (void) xelf_update_shdr (outscn, shdr);
+
+ /* And fill the remaining entries. */
+ Elf_Data *dyndata = elf_getdata (outscn, NULL);
+ assert (dyndata != NULL);
+
+ /* Add the DT_NEEDED entries. */
+ if (ld_state.ndsofiles > 0)
+ {
+ struct usedfiles *runp = ld_state.dsofiles->next;
+
+ do
+ if (runp->used || !runp->as_needed)
+ {
+ /* Add the position-dependent flag if necessary. */
+ if (runp->lazyload)
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_POSFLAG_1, DF_P1_LAZYLOAD);
+
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_NEEDED,
+ ebl_strtaboffset (runp->sonameent));
+ }
+ while ((runp = runp->next) != ld_state.dsofiles->next);
+ }
+
+ /* We can finish the DT_RUNPATH/DT_RPATH entries now. */
+ if (ld_state.rxxpath_strent != NULL)
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ ld_state.rxxpath_tag,
+ ebl_strtaboffset (ld_state.rxxpath_strent));
+
+ /* Reference to initialization and finalization functions. */
+ // XXX This code depends on symbol table being relocated.
+ if (ld_state.init_symbol != NULL)
+ {
+ XElf_Sym_vardef (sym);
+
+ if (ld_state.need_symtab)
+ xelf_getsym (symdata,
+ dblindirect[ld_state.init_symbol->outsymidx],
+ sym);
+ else
+ xelf_getsym (dynsymdata, ld_state.init_symbol->outdynsymidx,
+ sym);
+ assert (sym != NULL);
+
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_INIT, sym->st_value);
+ }
+ if (ld_state.fini_symbol != NULL)
+ {
+ XElf_Sym_vardef (sym);
+
+ if (ld_state.need_symtab)
+ xelf_getsym (symdata,
+ dblindirect[ld_state.fini_symbol->outsymidx],
+ sym);
+ else
+ xelf_getsym (dynsymdata, ld_state.fini_symbol->outdynsymidx,
+ sym);
+ assert (sym != NULL);
+
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_FINI, sym->st_value);
+ }
+ // XXX Support init,fini,preinit arrays
+
+ /* The hash table which comes with dynamic symbol table. */
+ xelf_getshdr (elf_getscn (ld_state.outelf, ld_state.hashscnidx),
+ shdr);
+ assert (shdr != NULL);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++, DT_HASH,
+ shdr->sh_addr);
+
+ /* Reference to the symbol table section. */
+ assert (ld_state.dynsymscnidx != 0);
+ xelf_getshdr (elf_getscn (ld_state.outelf, ld_state.dynsymscnidx),
+ shdr);
+ assert (shdr != NULL);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++, DT_SYMTAB,
+ shdr->sh_addr);
+
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++, DT_SYMENT,
+ xelf_fsize (ld_state.outelf, ELF_T_SYM, 1));
+
+ /* And the string table which comes with it. */
+ xelf_getshdr (elf_getscn (ld_state.outelf, ld_state.dynstrscnidx),
+ shdr);
+ assert (shdr != NULL);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++, DT_STRTAB,
+ shdr->sh_addr);
+
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++, DT_STRSZ,
+ shdr->sh_size);
+
+ /* Add the entries related to the .plt. */
+ if (ld_state.nplt > 0)
+ {
+ // XXX Make this work if there is no PLT
+ xelf_getshdr (elf_getscn (ld_state.outelf,
+ ld_state.gotpltscnidx), shdr);
+ assert (shdr != NULL);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ // XXX This should probably be machine
+ // dependent.
+ DT_PLTGOT, shdr->sh_addr);
+
+ xelf_getshdr (elf_getscn (ld_state.outelf,
+ ld_state.pltrelscnidx), shdr);
+ assert (shdr != NULL);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_PLTRELSZ, shdr->sh_size);
+
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_JMPREL, shdr->sh_addr);
+
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_PLTREL, REL_TYPE (statep));
+ }
+
+ if (ld_state.relsize_total > 0)
+ {
+ int rel = REL_TYPE (statep);
+ xelf_getshdr (elf_getscn (ld_state.outelf,
+ ld_state.reldynscnidx), shdr);
+ assert (shdr != NULL);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ rel, shdr->sh_addr);
+
+ /* Trick ahead. Use arithmetic to get the right tag.
+ We check the validity of this assumption in the asserts. */
+ assert (DT_RELASZ - DT_RELA == 1);
+ assert (DT_RELSZ - DT_REL == 1);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ rel + 1, shdr->sh_size);
+
+ /* Similar for the entry size tag. */
+ assert (DT_RELAENT - DT_RELA == 2);
+ assert (DT_RELENT - DT_REL == 2);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ rel + 2,
+ rel == DT_REL
+ ? xelf_fsize (ld_state.outelf, ELF_T_REL, 1)
+ : xelf_fsize (ld_state.outelf, ELF_T_RELA,
+ 1));
+ }
+
+ if (ld_state.verneedscnidx != 0)
+ {
+ xelf_getshdr (elf_getscn (ld_state.outelf,
+ ld_state.verneedscnidx), shdr);
+ assert (shdr != NULL);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_VERNEED, shdr->sh_addr);
+
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_VERNEEDNUM, ld_state.nverdeffile);
+ }
+
+ if (ld_state.versymscnidx != 0)
+ {
+ xelf_getshdr (elf_getscn (ld_state.outelf,
+ ld_state.versymscnidx), shdr);
+ assert (shdr != NULL);
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_VERSYM, shdr->sh_addr);
+ }
+
+ /* We always create the DT_DEBUG entry. */
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++, DT_DEBUG, 0);
+ assert (ld_state.ndynamic_filled < ld_state.ndynamic);
+
+ /* Add the flag words if necessary. */
+ if (ld_state.dt_flags != 0)
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++, DT_FLAGS,
+ ld_state.dt_flags);
+
+ /* Create entry for the DT_FLAGS_1 flag. */
+ if (ld_state.dt_flags_1 != 0)
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_FLAGS_1, ld_state.dt_flags_1);
+
+ /* Create entry for the DT_FEATURE_1 flag. */
+ if (ld_state.dt_feature_1 != 0)
+ new_dynamic_entry (dyndata, ld_state.ndynamic_filled++,
+ DT_FEATURE_1, ld_state.dt_feature_1);
+
+ assert (ld_state.ndynamic_filled <= ld_state.ndynamic);
+ }
+ }
+
+
+ // XXX The following code isn't nice. We use two different
+ // mechanisms to handle relocations, one for relocatable files, one
+ // for executables and DSOs. Maybe this is the best method but also
+ // maybe it can be somewhat unified.
+
+ /* Now that we created the symbol table we can add the reference to
+ it in the sh_link field of the section headers of the relocation
+ sections. */
+ while (rellist != NULL)
+ {
+ assert (ld_state.file_type == relocatable_file_type);
+ Elf_Scn *outscn;
+
+ outscn = elf_getscn (ld_state.outelf, rellist->scnidx);
+ xelf_getshdr (outscn, shdr);
+ /* This must not fail since we did it before. */
+ assert (shdr != NULL);
+
+ /* Remember the symbol table which belongs to the relocation section. */
+ shdr->sh_link = ld_state.symscnidx;
+
+ /* And the reference to the section which is relocated by this
+ relocation section. We use the info from the first input
+ section but all records should have the same information. */
+ shdr->sh_info =
+ rellist->scninfo->fileinfo->scninfo[SCNINFO_SHDR (rellist->scninfo->shdr).sh_info].outscnndx;
+
+
+ /* Perform the actual relocations. We only have to adjust
+ offsets and symbol indices. */
+ RELOCATE_SECTION (statep, outscn, rellist->scninfo, dblindirect);
+
+ /* Store the changes. */
+ (void) xelf_update_shdr (outscn, shdr);
+
+ /* Up to the next relocation section. */
+ rellist = rellist->next;
+ }
+
+ if (ld_state.rellist != NULL)
+ {
+ assert (ld_state.file_type != relocatable_file_type);
+ /* Create the relocations for the output file. */
+ CREATE_RELOCATIONS (statep, dblindirect);
+ }
+
+
+ /* We need the ELF header once more. */
+ xelf_getehdr (ld_state.outelf, ehdr);
+ assert (ehdr != NULL);
+
+ /* Set the section header string table index. */
+ if (likely (shstrtab_ndx < SHN_HIRESERVE)
+ && likely (shstrtab_ndx != SHN_XINDEX))
+ ehdr->e_shstrndx = shstrtab_ndx;
+ else
+ {
+ /* We have to put the section index in the sh_link field of the
+ zeroth section header. */
+ Elf_Scn *scn = elf_getscn (ld_state.outelf, 0);
+
+ xelf_getshdr (scn, shdr);
+ if (unlikely (shdr == NULL))
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot get header of 0th section: %s"),
+ elf_errmsg (-1));
+
+ shdr->sh_link = shstrtab_ndx;
+
+ (void) xelf_update_shdr (scn, shdr);
+
+ ehdr->e_shstrndx = SHN_XINDEX;
+ }
+
+ if (ld_state.file_type != relocatable_file_type)
+ /* DSOs and executables have to define the entry point symbol. */
+ ehdr->e_entry = find_entry_point ();
+
+ if (unlikely (xelf_update_ehdr (ld_state.outelf, ehdr) == 0))
+ error (EXIT_FAILURE, 0,
+ gettext ("cannot update ELF header: %s"),
+ elf_errmsg (-1));
+
+
+ /* Free the data which we don't need anymore. */
+ free (ld_state.dblindirect);
+
+
+ /* Finalize the .plt section and what else belongs to it. */
+ FINALIZE_PLT (statep, nsym, nsym_local, ndxtosym);
+
+
+ /* Finally, if we have to compute the build ID. */
+ if (ld_state.build_id != NULL)
+ compute_build_id ();
+
+
+ /* We don't need the map from the symbol table index to the symbol
+ structure anymore. */
+ free (ndxtosym);
+
+ return 0;
+}
+
+
+/* This is a function which must be specified in all backends. */
+static void
+ld_generic_relocate_section (struct ld_state *statep, Elf_Scn *outscn,
+ struct scninfo *firstp,
+ const Elf32_Word *dblindirect)
+{
+ error (EXIT_FAILURE, 0, gettext ("\
+linker backend didn't specify function to relocate section"));
+ /* NOTREACHED */
+}
+
+
+/* Finalize the output file. */
+static int
+ld_generic_finalize (struct ld_state *statep)
+{
+ /* Write out the ELF file data. */
+ if (elf_update (ld_state.outelf, ELF_C_WRITE) == -1)
+ error (EXIT_FAILURE, 0, gettext ("while writing output file: %s"),
+ elf_errmsg (-1));
+
+ /* Free the resources. */
+ if (elf_end (ld_state.outelf) != 0)
+ error (EXIT_FAILURE, 0, gettext ("while finishing output file: %s"),
+ elf_errmsg (-1));
+
+ /* Get the file status of the temporary file. */
+ struct stat temp_st;
+ if (fstat (ld_state.outfd, &temp_st) != 0)
+ error (EXIT_FAILURE, errno, gettext ("cannot stat output file"));
+
+ /* Now it's time to rename the file. Remove an old existing file
+ first. */
+ if (rename (ld_state.tempfname, ld_state.outfname) != 0)
+ /* Something went wrong. */
+ error (EXIT_FAILURE, errno, gettext ("cannot rename output file"));
+
+ /* Make sure the output file is really the one we created. */
+ struct stat new_st;
+ if (stat (ld_state.outfname, &new_st) != 0
+ || new_st.st_ino != temp_st.st_ino
+ || new_st.st_dev != temp_st.st_dev)
+ {
+ /* Wow, somebody overwrote the output file, probably some intruder. */
+ unlink (ld_state.outfname);
+ error (EXIT_FAILURE, 0, gettext ("\
+WARNING: temporary output file overwritten before linking finished"));
+ }
+
+ /* Close the file descriptor. */
+ (void) close (ld_state.outfd);
+
+ /* Signal the cleanup handler that the file is correctly created. */
+ ld_state.tempfname = NULL;
+
+ return 0;
+}
+
+
+static bool
+ld_generic_special_section_number_p (struct ld_state *statep, size_t number)
+{
+ /* There are no special section numbers in the gABI. */
+ return false;
+}
+
+
+static bool
+ld_generic_section_type_p (struct ld_state *statep, GElf_Word type)
+{
+ if (type < SHT_NUM
+ /* XXX Enable the following two when implemented. */
+ // || type == SHT_GNU_LIBLIST
+ // || type == SHT_CHECKSUM
+ /* XXX Eventually include SHT_SUNW_move, SHT_SUNW_COMDAT, and
+ SHT_SUNW_syminfo. */
+ || (type >= SHT_GNU_verdef && type <= SHT_GNU_versym))
+ return true;
+
+ return false;
+}
+
+
+static XElf_Xword
+ld_generic_dynamic_section_flags (struct ld_state *statep)
+{
+ /* By default the .dynamic section is writable (and is of course
+ loaded). Few architecture differ from this. */
+ return SHF_ALLOC | SHF_WRITE;
+}
+
+
+static void
+ld_generic_initialize_plt (struct ld_state *statep, Elf_Scn *scn)
+{
+ /* This cannot be implemented generally. There should have been a
+ machine dependent implementation and we should never have arrived
+ here. */
+ error (EXIT_FAILURE, 0, gettext ("no machine specific '%s' implementation"),
+ "initialize_plt");
+}
+
+
+static void
+ld_generic_initialize_pltrel (struct ld_state *statep, Elf_Scn *scn)
+{
+ /* This cannot be implemented generally. There should have been a
+ machine dependent implementation and we should never have arrived
+ here. */
+ error (EXIT_FAILURE, 0, gettext ("no machine specific '%s' implementation"),
+ "initialize_pltrel");
+}
+
+
+static void
+ld_generic_initialize_got (struct ld_state *statep, Elf_Scn *scn)
+{
+ /* This cannot be implemented generally. There should have been a
+ machine dependent implementation and we should never have arrived
+ here. */
+ error (EXIT_FAILURE, 0, gettext ("no machine specific '%s' implementation"),
+ "initialize_got");
+}
+
+
+static void
+ld_generic_initialize_gotplt (struct ld_state *statep, Elf_Scn *scn)
+{
+ /* This cannot be implemented generally. There should have been a
+ machine dependent implementation and we should never have arrived
+ here. */
+ error (EXIT_FAILURE, 0, gettext ("no machine specific '%s' implementation"),
+ "initialize_gotplt");
+}
+
+
+static void
+ld_generic_finalize_plt (struct ld_state *statep, size_t nsym, size_t nsym_dyn,
+ struct symbol **ndxtosymp)
+{
+ /* By default we assume that nothing has to be done. */
+}
+
+
+static int
+ld_generic_rel_type (struct ld_state *statep)
+{
+ /* This cannot be implemented generally. There should have been a
+ machine dependent implementation and we should never have arrived
+ here. */
+ error (EXIT_FAILURE, 0, gettext ("no machine specific '%s' implementation"),
+ "rel_type");
+ /* Just to keep the compiler calm. */
+ return 0;
+}
+
+
+static void
+ld_generic_count_relocations (struct ld_state *statep, struct scninfo *scninfo)
+{
+ /* This cannot be implemented generally. There should have been a
+ machine dependent implementation and we should never have arrived
+ here. */
+ error (EXIT_FAILURE, 0, gettext ("no machine specific '%s' implementation"),
+ "count_relocations");
+}
+
+
+static void
+ld_generic_create_relocations (struct ld_state *statep,
+ const Elf32_Word *dblindirect)
+{
+ /* This cannot be implemented generally. There should have been a
+ machine dependent implementation and we should never have arrived
+ here. */
+ error (EXIT_FAILURE, 0, gettext ("no machine specific '%s' implementation"),
+ "create_relocations");
+}