1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This file contains codegen and support common to all supported
* ARM variants. It is included by:
*
* Codegen-$(TARGET_ARCH_VARIANT).c
*
* which combines this common code with specific support found in the
* applicable directory below this one.
*/
/* Routines which must be supplied by the variant-specific code */
static void genDispatchToHandler(CompilationUnit *cUnit, TemplateOpCode opCode);
bool dvmCompilerArchInit(void);
static bool genInlineSqrt(CompilationUnit *cUnit, MIR *mir);
static bool genInlineCos(CompilationUnit *cUnit, MIR *mir);
static bool genInlineSin(CompilationUnit *cUnit, MIR *mir);
static bool genConversion(CompilationUnit *cUnit, MIR *mir);
static bool genArithOpFloat(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2);
static bool genArithOpDouble(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2);
static bool genCmpX(CompilationUnit *cUnit, MIR *mir, int vDest, int vSrc1,
int vSrc2);
/* Array holding the entry offset of each template relative to the first one */
static intptr_t templateEntryOffsets[TEMPLATE_LAST_MARK];
/* Track exercised opcodes */
static int opcodeCoverage[256];
/* non-existent register */
#define vNone (-1)
/* get the next register in r0..r3 in a round-robin fashion */
#define NEXT_REG(reg) ((reg + 1) & 3)
/*****************************************************************************/
/*
* The following are building blocks to construct low-level IRs with 0 - 3
* operands.
*/
static Armv5teLIR *newLIR0(CompilationUnit *cUnit, Armv5teOpCode opCode)
{
Armv5teLIR *insn = dvmCompilerNew(sizeof(Armv5teLIR), true);
assert(isPseudoOpCode(opCode) || (EncodingMap[opCode].flags & NO_OPERAND));
insn->opCode = opCode;
dvmCompilerAppendLIR(cUnit, (LIR *) insn);
return insn;
}
static Armv5teLIR *newLIR1(CompilationUnit *cUnit, Armv5teOpCode opCode,
int dest)
{
Armv5teLIR *insn = dvmCompilerNew(sizeof(Armv5teLIR), true);
assert(isPseudoOpCode(opCode) || (EncodingMap[opCode].flags & IS_UNARY_OP));
insn->opCode = opCode;
insn->operands[0] = dest;
dvmCompilerAppendLIR(cUnit, (LIR *) insn);
return insn;
}
static Armv5teLIR *newLIR2(CompilationUnit *cUnit, Armv5teOpCode opCode,
int dest, int src1)
{
Armv5teLIR *insn = dvmCompilerNew(sizeof(Armv5teLIR), true);
assert(isPseudoOpCode(opCode) ||
(EncodingMap[opCode].flags & IS_BINARY_OP));
insn->opCode = opCode;
insn->operands[0] = dest;
insn->operands[1] = src1;
dvmCompilerAppendLIR(cUnit, (LIR *) insn);
return insn;
}
static Armv5teLIR *newLIR3(CompilationUnit *cUnit, Armv5teOpCode opCode,
int dest, int src1, int src2)
{
Armv5teLIR *insn = dvmCompilerNew(sizeof(Armv5teLIR), true);
assert(isPseudoOpCode(opCode) ||
(EncodingMap[opCode].flags & IS_TERTIARY_OP));
insn->opCode = opCode;
insn->operands[0] = dest;
insn->operands[1] = src1;
insn->operands[2] = src2;
dvmCompilerAppendLIR(cUnit, (LIR *) insn);
return insn;
}
static Armv5teLIR *newLIR23(CompilationUnit *cUnit, Armv5teOpCode opCode,
int srcdest, int src2)
{
assert(!isPseudoOpCode(opCode));
if (EncodingMap[opCode].flags & IS_BINARY_OP)
return newLIR2(cUnit, opCode, srcdest, src2);
else
return newLIR3(cUnit, opCode, srcdest, srcdest, src2);
}
/*****************************************************************************/
/*
* The following are utility routines to help maintain the RegisterScoreboard
* state to facilitate register renaming.
*/
/* Reset the tracker to unknown state */
static inline void resetRegisterScoreboard(CompilationUnit *cUnit)
{
RegisterScoreboard *registerScoreboard = &cUnit->registerScoreboard;
dvmClearAllBits(registerScoreboard->nullCheckedRegs);
registerScoreboard->liveDalvikReg = vNone;
registerScoreboard->nativeReg = vNone;
registerScoreboard->nativeRegHi = vNone;
}
/* Kill the corresponding bit in the null-checked register list */
static inline void killNullCheckedRegister(CompilationUnit *cUnit, int vReg)
{
dvmClearBit(cUnit->registerScoreboard.nullCheckedRegs, vReg);
}
/* The Dalvik register pair held in native registers have changed */
static inline void updateLiveRegisterPair(CompilationUnit *cUnit,
int vReg, int mRegLo, int mRegHi)
{
cUnit->registerScoreboard.liveDalvikReg = vReg;
cUnit->registerScoreboard.nativeReg = mRegLo;
cUnit->registerScoreboard.nativeRegHi = mRegHi;
cUnit->registerScoreboard.isWide = true;
}
/* The Dalvik register held in a native register has changed */
static inline void updateLiveRegister(CompilationUnit *cUnit,
int vReg, int mReg)
{
cUnit->registerScoreboard.liveDalvikReg = vReg;
cUnit->registerScoreboard.nativeReg = mReg;
cUnit->registerScoreboard.isWide = false;
}
/*
* Given a Dalvik register id vSrc, use a very simple algorithm to increase
* the lifetime of cached Dalvik value in a native register.
*/
static inline int selectFirstRegister(CompilationUnit *cUnit, int vSrc,
bool isWide)
{
RegisterScoreboard *registerScoreboard = &cUnit->registerScoreboard;
/* No live value - suggest to use r0 */
if (registerScoreboard->liveDalvikReg == vNone)
return r0;
/* Reuse the previously used native reg */
if (registerScoreboard->liveDalvikReg == vSrc) {
if (isWide != true) {
return registerScoreboard->nativeReg;
} else {
/* Return either r0 or r2 */
return (registerScoreboard->nativeReg + 1) & 2;
}
}
/* No reuse - choose the next one among r0..r3 in the round-robin fashion */
if (isWide) {
return (registerScoreboard->nativeReg + 2) & 2;
} else {
return (registerScoreboard->nativeReg + 1) & 3;
}
}
/*****************************************************************************/
/*
* The following are building blocks to insert constants into the pool or
* instruction streams.
*/
/* Add a 32-bit constant either in the constant pool or mixed with code */
static Armv5teLIR *addWordData(CompilationUnit *cUnit, int value, bool inPlace)
{
/* Add the constant to the literal pool */
if (!inPlace) {
Armv5teLIR *newValue = dvmCompilerNew(sizeof(Armv5teLIR), true);
newValue->operands[0] = value;
newValue->generic.next = cUnit->wordList;
cUnit->wordList = (LIR *) newValue;
return newValue;
} else {
/* Add the constant in the middle of code stream */
newLIR1(cUnit, ARMV5TE_16BIT_DATA, (value & 0xffff));
newLIR1(cUnit, ARMV5TE_16BIT_DATA, (value >> 16));
}
return NULL;
}
/*
* Search the existing constants in the literal pool for an exact or close match
* within specified delta (greater or equal to 0).
*/
static Armv5teLIR *scanLiteralPool(CompilationUnit *cUnit, int value,
unsigned int delta)
{
LIR *dataTarget = cUnit->wordList;
while (dataTarget) {
if (((unsigned) (value - ((Armv5teLIR *) dataTarget)->operands[0])) <=
delta)
return (Armv5teLIR *) dataTarget;
dataTarget = dataTarget->next;
}
return NULL;
}
/*
* Load a immediate using a shortcut if possible; otherwise
* grab from the per-translation literal pool
*/
void loadConstant(CompilationUnit *cUnit, int rDest, int value)
{
/* See if the value can be constructed cheaply */
if ((value >= 0) && (value <= 255)) {
newLIR2(cUnit, ARMV5TE_MOV_IMM, rDest, value);
return;
} else if ((value & 0xFFFFFF00) == 0xFFFFFF00) {
newLIR2(cUnit, ARMV5TE_MOV_IMM, rDest, ~value);
newLIR2(cUnit, ARMV5TE_MVN, rDest, rDest);
return;
}
/* No shortcut - go ahead and use literal pool */
Armv5teLIR *dataTarget = scanLiteralPool(cUnit, value, 255);
if (dataTarget == NULL) {
dataTarget = addWordData(cUnit, value, false);
}
Armv5teLIR *loadPcRel = dvmCompilerNew(sizeof(Armv5teLIR), true);
loadPcRel->opCode = ARMV5TE_LDR_PC_REL;
loadPcRel->generic.target = (LIR *) dataTarget;
loadPcRel->operands[0] = rDest;
dvmCompilerAppendLIR(cUnit, (LIR *) loadPcRel);
/*
* To save space in the constant pool, we use the ADD_RRI8 instruction to
* add up to 255 to an existing constant value.
*/
if (dataTarget->operands[0] != value) {
newLIR2(cUnit, ARMV5TE_ADD_RI8, rDest, value - dataTarget->operands[0]);
}
}
/* Export the Dalvik PC assicated with an instruction to the StackSave area */
static void genExportPC(CompilationUnit *cUnit, MIR *mir, int rDPC, int rAddr)
{
int offset = offsetof(StackSaveArea, xtra.currentPc);
loadConstant(cUnit, rDPC, (int) (cUnit->method->insns + mir->offset));
newLIR2(cUnit, ARMV5TE_MOV_RR, rAddr, rFP);
newLIR2(cUnit, ARMV5TE_SUB_RI8, rAddr, sizeof(StackSaveArea) - offset);
newLIR3(cUnit, ARMV5TE_STR_RRI5, rDPC, rAddr, 0);
}
/* Generate conditional branch instructions */
static void genConditionalBranch(CompilationUnit *cUnit,
Armv5teConditionCode cond,
Armv5teLIR *target)
{
Armv5teLIR *branch = newLIR2(cUnit, ARMV5TE_B_COND, 0, cond);
branch->generic.target = (LIR *) target;
}
/* Generate unconditional branch instructions */
static void genUnconditionalBranch(CompilationUnit *cUnit, Armv5teLIR *target)
{
Armv5teLIR *branch = newLIR0(cUnit, ARMV5TE_B_UNCOND);
branch->generic.target = (LIR *) target;
}
/* Perform the actual operation for OP_RETURN_* */
static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
{
genDispatchToHandler(cUnit, TEMPLATE_RETURN);
#if defined(INVOKE_STATS)
gDvmJit.returnOp++;
#endif
int dPC = (int) (cUnit->method->insns + mir->offset);
Armv5teLIR *branch = newLIR0(cUnit, ARMV5TE_B_UNCOND);
/* Set up the place holder to reconstruct this Dalvik PC */
Armv5teLIR *pcrLabel = dvmCompilerNew(sizeof(Armv5teLIR), true);
pcrLabel->opCode = ARMV5TE_PSEUDO_PC_RECONSTRUCTION_CELL;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = mir->offset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
/* Branch to the PC reconstruction code */
branch->generic.target = (LIR *) pcrLabel;
}
/*
* Load a pair of values of rFP[src..src+1] and store them into rDestLo and
* rDestHi
*/
static void loadValuePair(CompilationUnit *cUnit, int vSrc, int rDestLo,
int rDestHi)
{
/* Use reg + imm5*4 to load the values if possible */
if (vSrc <= 30) {
newLIR3(cUnit, ARMV5TE_LDR_RRI5, rDestLo, rFP, vSrc);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, rDestHi, rFP, vSrc+1);
} else {
if (vSrc <= 64) {
/* Sneak 4 into the base address first */
newLIR3(cUnit, ARMV5TE_ADD_RRI3, rDestLo, rFP, 4);
newLIR2(cUnit, ARMV5TE_ADD_RI8, rDestLo, (vSrc-1)*4);
} else {
/* Offset too far from rFP */
loadConstant(cUnit, rDestLo, vSrc*4);
newLIR3(cUnit, ARMV5TE_ADD_RRR, rDestLo, rFP, rDestLo);
}
assert(rDestLo < rDestHi);
newLIR2(cUnit, ARMV5TE_LDMIA, rDestLo, (1<<rDestLo) | (1<<(rDestHi)));
}
}
/*
* Store a pair of values of rSrc and rSrc+1 and store them into vDest and
* vDest+1
*/
static void storeValuePair(CompilationUnit *cUnit, int rSrcLo, int rSrcHi,
int vDest, int rScratch)
{
killNullCheckedRegister(cUnit, vDest);
killNullCheckedRegister(cUnit, vDest+1);
updateLiveRegisterPair(cUnit, vDest, rSrcLo, rSrcHi);
/* Use reg + imm5*4 to store the values if possible */
if (vDest <= 30) {
newLIR3(cUnit, ARMV5TE_STR_RRI5, rSrcLo, rFP, vDest);
newLIR3(cUnit, ARMV5TE_STR_RRI5, rSrcHi, rFP, vDest+1);
} else {
if (vDest <= 64) {
/* Sneak 4 into the base address first */
newLIR3(cUnit, ARMV5TE_ADD_RRI3, rScratch, rFP, 4);
newLIR2(cUnit, ARMV5TE_ADD_RI8, rScratch, (vDest-1)*4);
} else {
/* Offset too far from rFP */
loadConstant(cUnit, rScratch, vDest*4);
newLIR3(cUnit, ARMV5TE_ADD_RRR, rScratch, rFP, rScratch);
}
assert(rSrcLo < rSrcHi);
newLIR2(cUnit, ARMV5TE_STMIA, rScratch, (1<<rSrcLo) | (1 << (rSrcHi)));
}
}
/* Load the address of a Dalvik register on the frame */
static void loadValueAddress(CompilationUnit *cUnit, int vSrc, int rDest)
{
/* RRI3 can add up to 7 */
if (vSrc <= 1) {
newLIR3(cUnit, ARMV5TE_ADD_RRI3, rDest, rFP, vSrc*4);
} else if (vSrc <= 64) {
/* Sneak 4 into the base address first */
newLIR3(cUnit, ARMV5TE_ADD_RRI3, rDest, rFP, 4);
newLIR2(cUnit, ARMV5TE_ADD_RI8, rDest, (vSrc-1)*4);
} else {
loadConstant(cUnit, rDest, vSrc*4);
newLIR3(cUnit, ARMV5TE_ADD_RRR, rDest, rFP, rDest);
}
}
/* Load a single value from rFP[src] and store them into rDest */
static void loadValue(CompilationUnit *cUnit, int vSrc, int rDest)
{
/* Use reg + imm5*4 to load the value if possible */
if (vSrc <= 31) {
newLIR3(cUnit, ARMV5TE_LDR_RRI5, rDest, rFP, vSrc);
} else {
loadConstant(cUnit, rDest, vSrc*4);
newLIR3(cUnit, ARMV5TE_LDR_RRR, rDest, rFP, rDest);
}
}
/* Load a word at base + displacement. Displacement must be word multiple */
static void loadWordDisp(CompilationUnit *cUnit, int rBase, int displacement,
int rDest)
{
assert((displacement & 0x3) == 0);
/* Can it fit in a RRI5? */
if (displacement < 128) {
newLIR3(cUnit, ARMV5TE_LDR_RRI5, rDest, rBase, displacement >> 2);
} else {
loadConstant(cUnit, rDest, displacement);
newLIR3(cUnit, ARMV5TE_LDR_RRR, rDest, rBase, rDest);
}
}
/* Store a value from rSrc to vDest */
static void storeValue(CompilationUnit *cUnit, int rSrc, int vDest,
int rScratch)
{
killNullCheckedRegister(cUnit, vDest);
updateLiveRegister(cUnit, vDest, rSrc);
/* Use reg + imm5*4 to store the value if possible */
if (vDest <= 31) {
newLIR3(cUnit, ARMV5TE_STR_RRI5, rSrc, rFP, vDest);
} else {
loadConstant(cUnit, rScratch, vDest*4);
newLIR3(cUnit, ARMV5TE_STR_RRR, rSrc, rFP, rScratch);
}
}
/*
* Perform a binary operation on 64-bit operands and leave the results in the
* r0/r1 pair.
*/
static void genBinaryOpWide(CompilationUnit *cUnit, int vDest,
Armv5teOpCode preinst, Armv5teOpCode inst,
int reg0, int reg2)
{
int reg1 = NEXT_REG(reg0);
int reg3 = NEXT_REG(reg2);
newLIR23(cUnit, preinst, reg0, reg2);
newLIR23(cUnit, inst, reg1, reg3);
storeValuePair(cUnit, reg0, reg1, vDest, reg2);
}
/* Perform a binary operation on 32-bit operands and leave the results in r0. */
static void genBinaryOp(CompilationUnit *cUnit, int vDest, Armv5teOpCode inst,
int reg0, int reg1, int regDest)
{
if (EncodingMap[inst].flags & IS_BINARY_OP) {
newLIR2(cUnit, inst, reg0, reg1);
storeValue(cUnit, reg0, vDest, reg1);
} else {
newLIR3(cUnit, inst, regDest, reg0, reg1);
storeValue(cUnit, regDest, vDest, reg1);
}
}
/* Create the PC reconstruction slot if not already done */
static inline Armv5teLIR *genCheckCommon(CompilationUnit *cUnit, int dOffset,
Armv5teLIR *branch,
Armv5teLIR *pcrLabel)
{
/* Set up the place holder to reconstruct this Dalvik PC */
if (pcrLabel == NULL) {
int dPC = (int) (cUnit->method->insns + dOffset);
pcrLabel = dvmCompilerNew(sizeof(Armv5teLIR), true);
pcrLabel->opCode = ARMV5TE_PSEUDO_PC_RECONSTRUCTION_CELL;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = dOffset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
}
/* Branch to the PC reconstruction code */
branch->generic.target = (LIR *) pcrLabel;
return pcrLabel;
}
/*
* Perform a "reg cmp imm" operation and jump to the PCR region if condition
* satisfies.
*/
static inline Armv5teLIR *genRegImmCheck(CompilationUnit *cUnit,
Armv5teConditionCode cond, int reg,
int checkValue, int dOffset,
Armv5teLIR *pcrLabel)
{
newLIR2(cUnit, ARMV5TE_CMP_RI8, reg, checkValue);
Armv5teLIR *branch = newLIR2(cUnit, ARMV5TE_B_COND, 0, cond);
return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
}
/*
* Perform a "reg cmp reg" operation and jump to the PCR region if condition
* satisfies.
*/
static inline Armv5teLIR *inertRegRegCheck(CompilationUnit *cUnit,
Armv5teConditionCode cond,
int reg1, int reg2, int dOffset,
Armv5teLIR *pcrLabel)
{
newLIR2(cUnit, ARMV5TE_CMP_RR, reg1, reg2);
Armv5teLIR *branch = newLIR2(cUnit, ARMV5TE_B_COND, 0, cond);
return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
}
/*
* Perform null-check on a register. vReg is the Dalvik register being checked,
* and mReg is the machine register holding the actual value. If internal state
* indicates that vReg has been checked before the check request is ignored.
*/
static Armv5teLIR *genNullCheck(CompilationUnit *cUnit, int vReg, int mReg,
int dOffset, Armv5teLIR *pcrLabel)
{
/* This particular Dalvik register has been null-checked */
if (dvmIsBitSet(cUnit->registerScoreboard.nullCheckedRegs, vReg)) {
return pcrLabel;
}
dvmSetBit(cUnit->registerScoreboard.nullCheckedRegs, vReg);
return genRegImmCheck(cUnit, ARM_COND_EQ, mReg, 0, dOffset, pcrLabel);
}
/*
* Perform zero-check on a register. Similar to genNullCheck but the value being
* checked does not have a corresponding Dalvik register.
*/
static Armv5teLIR *genZeroCheck(CompilationUnit *cUnit, int mReg,
int dOffset, Armv5teLIR *pcrLabel)
{
return genRegImmCheck(cUnit, ARM_COND_EQ, mReg, 0, dOffset, pcrLabel);
}
/* Perform bound check on two registers */
static Armv5teLIR *genBoundsCheck(CompilationUnit *cUnit, int rIndex,
int rBound, int dOffset, Armv5teLIR *pcrLabel)
{
return inertRegRegCheck(cUnit, ARM_COND_CS, rIndex, rBound, dOffset,
pcrLabel);
}
/* Generate a unconditional branch to go to the interpreter */
static inline Armv5teLIR *genTrap(CompilationUnit *cUnit, int dOffset,
Armv5teLIR *pcrLabel)
{
Armv5teLIR *branch = newLIR0(cUnit, ARMV5TE_B_UNCOND);
return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
}
/* Load a wide field from an object instance */
static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0, reg1, reg2, reg3;
/* Allocate reg0..reg3 into physical registers r0..r3 */
/* See if vB is in a native register. If so, reuse it. */
reg2 = selectFirstRegister(cUnit, dInsn->vB, false);
/* Ping reg3 to the other register of the same pair containing reg2 */
reg3 = reg2 ^ 0x1;
/*
* Ping reg0 to the first register of the alternate register pair
*/
reg0 = (reg2 + 2) & 0x2;
reg1 = NEXT_REG(reg0);
loadValue(cUnit, dInsn->vB, reg2);
loadConstant(cUnit, reg3, fieldOffset);
genNullCheck(cUnit, dInsn->vB, reg2, mir->offset, NULL); /* null object? */
newLIR3(cUnit, ARMV5TE_ADD_RRR, reg2, reg2, reg3);
newLIR2(cUnit, ARMV5TE_LDMIA, reg2, (1<<reg0 | 1<<reg1));
storeValuePair(cUnit, reg0, reg1, dInsn->vA, reg3);
}
/* Store a wide field to an object instance */
static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0, reg1, reg2, reg3;
/* Allocate reg0..reg3 into physical registers r0..r3 */
/* See if vB is in a native register. If so, reuse it. */
reg2 = selectFirstRegister(cUnit, dInsn->vB, false);
/* Ping reg3 to the other register of the same pair containing reg2 */
reg3 = reg2 ^ 0x1;
/*
* Ping reg0 to the first register of the alternate register pair
*/
reg0 = (reg2 + 2) & 0x2;
reg1 = NEXT_REG(reg0);
loadValue(cUnit, dInsn->vB, reg2);
loadValuePair(cUnit, dInsn->vA, reg0, reg1);
updateLiveRegisterPair(cUnit, dInsn->vA, reg0, reg1);
loadConstant(cUnit, reg3, fieldOffset);
genNullCheck(cUnit, dInsn->vB, reg2, mir->offset, NULL); /* null object? */
newLIR3(cUnit, ARMV5TE_ADD_RRR, reg2, reg2, reg3);
newLIR2(cUnit, ARMV5TE_STMIA, reg2, (1<<reg0 | 1<<reg1));
}
/*
* Load a field from an object instance
*
* Inst should be one of:
* ARMV5TE_LDR_RRR
* ARMV5TE_LDRB_RRR
* ARMV5TE_LDRH_RRR
* ARMV5TE_LDRSB_RRR
* ARMV5TE_LDRSH_RRR
*/
static void genIGet(CompilationUnit *cUnit, MIR *mir, Armv5teOpCode inst,
int fieldOffset)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0, reg1;
reg0 = selectFirstRegister(cUnit, dInsn->vB, false);
reg1 = NEXT_REG(reg0);
/* TUNING: write a utility routine to load via base + constant offset */
loadValue(cUnit, dInsn->vB, reg0);
loadConstant(cUnit, reg1, fieldOffset);
genNullCheck(cUnit, dInsn->vB, reg0, mir->offset, NULL); /* null object? */
newLIR3(cUnit, inst, reg0, reg0, reg1);
storeValue(cUnit, reg0, dInsn->vA, reg1);
}
/*
* Store a field to an object instance
*
* Inst should be one of:
* ARMV5TE_STR_RRR
* ARMV5TE_STRB_RRR
* ARMV5TE_STRH_RRR
*/
static void genIPut(CompilationUnit *cUnit, MIR *mir, Armv5teOpCode inst,
int fieldOffset)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0, reg1, reg2;
reg0 = selectFirstRegister(cUnit, dInsn->vB, false);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
/* TUNING: write a utility routine to load via base + constant offset */
loadValue(cUnit, dInsn->vB, reg0);
loadConstant(cUnit, reg1, fieldOffset);
loadValue(cUnit, dInsn->vA, reg2);
updateLiveRegister(cUnit, dInsn->vA, reg2);
genNullCheck(cUnit, dInsn->vB, reg0, mir->offset, NULL); /* null object? */
newLIR3(cUnit, inst, reg2, reg0, reg1);
}
/* TODO: This should probably be done as an out-of-line instruction handler. */
/*
* Generate array load
*
* Inst should be one of:
* ARMV5TE_LDR_RRR
* ARMV5TE_LDRB_RRR
* ARMV5TE_LDRH_RRR
* ARMV5TE_LDRSB_RRR
* ARMV5TE_LDRSH_RRR
*/
static void genArrayGet(CompilationUnit *cUnit, MIR *mir, Armv5teOpCode inst,
int vArray, int vIndex, int vDest, int scale)
{
int lenOffset = offsetof(ArrayObject, length);
int dataOffset = offsetof(ArrayObject, contents);
int reg0, reg1, reg2, reg3;
reg0 = selectFirstRegister(cUnit, vArray, false);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
reg3 = NEXT_REG(reg2);
loadValue(cUnit, vArray, reg2);
loadValue(cUnit, vIndex, reg3);
/* null object? */
Armv5teLIR * pcrLabel = genNullCheck(cUnit, vArray, reg2, mir->offset,
NULL);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, reg0, reg2, lenOffset >> 2); /* Get len */
newLIR2(cUnit, ARMV5TE_ADD_RI8, reg2, dataOffset); /* reg2 -> array data */
genBoundsCheck(cUnit, reg3, reg0, mir->offset, pcrLabel);
if (scale) {
newLIR3(cUnit, ARMV5TE_LSL, reg3, reg3, scale);
}
if (scale==3) {
newLIR3(cUnit, inst, reg0, reg2, reg3);
newLIR2(cUnit, ARMV5TE_ADD_RI8, reg2, 4);
newLIR3(cUnit, inst, reg1, reg2, reg3);
storeValuePair(cUnit, reg0, reg1, vDest, reg3);
} else {
newLIR3(cUnit, inst, reg0, reg2, reg3);
storeValue(cUnit, reg0, vDest, reg3);
}
}
/* TODO: This should probably be done as an out-of-line instruction handler. */
/*
* Generate array store
*
* Inst should be one of:
* ARMV5TE_STR_RRR
* ARMV5TE_STRB_RRR
* ARMV5TE_STRH_RRR
*/
static void genArrayPut(CompilationUnit *cUnit, MIR *mir, Armv5teOpCode inst,
int vArray, int vIndex, int vSrc, int scale)
{
int lenOffset = offsetof(ArrayObject, length);
int dataOffset = offsetof(ArrayObject, contents);
int reg0, reg1, reg2, reg3;
reg0 = selectFirstRegister(cUnit, vArray, false);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
reg3 = NEXT_REG(reg2);
loadValue(cUnit, vArray, reg2);
loadValue(cUnit, vIndex, reg3);
/* null object? */
Armv5teLIR * pcrLabel = genNullCheck(cUnit, vArray, reg2, mir->offset,
NULL);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, reg0, reg2, lenOffset >> 2); /* Get len */
newLIR2(cUnit, ARMV5TE_ADD_RI8, reg2, dataOffset); /* reg2 -> array data */
genBoundsCheck(cUnit, reg3, reg0, mir->offset, pcrLabel);
/* at this point, reg2 points to array, reg3 is unscaled index */
if (scale==3) {
loadValuePair(cUnit, vSrc, reg0, reg1);
updateLiveRegisterPair(cUnit, vSrc, reg0, reg1);
} else {
loadValue(cUnit, vSrc, reg0);
updateLiveRegister(cUnit, vSrc, reg0);
}
if (scale) {
newLIR3(cUnit, ARMV5TE_LSL, reg3, reg3, scale);
}
/*
* at this point, reg2 points to array, reg3 is scaled index, and
* reg0[reg1] is data
*/
if (scale==3) {
newLIR3(cUnit, inst, reg0, reg2, reg3);
newLIR2(cUnit, ARMV5TE_ADD_RI8, reg2, 4);
newLIR3(cUnit, inst, reg1, reg2, reg3);
} else {
newLIR3(cUnit, inst, reg0, reg2, reg3);
}
}
static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vShift)
{
/*
* Don't mess with the regsiters here as there is a particular calling
* convention to the out-of-line handler.
*/
loadValue(cUnit, vShift, r2);
loadValuePair(cUnit, vSrc1, r0, r1);
switch( mir->dalvikInsn.opCode) {
case OP_SHL_LONG:
case OP_SHL_LONG_2ADDR:
genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
break;
case OP_SHR_LONG:
case OP_SHR_LONG_2ADDR:
genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
break;
case OP_USHR_LONG:
case OP_USHR_LONG_2ADDR:
genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
break;
default:
return true;
}
storeValuePair(cUnit, r0, r1, vDest, r2);
return false;
}
bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
int vDest, int vSrc1, int vSrc2)
{
/*
* Don't optimize the regsiter usage here as they are governed by the EABI
* calling convention.
*/
void* funct;
int reg0, reg1;
/* TODO: use a proper include file to define these */
float __aeabi_fadd(float a, float b);
float __aeabi_fsub(float a, float b);
float __aeabi_fdiv(float a, float b);
float __aeabi_fmul(float a, float b);
float fmodf(float a, float b);
reg0 = selectFirstRegister(cUnit, vSrc2, false);
reg1 = NEXT_REG(reg0);
switch (mir->dalvikInsn.opCode) {
case OP_ADD_FLOAT_2ADDR:
case OP_ADD_FLOAT:
funct = (void*) __aeabi_fadd;
break;
case OP_SUB_FLOAT_2ADDR:
case OP_SUB_FLOAT:
funct = (void*) __aeabi_fsub;
break;
case OP_DIV_FLOAT_2ADDR:
case OP_DIV_FLOAT:
funct = (void*) __aeabi_fdiv;
break;
case OP_MUL_FLOAT_2ADDR:
case OP_MUL_FLOAT:
funct = (void*) __aeabi_fmul;
break;
case OP_REM_FLOAT_2ADDR:
case OP_REM_FLOAT:
funct = (void*) fmodf;
break;
case OP_NEG_FLOAT: {
loadValue(cUnit, vSrc2, reg0);
loadConstant(cUnit, reg1, 0x80000000);
newLIR3(cUnit, ARMV5TE_ADD_RRR, reg0, reg0, reg1);
storeValue(cUnit, reg0, vDest, reg1);
return false;
}
default:
return true;
}
loadConstant(cUnit, r2, (int)funct);
loadValue(cUnit, vSrc1, r0);
loadValue(cUnit, vSrc2, r1);
newLIR1(cUnit, ARMV5TE_BLX_R, r2);
storeValue(cUnit, r0, vDest, r1);
return false;
}
bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
int vDest, int vSrc1, int vSrc2)
{
void* funct;
int reg0, reg1, reg2;
/* TODO: use a proper include file to define these */
double __aeabi_dadd(double a, double b);
double __aeabi_dsub(double a, double b);
double __aeabi_ddiv(double a, double b);
double __aeabi_dmul(double a, double b);
double fmod(double a, double b);
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
switch (mir->dalvikInsn.opCode) {
case OP_ADD_DOUBLE_2ADDR:
case OP_ADD_DOUBLE:
funct = (void*) __aeabi_dadd;
break;
case OP_SUB_DOUBLE_2ADDR:
case OP_SUB_DOUBLE:
funct = (void*) __aeabi_dsub;
break;
case OP_DIV_DOUBLE_2ADDR:
case OP_DIV_DOUBLE:
funct = (void*) __aeabi_ddiv;
break;
case OP_MUL_DOUBLE_2ADDR:
case OP_MUL_DOUBLE:
funct = (void*) __aeabi_dmul;
break;
case OP_REM_DOUBLE_2ADDR:
case OP_REM_DOUBLE:
funct = (void*) fmod;
break;
case OP_NEG_DOUBLE: {
loadValuePair(cUnit, vSrc2, reg0, reg1);
loadConstant(cUnit, reg2, 0x80000000);
newLIR3(cUnit, ARMV5TE_ADD_RRR, reg1, reg1, reg2);
storeValuePair(cUnit, reg0, reg1, vDest, reg2);
return false;
}
default:
return true;
}
/*
* Don't optimize the regsiter usage here as they are governed by the EABI
* calling convention.
*/
loadConstant(cUnit, r4PC, (int)funct);
loadValuePair(cUnit, vSrc1, r0, r1);
loadValuePair(cUnit, vSrc2, r2, r3);
newLIR1(cUnit, ARMV5TE_BLX_R, r4PC);
storeValuePair(cUnit, r0, r1, vDest, r2);
return false;
}
static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2)
{
int firstOp = ARMV5TE_BKPT;
int secondOp = ARMV5TE_BKPT;
bool callOut = false;
void *callTgt;
int retReg = r0;
int reg0, reg1, reg2, reg3;
/* TODO - find proper .h file to declare these */
long long __aeabi_ldivmod(long long op1, long long op2);
switch (mir->dalvikInsn.opCode) {
case OP_NOT_LONG:
firstOp = ARMV5TE_MVN;
secondOp = ARMV5TE_MVN;
break;
case OP_ADD_LONG:
case OP_ADD_LONG_2ADDR:
firstOp = ARMV5TE_ADD_RRR;
secondOp = ARMV5TE_ADC;
break;
case OP_SUB_LONG:
case OP_SUB_LONG_2ADDR:
firstOp = ARMV5TE_SUB_RRR;
secondOp = ARMV5TE_SBC;
break;
case OP_MUL_LONG:
case OP_MUL_LONG_2ADDR:
loadValuePair(cUnit, vSrc1, r0, r1);
loadValuePair(cUnit, vSrc2, r2, r3);
genDispatchToHandler(cUnit, TEMPLATE_MUL_LONG);
storeValuePair(cUnit, r0, r1, vDest, r2);
return false;
break;
case OP_DIV_LONG:
case OP_DIV_LONG_2ADDR:
callOut = true;
retReg = r0;
callTgt = (void*)__aeabi_ldivmod;
break;
/* NOTE - result is in r2/r3 instead of r0/r1 */
case OP_REM_LONG:
case OP_REM_LONG_2ADDR:
callOut = true;
callTgt = (void*)__aeabi_ldivmod;
retReg = r2;
break;
case OP_AND_LONG:
case OP_AND_LONG_2ADDR:
firstOp = ARMV5TE_AND_RR;
secondOp = ARMV5TE_AND_RR;
break;
case OP_OR_LONG:
case OP_OR_LONG_2ADDR:
firstOp = ARMV5TE_ORR;
secondOp = ARMV5TE_ORR;
break;
case OP_XOR_LONG:
case OP_XOR_LONG_2ADDR:
firstOp = ARMV5TE_EOR;
secondOp = ARMV5TE_EOR;
break;
case OP_NEG_LONG: {
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
reg3 = NEXT_REG(reg2);
loadValuePair(cUnit, vSrc2, reg0, reg1);
loadConstant(cUnit, reg3, 0);
newLIR3(cUnit, ARMV5TE_SUB_RRR, reg2, reg3, reg0);
newLIR2(cUnit, ARMV5TE_SBC, reg3, reg1);
storeValuePair(cUnit, reg2, reg3, vDest, reg0);
return false;
}
default:
LOGE("Invalid long arith op");
dvmAbort();
}
if (!callOut) {
reg0 = selectFirstRegister(cUnit, vSrc1, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
reg3 = NEXT_REG(reg2);
loadValuePair(cUnit, vSrc1, reg0, reg1);
loadValuePair(cUnit, vSrc2, reg2, reg3);
genBinaryOpWide(cUnit, vDest, firstOp, secondOp, reg0, reg2);
/*
* Don't optimize the regsiter usage here as they are governed by the EABI
* calling convention.
*/
} else {
loadValuePair(cUnit, vSrc2, r2, r3);
loadConstant(cUnit, r4PC, (int) callTgt);
loadValuePair(cUnit, vSrc1, r0, r1);
newLIR1(cUnit, ARMV5TE_BLX_R, r4PC);
storeValuePair(cUnit, retReg, retReg+1, vDest, r4PC);
}
return false;
}
static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2)
{
int armOp = ARMV5TE_BKPT;
bool callOut = false;
bool checkZero = false;
int retReg = r0;
void *callTgt;
int reg0, reg1, regDest;
/* TODO - find proper .h file to declare these */
int __aeabi_idivmod(int op1, int op2);
int __aeabi_idiv(int op1, int op2);
switch (mir->dalvikInsn.opCode) {
case OP_NEG_INT:
armOp = ARMV5TE_NEG;
break;
case OP_NOT_INT:
armOp = ARMV5TE_MVN;
break;
case OP_ADD_INT:
case OP_ADD_INT_2ADDR:
armOp = ARMV5TE_ADD_RRR;
break;
case OP_SUB_INT:
case OP_SUB_INT_2ADDR:
armOp = ARMV5TE_SUB_RRR;
break;
case OP_MUL_INT:
case OP_MUL_INT_2ADDR:
armOp = ARMV5TE_MUL;
break;
case OP_DIV_INT:
case OP_DIV_INT_2ADDR:
callOut = true;
checkZero = true;
callTgt = __aeabi_idiv;
retReg = r0;
break;
/* NOTE: returns in r1 */
case OP_REM_INT:
case OP_REM_INT_2ADDR:
callOut = true;
checkZero = true;
callTgt = __aeabi_idivmod;
retReg = r1;
break;
case OP_AND_INT:
case OP_AND_INT_2ADDR:
armOp = ARMV5TE_AND_RR;
break;
case OP_OR_INT:
case OP_OR_INT_2ADDR:
armOp = ARMV5TE_ORR;
break;
case OP_XOR_INT:
case OP_XOR_INT_2ADDR:
armOp = ARMV5TE_EOR;
break;
case OP_SHL_INT:
case OP_SHL_INT_2ADDR:
armOp = ARMV5TE_LSLV;
break;
case OP_SHR_INT:
case OP_SHR_INT_2ADDR:
armOp = ARMV5TE_ASRV;
break;
case OP_USHR_INT:
case OP_USHR_INT_2ADDR:
armOp = ARMV5TE_LSRV;
break;
default:
LOGE("Invalid word arith op: 0x%x(%d)",
mir->dalvikInsn.opCode, mir->dalvikInsn.opCode);
dvmAbort();
}
if (!callOut) {
/* Try to allocate reg0 to the currently cached source operand */
if (cUnit->registerScoreboard.liveDalvikReg == vSrc1) {
reg0 = selectFirstRegister(cUnit, vSrc1, false);
reg1 = NEXT_REG(reg0);
regDest = NEXT_REG(reg1);
loadValue(cUnit, vSrc1, reg0); /* Should be optimized away */
loadValue(cUnit, vSrc2, reg1);
genBinaryOp(cUnit, vDest, armOp, reg0, reg1, regDest);
} else {
reg0 = selectFirstRegister(cUnit, vSrc2, false);
reg1 = NEXT_REG(reg0);
regDest = NEXT_REG(reg1);
loadValue(cUnit, vSrc1, reg1); /* Load this value first */
loadValue(cUnit, vSrc2, reg0); /* May be optimized away */
genBinaryOp(cUnit, vDest, armOp, reg1, reg0, regDest);
}
} else {
/*
* Load the callout target first since it will never be eliminated
* and its value will be used first.
*/
loadConstant(cUnit, r2, (int) callTgt);
/*
* Load vSrc2 first if it is not cached in a native register or it
* is in r0 which will be clobbered if vSrc1 is loaded first.
*/
if (cUnit->registerScoreboard.liveDalvikReg != vSrc2 ||
cUnit->registerScoreboard.nativeReg == r0) {
/* Cannot be optimized and won't clobber r0 */
loadValue(cUnit, vSrc2, r1);
/* May be optimized if vSrc1 is cached */
loadValue(cUnit, vSrc1, r0);
} else {
loadValue(cUnit, vSrc1, r0);
loadValue(cUnit, vSrc2, r1);
}
if (checkZero) {
genNullCheck(cUnit, vSrc2, r1, mir->offset, NULL);
}
newLIR1(cUnit, ARMV5TE_BLX_R, r2);
storeValue(cUnit, retReg, vDest, r2);
}
return false;
}
static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
int vA = mir->dalvikInsn.vA;
int vB = mir->dalvikInsn.vB;
int vC = mir->dalvikInsn.vC;
if ((opCode >= OP_ADD_LONG_2ADDR) && (opCode <= OP_XOR_LONG_2ADDR)) {
return genArithOpLong(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_ADD_LONG) && (opCode <= OP_XOR_LONG)) {
return genArithOpLong(cUnit,mir, vA, vB, vC);
}
if ((opCode >= OP_SHL_LONG_2ADDR) && (opCode <= OP_USHR_LONG_2ADDR)) {
return genShiftOpLong(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_SHL_LONG) && (opCode <= OP_USHR_LONG)) {
return genShiftOpLong(cUnit,mir, vA, vB, vC);
}
if ((opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_USHR_INT_2ADDR)) {
return genArithOpInt(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_ADD_INT) && (opCode <= OP_USHR_INT)) {
return genArithOpInt(cUnit,mir, vA, vB, vC);
}
if ((opCode >= OP_ADD_FLOAT_2ADDR) && (opCode <= OP_REM_FLOAT_2ADDR)) {
return genArithOpFloat(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_ADD_FLOAT) && (opCode <= OP_REM_FLOAT)) {
return genArithOpFloat(cUnit, mir, vA, vB, vC);
}
if ((opCode >= OP_ADD_DOUBLE_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
return genArithOpDouble(cUnit,mir, vA, vA, vB);
}
if ((opCode >= OP_ADD_DOUBLE) && (opCode <= OP_REM_DOUBLE)) {
return genArithOpDouble(cUnit,mir, vA, vB, vC);
}
return true;
}
static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
int srcSize, int tgtSize)
{
/*
* Don't optimize the register usage since it calls out to template
* functions
*/
loadConstant(cUnit, r2, (int)funct);
if (srcSize == 1) {
loadValue(cUnit, mir->dalvikInsn.vB, r0);
} else {
loadValuePair(cUnit, mir->dalvikInsn.vB, r0, r1);
}
newLIR1(cUnit, ARMV5TE_BLX_R, r2);
if (tgtSize == 1) {
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
} else {
storeValuePair(cUnit, r0, r1, mir->dalvikInsn.vA, r2);
}
return false;
}
static bool genInlinedStringLength(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int offset = offsetof(InterpState, retval);
int regObj = selectFirstRegister(cUnit, dInsn->arg[0], false);
int reg1 = NEXT_REG(regObj);
loadValue(cUnit, dInsn->arg[0], regObj);
genNullCheck(cUnit, dInsn->arg[0], regObj, mir->offset, NULL);
loadWordDisp(cUnit, regObj, gDvm.offJavaLangString_count, reg1);
newLIR3(cUnit, ARMV5TE_STR_RRI5, reg1, rGLUE, offset >> 2);
return false;
}
/*
* NOTE: The amount of code for this body suggests it ought to
* be handled in a template (and could also be coded quite a bit
* more efficiently in ARM). However, the code is dependent on the
* internal structure layout of string objects which are most safely
* known at run time.
* TUNING: One possibility (which could also be used for StringCompareTo
* and StringEquals) is to generate string access helper subroutines on
* Jit startup, and then call them from the translated inline-executes.
*/
static bool genInlinedStringCharAt(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
int offset = offsetof(InterpState, retval);
int contents = offsetof(ArrayObject, contents);
int regObj = selectFirstRegister(cUnit, dInsn->arg[0], false);
int regIdx = NEXT_REG(regObj);
int regMax = NEXT_REG(regIdx);
int regOff = NEXT_REG(regMax);
loadValue(cUnit, dInsn->arg[0], regObj);
loadValue(cUnit, dInsn->arg[1], regIdx);
Armv5teLIR * pcrLabel = genNullCheck(cUnit, dInsn->arg[0], regObj,
mir->offset, NULL);
loadWordDisp(cUnit, regObj, gDvm.offJavaLangString_count, regMax);
loadWordDisp(cUnit, regObj, gDvm.offJavaLangString_offset, regOff);
loadWordDisp(cUnit, regObj, gDvm.offJavaLangString_value, regObj);
genBoundsCheck(cUnit, regIdx, regMax, mir->offset, pcrLabel);
newLIR2(cUnit, ARMV5TE_ADD_RI8, regObj, contents);
newLIR3(cUnit, ARMV5TE_ADD_RRR, regIdx, regIdx, regOff);
newLIR3(cUnit, ARMV5TE_ADD_RRR, regIdx, regIdx, regIdx);
newLIR3(cUnit, ARMV5TE_LDRH_RRR, regMax, regObj, regIdx);
newLIR3(cUnit, ARMV5TE_STR_RRI5, regMax, rGLUE, offset >> 2);
return false;
}
static bool genInlinedAbsInt(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0 = selectFirstRegister(cUnit, dInsn->arg[0], false);
int sign = NEXT_REG(reg0);
/* abs(x) = y<=x>>31, (x+y)^y. Shorter in ARM/THUMB2, no skip in THUMB */
loadValue(cUnit, dInsn->arg[0], reg0);
newLIR3(cUnit, ARMV5TE_ASR, sign, reg0, 31);
newLIR3(cUnit, ARMV5TE_ADD_RRR, reg0, reg0, sign);
newLIR2(cUnit, ARMV5TE_EOR, reg0, sign);
newLIR3(cUnit, ARMV5TE_STR_RRI5, reg0, rGLUE, offset >> 2);
return false;
}
static bool genInlinedAbsFloat(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0 = selectFirstRegister(cUnit, dInsn->arg[0], false);
int signMask = NEXT_REG(reg0);
loadValue(cUnit, dInsn->arg[0], reg0);
loadConstant(cUnit, signMask, 0x7fffffff);
newLIR2(cUnit, ARMV5TE_AND_RR, reg0, signMask);
newLIR3(cUnit, ARMV5TE_STR_RRI5, reg0, rGLUE, offset >> 2);
return false;
}
static bool genInlinedAbsDouble(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int oplo = selectFirstRegister(cUnit, dInsn->arg[0], true);
int ophi = NEXT_REG(oplo);
int signMask = NEXT_REG(ophi);
loadValuePair(cUnit, dInsn->arg[0], oplo, ophi);
loadConstant(cUnit, signMask, 0x7fffffff);
newLIR3(cUnit, ARMV5TE_STR_RRI5, oplo, rGLUE, offset >> 2);
newLIR2(cUnit, ARMV5TE_AND_RR, ophi, signMask);
newLIR3(cUnit, ARMV5TE_STR_RRI5, ophi, rGLUE, (offset >> 2)+1);
return false;
}
/* No select in thumb, so we need to branch. Thumb2 will do better */
static bool genInlinedMinMaxInt(CompilationUnit *cUnit, MIR *mir, bool isMin)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int reg0 = selectFirstRegister(cUnit, dInsn->arg[0], false);
int reg1 = NEXT_REG(reg0);
loadValue(cUnit, dInsn->arg[0], reg0);
loadValue(cUnit, dInsn->arg[1], reg1);
newLIR2(cUnit, ARMV5TE_CMP_RR, reg0, reg1);
Armv5teLIR *branch1 = newLIR2(cUnit, ARMV5TE_B_COND, 2,
isMin ? ARM_COND_LT : ARM_COND_GT);
newLIR2(cUnit, ARMV5TE_MOV_RR, reg0, reg1);
Armv5teLIR *target =
newLIR3(cUnit, ARMV5TE_STR_RRI5, reg0, rGLUE, offset >> 2);
branch1->generic.target = (LIR *)target;
return false;
}
static bool genInlinedAbsLong(CompilationUnit *cUnit, MIR *mir)
{
int offset = offsetof(InterpState, retval);
DecodedInstruction *dInsn = &mir->dalvikInsn;
int oplo = selectFirstRegister(cUnit, dInsn->arg[0], true);
int ophi = NEXT_REG(oplo);
int sign = NEXT_REG(ophi);
/* abs(x) = y<=x>>31, (x+y)^y. Shorter in ARM/THUMB2, no skip in THUMB */
loadValuePair(cUnit, dInsn->arg[0], oplo, ophi);
newLIR3(cUnit, ARMV5TE_ASR, sign, ophi, 31);
newLIR3(cUnit, ARMV5TE_ADD_RRR, oplo, oplo, sign);
newLIR2(cUnit, ARMV5TE_ADC, ophi, sign);
newLIR2(cUnit, ARMV5TE_EOR, oplo, sign);
newLIR2(cUnit, ARMV5TE_EOR, ophi, sign);
newLIR3(cUnit, ARMV5TE_STR_RRI5, oplo, rGLUE, offset >> 2);
newLIR3(cUnit, ARMV5TE_STR_RRI5, ophi, rGLUE, (offset >> 2)+1);
return false;
}
static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
DecodedInstruction *dInsn,
Armv5teLIR **pcrLabel)
{
unsigned int i;
unsigned int regMask = 0;
/* Load arguments to r0..r4 */
for (i = 0; i < dInsn->vA; i++) {
regMask |= 1 << i;
loadValue(cUnit, dInsn->arg[i], i);
}
if (regMask) {
/* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
newLIR2(cUnit, ARMV5TE_MOV_RR, r7, rFP);
newLIR2(cUnit, ARMV5TE_SUB_RI8, r7,
sizeof(StackSaveArea) + (dInsn->vA << 2));
/* generate null check */
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, dInsn->arg[0], r0, mir->offset,
NULL);
}
newLIR2(cUnit, ARMV5TE_STMIA, r7, regMask);
}
}
static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
DecodedInstruction *dInsn,
Armv5teLIR **pcrLabel)
{
int srcOffset = dInsn->vC << 2;
int numArgs = dInsn->vA;
int regMask;
/*
* r4PC : &rFP[vC]
* r7: &newFP[0]
*/
if (srcOffset < 8) {
newLIR3(cUnit, ARMV5TE_ADD_RRI3, r4PC, rFP, srcOffset);
} else {
loadConstant(cUnit, r4PC, srcOffset);
newLIR3(cUnit, ARMV5TE_ADD_RRR, r4PC, rFP, r4PC);
}
/* load [r0 .. min(numArgs,4)] */
regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
newLIR2(cUnit, ARMV5TE_LDMIA, r4PC, regMask);
if (sizeof(StackSaveArea) + (numArgs << 2) < 256) {
newLIR2(cUnit, ARMV5TE_MOV_RR, r7, rFP);
newLIR2(cUnit, ARMV5TE_SUB_RI8, r7,
sizeof(StackSaveArea) + (numArgs << 2));
} else {
loadConstant(cUnit, r7, sizeof(StackSaveArea) + (numArgs << 2));
newLIR3(cUnit, ARMV5TE_SUB_RRR, r7, rFP, r7);
}
/* generate null check */
if (pcrLabel) {
*pcrLabel = genNullCheck(cUnit, dInsn->vC, r0, mir->offset, NULL);
}
/*
* Handle remaining 4n arguments:
* store previously loaded 4 values and load the next 4 values
*/
if (numArgs >= 8) {
Armv5teLIR *loopLabel = NULL;
/*
* r0 contains "this" and it will be used later, so push it to the stack
* first. Pushing r5 is just for stack alignment purposes.
*/
newLIR1(cUnit, ARMV5TE_PUSH, 1 << r0 | 1 << 5);
/* No need to generate the loop structure if numArgs <= 11 */
if (numArgs > 11) {
loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
loopLabel = newLIR0(cUnit, ARMV5TE_PSEUDO_TARGET_LABEL);
}
newLIR2(cUnit, ARMV5TE_STMIA, r7, regMask);
newLIR2(cUnit, ARMV5TE_LDMIA, r4PC, regMask);
/* No need to generate the loop structure if numArgs <= 11 */
if (numArgs > 11) {
newLIR2(cUnit, ARMV5TE_SUB_RI8, 5, 4);
genConditionalBranch(cUnit, ARM_COND_NE, loopLabel);
}
}
/* Save the last batch of loaded values */
newLIR2(cUnit, ARMV5TE_STMIA, r7, regMask);
/* Generate the loop epilogue - don't use r0 */
if ((numArgs > 4) && (numArgs % 4)) {
regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
newLIR2(cUnit, ARMV5TE_LDMIA, r4PC, regMask);
}
if (numArgs >= 8)
newLIR1(cUnit, ARMV5TE_POP, 1 << r0 | 1 << 5);
/* Save the modulo 4 arguments */
if ((numArgs > 4) && (numArgs % 4)) {
newLIR2(cUnit, ARMV5TE_STMIA, r7, regMask);
}
}
/*
* Generate code to setup the call stack then jump to the chaining cell if it
* is not a native method.
*/
static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb, Armv5teLIR *labelList,
Armv5teLIR *pcrLabel,
const Method *calleeMethod)
{
Armv5teLIR *retChainingCell = &labelList[bb->fallThrough->id];
/* r1 = &retChainingCell */
Armv5teLIR *addrRetChain = newLIR3(cUnit, ARMV5TE_ADD_PC_REL,
r1, 0, 0);
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
addrRetChain->generic.target = (LIR *) retChainingCell;
/*
* r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
* r1 = &ChainingCell
* r4PC = callsiteDPC
*/
if (dvmIsNativeMethod(calleeMethod)) {
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NATIVE);
#if defined(INVOKE_STATS)
gDvmJit.invokeNative++;
#endif
} else {
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_CHAIN);
#if defined(INVOKE_STATS)
gDvmJit.invokeChain++;
#endif
/* Branch to the chaining cell */
genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
}
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
}
/*
* Generate code to check the validity of a predicted chain and take actions
* based on the result.
*
* 0x426a99aa : ldr r4, [pc, #72] --> r4 <- dalvikPC of this invoke
* 0x426a99ac : add r1, pc, #32 --> r1 <- &retChainingCell
* 0x426a99ae : add r2, pc, #40 --> r2 <- &predictedChainingCell
* 0x426a99b0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
* 0x426a99b2 : blx_2 see above --+
* 0x426a99b4 : b 0x426a99d8 --> off to the predicted chain
* 0x426a99b6 : b 0x426a99c8 --> punt to the interpreter
* 0x426a99b8 : ldr r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
* 0x426a99ba : cmp r1, #0 --> compare r1 (rechain count) against 0
* 0x426a99bc : bgt 0x426a99c2 --> >=0? don't rechain
* 0x426a99be : ldr r7, [r6, #96] --+ dvmJitToPatchPredictedChain
* 0x426a99c0 : blx r7 --+
* 0x426a99c2 : add r1, pc, #12 --> r1 <- &retChainingCell
* 0x426a99c4 : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT
* 0x426a99c6 : blx_2 see above --+
*/
static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
int methodIndex,
Armv5teLIR *retChainingCell,
Armv5teLIR *predChainingCell,
Armv5teLIR *pcrLabel)
{
/* "this" is already left in r0 by genProcessArgs* */
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
/* r1 = &retChainingCell */
Armv5teLIR *addrRetChain = newLIR2(cUnit, ARMV5TE_ADD_PC_REL,
r1, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
/* r2 = &predictedChainingCell */
Armv5teLIR *predictedChainingCell =
newLIR2(cUnit, ARMV5TE_ADD_PC_REL, r2, 0);
predictedChainingCell->generic.target = (LIR *) predChainingCell;
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
/* return through lr - jump to the chaining cell */
genUnconditionalBranch(cUnit, predChainingCell);
/*
* null-check on "this" may have been eliminated, but we still need a PC-
* reconstruction label for stack overflow bailout.
*/
if (pcrLabel == NULL) {
int dPC = (int) (cUnit->method->insns + mir->offset);
pcrLabel = dvmCompilerNew(sizeof(Armv5teLIR), true);
pcrLabel->opCode = ARMV5TE_PSEUDO_PC_RECONSTRUCTION_CELL;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = mir->offset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
}
/* return through lr+2 - punt to the interpreter */
genUnconditionalBranch(cUnit, pcrLabel);
/*
* return through lr+4 - fully resolve the callee method.
* r1 <- count
* r2 <- &predictedChainCell
* r3 <- this->class
* r4 <- dPC
* r7 <- this->class->vtable
*/
/* r0 <- calleeMethod */
if (methodIndex < 32) {
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r0, r7, methodIndex);
} else {
loadConstant(cUnit, r0, methodIndex<<2);
newLIR3(cUnit, ARMV5TE_LDR_RRR, r0, r7, r0);
}
/* Check if rechain limit is reached */
newLIR2(cUnit, ARMV5TE_CMP_RI8, r1, 0);
Armv5teLIR *bypassRechaining =
newLIR2(cUnit, ARMV5TE_B_COND, 0, ARM_COND_GT);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r7, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToPatchPredictedChain)
>> 2);
/*
* r0 = calleeMethod
* r2 = &predictedChainingCell
* r3 = class
*
* &returnChainingCell has been loaded into r1 but is not needed
* when patching the chaining cell and will be clobbered upon
* returning so it will be reconstructed again.
*/
newLIR1(cUnit, ARMV5TE_BLX_R, r7);
/* r1 = &retChainingCell */
addrRetChain = newLIR3(cUnit, ARMV5TE_ADD_PC_REL, r1, 0, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
bypassRechaining->generic.target = (LIR *) addrRetChain;
/*
* r0 = calleeMethod,
* r1 = &ChainingCell,
* r4PC = callsiteDPC,
*/
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
#if defined(INVOKE_STATS)
gDvmJit.invokePredictedChain++;
#endif
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
}
/*
* Up calling this function, "this" is stored in r0. The actual class will be
* chased down off r0 and the predicted one will be retrieved through
* predictedChainingCell then a comparison is performed to see whether the
* previously established chaining is still valid.
*
* The return LIR is a branch based on the comparison result. The actual branch
* target will be setup in the caller.
*/
static Armv5teLIR *genCheckPredictedChain(CompilationUnit *cUnit,
Armv5teLIR *predChainingCell,
Armv5teLIR *retChainingCell,
MIR *mir)
{
/* r3 now contains this->clazz */
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r3, r0,
offsetof(Object, clazz) >> 2);
/*
* r2 now contains predicted class. The starting offset of the
* cached value is 4 bytes into the chaining cell.
*/
Armv5teLIR *getPredictedClass =
newLIR3(cUnit, ARMV5TE_LDR_PC_REL, r2, 0,
offsetof(PredictedChainingCell, clazz));
getPredictedClass->generic.target = (LIR *) predChainingCell;
/*
* r0 now contains predicted method. The starting offset of the
* cached value is 8 bytes into the chaining cell.
*/
Armv5teLIR *getPredictedMethod =
newLIR3(cUnit, ARMV5TE_LDR_PC_REL, r0, 0,
offsetof(PredictedChainingCell, method));
getPredictedMethod->generic.target = (LIR *) predChainingCell;
/* Load the stats counter to see if it is time to unchain and refresh */
Armv5teLIR *getRechainingRequestCount =
newLIR3(cUnit, ARMV5TE_LDR_PC_REL, r7, 0,
offsetof(PredictedChainingCell, counter));
getRechainingRequestCount->generic.target =
(LIR *) predChainingCell;
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
/* r1 = &retChainingCell */
Armv5teLIR *addrRetChain = newLIR3(cUnit, ARMV5TE_ADD_PC_REL,
r1, 0, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
/* Check if r2 (predicted class) == r3 (actual class) */
newLIR2(cUnit, ARMV5TE_CMP_RR, r2, r3);
return newLIR2(cUnit, ARMV5TE_B_COND, 0, ARM_COND_EQ);
}
/* Geneate a branch to go back to the interpreter */
static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
{
/* r0 = dalvik pc */
loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r1, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToInterpPunt) >> 2);
newLIR1(cUnit, ARMV5TE_BLX_R, r1);
}
/*
* Attempt to single step one instruction using the interpreter and return
* to the compiled code for the next Dalvik instruction
*/
static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
{
int flags = dexGetInstrFlags(gDvm.instrFlags, mir->dalvikInsn.opCode);
int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn |
kInstrCanThrow;
if ((mir->next == NULL) || (flags & flagsToCheck)) {
genPuntToInterp(cUnit, mir->offset);
return;
}
int entryAddr = offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpSingleStep);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r2, rGLUE, entryAddr >> 2);
/* r0 = dalvik pc */
loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
/* r1 = dalvik pc of following instruction */
loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
newLIR1(cUnit, ARMV5TE_BLX_R, r2);
}
/*****************************************************************************/
/*
* The following are the first-level codegen routines that analyze the format
* of each bytecode then either dispatch special purpose codegen routines
* or produce corresponding Thumb instructions directly.
*/
static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb, Armv5teLIR *labelList)
{
/* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
return false;
}
static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
if (((dalvikOpCode >= OP_UNUSED_3E) && (dalvikOpCode <= OP_UNUSED_43)) ||
((dalvikOpCode >= OP_UNUSED_E3) && (dalvikOpCode <= OP_UNUSED_EC))) {
LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
return true;
}
switch (dalvikOpCode) {
case OP_RETURN_VOID:
genReturnCommon(cUnit,mir);
break;
case OP_UNUSED_73:
case OP_UNUSED_79:
case OP_UNUSED_7A:
LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
return true;
case OP_NOP:
break;
default:
return true;
}
return false;
}
static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
{
int reg0, reg1, reg2;
switch (mir->dalvikInsn.opCode) {
case OP_CONST:
case OP_CONST_4: {
/* Avoid using the previously used register */
reg0 = selectFirstRegister(cUnit, vNone, false);
reg1 = NEXT_REG(reg0);
loadConstant(cUnit, reg0, mir->dalvikInsn.vB);
storeValue(cUnit, reg0, mir->dalvikInsn.vA, reg1);
break;
}
case OP_CONST_WIDE_32: {
/* Avoid using the previously used register */
reg0 = selectFirstRegister(cUnit, vNone, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadConstant(cUnit, reg0, mir->dalvikInsn.vB);
newLIR3(cUnit, ARMV5TE_ASR, reg1, reg0, 31);
storeValuePair(cUnit, reg0, reg1, mir->dalvikInsn.vA, reg2);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
{
int reg0, reg1, reg2;
/* Avoid using the previously used register */
switch (mir->dalvikInsn.opCode) {
case OP_CONST_HIGH16: {
reg0 = selectFirstRegister(cUnit, vNone, false);
reg1 = NEXT_REG(reg0);
loadConstant(cUnit, reg0, mir->dalvikInsn.vB << 16);
storeValue(cUnit, reg0, mir->dalvikInsn.vA, reg1);
break;
}
case OP_CONST_WIDE_HIGH16: {
reg0 = selectFirstRegister(cUnit, vNone, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadConstant(cUnit, reg1, mir->dalvikInsn.vB << 16);
loadConstant(cUnit, reg0, 0);
storeValuePair(cUnit, reg0, reg1, mir->dalvikInsn.vA, reg2);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
{
/* For OP_THROW_VERIFICATION_ERROR */
genInterpSingleStep(cUnit, mir);
return false;
}
static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
{
/* Native register to use if the interested value is vA */
int regvA = selectFirstRegister(cUnit, mir->dalvikInsn.vA, false);
/* Native register to use if source is not from Dalvik registers */
int regvNone = selectFirstRegister(cUnit, vNone, false);
/* Similar to regvA but for 64-bit values */
int regvAWide = selectFirstRegister(cUnit, mir->dalvikInsn.vA, true);
/* Similar to regvNone but for 64-bit values */
int regvNoneWide = selectFirstRegister(cUnit, vNone, true);
switch (mir->dalvikInsn.opCode) {
/*
* TODO: Verify that we can ignore the resolution check here because
* it will have already successfully been interpreted once
*/
case OP_CONST_STRING_JUMBO:
case OP_CONST_STRING: {
void *strPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
assert(strPtr != NULL);
loadConstant(cUnit, regvNone, (int) strPtr );
storeValue(cUnit, regvNone, mir->dalvikInsn.vA, NEXT_REG(regvNone));
break;
}
/*
* TODO: Verify that we can ignore the resolution check here because
* it will have already successfully been interpreted once
*/
case OP_CONST_CLASS: {
void *classPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
assert(classPtr != NULL);
loadConstant(cUnit, regvNone, (int) classPtr );
storeValue(cUnit, regvNone, mir->dalvikInsn.vA, NEXT_REG(regvNone));
break;
}
case OP_SGET_OBJECT:
case OP_SGET_BOOLEAN:
case OP_SGET_CHAR:
case OP_SGET_BYTE:
case OP_SGET_SHORT:
case OP_SGET: {
int valOffset = offsetof(StaticField, value);
void *fieldPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
assert(fieldPtr != NULL);
loadConstant(cUnit, regvNone, (int) fieldPtr + valOffset);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, regvNone, regvNone, 0);
storeValue(cUnit, regvNone, mir->dalvikInsn.vA, NEXT_REG(regvNone));
break;
}
case OP_SGET_WIDE: {
int valOffset = offsetof(StaticField, value);
void *fieldPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
int reg0, reg1, reg2;
assert(fieldPtr != NULL);
reg0 = regvNoneWide;
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadConstant(cUnit, reg2, (int) fieldPtr + valOffset);
newLIR2(cUnit, ARMV5TE_LDMIA, reg2, (1<<reg0 | 1<<reg1));
storeValuePair(cUnit, reg0, reg1, mir->dalvikInsn.vA, reg2);
break;
}
case OP_SPUT_OBJECT:
case OP_SPUT_BOOLEAN:
case OP_SPUT_CHAR:
case OP_SPUT_BYTE:
case OP_SPUT_SHORT:
case OP_SPUT: {
int valOffset = offsetof(StaticField, value);
void *fieldPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
assert(fieldPtr != NULL);
loadValue(cUnit, mir->dalvikInsn.vA, regvA);
updateLiveRegister(cUnit, mir->dalvikInsn.vA, regvA);
loadConstant(cUnit, NEXT_REG(regvA), (int) fieldPtr + valOffset);
newLIR3(cUnit, ARMV5TE_STR_RRI5, regvA, NEXT_REG(regvA), 0);
break;
}
case OP_SPUT_WIDE: {
int reg0, reg1, reg2;
int valOffset = offsetof(StaticField, value);
void *fieldPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
assert(fieldPtr != NULL);
reg0 = regvAWide;
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadValuePair(cUnit, mir->dalvikInsn.vA, reg0, reg1);
updateLiveRegisterPair(cUnit, mir->dalvikInsn.vA, reg0, reg1);
loadConstant(cUnit, reg2, (int) fieldPtr + valOffset);
newLIR2(cUnit, ARMV5TE_STMIA, reg2, (1<<reg0 | 1<<reg1));
break;
}
case OP_NEW_INSTANCE: {
/*
* Obey the calling convention and don't mess with the register
* usage.
*/
ClassObject *classPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
assert(classPtr != NULL);
assert(classPtr->status & CLASS_INITIALIZED);
if ((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) != 0) {
/* It's going to throw, just let the interp. deal with it. */
genInterpSingleStep(cUnit, mir);
return false;
}
loadConstant(cUnit, r4PC, (int)dvmAllocObject);
loadConstant(cUnit, r0, (int) classPtr);
genExportPC(cUnit, mir, r2, r3 );
loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
newLIR1(cUnit, ARMV5TE_BLX_R, r4PC);
/*
* TODO: As coded, we'll bail and reinterpret on alloc failure.
* Need a general mechanism to bail to thrown exception code.
*/
genZeroCheck(cUnit, r0, mir->offset, NULL);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
break;
}
case OP_CHECK_CAST: {
/*
* Obey the calling convention and don't mess with the register
* usage.
*/
ClassObject *classPtr =
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
loadConstant(cUnit, r1, (int) classPtr );
loadValue(cUnit, mir->dalvikInsn.vA, r0); /* Ref */
/*
* TODO - in theory classPtr should be resoved by the time this
* instruction made into a trace, but we are seeing NULL at runtime
* so this check is temporarily used as a workaround.
*/
Armv5teLIR * pcrLabel = genZeroCheck(cUnit, r1, mir->offset, NULL);
newLIR2(cUnit, ARMV5TE_CMP_RI8, r0, 0); /* Null? */
Armv5teLIR *branch1 =
newLIR2(cUnit, ARMV5TE_B_COND, 4, ARM_COND_EQ);
/* r0 now contains object->clazz */
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r0, r0,
offsetof(Object, clazz) >> 2);
loadConstant(cUnit, r4PC, (int)dvmInstanceofNonTrivial);
newLIR2(cUnit, ARMV5TE_CMP_RR, r0, r1);
Armv5teLIR *branch2 =
newLIR2(cUnit, ARMV5TE_B_COND, 2, ARM_COND_EQ);
newLIR1(cUnit, ARMV5TE_BLX_R, r4PC);
/* check cast failed - punt to the interpreter */
genZeroCheck(cUnit, r0, mir->offset, pcrLabel);
/* check cast passed - branch target here */
Armv5teLIR *target = newLIR0(cUnit, ARMV5TE_PSEUDO_TARGET_LABEL);
branch1->generic.target = (LIR *)target;
branch2->generic.target = (LIR *)target;
break;
}
default:
return true;
}
return false;
}
static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
switch (dalvikOpCode) {
case OP_MOVE_EXCEPTION: {
int offset = offsetof(InterpState, self);
int exOffset = offsetof(Thread, exception);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r1, rGLUE, offset >> 2);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r0, r1, exOffset >> 2);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
break;
}
case OP_MOVE_RESULT:
case OP_MOVE_RESULT_OBJECT: {
int offset = offsetof(InterpState, retval);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r0, rGLUE, offset >> 2);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
break;
}
case OP_MOVE_RESULT_WIDE: {
int offset = offsetof(InterpState, retval);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r0, rGLUE, offset >> 2);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r1, rGLUE, (offset >> 2)+1);
storeValuePair(cUnit, r0, r1, mir->dalvikInsn.vA, r2);
break;
}
case OP_RETURN_WIDE: {
loadValuePair(cUnit, mir->dalvikInsn.vA, r0, r1);
int offset = offsetof(InterpState, retval);
newLIR3(cUnit, ARMV5TE_STR_RRI5, r0, rGLUE, offset >> 2);
newLIR3(cUnit, ARMV5TE_STR_RRI5, r1, rGLUE, (offset >> 2)+1);
genReturnCommon(cUnit,mir);
break;
}
case OP_RETURN:
case OP_RETURN_OBJECT: {
loadValue(cUnit, mir->dalvikInsn.vA, r0);
int offset = offsetof(InterpState, retval);
newLIR3(cUnit, ARMV5TE_STR_RRI5, r0, rGLUE, offset >> 2);
genReturnCommon(cUnit,mir);
break;
}
/*
* TODO-VERIFY: May be playing a bit fast and loose here. As coded,
* a failure on lock/unlock will cause us to revert to the interpeter
* to try again. This means we essentially ignore the first failure on
* the assumption that the interpreter will correctly handle the 2nd.
*/
case OP_MONITOR_ENTER:
case OP_MONITOR_EXIT: {
int offset = offsetof(InterpState, self);
loadValue(cUnit, mir->dalvikInsn.vA, r1);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r0, rGLUE, offset >> 2);
if (dalvikOpCode == OP_MONITOR_ENTER) {
loadConstant(cUnit, r2, (int)dvmLockObject);
} else {
loadConstant(cUnit, r2, (int)dvmUnlockObject);
}
/*
* TODO-VERIFY: Note that we're not doing an EXPORT_PC, as
* Lock/unlock won't throw, and this code does not support
* DEADLOCK_PREDICTION or MONITOR_TRACKING. Should it?
*/
genNullCheck(cUnit, mir->dalvikInsn.vA, r1, mir->offset, NULL);
/* Do the call */
newLIR1(cUnit, ARMV5TE_BLX_R, r2);
break;
}
case OP_THROW: {
genInterpSingleStep(cUnit, mir);
break;
}
default:
return true;
}
return false;
}
static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
float __aeabi_i2f( int op1 );
int __aeabi_f2iz( float op1 );
float __aeabi_d2f( double op1 );
double __aeabi_f2d( float op1 );
double __aeabi_i2d( int op1 );
int __aeabi_d2iz( double op1 );
float __aeabi_l2f( long op1 );
double __aeabi_l2d( long op1 );
switch (opCode) {
case OP_INT_TO_FLOAT:
return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
case OP_FLOAT_TO_INT:
return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
case OP_DOUBLE_TO_FLOAT:
return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
case OP_FLOAT_TO_DOUBLE:
return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
case OP_INT_TO_DOUBLE:
return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
case OP_DOUBLE_TO_INT:
return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
case OP_FLOAT_TO_LONG:
return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
case OP_LONG_TO_FLOAT:
return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
case OP_DOUBLE_TO_LONG:
return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
case OP_LONG_TO_DOUBLE:
return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
default:
return true;
}
return false;
}
static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
int vSrc1Dest = mir->dalvikInsn.vA;
int vSrc2 = mir->dalvikInsn.vB;
int reg0, reg1, reg2;
/* TODO - find the proper include file to declare these */
if ( (opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
return genArithOp( cUnit, mir );
}
/*
* If data type is 64-bit, re-calculate the register numbers in the
* corresponding cases.
*/
reg0 = selectFirstRegister(cUnit, vSrc2, false);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
switch (opCode) {
case OP_INT_TO_FLOAT:
case OP_FLOAT_TO_INT:
case OP_DOUBLE_TO_FLOAT:
case OP_FLOAT_TO_DOUBLE:
case OP_INT_TO_DOUBLE:
case OP_DOUBLE_TO_INT:
case OP_FLOAT_TO_LONG:
case OP_LONG_TO_FLOAT:
case OP_DOUBLE_TO_LONG:
case OP_LONG_TO_DOUBLE:
return genConversion(cUnit, mir);
case OP_NEG_INT:
case OP_NOT_INT:
return genArithOpInt(cUnit, mir, vSrc1Dest, vSrc1Dest, vSrc2);
case OP_NEG_LONG:
case OP_NOT_LONG:
return genArithOpLong(cUnit,mir, vSrc1Dest, vSrc1Dest, vSrc2);
case OP_NEG_FLOAT:
return genArithOpFloat(cUnit, mir, vSrc1Dest, vSrc1Dest, vSrc2);
case OP_NEG_DOUBLE:
return genArithOpDouble(cUnit, mir, vSrc1Dest, vSrc1Dest, vSrc2);
case OP_MOVE_WIDE: {
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadValuePair(cUnit, vSrc2, reg0, reg1);
storeValuePair(cUnit, reg0, reg1, vSrc1Dest, reg2);
break;
}
case OP_INT_TO_LONG: {
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadValue(cUnit, vSrc2, reg0);
newLIR3(cUnit, ARMV5TE_ASR, reg1, reg0, 31);
storeValuePair(cUnit, reg0, reg1, vSrc1Dest, reg2);
break;
}
case OP_MOVE:
case OP_MOVE_OBJECT:
case OP_LONG_TO_INT:
loadValue(cUnit, vSrc2, reg0);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
case OP_INT_TO_BYTE:
loadValue(cUnit, vSrc2, reg0);
newLIR3(cUnit, ARMV5TE_LSL, reg0, reg0, 24);
newLIR3(cUnit, ARMV5TE_ASR, reg0, reg0, 24);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
case OP_INT_TO_SHORT:
loadValue(cUnit, vSrc2, reg0);
newLIR3(cUnit, ARMV5TE_LSL, reg0, reg0, 16);
newLIR3(cUnit, ARMV5TE_ASR, reg0, reg0, 16);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
case OP_INT_TO_CHAR:
loadValue(cUnit, vSrc2, reg0);
newLIR3(cUnit, ARMV5TE_LSL, reg0, reg0, 16);
newLIR3(cUnit, ARMV5TE_LSR, reg0, reg0, 16);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
case OP_ARRAY_LENGTH: {
int lenOffset = offsetof(ArrayObject, length);
loadValue(cUnit, vSrc2, reg0);
genNullCheck(cUnit, vSrc2, reg0, mir->offset, NULL);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, reg0, reg0, lenOffset >> 2);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
int reg0, reg1, reg2;
/* It takes few instructions to handle OP_CONST_WIDE_16 inline */
if (dalvikOpCode == OP_CONST_WIDE_16) {
int vDest = mir->dalvikInsn.vA;
int BBBB = mir->dalvikInsn.vB;
reg0 = selectFirstRegister(cUnit, vNone, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadConstant(cUnit, reg0, BBBB);
newLIR3(cUnit, ARMV5TE_ASR, reg1, reg0, 31);
/* Save the long values to the specified Dalvik register pair */
storeValuePair(cUnit, reg0, reg1, vDest, reg2);
} else if (dalvikOpCode == OP_CONST_16) {
int vDest = mir->dalvikInsn.vA;
int BBBB = mir->dalvikInsn.vB;
reg0 = selectFirstRegister(cUnit, vNone, false);
reg1 = NEXT_REG(reg0);
loadConstant(cUnit, reg0, BBBB);
storeValue(cUnit, reg0, vDest, reg1);
} else {
return true;
}
return false;
}
/* Compare agaist zero */
static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
Armv5teLIR *labelList)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
Armv5teConditionCode cond;
int reg0 = selectFirstRegister(cUnit, mir->dalvikInsn.vA, false);
loadValue(cUnit, mir->dalvikInsn.vA, reg0);
newLIR2(cUnit, ARMV5TE_CMP_RI8, reg0, 0);
switch (dalvikOpCode) {
case OP_IF_EQZ:
cond = ARM_COND_EQ;
break;
case OP_IF_NEZ:
cond = ARM_COND_NE;
break;
case OP_IF_LTZ:
cond = ARM_COND_LT;
break;
case OP_IF_GEZ:
cond = ARM_COND_GE;
break;
case OP_IF_GTZ:
cond = ARM_COND_GT;
break;
case OP_IF_LEZ:
cond = ARM_COND_LE;
break;
default:
cond = 0;
LOGE("Unexpected opcode (%d) for Fmt21t\n", dalvikOpCode);
dvmAbort();
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
/* This mostly likely will be optimized away in a later phase */
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
return false;
}
static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
int vSrc = mir->dalvikInsn.vB;
int vDest = mir->dalvikInsn.vA;
int lit = mir->dalvikInsn.vC;
int armOp;
int reg0, reg1, regDest;
reg0 = selectFirstRegister(cUnit, vSrc, false);
reg1 = NEXT_REG(reg0);
regDest = NEXT_REG(reg1);
/* TODO: find the proper .h file to declare these */
int __aeabi_idivmod(int op1, int op2);
int __aeabi_idiv(int op1, int op2);
switch (dalvikOpCode) {
case OP_ADD_INT_LIT8:
case OP_ADD_INT_LIT16:
loadValue(cUnit, vSrc, reg0);
if (lit <= 7 && lit >= 0) {
newLIR3(cUnit, ARMV5TE_ADD_RRI3, regDest, reg0, lit);
storeValue(cUnit, regDest, vDest, reg1);
} else if (lit <= 255 && lit >= 0) {
newLIR2(cUnit, ARMV5TE_ADD_RI8, reg0, lit);
storeValue(cUnit, reg0, vDest, reg1);
} else if (lit >= -7 && lit <= 0) {
/* Convert to a small constant subtraction */
newLIR3(cUnit, ARMV5TE_SUB_RRI3, regDest, reg0, -lit);
storeValue(cUnit, regDest, vDest, reg1);
} else if (lit >= -255 && lit <= 0) {
/* Convert to a small constant subtraction */
newLIR2(cUnit, ARMV5TE_SUB_RI8, reg0, -lit);
storeValue(cUnit, reg0, vDest, reg1);
} else {
loadConstant(cUnit, reg1, lit);
genBinaryOp(cUnit, vDest, ARMV5TE_ADD_RRR, reg0, reg1, regDest);
}
break;
case OP_RSUB_INT_LIT8:
case OP_RSUB_INT:
loadValue(cUnit, vSrc, reg1);
loadConstant(cUnit, reg0, lit);
genBinaryOp(cUnit, vDest, ARMV5TE_SUB_RRR, reg0, reg1, regDest);
break;
case OP_MUL_INT_LIT8:
case OP_MUL_INT_LIT16:
case OP_AND_INT_LIT8:
case OP_AND_INT_LIT16:
case OP_OR_INT_LIT8:
case OP_OR_INT_LIT16:
case OP_XOR_INT_LIT8:
case OP_XOR_INT_LIT16:
loadValue(cUnit, vSrc, reg0);
loadConstant(cUnit, reg1, lit);
switch (dalvikOpCode) {
case OP_MUL_INT_LIT8:
case OP_MUL_INT_LIT16:
armOp = ARMV5TE_MUL;
break;
case OP_AND_INT_LIT8:
case OP_AND_INT_LIT16:
armOp = ARMV5TE_AND_RR;
break;
case OP_OR_INT_LIT8:
case OP_OR_INT_LIT16:
armOp = ARMV5TE_ORR;
break;
case OP_XOR_INT_LIT8:
case OP_XOR_INT_LIT16:
armOp = ARMV5TE_EOR;
break;
default:
dvmAbort();
}
genBinaryOp(cUnit, vDest, armOp, reg0, reg1, regDest);
break;
case OP_SHL_INT_LIT8:
case OP_SHR_INT_LIT8:
case OP_USHR_INT_LIT8:
loadValue(cUnit, vSrc, reg0);
switch (dalvikOpCode) {
case OP_SHL_INT_LIT8:
armOp = ARMV5TE_LSL;
break;
case OP_SHR_INT_LIT8:
armOp = ARMV5TE_ASR;
break;
case OP_USHR_INT_LIT8:
armOp = ARMV5TE_LSR;
break;
default: dvmAbort();
}
newLIR3(cUnit, armOp, reg0, reg0, lit);
storeValue(cUnit, reg0, vDest, reg1);
break;
case OP_DIV_INT_LIT8:
case OP_DIV_INT_LIT16:
/* Register usage based on the calling convention */
if (lit == 0) {
/* Let the interpreter deal with div by 0 */
genInterpSingleStep(cUnit, mir);
return false;
}
loadConstant(cUnit, r2, (int)__aeabi_idiv);
loadConstant(cUnit, r1, lit);
loadValue(cUnit, vSrc, r0);
newLIR1(cUnit, ARMV5TE_BLX_R, r2);
storeValue(cUnit, r0, vDest, r2);
break;
case OP_REM_INT_LIT8:
case OP_REM_INT_LIT16:
/* Register usage based on the calling convention */
if (lit == 0) {
/* Let the interpreter deal with div by 0 */
genInterpSingleStep(cUnit, mir);
return false;
}
loadConstant(cUnit, r2, (int)__aeabi_idivmod);
loadConstant(cUnit, r1, lit);
loadValue(cUnit, vSrc, r0);
newLIR1(cUnit, ARMV5TE_BLX_R, r2);
storeValue(cUnit, r1, vDest, r2);
break;
default:
return true;
}
return false;
}
static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
int fieldOffset;
if (dalvikOpCode >= OP_IGET && dalvikOpCode <= OP_IPUT_SHORT) {
InstField *pInstField = (InstField *)
cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
int fieldOffset;
assert(pInstField != NULL);
fieldOffset = pInstField->byteOffset;
} else {
/* To make the compiler happy */
fieldOffset = 0;
}
switch (dalvikOpCode) {
/*
* TODO: I may be assuming too much here.
* Verify what is known at JIT time.
*/
case OP_NEW_ARRAY: {
void *classPtr = (void*)
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
assert(classPtr != NULL);
loadValue(cUnit, mir->dalvikInsn.vB, r1); /* Len */
loadConstant(cUnit, r0, (int) classPtr );
loadConstant(cUnit, r4PC, (int)dvmAllocArrayByClass);
Armv5teLIR *pcrLabel =
genRegImmCheck(cUnit, ARM_COND_MI, r1, 0, mir->offset, NULL);
genExportPC(cUnit, mir, r2, r3 );
newLIR2(cUnit, ARMV5TE_MOV_IMM,r2,ALLOC_DONT_TRACK);
newLIR1(cUnit, ARMV5TE_BLX_R, r4PC);
/*
* TODO: As coded, we'll bail and reinterpret on alloc failure.
* Need a general mechanism to bail to thrown exception code.
*/
genZeroCheck(cUnit, r0, mir->offset, pcrLabel);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
break;
}
/*
* TODO: I may be assuming too much here.
* Verify what is known at JIT time.
*/
case OP_INSTANCE_OF: {
ClassObject *classPtr =
(cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
assert(classPtr != NULL);
loadValue(cUnit, mir->dalvikInsn.vB, r0); /* Ref */
loadConstant(cUnit, r2, (int) classPtr );
newLIR2(cUnit, ARMV5TE_CMP_RI8, r0, 0); /* Null? */
/* When taken r0 has NULL which can be used for store directly */
Armv5teLIR *branch1 = newLIR2(cUnit, ARMV5TE_B_COND, 4,
ARM_COND_EQ);
/* r1 now contains object->clazz */
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r1, r0,
offsetof(Object, clazz) >> 2);
loadConstant(cUnit, r4PC, (int)dvmInstanceofNonTrivial);
loadConstant(cUnit, r0, 1); /* Assume true */
newLIR2(cUnit, ARMV5TE_CMP_RR, r1, r2);
Armv5teLIR *branch2 = newLIR2(cUnit, ARMV5TE_B_COND, 2,
ARM_COND_EQ);
newLIR2(cUnit, ARMV5TE_MOV_RR, r0, r1);
newLIR2(cUnit, ARMV5TE_MOV_RR, r1, r2);
newLIR1(cUnit, ARMV5TE_BLX_R, r4PC);
/* branch target here */
Armv5teLIR *target = newLIR0(cUnit, ARMV5TE_PSEUDO_TARGET_LABEL);
storeValue(cUnit, r0, mir->dalvikInsn.vA, r1);
branch1->generic.target = (LIR *)target;
branch2->generic.target = (LIR *)target;
break;
}
case OP_IGET_WIDE:
genIGetWide(cUnit, mir, fieldOffset);
break;
case OP_IGET:
case OP_IGET_OBJECT:
genIGet(cUnit, mir, ARMV5TE_LDR_RRR, fieldOffset);
break;
case OP_IGET_BOOLEAN:
genIGet(cUnit, mir, ARMV5TE_LDRB_RRR, fieldOffset);
break;
case OP_IGET_BYTE:
genIGet(cUnit, mir, ARMV5TE_LDRSB_RRR, fieldOffset);
break;
case OP_IGET_CHAR:
genIGet(cUnit, mir, ARMV5TE_LDRH_RRR, fieldOffset);
break;
case OP_IGET_SHORT:
genIGet(cUnit, mir, ARMV5TE_LDRSH_RRR, fieldOffset);
break;
case OP_IPUT_WIDE:
genIPutWide(cUnit, mir, fieldOffset);
break;
case OP_IPUT:
case OP_IPUT_OBJECT:
genIPut(cUnit, mir, ARMV5TE_STR_RRR, fieldOffset);
break;
case OP_IPUT_SHORT:
case OP_IPUT_CHAR:
genIPut(cUnit, mir, ARMV5TE_STRH_RRR, fieldOffset);
break;
case OP_IPUT_BYTE:
case OP_IPUT_BOOLEAN:
genIPut(cUnit, mir, ARMV5TE_STRB_RRR, fieldOffset);
break;
default:
return true;
}
return false;
}
static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
int fieldOffset = mir->dalvikInsn.vC;
switch (dalvikOpCode) {
case OP_IGET_QUICK:
case OP_IGET_OBJECT_QUICK:
genIGet(cUnit, mir, ARMV5TE_LDR_RRR, fieldOffset);
break;
case OP_IPUT_QUICK:
case OP_IPUT_OBJECT_QUICK:
genIPut(cUnit, mir, ARMV5TE_STR_RRR, fieldOffset);
break;
case OP_IGET_WIDE_QUICK:
genIGetWide(cUnit, mir, fieldOffset);
break;
case OP_IPUT_WIDE_QUICK:
genIPutWide(cUnit, mir, fieldOffset);
break;
default:
return true;
}
return false;
}
/* Compare agaist zero */
static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
Armv5teLIR *labelList)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
Armv5teConditionCode cond;
int reg0, reg1;
if (cUnit->registerScoreboard.liveDalvikReg == (int) mir->dalvikInsn.vA) {
reg0 = selectFirstRegister(cUnit, mir->dalvikInsn.vA, false);
reg1 = NEXT_REG(reg0);
/* Load vB first since vA can be fetched via a move */
loadValue(cUnit, mir->dalvikInsn.vB, reg1);
loadValue(cUnit, mir->dalvikInsn.vA, reg0);
} else {
reg0 = selectFirstRegister(cUnit, mir->dalvikInsn.vB, false);
reg1 = NEXT_REG(reg0);
/* Load vA first since vB can be fetched via a move */
loadValue(cUnit, mir->dalvikInsn.vA, reg0);
loadValue(cUnit, mir->dalvikInsn.vB, reg1);
}
newLIR2(cUnit, ARMV5TE_CMP_RR, reg0, reg1);
switch (dalvikOpCode) {
case OP_IF_EQ:
cond = ARM_COND_EQ;
break;
case OP_IF_NE:
cond = ARM_COND_NE;
break;
case OP_IF_LT:
cond = ARM_COND_LT;
break;
case OP_IF_GE:
cond = ARM_COND_GE;
break;
case OP_IF_GT:
cond = ARM_COND_GT;
break;
case OP_IF_LE:
cond = ARM_COND_LE;
break;
default:
cond = 0;
LOGE("Unexpected opcode (%d) for Fmt22t\n", dalvikOpCode);
dvmAbort();
}
genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
/* This mostly likely will be optimized away in a later phase */
genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
return false;
}
static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
int vSrc1Dest = mir->dalvikInsn.vA;
int vSrc2 = mir->dalvikInsn.vB;
int reg0, reg1, reg2;
switch (opCode) {
case OP_MOVE_16:
case OP_MOVE_OBJECT_16:
case OP_MOVE_FROM16:
case OP_MOVE_OBJECT_FROM16: {
reg0 = selectFirstRegister(cUnit, vSrc2, false);
reg1 = NEXT_REG(reg0);
loadValue(cUnit, vSrc2, reg0);
storeValue(cUnit, reg0, vSrc1Dest, reg1);
break;
}
case OP_MOVE_WIDE_16:
case OP_MOVE_WIDE_FROM16: {
reg0 = selectFirstRegister(cUnit, vSrc2, true);
reg1 = NEXT_REG(reg0);
reg2 = NEXT_REG(reg1);
loadValuePair(cUnit, vSrc2, reg0, reg1);
storeValuePair(cUnit, reg0, reg1, vSrc1Dest, reg2);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
{
OpCode opCode = mir->dalvikInsn.opCode;
int vA = mir->dalvikInsn.vA;
int vB = mir->dalvikInsn.vB;
int vC = mir->dalvikInsn.vC;
/* Don't optimize for register usage since out-of-line handlers are used */
if ( (opCode >= OP_ADD_INT) && (opCode <= OP_REM_DOUBLE)) {
return genArithOp( cUnit, mir );
}
switch (opCode) {
case OP_CMPL_FLOAT:
case OP_CMPG_FLOAT:
case OP_CMPL_DOUBLE:
case OP_CMPG_DOUBLE:
return genCmpX(cUnit, mir, vA, vB, vC);
case OP_CMP_LONG:
loadValuePair(cUnit,vB, r0, r1);
loadValuePair(cUnit, vC, r2, r3);
genDispatchToHandler(cUnit, TEMPLATE_CMP_LONG);
storeValue(cUnit, r0, vA, r1);
break;
case OP_AGET_WIDE:
genArrayGet(cUnit, mir, ARMV5TE_LDR_RRR, vB, vC, vA, 3);
break;
case OP_AGET:
case OP_AGET_OBJECT:
genArrayGet(cUnit, mir, ARMV5TE_LDR_RRR, vB, vC, vA, 2);
break;
case OP_AGET_BOOLEAN:
genArrayGet(cUnit, mir, ARMV5TE_LDRB_RRR, vB, vC, vA, 0);
break;
case OP_AGET_BYTE:
genArrayGet(cUnit, mir, ARMV5TE_LDRSB_RRR, vB, vC, vA, 0);
break;
case OP_AGET_CHAR:
genArrayGet(cUnit, mir, ARMV5TE_LDRH_RRR, vB, vC, vA, 1);
break;
case OP_AGET_SHORT:
genArrayGet(cUnit, mir, ARMV5TE_LDRSH_RRR, vB, vC, vA, 1);
break;
case OP_APUT_WIDE:
genArrayPut(cUnit, mir, ARMV5TE_STR_RRR, vB, vC, vA, 3);
break;
case OP_APUT:
case OP_APUT_OBJECT:
genArrayPut(cUnit, mir, ARMV5TE_STR_RRR, vB, vC, vA, 2);
break;
case OP_APUT_SHORT:
case OP_APUT_CHAR:
genArrayPut(cUnit, mir, ARMV5TE_STRH_RRR, vB, vC, vA, 1);
break;
case OP_APUT_BYTE:
case OP_APUT_BOOLEAN:
genArrayPut(cUnit, mir, ARMV5TE_STRB_RRR, vB, vC, vA, 0);
break;
default:
return true;
}
return false;
}
static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
{
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
switch (dalvikOpCode) {
case OP_FILL_ARRAY_DATA: {
loadConstant(cUnit, r4PC, (int)dvmInterpHandleFillArrayData);
loadValue(cUnit, mir->dalvikInsn.vA, r0);
loadConstant(cUnit, r1, (mir->dalvikInsn.vB << 1) +
(int) (cUnit->method->insns + mir->offset));
genExportPC(cUnit, mir, r2, r3 );
newLIR1(cUnit, ARMV5TE_BLX_R, r4PC);
genZeroCheck(cUnit, r0, mir->offset, NULL);
break;
}
/*
* TODO
* - Add a 1 to 3-entry per-location cache here to completely
* bypass the dvmInterpHandle[Packed/Sparse]Switch call w/ chaining
* - Use out-of-line handlers for both of these
*/
case OP_PACKED_SWITCH:
case OP_SPARSE_SWITCH: {
if (dalvikOpCode == OP_PACKED_SWITCH) {
loadConstant(cUnit, r4PC, (int)dvmInterpHandlePackedSwitch);
} else {
loadConstant(cUnit, r4PC, (int)dvmInterpHandleSparseSwitch);
}
loadValue(cUnit, mir->dalvikInsn.vA, r1);
loadConstant(cUnit, r0, (mir->dalvikInsn.vB << 1) +
(int) (cUnit->method->insns + mir->offset));
newLIR1(cUnit, ARMV5TE_BLX_R, r4PC);
loadConstant(cUnit, r1, (int)(cUnit->method->insns + mir->offset));
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r2, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNoChain)
>> 2);
newLIR3(cUnit, ARMV5TE_ADD_RRR, r0, r0, r0);
newLIR3(cUnit, ARMV5TE_ADD_RRR, r4PC, r0, r1);
newLIR1(cUnit, ARMV5TE_BLX_R, r2);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
Armv5teLIR *labelList)
{
Armv5teLIR *retChainingCell = &labelList[bb->fallThrough->id];
Armv5teLIR *pcrLabel = NULL;
DecodedInstruction *dInsn = &mir->dalvikInsn;
switch (mir->dalvikInsn.opCode) {
/*
* calleeMethod = this->clazz->vtable[
* method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
* ]
*/
case OP_INVOKE_VIRTUAL:
case OP_INVOKE_VIRTUAL_RANGE: {
Armv5teLIR *predChainingCell = &labelList[bb->taken->id];
int methodIndex =
cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
methodIndex;
if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
genInvokeVirtualCommon(cUnit, mir, methodIndex,
retChainingCell,
predChainingCell,
pcrLabel);
break;
}
/*
* calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
* ->pResMethods[BBBB]->methodIndex]
*/
/* TODO - not excersized in RunPerf.jar */
case OP_INVOKE_SUPER:
case OP_INVOKE_SUPER_RANGE: {
int mIndex = cUnit->method->clazz->pDvmDex->
pResMethods[dInsn->vB]->methodIndex;
const Method *calleeMethod =
cUnit->method->clazz->super->vtable[mIndex];
if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
/* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
case OP_INVOKE_DIRECT:
case OP_INVOKE_DIRECT_RANGE: {
const Method *calleeMethod =
cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB];
if (mir->dalvikInsn.opCode == OP_INVOKE_DIRECT)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
/* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
case OP_INVOKE_STATIC:
case OP_INVOKE_STATIC_RANGE: {
const Method *calleeMethod =
cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB];
if (mir->dalvikInsn.opCode == OP_INVOKE_STATIC)
genProcessArgsNoRange(cUnit, mir, dInsn,
NULL /* no null check */);
else
genProcessArgsRange(cUnit, mir, dInsn,
NULL /* no null check */);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
break;
}
/*
* calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
* BBBB, method, method->clazz->pDvmDex)
*
* Given "invoke-interface {v0}", the following is the generated code:
*
* 0x426a9abe : ldr r0, [r5, #0] --+
* 0x426a9ac0 : mov r7, r5 |
* 0x426a9ac2 : sub r7, #24 |
* 0x426a9ac4 : cmp r0, #0 | genProcessArgsNoRange
* 0x426a9ac6 : beq 0x426a9afe |
* 0x426a9ac8 : stmia r7, <r0> --+
* 0x426a9aca : ldr r4, [pc, #104] --> r4 <- dalvikPC of this invoke
* 0x426a9acc : add r1, pc, #52 --> r1 <- &retChainingCell
* 0x426a9ace : add r2, pc, #60 --> r2 <- &predictedChainingCell
* 0x426a9ad0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_
* 0x426a9ad2 : blx_2 see above --+ PREDICTED_CHAIN
* 0x426a9ad4 : b 0x426a9b0c --> off to the predicted chain
* 0x426a9ad6 : b 0x426a9afe --> punt to the interpreter
* 0x426a9ad8 : mov r9, r1 --+
* 0x426a9ada : mov r10, r2 |
* 0x426a9adc : mov r12, r3 |
* 0x426a9ade : mov r0, r3 |
* 0x426a9ae0 : mov r1, #74 | dvmFindInterfaceMethodInCache
* 0x426a9ae2 : ldr r2, [pc, #76] |
* 0x426a9ae4 : ldr r3, [pc, #68] |
* 0x426a9ae6 : ldr r7, [pc, #64] |
* 0x426a9ae8 : blx r7 --+
* 0x426a9aea : mov r1, r9 --> r1 <- rechain count
* 0x426a9aec : cmp r1, #0 --> compare against 0
* 0x426a9aee : bgt 0x426a9af8 --> >=0? don't rechain
* 0x426a9af0 : ldr r7, [r6, #96] --+
* 0x426a9af2 : mov r2, r10 | dvmJitToPatchPredictedChain
* 0x426a9af4 : mov r3, r12 |
* 0x426a9af6 : blx r7 --+
* 0x426a9af8 : add r1, pc, #8 --> r1 <- &retChainingCell
* 0x426a9afa : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT
* 0x426a9afc : blx_2 see above --+
* -------- reconstruct dalvik PC : 0x428b786c @ +0x001e
* 0x426a9afe (0042): ldr r0, [pc, #52]
* Exception_Handling:
* 0x426a9b00 (0044): ldr r1, [r6, #84]
* 0x426a9b02 (0046): blx r1
* 0x426a9b04 (0048): .align4
* -------- chaining cell (hot): 0x0021
* 0x426a9b04 (0048): ldr r0, [r6, #92]
* 0x426a9b06 (004a): blx r0
* 0x426a9b08 (004c): data 0x7872(30834)
* 0x426a9b0a (004e): data 0x428b(17035)
* 0x426a9b0c (0050): .align4
* -------- chaining cell (predicted)
* 0x426a9b0c (0050): data 0x0000(0) --> will be patched into bx
* 0x426a9b0e (0052): data 0x0000(0)
* 0x426a9b10 (0054): data 0x0000(0) --> class
* 0x426a9b12 (0056): data 0x0000(0)
* 0x426a9b14 (0058): data 0x0000(0) --> method
* 0x426a9b16 (005a): data 0x0000(0)
* 0x426a9b18 (005c): data 0x0000(0) --> reset count
* 0x426a9b1a (005e): data 0x0000(0)
* 0x426a9b28 (006c): .word (0xad0392a5)
* 0x426a9b2c (0070): .word (0x6e750)
* 0x426a9b30 (0074): .word (0x4109a618)
* 0x426a9b34 (0078): .word (0x428b786c)
*/
case OP_INVOKE_INTERFACE:
case OP_INVOKE_INTERFACE_RANGE: {
Armv5teLIR *predChainingCell = &labelList[bb->taken->id];
int methodIndex = dInsn->vB;
if (mir->dalvikInsn.opCode == OP_INVOKE_INTERFACE)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* "this" is already left in r0 by genProcessArgs* */
/* r4PC = dalvikCallsite */
loadConstant(cUnit, r4PC,
(int) (cUnit->method->insns + mir->offset));
/* r1 = &retChainingCell */
Armv5teLIR *addrRetChain = newLIR2(cUnit, ARMV5TE_ADD_PC_REL,
r1, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
/* r2 = &predictedChainingCell */
Armv5teLIR *predictedChainingCell =
newLIR2(cUnit, ARMV5TE_ADD_PC_REL, r2, 0);
predictedChainingCell->generic.target = (LIR *) predChainingCell;
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
/* return through lr - jump to the chaining cell */
genUnconditionalBranch(cUnit, predChainingCell);
/*
* null-check on "this" may have been eliminated, but we still need
* a PC-reconstruction label for stack overflow bailout.
*/
if (pcrLabel == NULL) {
int dPC = (int) (cUnit->method->insns + mir->offset);
pcrLabel = dvmCompilerNew(sizeof(Armv5teLIR), true);
pcrLabel->opCode = ARMV5TE_PSEUDO_PC_RECONSTRUCTION_CELL;
pcrLabel->operands[0] = dPC;
pcrLabel->operands[1] = mir->offset;
/* Insert the place holder to the growable list */
dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
}
/* return through lr+2 - punt to the interpreter */
genUnconditionalBranch(cUnit, pcrLabel);
/*
* return through lr+4 - fully resolve the callee method.
* r1 <- count
* r2 <- &predictedChainCell
* r3 <- this->class
* r4 <- dPC
* r7 <- this->class->vtable
*/
/* Save count, &predictedChainCell, and class to high regs first */
newLIR2(cUnit, ARMV5TE_MOV_RR_L2H, r9 & THUMB_REG_MASK, r1);
newLIR2(cUnit, ARMV5TE_MOV_RR_L2H, r10 & THUMB_REG_MASK, r2);
newLIR2(cUnit, ARMV5TE_MOV_RR_L2H, r12 & THUMB_REG_MASK, r3);
/* r0 now contains this->clazz */
newLIR2(cUnit, ARMV5TE_MOV_RR, r0, r3);
/* r1 = BBBB */
loadConstant(cUnit, r1, dInsn->vB);
/* r2 = method (caller) */
loadConstant(cUnit, r2, (int) cUnit->method);
/* r3 = pDvmDex */
loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
loadConstant(cUnit, r7,
(intptr_t) dvmFindInterfaceMethodInCache);
newLIR1(cUnit, ARMV5TE_BLX_R, r7);
/* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
newLIR2(cUnit, ARMV5TE_MOV_RR_H2L, r1, r9 & THUMB_REG_MASK);
/* Check if rechain limit is reached */
newLIR2(cUnit, ARMV5TE_CMP_RI8, r1, 0);
Armv5teLIR *bypassRechaining =
newLIR2(cUnit, ARMV5TE_B_COND, 0, ARM_COND_GT);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r7, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToPatchPredictedChain)
>> 2);
newLIR2(cUnit, ARMV5TE_MOV_RR_H2L, r2, r10 & THUMB_REG_MASK);
newLIR2(cUnit, ARMV5TE_MOV_RR_H2L, r3, r12 & THUMB_REG_MASK);
/*
* r0 = calleeMethod
* r2 = &predictedChainingCell
* r3 = class
*
* &returnChainingCell has been loaded into r1 but is not needed
* when patching the chaining cell and will be clobbered upon
* returning so it will be reconstructed again.
*/
newLIR1(cUnit, ARMV5TE_BLX_R, r7);
/* r1 = &retChainingCell */
addrRetChain = newLIR3(cUnit, ARMV5TE_ADD_PC_REL,
r1, 0, 0);
addrRetChain->generic.target = (LIR *) retChainingCell;
bypassRechaining->generic.target = (LIR *) addrRetChain;
/*
* r0 = this, r1 = calleeMethod,
* r1 = &ChainingCell,
* r4PC = callsiteDPC,
*/
genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
#if defined(INVOKE_STATS)
gDvmJit.invokePredictedChain++;
#endif
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
break;
}
/* NOP */
case OP_INVOKE_DIRECT_EMPTY: {
return false;
}
case OP_FILLED_NEW_ARRAY:
case OP_FILLED_NEW_ARRAY_RANGE: {
/* Just let the interpreter deal with these */
genInterpSingleStep(cUnit, mir);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
BasicBlock *bb, Armv5teLIR *labelList)
{
Armv5teLIR *retChainingCell = &labelList[bb->fallThrough->id];
Armv5teLIR *predChainingCell = &labelList[bb->taken->id];
Armv5teLIR *pcrLabel = NULL;
DecodedInstruction *dInsn = &mir->dalvikInsn;
switch (mir->dalvikInsn.opCode) {
/* calleeMethod = this->clazz->vtable[BBBB] */
case OP_INVOKE_VIRTUAL_QUICK_RANGE:
case OP_INVOKE_VIRTUAL_QUICK: {
int methodIndex = dInsn->vB;
if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL_QUICK)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
genInvokeVirtualCommon(cUnit, mir, methodIndex,
retChainingCell,
predChainingCell,
pcrLabel);
break;
}
/* calleeMethod = method->clazz->super->vtable[BBBB] */
case OP_INVOKE_SUPER_QUICK:
case OP_INVOKE_SUPER_QUICK_RANGE: {
const Method *calleeMethod =
cUnit->method->clazz->super->vtable[dInsn->vB];
if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER_QUICK)
genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
else
genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
/* r0 = calleeMethod */
loadConstant(cUnit, r0, (int) calleeMethod);
genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
calleeMethod);
/* Handle exceptions using the interpreter */
genTrap(cUnit, mir->offset, pcrLabel);
break;
}
default:
return true;
}
return false;
}
/*
* NOTE: We assume here that the special native inline routines
* are side-effect free. By making this assumption, we can safely
* re-execute the routine from the interpreter if it decides it
* wants to throw an exception. We still need to EXPORT_PC(), though.
*/
static bool handleFmt3inline(CompilationUnit *cUnit, MIR *mir)
{
DecodedInstruction *dInsn = &mir->dalvikInsn;
switch( mir->dalvikInsn.opCode) {
case OP_EXECUTE_INLINE: {
unsigned int i;
const InlineOperation* inLineTable = dvmGetInlineOpsTable();
int offset = offsetof(InterpState, retval);
int operation = dInsn->vB;
switch (operation) {
case INLINE_EMPTYINLINEMETHOD:
return false; /* Nop */
case INLINE_STRING_LENGTH:
return genInlinedStringLength(cUnit, mir);
case INLINE_MATH_ABS_INT:
return genInlinedAbsInt(cUnit, mir);
case INLINE_MATH_ABS_LONG:
return genInlinedAbsLong(cUnit, mir);
case INLINE_MATH_MIN_INT:
return genInlinedMinMaxInt(cUnit, mir, true);
case INLINE_MATH_MAX_INT:
return genInlinedMinMaxInt(cUnit, mir, false);
case INLINE_STRING_CHARAT:
return genInlinedStringCharAt(cUnit, mir);
case INLINE_MATH_SQRT:
if (genInlineSqrt(cUnit, mir))
return true;
else
break; /* Handle with C routine */
case INLINE_MATH_COS:
if (genInlineCos(cUnit, mir))
return true;
else
break; /* Handle with C routine */
case INLINE_MATH_SIN:
if (genInlineSin(cUnit, mir))
return true;
else
break; /* Handle with C routine */
case INLINE_MATH_ABS_FLOAT:
return genInlinedAbsFloat(cUnit, mir);
case INLINE_MATH_ABS_DOUBLE:
return genInlinedAbsDouble(cUnit, mir);
case INLINE_STRING_COMPARETO:
case INLINE_STRING_EQUALS:
break;
default:
dvmAbort();
}
/* Materialize pointer to retval & push */
newLIR2(cUnit, ARMV5TE_MOV_RR, r4PC, rGLUE);
newLIR2(cUnit, ARMV5TE_ADD_RI8, r4PC, offset);
/* Push r4 and (just to take up space) r5) */
newLIR1(cUnit, ARMV5TE_PUSH, (1<<r4PC | 1<<rFP));
/* Get code pointer to inline routine */
loadConstant(cUnit, r4PC, (int)inLineTable[operation].func);
/* Export PC */
genExportPC(cUnit, mir, r0, r1 );
/* Load arguments to r0 through r3 as applicable */
for (i=0; i < dInsn->vA; i++) {
loadValue(cUnit, dInsn->arg[i], i);
}
/* Call inline routine */
newLIR1(cUnit, ARMV5TE_BLX_R, r4PC);
/* Strip frame */
newLIR1(cUnit, ARMV5TE_ADD_SPI7, 2);
/* Did we throw? If so, redo under interpreter*/
genZeroCheck(cUnit, r0, mir->offset, NULL);
resetRegisterScoreboard(cUnit);
break;
}
default:
return true;
}
return false;
}
static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
{
loadConstant(cUnit, r0, mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
loadConstant(cUnit, r1, (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
storeValuePair(cUnit, r0, r1, mir->dalvikInsn.vA, r2);
return false;
}
/*****************************************************************************/
/*
* The following are special processing routines that handle transfer of
* controls between compiled code and the interpreter. Certain VM states like
* Dalvik PC and special-purpose registers are reconstructed here.
*/
/* Chaining cell for code that may need warmup. */
static void handleNormalChainingCell(CompilationUnit *cUnit,
unsigned int offset)
{
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r0, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
newLIR1(cUnit, ARMV5TE_BLX_R, r0);
addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
}
/*
* Chaining cell for instructions that immediately following already translated
* code.
*/
static void handleHotChainingCell(CompilationUnit *cUnit,
unsigned int offset)
{
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r0, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToTraceSelect) >> 2);
newLIR1(cUnit, ARMV5TE_BLX_R, r0);
addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
}
/* Chaining cell for monomorphic method invocations. */
static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
const Method *callee)
{
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r0, rGLUE,
offsetof(InterpState, jitToInterpEntries.dvmJitToTraceSelect) >> 2);
newLIR1(cUnit, ARMV5TE_BLX_R, r0);
addWordData(cUnit, (int) (callee->insns), true);
}
/* Chaining cell for monomorphic method invocations. */
static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
{
/* Should not be executed in the initial state */
addWordData(cUnit, PREDICTED_CHAIN_BX_PAIR_INIT, true);
/* To be filled: class */
addWordData(cUnit, PREDICTED_CHAIN_CLAZZ_INIT, true);
/* To be filled: method */
addWordData(cUnit, PREDICTED_CHAIN_METHOD_INIT, true);
/*
* Rechain count. The initial value of 0 here will trigger chaining upon
* the first invocation of this callsite.
*/
addWordData(cUnit, PREDICTED_CHAIN_COUNTER_INIT, true);
}
/* Load the Dalvik PC into r0 and jump to the specified target */
static void handlePCReconstruction(CompilationUnit *cUnit,
Armv5teLIR *targetLabel)
{
Armv5teLIR **pcrLabel =
(Armv5teLIR **) cUnit->pcReconstructionList.elemList;
int numElems = cUnit->pcReconstructionList.numUsed;
int i;
for (i = 0; i < numElems; i++) {
dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
/* r0 = dalvik PC */
loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
genUnconditionalBranch(cUnit, targetLabel);
}
}
/* Entry function to invoke the backend of the JIT compiler */
void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
{
/* Used to hold the labels of each block */
Armv5teLIR *labelList =
dvmCompilerNew(sizeof(Armv5teLIR) * cUnit->numBlocks, true);
GrowableList chainingListByType[CHAINING_CELL_LAST];
int i;
/*
* Initialize various types chaining lists.
*/
for (i = 0; i < CHAINING_CELL_LAST; i++) {
dvmInitGrowableList(&chainingListByType[i], 2);
}
BasicBlock **blockList = cUnit->blockList;
if (cUnit->executionCount) {
/*
* Reserve 6 bytes at the beginning of the trace
* +----------------------------+
* | execution count (4 bytes) |
* +----------------------------+
* | chain cell offset (2 bytes)|
* +----------------------------+
* ...and then code to increment the execution
* count:
* mov r0, pc @ move adr of "mov r0,pc" + 4 to r0
* sub r0, #10 @ back up to addr of executionCount
* ldr r1, [r0]
* add r1, #1
* str r1, [r0]
*/
newLIR1(cUnit, ARMV5TE_16BIT_DATA, 0);
newLIR1(cUnit, ARMV5TE_16BIT_DATA, 0);
cUnit->chainCellOffsetLIR =
(LIR *) newLIR1(cUnit, ARMV5TE_16BIT_DATA, CHAIN_CELL_OFFSET_TAG);
cUnit->headerSize = 6;
newLIR2(cUnit, ARMV5TE_MOV_RR_H2L, r0, rpc & THUMB_REG_MASK);
newLIR2(cUnit, ARMV5TE_SUB_RI8, r0, 10);
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r1, r0, 0);
newLIR2(cUnit, ARMV5TE_ADD_RI8, r1, 1);
newLIR3(cUnit, ARMV5TE_STR_RRI5, r1, r0, 0);
} else {
/* Just reserve 2 bytes for the chain cell offset */
cUnit->chainCellOffsetLIR =
(LIR *) newLIR1(cUnit, ARMV5TE_16BIT_DATA, CHAIN_CELL_OFFSET_TAG);
cUnit->headerSize = 2;
}
/* Handle the content in each basic block */
for (i = 0; i < cUnit->numBlocks; i++) {
blockList[i]->visited = true;
MIR *mir;
labelList[i].operands[0] = blockList[i]->startOffset;
if (blockList[i]->blockType >= CHAINING_CELL_LAST) {
/*
* Append the label pseudo LIR first. Chaining cells will be handled
* separately afterwards.
*/
dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
}
if (blockList[i]->blockType == DALVIK_BYTECODE) {
labelList[i].opCode = ARMV5TE_PSEUDO_NORMAL_BLOCK_LABEL;
/* Reset the register state */
resetRegisterScoreboard(cUnit);
} else {
switch (blockList[i]->blockType) {
case CHAINING_CELL_NORMAL:
labelList[i].opCode = ARMV5TE_PSEUDO_CHAINING_CELL_NORMAL;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[CHAINING_CELL_NORMAL], (void *) i);
break;
case CHAINING_CELL_INVOKE_SINGLETON:
labelList[i].opCode =
ARMV5TE_PSEUDO_CHAINING_CELL_INVOKE_SINGLETON;
labelList[i].operands[0] =
(int) blockList[i]->containingMethod;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[CHAINING_CELL_INVOKE_SINGLETON],
(void *) i);
break;
case CHAINING_CELL_INVOKE_PREDICTED:
labelList[i].opCode =
ARMV5TE_PSEUDO_CHAINING_CELL_INVOKE_PREDICTED;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[CHAINING_CELL_INVOKE_PREDICTED],
(void *) i);
break;
case CHAINING_CELL_HOT:
labelList[i].opCode =
ARMV5TE_PSEUDO_CHAINING_CELL_HOT;
/* handle the codegen later */
dvmInsertGrowableList(
&chainingListByType[CHAINING_CELL_HOT],
(void *) i);
break;
case PC_RECONSTRUCTION:
/* Make sure exception handling block is next */
labelList[i].opCode =
ARMV5TE_PSEUDO_PC_RECONSTRUCTION_BLOCK_LABEL;
assert (i == cUnit->numBlocks - 2);
handlePCReconstruction(cUnit, &labelList[i+1]);
break;
case EXCEPTION_HANDLING:
labelList[i].opCode = ARMV5TE_PSEUDO_EH_BLOCK_LABEL;
if (cUnit->pcReconstructionList.numUsed) {
newLIR3(cUnit, ARMV5TE_LDR_RRI5, r1, rGLUE,
offsetof(InterpState,
jitToInterpEntries.dvmJitToInterpPunt)
>> 2);
newLIR1(cUnit, ARMV5TE_BLX_R, r1);
}
break;
default:
break;
}
continue;
}
Armv5teLIR *headLIR = NULL;
for (mir = blockList[i]->firstMIRInsn; mir; mir = mir->next) {
OpCode dalvikOpCode = mir->dalvikInsn.opCode;
InstructionFormat dalvikFormat =
dexGetInstrFormat(gDvm.instrFormat, dalvikOpCode);
Armv5teLIR *boundaryLIR =
newLIR2(cUnit, ARMV5TE_PSEUDO_DALVIK_BYTECODE_BOUNDARY,
mir->offset,dalvikOpCode);
/* Remember the first LIR for this block */
if (headLIR == NULL) {
headLIR = boundaryLIR;
}
bool notHandled;
/*
* Debugging: screen the opcode first to see if it is in the
* do[-not]-compile list
*/
bool singleStepMe =
gDvmJit.includeSelectedOp !=
((gDvmJit.opList[dalvikOpCode >> 3] &
(1 << (dalvikOpCode & 0x7))) !=
0);
if (singleStepMe || cUnit->allSingleStep) {
notHandled = false;
genInterpSingleStep(cUnit, mir);
} else {
opcodeCoverage[dalvikOpCode]++;
switch (dalvikFormat) {
case kFmt10t:
case kFmt20t:
case kFmt30t:
notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
mir, blockList[i], labelList);
break;
case kFmt10x:
notHandled = handleFmt10x(cUnit, mir);
break;
case kFmt11n:
case kFmt31i:
notHandled = handleFmt11n_Fmt31i(cUnit, mir);
break;
case kFmt11x:
notHandled = handleFmt11x(cUnit, mir);
break;
case kFmt12x:
notHandled = handleFmt12x(cUnit, mir);
break;
case kFmt20bc:
notHandled = handleFmt20bc(cUnit, mir);
break;
case kFmt21c:
case kFmt31c:
notHandled = handleFmt21c_Fmt31c(cUnit, mir);
break;
case kFmt21h:
notHandled = handleFmt21h(cUnit, mir);
break;
case kFmt21s:
notHandled = handleFmt21s(cUnit, mir);
break;
case kFmt21t:
notHandled = handleFmt21t(cUnit, mir, blockList[i],
labelList);
break;
case kFmt22b:
case kFmt22s:
notHandled = handleFmt22b_Fmt22s(cUnit, mir);
break;
case kFmt22c:
notHandled = handleFmt22c(cUnit, mir);
break;
case kFmt22cs:
notHandled = handleFmt22cs(cUnit, mir);
break;
case kFmt22t:
notHandled = handleFmt22t(cUnit, mir, blockList[i],
labelList);
break;
case kFmt22x:
case kFmt32x:
notHandled = handleFmt22x_Fmt32x(cUnit, mir);
break;
case kFmt23x:
notHandled = handleFmt23x(cUnit, mir);
break;
case kFmt31t:
notHandled = handleFmt31t(cUnit, mir);
break;
case kFmt3rc:
case kFmt35c:
notHandled = handleFmt35c_3rc(cUnit, mir, blockList[i],
labelList);
break;
case kFmt3rms:
case kFmt35ms:
notHandled = handleFmt35ms_3rms(cUnit, mir,blockList[i],
labelList);
break;
case kFmt3inline:
notHandled = handleFmt3inline(cUnit, mir);
break;
case kFmt51l:
notHandled = handleFmt51l(cUnit, mir);
break;
default:
notHandled = true;
break;
}
}
if (notHandled) {
LOGE("%#06x: Opcode 0x%x (%s) / Fmt %d not handled\n",
mir->offset,
dalvikOpCode, getOpcodeName(dalvikOpCode),
dalvikFormat);
dvmAbort();
break;
}
}
/* Eliminate redundant loads/stores and delay stores into later slots */
dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
cUnit->lastLIRInsn);
/*
* Check if the block is terminated due to trace length constraint -
* insert an unconditional branch to the chaining cell.
*/
if (blockList[i]->needFallThroughBranch) {
genUnconditionalBranch(cUnit,
&labelList[blockList[i]->fallThrough->id]);
}
}
/* Handle the chaining cells in predefined order */
for (i = 0; i < CHAINING_CELL_LAST; i++) {
size_t j;
int *blockIdList = (int *) chainingListByType[i].elemList;
cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
/* No chaining cells of this type */
if (cUnit->numChainingCells[i] == 0)
continue;
/* Record the first LIR for a new type of chaining cell */
cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
for (j = 0; j < chainingListByType[i].numUsed; j++) {
int blockId = blockIdList[j];
/* Align this chaining cell first */
newLIR0(cUnit, ARMV5TE_PSEUDO_ALIGN4);
/* Insert the pseudo chaining instruction */
dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
switch (blockList[blockId]->blockType) {
case CHAINING_CELL_NORMAL:
handleNormalChainingCell(cUnit,
blockList[blockId]->startOffset);
break;
case CHAINING_CELL_INVOKE_SINGLETON:
handleInvokeSingletonChainingCell(cUnit,
blockList[blockId]->containingMethod);
break;
case CHAINING_CELL_INVOKE_PREDICTED:
handleInvokePredictedChainingCell(cUnit);
break;
case CHAINING_CELL_HOT:
handleHotChainingCell(cUnit,
blockList[blockId]->startOffset);
break;
default:
dvmAbort();
break;
}
}
}
dvmCompilerApplyGlobalOptimizations(cUnit);
}
/* Accept the work and start compiling */
bool dvmCompilerDoWork(CompilerWorkOrder *work)
{
bool res;
if (gDvmJit.codeCacheFull) {
return false;
}
switch (work->kind) {
case kWorkOrderMethod:
res = dvmCompileMethod(work->info, &work->result);
break;
case kWorkOrderTrace:
/* Start compilation with maximally allowed trace length */
res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result);
break;
default:
res = false;
dvmAbort();
}
return res;
}
/* Architectural-specific debugging helpers go here */
void dvmCompilerArchDump(void)
{
/* Print compiled opcode in this VM instance */
int i, start, streak;
char buf[1024];
streak = i = 0;
buf[0] = 0;
while (opcodeCoverage[i] == 0 && i < 256) {
i++;
}
if (i == 256) {
return;
}
for (start = i++, streak = 1; i < 256; i++) {
if (opcodeCoverage[i]) {
streak++;
} else {
if (streak == 1) {
sprintf(buf+strlen(buf), "%x,", start);
} else {
sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
}
streak = 0;
while (opcodeCoverage[i] == 0 && i < 256) {
i++;
}
if (i < 256) {
streak = 1;
start = i;
}
}
}
if (streak) {
if (streak == 1) {
sprintf(buf+strlen(buf), "%x", start);
} else {
sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
}
}
if (strlen(buf)) {
LOGD("dalvik.vm.jit.op = %s", buf);
}
}
|