1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* This file is included by Codegen-armv5te.c, and implements architecture
* variant-specific code.
*/
#define USE_IN_CACHE_HANDLER 1
/*
* Determine the initial instruction set to be used for this trace.
* Later components may decide to change this.
*/
JitInstructionSetType dvmCompilerInstructionSet(CompilationUnit *cUnit)
{
return DALVIK_JIT_THUMB;
}
/*
* Jump to the out-of-line handler in ARM mode to finish executing the
* remaining of more complex instructions.
*/
static void genDispatchToHandler(CompilationUnit *cUnit, TemplateOpCode opCode)
{
#if USE_IN_CACHE_HANDLER
/*
* NOTE - In practice BLX only needs one operand, but since the assembler
* may abort itself and retry due to other out-of-range conditions we
* cannot really use operand[0] to store the absolute target address since
* it may get clobbered by the final relative offset. Therefore,
* we fake BLX_1 is a two operand instruction and the absolute target
* address is stored in operand[1].
*/
newLIR2(cUnit, THUMB_BLX_1,
(int) gDvmJit.codeCache + templateEntryOffsets[opCode],
(int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
newLIR2(cUnit, THUMB_BLX_2,
(int) gDvmJit.codeCache + templateEntryOffsets[opCode],
(int) gDvmJit.codeCache + templateEntryOffsets[opCode]);
#else
/*
* In case we want to access the statically compiled handlers for
* debugging purposes, define USE_IN_CACHE_HANDLER to 0
*/
void *templatePtr;
#define JIT_TEMPLATE(X) extern void dvmCompiler_TEMPLATE_##X();
#include "../../../template/armv5te/TemplateOpList.h"
#undef JIT_TEMPLATE
switch (opCode) {
#define JIT_TEMPLATE(X) \
case TEMPLATE_##X: { templatePtr = dvmCompiler_TEMPLATE_##X; break; }
#include "../../../template/armv5te/TemplateOpList.h"
#undef JIT_TEMPLATE
default: templatePtr = NULL;
}
loadConstant(cUnit, r7, (int) templatePtr);
newLIR1(cUnit, THUMB_BLX_R, r7);
#endif
}
/* Architecture-specific initializations and checks go here */
static bool compilerArchVariantInit(void)
{
/* First, declare dvmCompiler_TEMPLATE_XXX for each template */
#define JIT_TEMPLATE(X) extern void dvmCompiler_TEMPLATE_##X();
#include "../../../template/armv5te/TemplateOpList.h"
#undef JIT_TEMPLATE
int i = 0;
extern void dvmCompilerTemplateStart(void);
/*
* Then, populate the templateEntryOffsets array with the offsets from the
* the dvmCompilerTemplateStart symbol for each template.
*/
#define JIT_TEMPLATE(X) templateEntryOffsets[i++] = \
(intptr_t) dvmCompiler_TEMPLATE_##X - (intptr_t) dvmCompilerTemplateStart;
#include "../../../template/armv5te/TemplateOpList.h"
#undef JIT_TEMPLATE
/* Codegen-specific assumptions */
assert(offsetof(ClassObject, vtable) < 128 &&
(offsetof(ClassObject, vtable) & 0x3) == 0);
assert(offsetof(ArrayObject, length) < 128 &&
(offsetof(ArrayObject, length) & 0x3) == 0);
assert(offsetof(ArrayObject, contents) < 256);
/* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
assert(sizeof(StackSaveArea) < 236);
/*
* EA is calculated by doing "Rn + imm5 << 2", and there are 5 entry points
* that codegen may access, make sure that the offset from the top of the
* struct is less than 108.
*/
assert(offsetof(InterpState, jitToInterpEntries) < 108);
return true;
}
static bool genInlineSqrt(CompilationUnit *cUnit, MIR *mir)
{
return false; /* punt to C handler */
}
static bool genConversion(CompilationUnit *cUnit, MIR *mir)
{
return genConversionPortable(cUnit, mir);
}
static bool genArithOpFloat(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2)
{
return genArithOpFloatPortable(cUnit, mir, vDest, vSrc1, vSrc2);
}
static bool genArithOpDouble(CompilationUnit *cUnit, MIR *mir, int vDest,
int vSrc1, int vSrc2)
{
return genArithOpDoublePortable(cUnit, mir, vDest, vSrc1, vSrc2);
}
static bool genCmpX(CompilationUnit *cUnit, MIR *mir, int vDest, int vSrc1,
int vSrc2)
{
/*
* Don't attempt to optimize register usage since these opcodes call out to
* the handlers.
*/
switch (mir->dalvikInsn.opCode) {
case OP_CMPL_FLOAT:
loadValue(cUnit, vSrc1, r0);
loadValue(cUnit, vSrc2, r1);
genDispatchToHandler(cUnit, TEMPLATE_CMPL_FLOAT);
storeValue(cUnit, r0, vDest, r1);
break;
case OP_CMPG_FLOAT:
loadValue(cUnit, vSrc1, r0);
loadValue(cUnit, vSrc2, r1);
genDispatchToHandler(cUnit, TEMPLATE_CMPG_FLOAT);
storeValue(cUnit, r0, vDest, r1);
break;
case OP_CMPL_DOUBLE:
loadValueAddress(cUnit, vSrc1, r0);
loadValueAddress(cUnit, vSrc2, r1);
genDispatchToHandler(cUnit, TEMPLATE_CMPL_DOUBLE);
storeValue(cUnit, r0, vDest, r1);
break;
case OP_CMPG_DOUBLE:
loadValueAddress(cUnit, vSrc1, r0);
loadValueAddress(cUnit, vSrc2, r1);
genDispatchToHandler(cUnit, TEMPLATE_CMPG_DOUBLE);
storeValue(cUnit, r0, vDest, r1);
break;
default:
return true;
}
return false;
}
|