summaryrefslogtreecommitdiffstats
path: root/clatd_test.cpp
blob: d67113f4d2add8f8a3f82e556d58c4a99325b64e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
/*
 * Copyright 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *
 * clatd_test.cpp - unit tests for clatd
 */

#include <iostream>

#include <stdio.h>
#include <arpa/inet.h>
#include <netinet/in6.h>
#include <sys/uio.h>

#include <gtest/gtest.h>

extern "C" {
#include "checksum.h"
#include "translate.h"
#include "config.h"
#include "clatd.h"
#include "ring.h"
}

// For convenience.
#define ARRAYSIZE(x) sizeof((x)) / sizeof((x)[0])

// Default translation parameters.
static const char kIPv4LocalAddr[] = "192.0.0.4";
static const char kIPv6LocalAddr[] = "2001:db8:0:b11::464";
static const char kIPv6PlatSubnet[] = "64:ff9b::";

// Test packet portions. Defined as macros because it's easy to concatenate them to make packets.
#define IPV4_HEADER(p, c1, c2) \
    0x45, 0x00,    0,   41,  /* Version=4, IHL=5, ToS=0x80, len=41 */     \
    0x00, 0x00, 0x40, 0x00,  /* ID=0x0000, flags=IP_DF, offset=0 */       \
      55,  (p), (c1), (c2),  /* TTL=55, protocol=p, checksum=c1,c2 */     \
     192,    0,    0,    4,  /* Src=192.0.0.4 */                          \
       8,    8,    8,    8,  /* Dst=8.8.8.8 */
#define IPV4_UDP_HEADER IPV4_HEADER(IPPROTO_UDP, 0x73, 0xb0)
#define IPV4_ICMP_HEADER IPV4_HEADER(IPPROTO_ICMP, 0x73, 0xc0)

#define IPV6_HEADER(p) \
    0x60, 0x00,    0,    0,  /* Version=6, tclass=0x00, flowlabel=0 */    \
       0,   21,  (p),   55,  /* plen=11, nxthdr=p, hlim=55 */             \
    0x20, 0x01, 0x0d, 0xb8,  /* Src=2001:db8:0:b11::464 */                \
    0x00, 0x00, 0x0b, 0x11,                                               \
    0x00, 0x00, 0x00, 0x00,                                               \
    0x00, 0x00, 0x04, 0x64,                                               \
    0x00, 0x64, 0xff, 0x9b,  /* Dst=64:ff9b::8.8.8.8 */                   \
    0x00, 0x00, 0x00, 0x00,                                               \
    0x00, 0x00, 0x00, 0x00,                                               \
    0x08, 0x08, 0x08, 0x08,
#define IPV6_UDP_HEADER IPV6_HEADER(IPPROTO_UDP)
#define IPV6_ICMPV6_HEADER IPV6_HEADER(IPPROTO_ICMPV6)

#define UDP_LEN 21
#define UDP_HEADER \
    0xc8, 0x8b,    0,   53,  /* Port 51339->53 */                         \
    0x00, UDP_LEN, 0,    0,  /* Length 21, checksum empty for now */

#define PAYLOAD 'H', 'e', 'l', 'l', 'o', ' ', 0x4e, 0xb8, 0x96, 0xe7, 0x95, 0x8c, 0x00

#define IPV4_PING \
    0x08, 0x00, 0x88, 0xd0,  /* Type 8, code 0, checksum 0x88d0 */        \
    0xd0, 0x0d, 0x00, 0x03,  /* ID=0xd00d, seq=3 */

#define IPV6_PING \
    0x80, 0x00, 0xc3, 0x42,  /* Type 128, code 0, checksum 0xc342 */      \
    0xd0, 0x0d, 0x00, 0x03,  /* ID=0xd00d, seq=3 */

// Macros to return pseudo-headers from packets.
#define IPV4_PSEUDOHEADER(ip, tlen)                                  \
  ip[12], ip[13], ip[14], ip[15],        /* Source address      */   \
  ip[16], ip[17], ip[18], ip[19],        /* Destination address */   \
  0, ip[9],                              /* 0, protocol         */   \
  ((tlen) >> 16) & 0xff, (tlen) & 0xff,  /* Transport length */

#define IPV6_PSEUDOHEADER(ip6, protocol, tlen)                       \
  ip6[8],  ip6[9],  ip6[10], ip6[11],  /* Source address */          \
  ip6[12], ip6[13], ip6[14], ip6[15],                                \
  ip6[16], ip6[17], ip6[18], ip6[19],                                \
  ip6[20], ip6[21], ip6[22], ip6[23],                                \
  ip6[24], ip6[25], ip6[26], ip6[27],  /* Destination address */     \
  ip6[28], ip6[29], ip6[30], ip6[31],                                \
  ip6[32], ip6[33], ip6[34], ip6[35],                                \
  ip6[36], ip6[37], ip6[38], ip6[39],                                \
  ((tlen) >> 24) & 0xff,               /* Transport length */        \
  ((tlen) >> 16) & 0xff,                                             \
  ((tlen) >> 8) & 0xff,                                              \
  (tlen) & 0xff,                                                     \
  0, 0, 0, (protocol),

// A fragmented DNS request.
static const uint8_t kIPv4Frag1[] = {
    0x45, 0x00, 0x00, 0x24, 0xfe, 0x47, 0x20, 0x00, 0x40, 0x11,
    0x8c, 0x6d, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
    0x14, 0x5d, 0x00, 0x35, 0x00, 0x29, 0x68, 0xbb, 0x50, 0x47,
    0x01, 0x00, 0x00, 0x01, 0x00, 0x00
};
static const uint8_t kIPv4Frag2[] = {
    0x45, 0x00, 0x00, 0x24, 0xfe, 0x47, 0x20, 0x02, 0x40, 0x11,
    0x8c, 0x6b, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
    0x00, 0x00, 0x00, 0x00, 0x04, 0x69, 0x70, 0x76, 0x34, 0x06,
    0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65
};
static const uint8_t kIPv4Frag3[] = {
    0x45, 0x00, 0x00, 0x1d, 0xfe, 0x47, 0x00, 0x04, 0x40, 0x11,
    0xac, 0x70, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
    0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, 0x01
};
static const uint8_t *kIPv4Fragments[] = { kIPv4Frag1, kIPv4Frag2, kIPv4Frag3 };
static const size_t kIPv4FragLengths[] = { sizeof(kIPv4Frag1), sizeof(kIPv4Frag2),
                                           sizeof(kIPv4Frag3) };

static const uint8_t kIPv6Frag1[] = {
    0x60, 0x00, 0x00, 0x00, 0x00, 0x18, 0x2c, 0x40, 0x20, 0x01,
    0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08,
    0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0xfe, 0x47, 0x14, 0x5d,
    0x00, 0x35, 0x00, 0x29, 0xeb, 0x91, 0x50, 0x47, 0x01, 0x00,
    0x00, 0x01, 0x00, 0x00
};

static const uint8_t kIPv6Frag2[] = {
    0x60, 0x00, 0x00, 0x00, 0x00, 0x18, 0x2c, 0x40, 0x20, 0x01,
    0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08,
    0x11, 0x00, 0x00, 0x11, 0x00, 0x00, 0xfe, 0x47, 0x00, 0x00,
    0x00, 0x00, 0x04, 0x69, 0x70, 0x76, 0x34, 0x06, 0x67, 0x6f,
    0x6f, 0x67, 0x6c, 0x65
};

static const uint8_t kIPv6Frag3[] = {
    0x60, 0x00, 0x00, 0x00, 0x00, 0x11, 0x2c, 0x40, 0x20, 0x01,
    0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00,
    0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08,
    0x11, 0x00, 0x00, 0x20, 0x00, 0x00, 0xfe, 0x47, 0x03, 0x63,
    0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, 0x01
};
static const uint8_t *kIPv6Fragments[] = { kIPv6Frag1, kIPv6Frag2, kIPv6Frag3 };
static const size_t kIPv6FragLengths[] = { sizeof(kIPv6Frag1), sizeof(kIPv6Frag2),
                                           sizeof(kIPv6Frag3) };

static const uint8_t kReassembledIPv4[] = {
    0x45, 0x00, 0x00, 0x3d, 0xfe, 0x47, 0x00, 0x00, 0x40, 0x11,
    0xac, 0x54, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
    0x14, 0x5d, 0x00, 0x35, 0x00, 0x29, 0x68, 0xbb, 0x50, 0x47,
    0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
    0x04, 0x69, 0x70, 0x76, 0x34, 0x06, 0x67, 0x6f, 0x6f, 0x67,
    0x6c, 0x65, 0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00,
    0x01
};

// Expected checksums.
static const uint32_t kUdpPartialChecksum     = 0xd5c8;
static const uint32_t kPayloadPartialChecksum = 0x31e9c;
static const uint16_t kUdpV4Checksum          = 0xd0c7;
static const uint16_t kUdpV6Checksum          = 0xa74a;

uint8_t ip_version(const uint8_t *packet) {
  uint8_t version = packet[0] >> 4;
  return version;
}

int is_ipv4_fragment(struct iphdr *ip) {
  // A packet is a fragment if its fragment offset is nonzero or if the MF flag is set.
  return ntohs(ip->frag_off) & (IP_OFFMASK | IP_MF);
}

int is_ipv6_fragment(struct ip6_hdr *ip6, size_t len) {
  if (ip6->ip6_nxt != IPPROTO_FRAGMENT) {
    return 0;
  }
  struct ip6_frag *frag = (struct ip6_frag *) (ip6 + 1);
  return len >= sizeof(*ip6) + sizeof(*frag) &&
          (frag->ip6f_offlg & (IP6F_OFF_MASK | IP6F_MORE_FRAG));
}

int ipv4_fragment_offset(struct iphdr *ip) {
  return ntohs(ip->frag_off) & IP_OFFMASK;
}

int ipv6_fragment_offset(struct ip6_frag *frag) {
  return ntohs((frag->ip6f_offlg & IP6F_OFF_MASK) >> 3);
}

void check_packet(const uint8_t *packet, size_t len, const char *msg) {
  void *payload;
  size_t payload_length = 0;
  uint32_t pseudo_checksum = 0;
  uint8_t protocol = 0;
  int version = ip_version(packet);
  switch (version) {
    case 4: {
      struct iphdr *ip = (struct iphdr *) packet;
      ASSERT_GE(len, sizeof(*ip)) << msg << ": IPv4 packet shorter than IPv4 header\n";
      EXPECT_EQ(5, ip->ihl) << msg << ": Unsupported IP header length\n";
      EXPECT_EQ(len, ntohs(ip->tot_len)) << msg << ": Incorrect IPv4 length\n";
      EXPECT_EQ(0, ip_checksum(ip, sizeof(*ip))) << msg << ": Incorrect IP checksum\n";
      protocol = ip->protocol;
      payload = ip + 1;
      if (!is_ipv4_fragment(ip)) {
        payload_length = len - sizeof(*ip);
        pseudo_checksum = ipv4_pseudo_header_checksum(ip, payload_length);
      }
      ASSERT_TRUE(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP || protocol == IPPROTO_ICMP)
          << msg << ": Unsupported IPv4 protocol " << protocol << "\n";
      break;
    }
    case 6: {
      struct ip6_hdr *ip6 = (struct ip6_hdr *) packet;
      ASSERT_GE(len, sizeof(*ip6)) << msg << ": IPv6 packet shorter than IPv6 header\n";
      EXPECT_EQ(len - sizeof(*ip6), htons(ip6->ip6_plen)) << msg << ": Incorrect IPv6 length\n";

      if (ip6->ip6_nxt == IPPROTO_FRAGMENT) {
        struct ip6_frag *frag = (struct ip6_frag *) (ip6 + 1);
        ASSERT_GE(len, sizeof(*ip6) + sizeof(*frag))
            << msg << ": IPv6 fragment: short fragment header\n";
        protocol = frag->ip6f_nxt;
        payload = frag + 1;
        // Even though the packet has a Fragment header, it might not be a fragment.
        if (!is_ipv6_fragment(ip6, len)) {
          payload_length = len - sizeof(*ip6) - sizeof(*frag);
        }
      } else {
        // Since there are no extension headers except Fragment, this must be the payload.
        protocol = ip6->ip6_nxt;
        payload = ip6 + 1;
        payload_length = len - sizeof(*ip6);
      }
      ASSERT_TRUE(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP || protocol == IPPROTO_ICMPV6)
          << msg << ": Unsupported IPv6 next header " << protocol;
      if (payload_length) {
        pseudo_checksum = ipv6_pseudo_header_checksum(ip6, payload_length, protocol);
      }
      break;
    }
    default:
      FAIL() << msg << ": Unsupported IP version " << version << "\n";
      return;
  }

  // If we understand the payload, verify the checksum.
  if (payload_length) {
    uint16_t checksum;
    switch(protocol) {
      case IPPROTO_UDP:
      case IPPROTO_TCP:
      case IPPROTO_ICMPV6:
        checksum = ip_checksum_finish(ip_checksum_add(pseudo_checksum, payload, payload_length));
        break;
      case IPPROTO_ICMP:
        checksum = ip_checksum(payload, payload_length);
        break;
      default:
        checksum = 0;  // Don't check.
        break;
    }
    EXPECT_EQ(0, checksum) << msg << ": Incorrect transport checksum\n";
  }

  if (protocol == IPPROTO_UDP) {
    struct udphdr *udp = (struct udphdr *) payload;
    EXPECT_NE(0, udp->check) << msg << ": UDP checksum 0 should be 0xffff";
    // If this is not a fragment, check the UDP length field.
    if (payload_length) {
      EXPECT_EQ(payload_length, ntohs(udp->len)) << msg << ": Incorrect UDP length\n";
    }
  }
}

void reassemble_packet(const uint8_t **fragments, const size_t lengths[], int numpackets,
                       uint8_t *reassembled, size_t *reassembled_len, const char *msg) {
  struct iphdr *ip = NULL;
  struct ip6_hdr *ip6 = NULL;
  size_t  total_length, pos = 0;
  uint8_t protocol = 0;
  uint8_t version = ip_version(fragments[0]);

  for (int i = 0; i < numpackets; i++) {
    const uint8_t *packet = fragments[i];
    int len = lengths[i];
    int headersize, payload_offset;

    ASSERT_EQ(ip_version(packet), version) << msg << ": Inconsistent fragment versions\n";
    check_packet(packet, len, "Fragment sanity check");

    switch (version) {
      case 4: {
        struct iphdr *ip_orig = (struct iphdr *) packet;
        headersize = sizeof(*ip_orig);
        ASSERT_TRUE(is_ipv4_fragment(ip_orig))
            << msg << ": IPv4 fragment #" << i + 1 << " not a fragment\n";
        ASSERT_EQ(pos, ipv4_fragment_offset(ip_orig) * 8 + ((i != 0) ? sizeof(*ip): 0))
            << msg << ": IPv4 fragment #" << i + 1 << ": inconsistent offset\n";

        headersize = sizeof(*ip_orig);
        payload_offset = headersize;
        if (pos == 0) {
          ip = (struct iphdr *) reassembled;
        }
        break;
      }
      case 6: {
        struct ip6_hdr *ip6_orig = (struct ip6_hdr *) packet;
        struct ip6_frag *frag = (struct ip6_frag *) (ip6_orig + 1);
        ASSERT_TRUE(is_ipv6_fragment(ip6_orig, len))
            << msg << ": IPv6 fragment #" << i + 1 << " not a fragment\n";
        ASSERT_EQ(pos, ipv6_fragment_offset(frag) * 8 + ((i != 0) ? sizeof(*ip6): 0))
            << msg << ": IPv6 fragment #" << i + 1 << ": inconsistent offset\n";

        headersize = sizeof(*ip6_orig);
        payload_offset = sizeof(*ip6_orig) + sizeof(*frag);
        if (pos == 0) {
          ip6 = (struct ip6_hdr *) reassembled;
          protocol = frag->ip6f_nxt;
        }
        break;
      }
      default:
        FAIL() << msg << ": Invalid IP version << " << version;
    }

    // If this is the first fragment, copy the header.
    if (pos == 0) {
      ASSERT_LT(headersize, (int) *reassembled_len) << msg << ": Reassembly buffer too small\n";
      memcpy(reassembled, packet, headersize);
      total_length = headersize;
      pos += headersize;
    }

    // Copy the payload.
    int payload_length = len - payload_offset;
    total_length += payload_length;
    ASSERT_LT(total_length, *reassembled_len) << msg << ": Reassembly buffer too small\n";
    memcpy(reassembled + pos, packet + payload_offset, payload_length);
    pos += payload_length;
  }


  // Fix up the reassembled headers to reflect fragmentation and length (and IPv4 checksum).
  ASSERT_EQ(total_length, pos) << msg << ": Reassembled packet length incorrect\n";
  if (ip) {
    ip->frag_off &= ~htons(IP_MF);
    ip->tot_len = htons(total_length);
    ip->check = 0;
    ip->check = ip_checksum(ip, sizeof(*ip));
    ASSERT_FALSE(is_ipv4_fragment(ip)) << msg << ": reassembled IPv4 packet is a fragment!\n";
  }
  if (ip6) {
    ip6->ip6_nxt = protocol;
    ip6->ip6_plen = htons(total_length - sizeof(*ip6));
    ASSERT_FALSE(is_ipv6_fragment(ip6, ip6->ip6_plen))
        << msg << ": reassembled IPv6 packet is a fragment!\n";
  }

  *reassembled_len = total_length;
}

void check_data_matches(const void *expected, const void *actual, size_t len, const char *msg) {
  if (memcmp(expected, actual, len)) {
    // Hex dump, 20 bytes per line, one space between bytes (1 byte = 3 chars), indented by 4.
    int hexdump_len = len * 3 + (len / 20 + 1) * 5;
    char expected_hexdump[hexdump_len], actual_hexdump[hexdump_len];
    unsigned pos = 0;
    for (unsigned i = 0; i < len; i++) {
      if (i % 20 == 0) {
        sprintf(expected_hexdump + pos, "\n   ");
        sprintf(actual_hexdump + pos, "\n   ");
        pos += 4;
      }
      sprintf(expected_hexdump + pos, " %02x", ((uint8_t *) expected)[i]);
      sprintf(actual_hexdump + pos, " %02x", ((uint8_t *) actual)[i]);
      pos += 3;
    }
    FAIL() << msg << ": Data doesn't match"
           << "\n  Expected:" << (char *) expected_hexdump
           << "\n  Actual:" << (char *) actual_hexdump << "\n";
  }
}

void fix_udp_checksum(uint8_t* packet) {
  uint32_t pseudo_checksum;
  uint8_t version = ip_version(packet);
  struct udphdr *udp;
  switch (version) {
    case 4: {
      struct iphdr *ip = (struct iphdr *) packet;
      udp = (struct udphdr *) (ip + 1);
      pseudo_checksum = ipv4_pseudo_header_checksum(ip, ntohs(udp->len));
      break;
    }
    case 6: {
      struct ip6_hdr *ip6 = (struct ip6_hdr *) packet;
      udp = (struct udphdr *) (ip6 + 1);
      pseudo_checksum = ipv6_pseudo_header_checksum(ip6, ntohs(udp->len), IPPROTO_UDP);
      break;
    }
    default:
      FAIL() << "unsupported IP version" << version << "\n";
      return;
    }

  udp->check = 0;
  udp->check = ip_checksum_finish(ip_checksum_add(pseudo_checksum, udp, ntohs(udp->len)));
}

// Testing stub for send_rawv6. The real version uses sendmsg() with a
// destination IPv6 address, and attempting to call that on our test socketpair
// fd results in EINVAL.
extern "C" void send_rawv6(int fd, clat_packet out, int iov_len) {
    writev(fd, out, iov_len);
}

void do_translate_packet(const uint8_t *original, size_t original_len, uint8_t *out, size_t *outlen,
                         const char *msg) {
  int fds[2];
  if (socketpair(AF_UNIX, SOCK_DGRAM | SOCK_NONBLOCK, 0, fds)) {
    abort();
  }

  char foo[512];
  snprintf(foo, sizeof(foo), "%s: Invalid original packet", msg);
  check_packet(original, original_len, foo);

  int read_fd, write_fd;
  uint16_t expected_proto;
  int version = ip_version(original);
  switch (version) {
    case 4:
      expected_proto = htons(ETH_P_IPV6);
      read_fd = fds[1];
      write_fd = fds[0];
      break;
    case 6:
      expected_proto = htons(ETH_P_IP);
      read_fd = fds[0];
      write_fd = fds[1];
      break;
    default:
      FAIL() << msg << ": Unsupported IP version " << version << "\n";
      break;
  }

  translate_packet(write_fd, (version == 4), original, original_len, TP_CSUM_NONE);

  snprintf(foo, sizeof(foo), "%s: Invalid translated packet", msg);
  if (version == 6) {
    // Translating to IPv4. Expect a tun header.
    struct tun_pi new_tun_header;
    struct iovec iov[] = {
      { &new_tun_header, sizeof(new_tun_header) },
      { out, *outlen }
    };
    int len = readv(read_fd, iov, 2);
    if (len > (int) sizeof(new_tun_header)) {
      ASSERT_LT((size_t) len, *outlen) << msg << ": Translated packet buffer too small\n";
      EXPECT_EQ(expected_proto, new_tun_header.proto) << msg << "Unexpected tun proto\n";
      *outlen = len - sizeof(new_tun_header);
      check_packet(out, *outlen, msg);
    } else {
      FAIL() << msg << ": Packet was not translated: len=" << len;
      *outlen = 0;
    }
  } else {
    // Translating to IPv6. Expect raw packet.
    *outlen = read(read_fd, out, *outlen);
    check_packet(out, *outlen, msg);
  }
}

void check_translated_packet(const uint8_t *original, size_t original_len,
                             const uint8_t *expected, size_t expected_len, const char *msg) {
  uint8_t translated[MAXMRU];
  size_t translated_len = sizeof(translated);
  do_translate_packet(original, original_len, translated, &translated_len, msg);
  EXPECT_EQ(expected_len, translated_len) << msg << ": Translated packet length incorrect\n";
  check_data_matches(expected, translated, translated_len, msg);
}

void check_fragment_translation(const uint8_t *original[], const size_t original_lengths[],
                                const uint8_t *expected[], const size_t expected_lengths[],
                                int numfragments, const char *msg) {
  for (int i = 0; i < numfragments; i++) {
    // Check that each of the fragments translates as expected.
    char frag_msg[512];
    snprintf(frag_msg, sizeof(frag_msg), "%s: fragment #%d", msg, i + 1);
    check_translated_packet(original[i], original_lengths[i],
                            expected[i], expected_lengths[i], frag_msg);
  }

  // Sanity check that reassembling the original and translated fragments produces valid packets.
  uint8_t reassembled[MAXMRU];
  size_t reassembled_len = sizeof(reassembled);
  reassemble_packet(original, original_lengths, numfragments, reassembled, &reassembled_len, msg);
  check_packet(reassembled, reassembled_len, msg);

  uint8_t translated[MAXMRU];
  size_t translated_len = sizeof(translated);
  do_translate_packet(reassembled, reassembled_len, translated, &translated_len, msg);
  check_packet(translated, translated_len, msg);
}

int get_transport_checksum(const uint8_t *packet) {
  struct iphdr *ip;
  struct ip6_hdr *ip6;
  uint8_t protocol;
  const void *payload;

  int version = ip_version(packet);
  switch (version) {
    case 4:
      ip = (struct iphdr *) packet;
      if (is_ipv4_fragment(ip)) {
          return -1;
      }
      protocol = ip->protocol;
      payload = ip + 1;
      break;
    case 6:
      ip6 = (struct ip6_hdr *) packet;
      protocol = ip6->ip6_nxt;
      payload = ip6 + 1;
      break;
    default:
      return -1;
  }

  switch (protocol) {
    case IPPROTO_UDP:
      return ((struct udphdr *) payload)->check;

    case IPPROTO_TCP:
      return ((struct tcphdr *) payload)->check;

    case IPPROTO_FRAGMENT:
    default:
      return -1;
  }
}

struct clat_config Global_Clatd_Config;

class ClatdTest : public ::testing::Test {
 protected:
  virtual void SetUp() {
    inet_pton(AF_INET, kIPv4LocalAddr, &Global_Clatd_Config.ipv4_local_subnet);
    inet_pton(AF_INET6, kIPv6PlatSubnet, &Global_Clatd_Config.plat_subnet);
    inet_pton(AF_INET6, kIPv6LocalAddr, &Global_Clatd_Config.ipv6_local_subnet);
    Global_Clatd_Config.ipv6_host_id = in6addr_any;
    Global_Clatd_Config.use_dynamic_iid = 1;
  }
};

void expect_ipv6_addr_equal(struct in6_addr *expected, struct in6_addr *actual) {
  if (!IN6_ARE_ADDR_EQUAL(expected, actual)) {
    char expected_str[INET6_ADDRSTRLEN], actual_str[INET6_ADDRSTRLEN];
    inet_ntop(AF_INET6, expected, expected_str, sizeof(expected_str));
    inet_ntop(AF_INET6, actual, actual_str, sizeof(actual_str));
    FAIL()
        << "Unexpected IPv6 address:: "
        << "\n  Expected: " << expected_str
        << "\n  Actual:   " << actual_str
        << "\n";
  }
}

TEST_F(ClatdTest, TestIPv6PrefixEqual) {
  EXPECT_TRUE(ipv6_prefix_equal(&Global_Clatd_Config.plat_subnet,
                                &Global_Clatd_Config.plat_subnet));
  EXPECT_FALSE(ipv6_prefix_equal(&Global_Clatd_Config.plat_subnet,
                                 &Global_Clatd_Config.ipv6_local_subnet));

  struct in6_addr subnet2 = Global_Clatd_Config.ipv6_local_subnet;
  EXPECT_TRUE(ipv6_prefix_equal(&Global_Clatd_Config.ipv6_local_subnet, &subnet2));
  EXPECT_TRUE(ipv6_prefix_equal(&subnet2, &Global_Clatd_Config.ipv6_local_subnet));

  subnet2.s6_addr[6] = 0xff;
  EXPECT_FALSE(ipv6_prefix_equal(&Global_Clatd_Config.ipv6_local_subnet, &subnet2));
  EXPECT_FALSE(ipv6_prefix_equal(&subnet2, &Global_Clatd_Config.ipv6_local_subnet));
}

int count_onebits(const void *data, size_t size) {
  int onebits = 0;
  for (size_t pos = 0; pos < size; pos++) {
    uint8_t *byte = ((uint8_t*) data) + pos;
    for (int shift = 0; shift < 8; shift++) {
      onebits += (*byte >> shift) & 1;
    }
  }
  return onebits;
}

TEST_F(ClatdTest, TestCountOnebits) {
  uint64_t i;
  i = 1;
  ASSERT_EQ(1, count_onebits(&i, sizeof(i)));
  i <<= 61;
  ASSERT_EQ(1, count_onebits(&i, sizeof(i)));
  i |= ((uint64_t) 1 << 33);
  ASSERT_EQ(2, count_onebits(&i, sizeof(i)));
  i = 0xf1000202020000f0;
  ASSERT_EQ(5 + 1 + 1 + 1 + 4, count_onebits(&i, sizeof(i)));
}

TEST_F(ClatdTest, TestGenIIDConfigured) {
  struct in6_addr myaddr, expected;
  Global_Clatd_Config.use_dynamic_iid = 0;
  ASSERT_TRUE(inet_pton(AF_INET6, "::bad:ace:d00d", &Global_Clatd_Config.ipv6_host_id));
  ASSERT_TRUE(inet_pton(AF_INET6, "2001:db8:1:2:0:bad:ace:d00d", &expected));
  ASSERT_TRUE(inet_pton(AF_INET6, "2001:db8:1:2:f076:ae99:124e:aa54", &myaddr));
  config_generate_local_ipv6_subnet(&myaddr);
  expect_ipv6_addr_equal(&expected, &myaddr);

  Global_Clatd_Config.use_dynamic_iid = 1;
  config_generate_local_ipv6_subnet(&myaddr);
  EXPECT_FALSE(IN6_ARE_ADDR_EQUAL(&expected, &myaddr));
}

TEST_F(ClatdTest, TestGenIIDRandom) {
  struct in6_addr interface_ipv6;
  ASSERT_TRUE(inet_pton(AF_INET6, "2001:db8:1:2:f076:ae99:124e:aa54", &interface_ipv6));
  Global_Clatd_Config.ipv6_host_id = in6addr_any;

  // Generate a boatload of random IIDs.
  int onebits = 0;
  uint64_t prev_iid = 0;
  for (int i = 0; i < 100000; i++) {
    struct in6_addr myaddr =  interface_ipv6;

    config_generate_local_ipv6_subnet(&myaddr);

    // Check the generated IP address is in the same prefix as the interface IPv6 address.
    EXPECT_TRUE(ipv6_prefix_equal(&interface_ipv6, &myaddr));

    // Check that consecutive IIDs are not the same.
    uint64_t iid = * (uint64_t*) (&myaddr.s6_addr[8]);
    ASSERT_TRUE(iid != prev_iid)
        << "Two consecutive random IIDs are the same: "
        << std::showbase << std::hex
        << iid << "\n";
    prev_iid = iid;

    // Check that the IID is checksum-neutral with the NAT64 prefix and the
    // local prefix.
    struct in_addr *ipv4addr = &Global_Clatd_Config.ipv4_local_subnet;
    struct in6_addr *plat_subnet = &Global_Clatd_Config.plat_subnet;

    uint16_t c1 = ip_checksum_finish(ip_checksum_add(0, ipv4addr, sizeof(*ipv4addr)));
    uint16_t c2 = ip_checksum_finish(ip_checksum_add(0, plat_subnet, sizeof(*plat_subnet)) +
                                     ip_checksum_add(0, &myaddr, sizeof(myaddr)));

    if (c1 != c2) {
      char myaddr_str[INET6_ADDRSTRLEN], plat_str[INET6_ADDRSTRLEN], ipv4_str[INET6_ADDRSTRLEN];
      inet_ntop(AF_INET6, &myaddr, myaddr_str, sizeof(myaddr_str));
      inet_ntop(AF_INET6, plat_subnet, plat_str, sizeof(plat_str));
      inet_ntop(AF_INET, ipv4addr, ipv4_str, sizeof(ipv4_str));
      FAIL()
          << "Bad IID: " << myaddr_str
          << " not checksum-neutral with " << ipv4_str << " and " << plat_str
          << std::showbase << std::hex
          << "\n  IPv4 checksum: " << c1
          << "\n  IPv6 checksum: " << c2
          << "\n";
    }

    // Check that IIDs are roughly random and use all the bits by counting the
    // total number of bits set to 1 in a random sample of 100000 generated IIDs.
    onebits += count_onebits(&iid, sizeof(iid));
  }
  EXPECT_LE(3190000, onebits);
  EXPECT_GE(3210000, onebits);
}

extern "C" addr_free_func config_is_ipv4_address_free;
int never_free(in_addr_t /* addr */) { return 0; }
int always_free(in_addr_t /* addr */) { return 1; }
int only2_free(in_addr_t addr) { return (ntohl(addr) & 0xff) == 2; }
int over6_free(in_addr_t addr) { return (ntohl(addr) & 0xff) >= 6; }
int only10_free(in_addr_t addr) { return (ntohl(addr) & 0xff) == 10; }

TEST_F(ClatdTest, SelectIPv4Address) {
  struct in_addr addr;

  inet_pton(AF_INET, kIPv4LocalAddr, &addr);

  addr_free_func orig_config_is_ipv4_address_free = config_is_ipv4_address_free;

  // If no addresses are free, return INADDR_NONE.
  config_is_ipv4_address_free = never_free;
  EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 29));
  EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 16));

  // If the configured address is free, pick that. But a prefix that's too big is invalid.
  config_is_ipv4_address_free = always_free;
  EXPECT_EQ(inet_addr(kIPv4LocalAddr), config_select_ipv4_address(&addr, 29));
  EXPECT_EQ(inet_addr(kIPv4LocalAddr), config_select_ipv4_address(&addr, 20));
  EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 15));

  // A prefix length of 32 works, but anything above it is invalid.
  EXPECT_EQ(inet_addr(kIPv4LocalAddr), config_select_ipv4_address(&addr, 32));
  EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 33));

  // If another address is free, pick it.
  config_is_ipv4_address_free = over6_free;
  EXPECT_EQ(inet_addr("192.0.0.6"), config_select_ipv4_address(&addr, 29));

  // Check that we wrap around to addresses that are lower than the first address.
  config_is_ipv4_address_free = only2_free;
  EXPECT_EQ(inet_addr("192.0.0.2"), config_select_ipv4_address(&addr, 29));
  EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 30));

  // If a free address exists outside the prefix, we don't pick it.
  config_is_ipv4_address_free = only10_free;
  EXPECT_EQ(INADDR_NONE, config_select_ipv4_address(&addr, 29));
  EXPECT_EQ(inet_addr("192.0.0.10"), config_select_ipv4_address(&addr, 24));

  // Now try using the real function which sees if IP addresses are free using bind().
  // Assume that the machine running the test has the address 127.0.0.1, but not 8.8.8.8.
  config_is_ipv4_address_free = orig_config_is_ipv4_address_free;
  addr.s_addr = inet_addr("8.8.8.8");
  EXPECT_EQ(inet_addr("8.8.8.8"), config_select_ipv4_address(&addr, 29));

  addr.s_addr = inet_addr("127.0.0.1");
  EXPECT_EQ(inet_addr("127.0.0.2"), config_select_ipv4_address(&addr, 29));
}

TEST_F(ClatdTest, DataSanitycheck) {
  // Sanity checks the data.
  uint8_t v4_header[] = { IPV4_UDP_HEADER };
  ASSERT_EQ(sizeof(struct iphdr), sizeof(v4_header)) << "Test IPv4 header: incorrect length\n";

  uint8_t v6_header[] = { IPV6_UDP_HEADER };
  ASSERT_EQ(sizeof(struct ip6_hdr), sizeof(v6_header)) << "Test IPv6 header: incorrect length\n";

  uint8_t udp_header[] = { UDP_HEADER };
  ASSERT_EQ(sizeof(struct udphdr), sizeof(udp_header)) << "Test UDP header: incorrect length\n";

  // Sanity checks check_packet.
  struct udphdr *udp;
  uint8_t v4_udp_packet[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD };
  udp = (struct udphdr *) (v4_udp_packet + sizeof(struct iphdr));
  fix_udp_checksum(v4_udp_packet);
  ASSERT_EQ(kUdpV4Checksum, udp->check) << "UDP/IPv4 packet checksum sanity check\n";
  check_packet(v4_udp_packet, sizeof(v4_udp_packet), "UDP/IPv4 packet sanity check");

  uint8_t v6_udp_packet[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD };
  udp = (struct udphdr *) (v6_udp_packet + sizeof(struct ip6_hdr));
  fix_udp_checksum(v6_udp_packet);
  ASSERT_EQ(kUdpV6Checksum, udp->check) << "UDP/IPv6 packet checksum sanity check\n";
  check_packet(v6_udp_packet, sizeof(v6_udp_packet), "UDP/IPv6 packet sanity check");

  uint8_t ipv4_ping[] = { IPV4_ICMP_HEADER IPV4_PING PAYLOAD };
  check_packet(ipv4_ping, sizeof(ipv4_ping), "IPv4 ping sanity check");

  uint8_t ipv6_ping[] = { IPV6_ICMPV6_HEADER IPV6_PING PAYLOAD };
  check_packet(ipv6_ping, sizeof(ipv6_ping), "IPv6 ping sanity check");

  // Sanity checks reassemble_packet.
  uint8_t reassembled[MAXMRU];
  size_t total_length = sizeof(reassembled);
  reassemble_packet(kIPv4Fragments, kIPv4FragLengths, ARRAYSIZE(kIPv4Fragments),
                    reassembled, &total_length, "Reassembly sanity check");
  check_packet(reassembled, total_length, "IPv4 Reassembled packet is valid");
  ASSERT_EQ(sizeof(kReassembledIPv4), total_length) << "IPv4 reassembly sanity check: length\n";
  ASSERT_TRUE(!is_ipv4_fragment((struct iphdr *) reassembled))
      << "Sanity check: reassembled packet is a fragment!\n";
  check_data_matches(kReassembledIPv4, reassembled, total_length, "IPv4 reassembly sanity check");

  total_length = sizeof(reassembled);
  reassemble_packet(kIPv6Fragments, kIPv6FragLengths, ARRAYSIZE(kIPv6Fragments),
                    reassembled, &total_length, "IPv6 reassembly sanity check");
  ASSERT_TRUE(!is_ipv6_fragment((struct ip6_hdr *) reassembled, total_length))
      << "Sanity check: reassembled packet is a fragment!\n";
  check_packet(reassembled, total_length, "IPv6 Reassembled packet is valid");
}

TEST_F(ClatdTest, PseudoChecksum) {
  uint32_t pseudo_checksum;

  uint8_t v4_header[] = { IPV4_UDP_HEADER };
  uint8_t v4_pseudo_header[] = { IPV4_PSEUDOHEADER(v4_header, UDP_LEN) };
  pseudo_checksum = ipv4_pseudo_header_checksum((struct iphdr *) v4_header, UDP_LEN);
  EXPECT_EQ(ip_checksum_finish(pseudo_checksum),
            ip_checksum(v4_pseudo_header, sizeof(v4_pseudo_header)))
            << "ipv4_pseudo_header_checksum incorrect\n";

  uint8_t v6_header[] = { IPV6_UDP_HEADER };
  uint8_t v6_pseudo_header[] = { IPV6_PSEUDOHEADER(v6_header, IPPROTO_UDP, UDP_LEN) };
  pseudo_checksum = ipv6_pseudo_header_checksum((struct ip6_hdr *) v6_header, UDP_LEN, IPPROTO_UDP);
  EXPECT_EQ(ip_checksum_finish(pseudo_checksum),
            ip_checksum(v6_pseudo_header, sizeof(v6_pseudo_header)))
            << "ipv6_pseudo_header_checksum incorrect\n";
}

TEST_F(ClatdTest, TransportChecksum) {
  uint8_t udphdr[] = { UDP_HEADER };
  uint8_t payload[] = { PAYLOAD };
  EXPECT_EQ(kUdpPartialChecksum, ip_checksum_add(0, udphdr, sizeof(udphdr)))
            << "UDP partial checksum\n";
  EXPECT_EQ(kPayloadPartialChecksum, ip_checksum_add(0, payload, sizeof(payload)))
            << "Payload partial checksum\n";

  uint8_t ip[] = { IPV4_UDP_HEADER };
  uint8_t ip6[] = { IPV6_UDP_HEADER };
  uint32_t ipv4_pseudo_sum = ipv4_pseudo_header_checksum((struct iphdr *) ip, UDP_LEN);
  uint32_t ipv6_pseudo_sum = ipv6_pseudo_header_checksum((struct ip6_hdr *) ip6, UDP_LEN,
                                                         IPPROTO_UDP);

  EXPECT_EQ(0x3ad0U, ipv4_pseudo_sum) << "IPv4 pseudo-checksum sanity check\n";
  EXPECT_EQ(0x2644bU, ipv6_pseudo_sum) << "IPv6 pseudo-checksum sanity check\n";
  EXPECT_EQ(
      kUdpV4Checksum,
      ip_checksum_finish(ipv4_pseudo_sum + kUdpPartialChecksum + kPayloadPartialChecksum))
      << "Unexpected UDP/IPv4 checksum\n";
  EXPECT_EQ(
      kUdpV6Checksum,
      ip_checksum_finish(ipv6_pseudo_sum + kUdpPartialChecksum + kPayloadPartialChecksum))
      << "Unexpected UDP/IPv6 checksum\n";

  EXPECT_EQ(kUdpV6Checksum,
      ip_checksum_adjust(kUdpV4Checksum, ipv4_pseudo_sum, ipv6_pseudo_sum))
      << "Adjust IPv4/UDP checksum to IPv6\n";
  EXPECT_EQ(kUdpV4Checksum,
      ip_checksum_adjust(kUdpV6Checksum, ipv6_pseudo_sum, ipv4_pseudo_sum))
      << "Adjust IPv6/UDP checksum to IPv4\n";
}

TEST_F(ClatdTest, AdjustChecksum) {
  struct checksum_data {
    uint16_t checksum;
    uint32_t old_hdr_sum;
    uint32_t new_hdr_sum;
    uint16_t result;
  } DATA[] = {
    { 0x1423, 0xb8ec, 0x2d757, 0xf5b5 },
    { 0xf5b5, 0x2d757, 0xb8ec, 0x1423 },
    { 0xdd2f, 0x5555, 0x3285, 0x0000 },
    { 0x1215, 0x5560, 0x15560 + 20, 0x1200 },
    { 0xd0c7, 0x3ad0, 0x2644b, 0xa74a },
  };
  unsigned i = 0;

  for (i = 0; i < ARRAYSIZE(DATA); i++) {
    struct checksum_data *data = DATA + i;
    uint16_t result = ip_checksum_adjust(data->checksum, data->old_hdr_sum, data->new_hdr_sum);
    EXPECT_EQ(result, data->result)
        << "Incorrect checksum" << std::showbase << std::hex
        << "\n  Expected: " << data->result
        << "\n  Actual:   " << result
        << "\n    checksum=" << data->checksum
        << " old_sum=" << data->old_hdr_sum << " new_sum=" << data->new_hdr_sum << "\n";
  }
}

TEST_F(ClatdTest, Translate) {
  uint8_t udp_ipv4[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD };
  uint8_t udp_ipv6[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD };
  fix_udp_checksum(udp_ipv4);
  fix_udp_checksum(udp_ipv6);
  check_translated_packet(udp_ipv4, sizeof(udp_ipv4), udp_ipv6, sizeof(udp_ipv6),
                          "UDP/IPv4 -> UDP/IPv6 translation");
  check_translated_packet(udp_ipv6, sizeof(udp_ipv6), udp_ipv4, sizeof(udp_ipv4),
                          "UDP/IPv6 -> UDP/IPv4 translation");

  uint8_t ipv4_ping[] = { IPV4_ICMP_HEADER IPV4_PING PAYLOAD };
  uint8_t ipv6_ping[] = { IPV6_ICMPV6_HEADER IPV6_PING PAYLOAD };
  check_translated_packet(ipv4_ping, sizeof(ipv4_ping), ipv6_ping, sizeof(ipv6_ping),
                          "ICMP->ICMPv6 translation");
  check_translated_packet(ipv6_ping, sizeof(ipv6_ping), ipv4_ping, sizeof(ipv4_ping),
                          "ICMPv6->ICMP translation");
}

TEST_F(ClatdTest, Fragmentation) {
  check_fragment_translation(kIPv4Fragments, kIPv4FragLengths,
                             kIPv6Fragments, kIPv6FragLengths,
                             ARRAYSIZE(kIPv4Fragments), "IPv4->IPv6 fragment translation");

  check_fragment_translation(kIPv6Fragments, kIPv6FragLengths,
                             kIPv4Fragments, kIPv4FragLengths,
                             ARRAYSIZE(kIPv6Fragments), "IPv6->IPv4 fragment translation");
}

void check_translate_checksum_neutral(const uint8_t *original, size_t original_len,
                                      size_t expected_len, const char *msg) {
  uint8_t translated[MAXMRU];
  size_t translated_len = sizeof(translated);
  do_translate_packet(original, original_len, translated, &translated_len, msg);
  EXPECT_EQ(expected_len, translated_len) << msg << ": Translated packet length incorrect\n";
  // do_translate_packet already checks packets for validity and verifies the checksum.
  int original_check = get_transport_checksum(original);
  int translated_check = get_transport_checksum(translated);
  ASSERT_NE(-1, original_check);
  ASSERT_NE(-1, translated_check);
  ASSERT_EQ(original_check, translated_check)
      << "Not checksum neutral: original and translated checksums differ\n";
}

TEST_F(ClatdTest, TranslateChecksumNeutral) {
  // Generate a random clat IPv6 address and check that translation is checksum-neutral.
  Global_Clatd_Config.ipv6_host_id = in6addr_any;
  ASSERT_TRUE(inet_pton(AF_INET6, "2001:db8:1:2:f076:ae99:124e:aa54",
                        &Global_Clatd_Config.ipv6_local_subnet));
  config_generate_local_ipv6_subnet(&Global_Clatd_Config.ipv6_local_subnet);
  ASSERT_NE((uint32_t) 0x00000464, Global_Clatd_Config.ipv6_local_subnet.s6_addr32[3]);
  ASSERT_NE((uint32_t) 0, Global_Clatd_Config.ipv6_local_subnet.s6_addr32[3]);

  // Check that translating UDP packets is checksum-neutral. First, IPv4.
  uint8_t udp_ipv4[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD };
  fix_udp_checksum(udp_ipv4);
  check_translate_checksum_neutral(udp_ipv4, sizeof(udp_ipv4), sizeof(udp_ipv4) + 20,
                                   "UDP/IPv4 -> UDP/IPv6 checksum neutral");

  // Now try IPv6.
  uint8_t udp_ipv6[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD };
  // The test packet uses the static IID, not the random IID. Fix up the source address.
  struct ip6_hdr *ip6 = (struct ip6_hdr *) udp_ipv6;
  memcpy(&ip6->ip6_src, &Global_Clatd_Config.ipv6_local_subnet, sizeof(ip6->ip6_src));
  fix_udp_checksum(udp_ipv6);
  check_translate_checksum_neutral(udp_ipv4, sizeof(udp_ipv4), sizeof(udp_ipv4) + 20,
                                   "UDP/IPv4 -> UDP/IPv6 checksum neutral");
}