summaryrefslogtreecommitdiffstats
path: root/vm/compiler/codegen/x86/LowerAlu.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'vm/compiler/codegen/x86/LowerAlu.cpp')
-rw-r--r--vm/compiler/codegen/x86/LowerAlu.cpp1962
1 files changed, 1962 insertions, 0 deletions
diff --git a/vm/compiler/codegen/x86/LowerAlu.cpp b/vm/compiler/codegen/x86/LowerAlu.cpp
new file mode 100644
index 000000000..2231baca1
--- /dev/null
+++ b/vm/compiler/codegen/x86/LowerAlu.cpp
@@ -0,0 +1,1962 @@
+/*
+ * Copyright (C) 2012 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+
+/*! \file LowerAlu.cpp
+ \brief This file lowers ALU bytecodes.
+*/
+#include "libdex/DexOpcodes.h"
+#include "libdex/DexFile.h"
+#include "Lower.h"
+#include "NcgAot.h"
+#include "enc_wrapper.h"
+
+/////////////////////////////////////////////
+#define P_GPR_1 PhysicalReg_EBX
+//! lower bytecode NEG_INT
+
+//!
+int op_neg_int() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_32, 1, false);
+ alu_unary_reg(OpndSize_32, neg_opc, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode NOT_INT
+
+//!
+int op_not_int() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_32, 1, false);
+ alu_unary_reg(OpndSize_32, not_opc, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ rPC += 1;
+ return 0;
+}
+#undef P_GPR_1
+//! lower bytecode NEG_LONG
+
+//! This implementation uses XMM registers
+int op_neg_long() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_64, 1, false);
+ alu_binary_reg_reg(OpndSize_64, xor_opc, 2, false, 2, false);
+ alu_binary_reg_reg(OpndSize_64, sub_opc, 1, false, 2, false);
+ set_virtual_reg(vA, OpndSize_64, 2, false);
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode NOT_LONG
+
+//! This implementation uses XMM registers
+int op_not_long() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_64, 1, false);
+ load_global_data_API("64bits", OpndSize_64, 2, false);
+ alu_binary_reg_reg(OpndSize_64, andn_opc, 2, false, 1, false);
+ set_virtual_reg(vA, OpndSize_64, 1, false);
+ rPC += 1;
+ return 0;
+}
+#define P_GPR_1 PhysicalReg_EBX
+//! lower bytecode NEG_FLOAT
+
+//! This implementation uses GPR
+int op_neg_float() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_32, 1, false);
+ alu_binary_imm_reg(OpndSize_32, add_opc, 0x80000000, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ rPC += 1;
+ return 0;
+}
+#undef P_GPR_1
+
+//! lower bytecode NEG_DOUBLE
+
+//! This implementation uses XMM registers
+int op_neg_double() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_64, 1, false);
+ load_global_data_API("doubNeg", OpndSize_64, 2, false);
+ alu_binary_reg_reg(OpndSize_64, xor_opc, 1, false, 2, false);
+ set_virtual_reg(vA, OpndSize_64, 2, false);
+ rPC += 1;
+ return 0;
+}
+
+//! lower bytecode INT_TO_LONG
+
+//! It uses native instruction cdq
+int op_int_to_long() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_32, PhysicalReg_EAX, true);
+ convert_integer(OpndSize_32, OpndSize_64);
+ set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
+ set_virtual_reg(vA+1, OpndSize_32, PhysicalReg_EDX, true);
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode INT_TO_FLOAT
+
+//! This implementation uses FP stack
+int op_int_to_float() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ load_int_fp_stack_VR(OpndSize_32, vB); //fildl
+ store_fp_stack_VR(true, OpndSize_32, vA); //fstps
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode INT_TO_DOUBLE
+
+//! This implementation uses FP stack
+int op_int_to_double() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ load_int_fp_stack_VR(OpndSize_32, vB); //fildl
+ store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode LONG_TO_FLOAT
+
+//! This implementation uses FP stack
+int op_long_to_float() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ load_int_fp_stack_VR(OpndSize_64, vB); //fildll
+ store_fp_stack_VR(true, OpndSize_32, vA); //fstps
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode LONG_TO_DOUBLE
+
+//! This implementation uses FP stack
+int op_long_to_double() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ load_int_fp_stack_VR(OpndSize_64, vB); //fildll
+ store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode FLOAT_TO_DOUBLE
+
+//! This implementation uses FP stack
+int op_float_to_double() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ load_fp_stack_VR(OpndSize_32, vB); //flds
+ store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode DOUBLE_TO_FLOAT
+
+//! This implementation uses FP stack
+int op_double_to_float() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ load_fp_stack_VR(OpndSize_64, vB); //fldl
+ store_fp_stack_VR(true, OpndSize_32, vA); //fstps
+ rPC += 1;
+ return 0;
+}
+#define P_GPR_1 PhysicalReg_EBX
+//! lower bytecode LONG_TO_INT
+
+//! This implementation uses GPR
+int op_long_to_int() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_32, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ rPC += 1;
+ return 0;
+}
+#undef P_GPR_1
+
+//! common code to convert a float or double to integer
+
+//! It uses FP stack
+int common_fp_to_int(bool isDouble, u2 vA, u2 vB) {
+ if(isDouble) {
+ load_fp_stack_VR(OpndSize_64, vB); //fldl
+ }
+ else {
+ load_fp_stack_VR(OpndSize_32, vB); //flds
+ }
+
+ load_fp_stack_global_data_API("intMax", OpndSize_32);
+ load_fp_stack_global_data_API("intMin", OpndSize_32);
+
+ //ST(0) ST(1) ST(2) --> LintMin LintMax value
+ compare_fp_stack(true, 2, false/*isDouble*/); //ST(2)
+ //ST(0) ST(1) --> LintMax value
+ conditional_jump(Condition_AE, ".float_to_int_negInf", true);
+ rememberState(1);
+ compare_fp_stack(true, 1, false/*isDouble*/); //ST(1)
+ //ST(0) --> value
+ rememberState(2);
+ conditional_jump(Condition_C, ".float_to_int_nanInf", true);
+ //fnstcw, orw, fldcw, xorw
+ load_effective_addr(-2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ store_fpu_cw(false/*checkException*/, 0, PhysicalReg_ESP, true);
+ alu_binary_imm_mem(OpndSize_16, or_opc, 0xc00, 0, PhysicalReg_ESP, true);
+ load_fpu_cw(0, PhysicalReg_ESP, true);
+ alu_binary_imm_mem(OpndSize_16, xor_opc, 0xc00, 0, PhysicalReg_ESP, true);
+ store_int_fp_stack_VR(true/*pop*/, OpndSize_32, vA); //fistpl
+ //fldcw
+ load_fpu_cw(0, PhysicalReg_ESP, true);
+ load_effective_addr(2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ rememberState(3);
+ unconditional_jump(".float_to_int_okay", true);
+ insertLabel(".float_to_int_nanInf", true);
+ conditional_jump(Condition_NP, ".float_to_int_posInf", true);
+ //fstps CHECK
+ goToState(2);
+ store_fp_stack_VR(true, OpndSize_32, vA);
+ set_VR_to_imm(vA, OpndSize_32, 0);
+ transferToState(3);
+ unconditional_jump(".float_to_int_okay", true);
+ insertLabel(".float_to_int_posInf", true);
+ //fstps CHECK
+ goToState(2);
+ store_fp_stack_VR(true, OpndSize_32, vA);
+ set_VR_to_imm(vA, OpndSize_32, 0x7fffffff);
+ transferToState(3);
+ unconditional_jump(".float_to_int_okay", true);
+ insertLabel(".float_to_int_negInf", true);
+ goToState(1);
+ //fstps CHECK
+ store_fp_stack_VR(true, OpndSize_32, vA);
+ store_fp_stack_VR(true, OpndSize_32, vA);
+ set_VR_to_imm(vA, OpndSize_32, 0x80000000);
+ transferToState(3);
+ insertLabel(".float_to_int_okay", true);
+ return 0;
+}
+//! lower bytecode FLOAT_TO_INT by calling common_fp_to_int
+
+//!
+int op_float_to_int() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ int retval = common_fp_to_int(false, vA, vB);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode DOUBLE_TO_INT by calling common_fp_to_int
+
+//!
+int op_double_to_int() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ int retval = common_fp_to_int(true, vA, vB);
+ rPC += 1;
+ return retval;
+}
+
+//! common code to convert float or double to long
+
+//! It uses FP stack
+int common_fp_to_long(bool isDouble, u2 vA, u2 vB) {
+ if(isDouble) {
+ load_fp_stack_VR(OpndSize_64, vB); //fldl
+ }
+ else {
+ load_fp_stack_VR(OpndSize_32, vB); //flds
+ }
+
+ load_fp_stack_global_data_API("valuePosInfLong", OpndSize_64);
+ load_fp_stack_global_data_API("valueNegInfLong", OpndSize_64);
+
+ //ST(0) ST(1) ST(2) --> LintMin LintMax value
+ compare_fp_stack(true, 2, false/*isDouble*/); //ST(2)
+ //ST(0) ST(1) --> LintMax value
+ conditional_jump(Condition_AE, ".float_to_long_negInf", true);
+ rememberState(1);
+ compare_fp_stack(true, 1, false/*isDouble*/); //ST(1)
+ rememberState(2);
+ //ST(0) --> value
+ conditional_jump(Condition_C, ".float_to_long_nanInf", true);
+ //fnstcw, orw, fldcw, xorw
+ load_effective_addr(-2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ store_fpu_cw(false/*checkException*/, 0, PhysicalReg_ESP, true);
+ alu_binary_imm_mem(OpndSize_16, or_opc, 0xc00, 0, PhysicalReg_ESP, true);
+ load_fpu_cw(0, PhysicalReg_ESP, true);
+ alu_binary_imm_mem(OpndSize_16, xor_opc, 0xc00, 0, PhysicalReg_ESP, true);
+ store_int_fp_stack_VR(true/*pop*/, OpndSize_64, vA); //fistpll
+ //fldcw
+ load_fpu_cw(0, PhysicalReg_ESP, true);
+ load_effective_addr(2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ rememberState(3);
+ unconditional_jump(".float_to_long_okay", true);
+ insertLabel(".float_to_long_nanInf", true);
+ conditional_jump(Condition_NP, ".float_to_long_posInf", true);
+ //fstpl??
+ goToState(2);
+
+ load_global_data_API("valueNanLong", OpndSize_64, 1, false);
+
+ set_virtual_reg(vA, OpndSize_64, 1, false);
+ transferToState(3);
+ unconditional_jump(".float_to_long_okay", true);
+ insertLabel(".float_to_long_posInf", true);
+ //fstpl
+ goToState(2);
+
+ load_global_data_API("valuePosInfLong", OpndSize_64, 2, false);
+ set_virtual_reg(vA, OpndSize_64, 2, false);
+ transferToState(3);
+ unconditional_jump(".float_to_long_okay", true);
+ insertLabel(".float_to_long_negInf", true);
+ //fstpl
+ //fstpl
+ goToState(1);
+
+ load_global_data_API("valueNegInfLong", OpndSize_64, 3, false);
+ set_virtual_reg(vA, OpndSize_64, 3, false);
+ transferToState(3);
+ insertLabel(".float_to_long_okay", true);
+ return 0;
+}
+//! lower bytecode FLOAT_TO_LONG by calling common_fp_to_long
+
+//!
+int op_float_to_long() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ int retval = common_fp_to_long(false, vA, vB);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode DOUBLE_TO_LONG by calling common_fp_to_long
+
+//!
+int op_double_to_long() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ int retval = common_fp_to_long(true, vA, vB);
+ rPC += 1;
+ return retval;
+}
+#define P_GPR_1 PhysicalReg_EBX
+//! lower bytecode INT_TO_BYTE
+
+//! It uses GPR
+int op_int_to_byte() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_32, 1, false);
+ alu_binary_imm_reg(OpndSize_32, sal_opc, 24, 1, false);
+ alu_binary_imm_reg(OpndSize_32, sar_opc, 24, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode INT_TO_CHAR
+
+//! It uses GPR
+int op_int_to_char() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_32, 1, false);
+ alu_binary_imm_reg(OpndSize_32, sal_opc, 16, 1, false);
+ alu_binary_imm_reg(OpndSize_32, shr_opc, 16, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ rPC += 1;
+ return 0;
+}
+//! lower bytecode INT_TO_SHORT
+
+//! It uses GPR
+int op_int_to_short() {
+ u2 vA = INST_A(inst); //destination
+ u2 vB = INST_B(inst);
+ get_virtual_reg(vB, OpndSize_32, 1, false);
+ alu_binary_imm_reg(OpndSize_32, sal_opc, 16, 1, false);
+ alu_binary_imm_reg(OpndSize_32, sar_opc, 16, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ rPC += 1;
+ return 0;
+}
+//! common code to handle integer ALU ops
+
+//! It uses GPR
+int common_alu_int(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) { //except div and rem
+ get_virtual_reg(v1, OpndSize_32, 1, false);
+ //in encoder, reg is first operand, which is the destination
+ //gpr_1 op v2(rFP) --> gpr_1
+ //shift only works with reg cl, v2 should be in %ecx
+ alu_binary_VR_reg(OpndSize_32, opc, v2, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ return 0;
+}
+#undef P_GPR_1
+#define P_GPR_1 PhysicalReg_EBX
+//! common code to handle integer shift ops
+
+//! It uses GPR
+int common_shift_int(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {
+ get_virtual_reg(v2, OpndSize_32, PhysicalReg_ECX, true);
+ get_virtual_reg(v1, OpndSize_32, 1, false);
+ //in encoder, reg2 is first operand, which is the destination
+ //gpr_1 op v2(rFP) --> gpr_1
+ //shift only works with reg cl, v2 should be in %ecx
+ alu_binary_reg_reg(OpndSize_32, opc, PhysicalReg_ECX, true, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ return 0;
+}
+#undef p_GPR_1
+//! lower bytecode ADD_INT by calling common_alu_int
+
+//!
+int op_add_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_alu_int(add_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SUB_INT by calling common_alu_int
+
+//!
+int op_sub_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_alu_int(sub_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode MUL_INT by calling common_alu_int
+
+//!
+int op_mul_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_alu_int(imul_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode AND_INT by calling common_alu_int
+
+//!
+int op_and_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_alu_int(and_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode OR_INT by calling common_alu_int
+
+//!
+int op_or_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_alu_int(or_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode XOR_INT by calling common_alu_int
+
+//!
+int op_xor_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_alu_int(xor_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SHL_INT by calling common_shift_int
+
+//!
+int op_shl_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_shift_int(shl_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SHR_INT by calling common_shift_int
+
+//!
+int op_shr_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_shift_int(sar_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode USHR_INT by calling common_shift_int
+
+//!
+int op_ushr_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_shift_int(shr_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode ADD_INT_2ADDR by calling common_alu_int
+
+//!
+int op_add_int_2addr() {
+ u2 vA, v1, v2;
+ vA = INST_A(inst);
+ v1 = vA;
+ v2 = INST_B(inst);
+ int retval = common_alu_int(add_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode SUB_INT_2ADDR by calling common_alu_int
+
+//!
+int op_sub_int_2addr() {
+ u2 vA, v1, v2;
+ vA = INST_A(inst);
+ v1 = vA;
+ v2 = INST_B(inst);
+ int retval = common_alu_int(sub_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode MUL_INT_2ADDR by calling common_alu_int
+
+//!
+int op_mul_int_2addr() {
+ u2 vA, v1, v2;
+ vA = INST_A(inst);
+ v1 = vA;
+ v2 = INST_B(inst);
+ int retval = common_alu_int(imul_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode AND_INT_2ADDR by calling common_alu_int
+
+//!
+int op_and_int_2addr() {
+ u2 vA, v1, v2;
+ vA = INST_A(inst);
+ v1 = vA;
+ v2 = INST_B(inst);
+ int retval = common_alu_int(and_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode OR_INT_2ADDR by calling common_alu_int
+
+//!
+int op_or_int_2addr() {
+ u2 vA, v1, v2;
+ vA = INST_A(inst);
+ v1 = vA;
+ v2 = INST_B(inst);
+ int retval = common_alu_int(or_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode XOR_INT_2ADDR by calling common_alu_int
+
+//!
+int op_xor_int_2addr() {
+ u2 vA, v1, v2;
+ vA = INST_A(inst);
+ v1 = vA;
+ v2 = INST_B(inst);
+ int retval = common_alu_int(xor_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode SHL_INT_2ADDR by calling common_shift_int
+
+//!
+int op_shl_int_2addr() {
+ u2 vA, v1, v2;
+ vA = INST_A(inst);
+ v1 = vA;
+ v2 = INST_B(inst);
+ int retval = common_shift_int(shl_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode SHR_INT_2ADDR by calling common_shift_int
+
+//!
+int op_shr_int_2addr() {
+ u2 vA, v1, v2;
+ vA = INST_A(inst);
+ v1 = vA;
+ v2 = INST_B(inst);
+ int retval = common_shift_int(sar_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode USHR_INT_2ADDR by calling common_shift_int
+
+//!
+int op_ushr_int_2addr() {
+ u2 vA, v1, v2;
+ vA = INST_A(inst);
+ v1 = vA;
+ v2 = INST_B(inst);
+ int retval = common_shift_int(shr_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+#define P_GPR_1 PhysicalReg_EBX
+//!common code to handle integer DIV & REM, it used GPR
+
+//!The special case: when op0 == minint && op1 == -1, return 0 for isRem, return 0x80000000 for isDiv
+//!There are two merge points in the control flow for this bytecode
+//!make sure the reg. alloc. state is the same at merge points by calling transferToState
+int common_div_rem_int(bool isRem, u2 vA, u2 v1, u2 v2) {
+ get_virtual_reg(v1, OpndSize_32, PhysicalReg_EAX, true);
+ get_virtual_reg(v2, OpndSize_32, 2, false);
+ compare_imm_reg(OpndSize_32, 0, 2, false);
+ handlePotentialException(
+ Condition_E, Condition_NE,
+ 1, "common_errDivideByZero");
+ /////////////////// handle special cases
+ //conditional move 0 to $edx for rem for the two special cases
+ //conditional move 0x80000000 to $eax for div
+ //handle -1 special case divide error
+ compare_imm_reg(OpndSize_32, -1, 2, false);
+ conditional_jump(Condition_NE, ".common_div_rem_int_normal", true);
+ //handle min int special case divide error
+ rememberState(1);
+ compare_imm_reg(OpndSize_32, 0x80000000, PhysicalReg_EAX, true);
+ transferToState(1);
+ conditional_jump(Condition_E, ".common_div_rem_int_special", true);
+
+ insertLabel(".common_div_rem_int_normal", true); //merge point
+ convert_integer(OpndSize_32, OpndSize_64); //cdq
+ //idiv: dividend in edx:eax; quotient in eax; remainder in edx
+ alu_unary_reg(OpndSize_32, idiv_opc, 2, false);
+ if(isRem)
+ set_virtual_reg(vA, OpndSize_32, PhysicalReg_EDX, true);
+ else //divide: quotient in %eax
+ set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
+ rememberState(2);
+ unconditional_jump(".common_div_rem_int_okay", true);
+
+ insertLabel(".common_div_rem_int_special", true);
+ goToState(1);
+ if(isRem)
+ set_VR_to_imm(vA, OpndSize_32, 0);
+ else
+ set_VR_to_imm(vA, OpndSize_32, 0x80000000);
+ transferToState(2);
+ insertLabel(".common_div_rem_int_okay", true); //merge point 2
+ return 0;
+}
+#undef P_GPR_1
+//! lower bytecode DIV_INT by calling common_div_rem_int
+
+//!
+int op_div_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_div_rem_int(false, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode REM_INT by calling common_div_rem_int
+
+//!
+int op_rem_int() {
+ u2 vA, v1, v2;
+ vA = INST_AA(inst);
+ v1 = *((u1*)rPC + 2);
+ v2 = *((u1*)rPC + 3);
+ int retval = common_div_rem_int(true, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode DIV_INT_2ADDR by calling common_div_rem_int
+
+//!
+int op_div_int_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_div_rem_int(false, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode REM_INT_2ADDR by calling common_div_rem_int
+
+//!
+int op_rem_int_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_div_rem_int(true, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+
+#define P_GPR_1 PhysicalReg_EBX
+//! common code to handle integer ALU ops with literal
+
+//! It uses GPR
+int common_alu_int_lit(ALU_Opcode opc, u2 vA, u2 vB, s2 imm) { //except div and rem
+ get_virtual_reg(vB, OpndSize_32, 1, false);
+ alu_binary_imm_reg(OpndSize_32, opc, imm, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ return 0;
+}
+//! calls common_alu_int_lit
+int common_shift_int_lit(ALU_Opcode opc, u2 vA, u2 vB, s2 imm) {
+ return common_alu_int_lit(opc, vA, vB, imm);
+}
+#undef p_GPR_1
+//! lower bytecode ADD_INT_LIT16 by calling common_alu_int_lit
+
+//!
+int op_add_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_alu_int_lit(add_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+
+int alu_rsub_int(ALU_Opcode opc, u2 vA, s2 imm, u2 vB) {
+ move_imm_to_reg(OpndSize_32, imm, 2, false);
+ get_virtual_reg(vB, OpndSize_32, 1, false);
+ alu_binary_reg_reg(OpndSize_32, opc, 1, false, 2, false);
+ set_virtual_reg(vA, OpndSize_32, 2, false);
+ return 0;
+}
+
+
+//! lower bytecode RSUB_INT by calling common_alu_int_lit
+
+//!
+int op_rsub_int() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = alu_rsub_int(sub_opc, vA, tmp, vB);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode MUL_INT_LIT16 by calling common_alu_int_lit
+
+//!
+int op_mul_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_alu_int_lit(imul_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode AND_INT_LIT16 by calling common_alu_int_lit
+
+//!
+int op_and_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_alu_int_lit(and_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode OR_INT_LIT16 by calling common_alu_int_lit
+
+//!
+int op_or_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_alu_int_lit(or_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode XOR_INT_LIT16 by calling common_alu_int_lit
+
+//!
+int op_xor_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_alu_int_lit(xor_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SHL_INT_LIT16 by calling common_shift_int_lit
+
+//!
+int op_shl_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_shift_int_lit(shl_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SHR_INT_LIT16 by calling common_shift_int_lit
+
+//!
+int op_shr_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_shift_int_lit(sar_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode USHR_INT_LIT16 by calling common_shift_int_lit
+
+//!
+int op_ushr_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_shift_int_lit(shr_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode ADD_INT_LIT8 by calling common_alu_int_lit
+
+//!
+int op_add_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_alu_int_lit(add_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode RSUB_INT_LIT8 by calling common_alu_int_lit
+
+//!
+int op_rsub_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = alu_rsub_int(sub_opc, vA, tmp, vB);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode MUL_INT_LIT8 by calling common_alu_int_lit
+
+//!
+int op_mul_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_alu_int_lit(imul_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode AND_INT_LIT8 by calling common_alu_int_lit
+
+//!
+int op_and_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_alu_int_lit(and_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode OR_INT_LIT8 by calling common_alu_int_lit
+
+//!
+int op_or_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_alu_int_lit(or_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode XOR_INT_LIT8 by calling common_alu_int_lit
+
+//!
+int op_xor_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_alu_int_lit(xor_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SHL_INT_LIT8 by calling common_shift_int_lit
+
+//!
+int op_shl_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_shift_int_lit(shl_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SHR_INT_LIT8 by calling common_shift_int_lit
+
+//!
+int op_shr_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_shift_int_lit(sar_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode USHR_INT_LIT8 by calling common_shift_int_lit
+
+//!
+int op_ushr_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_shift_int_lit(shr_opc, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+
+int isPowerOfTwo(int imm) {
+ int i;
+ for(i = 1; i < 17; i++) {
+ if(imm == (1 << i)) return i;
+ }
+ return -1;
+}
+
+#define P_GPR_1 PhysicalReg_EBX
+int div_lit_strength_reduction(u2 vA, u2 vB, s2 imm) {
+ if(gDvm.executionMode == kExecutionModeNcgO1) {
+ //strength reduction for div by 2,4,8,...
+ int power = isPowerOfTwo(imm);
+ if(power < 1) return 0;
+ //tmp2 is not updated, so it can share with vB
+ get_virtual_reg(vB, OpndSize_32, 2, false);
+ //if imm is 2, power will be 1
+ if(power == 1) {
+ /* mov tmp1, tmp2
+ shrl $31, tmp1
+ addl tmp2, tmp1
+ sarl $1, tmp1 */
+ move_reg_to_reg(OpndSize_32, 2, false, 1, false);
+ alu_binary_imm_reg(OpndSize_32, shr_opc, 31, 1, false);
+ alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false);
+ alu_binary_imm_reg(OpndSize_32, sar_opc, 1, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ return 1;
+ }
+ //power > 1
+ /* mov tmp1, tmp2
+ sarl $power-1, tmp1
+ shrl 32-$power, tmp1
+ addl tmp2, tmp1
+ sarl $power, tmp1 */
+ move_reg_to_reg(OpndSize_32, 2, false, 1, false);
+ alu_binary_imm_reg(OpndSize_32, sar_opc, power-1, 1, false);
+ alu_binary_imm_reg(OpndSize_32, shr_opc, 32-power, 1, false);
+ alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false);
+ alu_binary_imm_reg(OpndSize_32, sar_opc, power, 1, false);
+ set_virtual_reg(vA, OpndSize_32, 1, false);
+ return 1;
+ }
+ return 0;
+}
+
+////////// throws exception!!!
+//! common code to handle integer DIV & REM with literal
+
+//! It uses GPR
+int common_div_rem_int_lit(bool isRem, u2 vA, u2 vB, s2 imm) {
+ if(!isRem) {
+ int retCode = div_lit_strength_reduction(vA, vB, imm);
+ if(retCode > 0) return 0;
+ }
+ if(imm == 0) {
+ export_pc(); //use %edx
+#ifdef DEBUG_EXCEPTION
+ LOGI("EXTRA code to handle exception");
+#endif
+ constVREndOfBB();
+ beforeCall("exception"); //dump GG, GL VRs
+ unconditional_jump_global_API(
+ "common_errDivideByZero", false);
+
+ return 0;
+ }
+ get_virtual_reg(vB, OpndSize_32, PhysicalReg_EAX, true);
+ //check against -1 for DIV_INT??
+ if(imm == -1) {
+ compare_imm_reg(OpndSize_32, 0x80000000, PhysicalReg_EAX, true);
+ conditional_jump(Condition_E, ".div_rem_int_lit_special", true);
+ rememberState(1);
+ }
+ move_imm_to_reg(OpndSize_32, imm, 2, false);
+ convert_integer(OpndSize_32, OpndSize_64); //cdq
+ //idiv: dividend in edx:eax; quotient in eax; remainder in edx
+ alu_unary_reg(OpndSize_32, idiv_opc, 2, false);
+ if(isRem)
+ set_virtual_reg(vA, OpndSize_32, PhysicalReg_EDX, true);
+ else
+ set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
+
+ if(imm == -1) {
+ unconditional_jump(".div_rem_int_lit_okay", true);
+ rememberState(2);
+ insertLabel(".div_rem_int_lit_special", true);
+ goToState(1);
+ if(isRem)
+ set_VR_to_imm(vA, OpndSize_32, 0);
+ else
+ set_VR_to_imm(vA, OpndSize_32, 0x80000000);
+ transferToState(2);
+ }
+
+ insertLabel(".div_rem_int_lit_okay", true); //merge point 2
+ return 0;
+}
+#undef P_GPR_1
+//! lower bytecode DIV_INT_LIT16 by calling common_div_rem_int_lit
+
+//!
+int op_div_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_div_rem_int_lit(false, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode REM_INT_LIT16 by calling common_div_rem_int_lit
+
+//!
+int op_rem_int_lit16() {
+ u2 vA = INST_A(inst);
+ u2 vB = INST_B(inst);
+ s4 tmp = (s2)FETCH(1);
+ int retval = common_div_rem_int_lit(true, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode DIV_INT_LIT8 by calling common_div_rem_int_lit
+
+//!
+int op_div_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_div_rem_int_lit(false, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode REM_INT_LIT8 by calling common_div_rem_int_lit
+
+//!
+int op_rem_int_lit8() {
+ u2 vA = INST_AA(inst);
+ u2 vB = (u2)FETCH(1) & 0xff;
+ s2 tmp = (s2)FETCH(1) >> 8;
+ int retval = common_div_rem_int_lit(true, vA, vB, tmp);
+ rPC += 2;
+ return retval;
+}
+//! common code to hanle long ALU ops
+
+//! It uses XMM
+int common_alu_long(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) { //except div and rem
+ get_virtual_reg(v1, OpndSize_64, 1, false);
+ get_virtual_reg(v2, OpndSize_64, 2, false);
+ alu_binary_reg_reg(OpndSize_64, opc, 2, false, 1, false);
+ set_virtual_reg(vA, OpndSize_64, 1, false);
+ return 0;
+}
+//! lower bytecode ADD_LONG by calling common_alu_long
+
+//!
+int op_add_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_long(add_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SUB_LONG by calling common_alu_long
+
+//!
+int op_sub_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_long(sub_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode AND_LONG by calling common_alu_long
+
+//!
+int op_and_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_long(and_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode OR_LONG by calling common_alu_long
+
+//!
+int op_or_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_long(or_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode XOR_LONG by calling common_alu_long
+
+//!
+int op_xor_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_long(xor_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode ADD_LONG_2ADDR by calling common_alu_long
+
+//!
+int op_add_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_long(add_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode SUB_LONG_2ADDR by calling common_alu_long
+
+//!
+int op_sub_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_long(sub_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode AND_LONG_2ADDR by calling common_alu_long
+
+//!
+int op_and_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_long(and_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode OR_LONG_2ADDR by calling common_alu_long
+
+//!
+int op_or_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_long(or_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode XOR_LONG_2ADDR by calling common_alu_long
+
+//!
+int op_xor_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_long(xor_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+
+//signed vs unsigned imul and mul?
+#define P_GPR_1 PhysicalReg_EBX
+#define P_GPR_2 PhysicalReg_ECX
+#define P_GPR_3 PhysicalReg_ESI
+//! common code to handle multiplication of long
+
+//! It uses GPR
+int common_mul_long(u2 vA, u2 v1, u2 v2) {
+ get_virtual_reg(v2, OpndSize_32, 1, false);
+ move_reg_to_reg(OpndSize_32, 1, false, PhysicalReg_EAX, true);
+ //imul: 2L * 1H update temporary 1
+ alu_binary_VR_reg(OpndSize_32, imul_opc, (v1+1), 1, false);
+ get_virtual_reg(v1, OpndSize_32, 3, false);
+ move_reg_to_reg(OpndSize_32, 3, false, 2, false);
+ //imul: 1L * 2H
+ alu_binary_VR_reg(OpndSize_32, imul_opc, (v2+1), 2, false);
+ alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false);
+ alu_unary_reg(OpndSize_32, mul_opc, 3, false);
+ alu_binary_reg_reg(OpndSize_32, add_opc, PhysicalReg_EDX, true, 1, false);
+ set_virtual_reg(vA+1, OpndSize_32, 1, false);
+ set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
+ return 0;
+}
+#undef P_GPR_1
+#undef P_GPR_2
+#undef P_GPR_3
+//! lower bytecode MUL_LONG by calling common_mul_long
+
+//!
+int op_mul_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_mul_long(vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode MUL_LONG_2ADDR by calling common_mul_long
+
+//!
+int op_mul_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_mul_long(vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+
+#define P_GPR_1 PhysicalReg_EBX
+#define P_GPR_2 PhysicalReg_ECX
+//! common code to handle DIV & REM of long
+
+//! It uses GPR & XMM; and calls call_moddi3 & call_divdi3
+int common_div_rem_long(bool isRem, u2 vA, u2 v1, u2 v2) {
+ get_virtual_reg(v2, OpndSize_32, 1, false);
+ get_virtual_reg(v2+1, OpndSize_32, 2, false);
+ //save to native stack before changing register P_GPR_1
+ load_effective_addr(-16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ move_reg_to_mem(OpndSize_32, 1, false, 8, PhysicalReg_ESP, true);
+ alu_binary_reg_reg(OpndSize_32, or_opc, 2, false, 1, false);
+
+ handlePotentialException(
+ Condition_E, Condition_NE,
+ 1, "common_errDivideByZero");
+ move_reg_to_mem(OpndSize_32, 2, false, 12, PhysicalReg_ESP, true);
+ get_virtual_reg(v1, OpndSize_64, 1, false);
+ move_reg_to_mem(OpndSize_64, 1, false, 0, PhysicalReg_ESP, true);
+ scratchRegs[0] = PhysicalReg_SCRATCH_1;
+ nextVersionOfHardReg(PhysicalReg_EDX, 2); //next version has 2 refs
+ if(isRem)
+ call_moddi3();
+ else
+ call_divdi3();
+ load_effective_addr(16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ set_virtual_reg(vA+1, OpndSize_32,PhysicalReg_EDX, true);
+ set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
+ return 0;
+}
+#undef P_GPR_1
+#undef P_GPR_2
+//! lower bytecode DIV_LONG by calling common_div_rem_long
+
+//!
+int op_div_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_div_rem_long(false, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode REM_LONG by calling common_div_rem_long
+
+//!
+int op_rem_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_div_rem_long(true, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode DIV_LONG_2ADDR by calling common_div_rem_long
+
+//!
+int op_div_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_div_rem_long(false, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode REM_LONG_2ADDR by calling common_div_rem_long
+
+//!
+int op_rem_long_2addr() { //call __moddi3 instead of __divdi3
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_div_rem_long(true, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+
+//! common code to handle SHL long
+
+//! It uses XMM
+int common_shl_long(u2 vA, u2 v1, u2 v2) {
+ get_VR_ss(v2, 2, false);
+
+ load_global_data_API("shiftMask", OpndSize_64, 3, false);
+
+ get_virtual_reg(v1, OpndSize_64, 1, false);
+ alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false);
+ alu_binary_reg_reg(OpndSize_64, sll_opc, 2, false, 1, false);
+ set_virtual_reg(vA, OpndSize_64, 1, false);
+ return 0;
+}
+
+//! common code to handle SHR long
+
+//! It uses XMM
+int common_shr_long(u2 vA, u2 v1, u2 v2) {
+ get_VR_ss(v2, 2, false);
+
+ load_global_data_API("shiftMask", OpndSize_64, 3, false);
+
+ get_virtual_reg(v1, OpndSize_64, 1, false);
+ alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false);
+ alu_binary_reg_reg(OpndSize_64, srl_opc, 2, false, 1, false);
+ compare_imm_VR(OpndSize_32, 0, (v1+1));
+ conditional_jump(Condition_GE, ".common_shr_long_special", true);
+ rememberState(1);
+
+ load_global_data_API("value64", OpndSize_64, 4, false);
+
+ alu_binary_reg_reg(OpndSize_64, sub_opc, 2, false, 4, false);
+
+ load_global_data_API("64bits", OpndSize_64, 5, false);
+
+ alu_binary_reg_reg(OpndSize_64, sll_opc, 4, false, 5, false);
+ alu_binary_reg_reg(OpndSize_64, or_opc, 5, false, 1, false);
+ rememberState(2);
+ //check whether the target is next instruction TODO
+ unconditional_jump(".common_shr_long_done", true);
+
+ insertLabel(".common_shr_long_special", true);
+ goToState(1);
+ transferToState(2);
+ insertLabel(".common_shr_long_done", true);
+ set_virtual_reg(vA, OpndSize_64, 1, false);
+ return 0;
+}
+
+//! common code to handle USHR long
+
+//! It uses XMM
+int common_ushr_long(u2 vA, u2 v1, u2 v2) {
+ get_VR_sd(v1, 1, false);
+ get_VR_ss(v2, 2, false);
+
+ load_sd_global_data_API("shiftMask", 3, false);
+
+ alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false);
+ alu_binary_reg_reg(OpndSize_64, srl_opc, 2, false, 1, false);
+ set_VR_sd(vA, 1, false);
+ return 0;
+}
+//! lower bytecode SHL_LONG by calling common_shl_long
+
+//!
+int op_shl_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_shl_long(vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SHL_LONG_2ADDR by calling common_shl_long
+
+//!
+int op_shl_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_shl_long(vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode SHR_LONG by calling common_shr_long
+
+//!
+int op_shr_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_shr_long(vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SHR_LONG_2ADDR by calling common_shr_long
+
+//!
+int op_shr_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_shr_long(vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode USHR_LONG by calling common_ushr_long
+
+//!
+int op_ushr_long() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_ushr_long(vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode USHR_LONG_2ADDR by calling common_ushr_long
+
+//!
+int op_ushr_long_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_ushr_long(vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+#define USE_MEM_OPERAND
+///////////////////////////////////////////
+//! common code to handle ALU of floats
+
+//! It uses XMM
+int common_alu_float(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {//add, sub, mul
+ get_VR_ss(v1, 1, false);
+#ifdef USE_MEM_OPERAND
+ alu_sd_binary_VR_reg(opc, v2, 1, false, false/*isSD*/);
+#else
+ get_VR_ss(v2, 2, false);
+ alu_ss_binary_reg_reg(opc, 2, false, 1, false);
+#endif
+ set_VR_ss(vA, 1, false);
+ return 0;
+}
+//! lower bytecode ADD_FLOAT by calling common_alu_float
+
+//!
+int op_add_float() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_float(add_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SUB_FLOAT by calling common_alu_float
+
+//!
+int op_sub_float() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_float(sub_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode MUL_FLOAT by calling common_alu_float
+
+//!
+int op_mul_float() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_float(mul_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode ADD_FLOAT_2ADDR by calling common_alu_float
+
+//!
+int op_add_float_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_float(add_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode SUB_FLOAT_2ADDR by calling common_alu_float
+
+//!
+int op_sub_float_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_float(sub_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode MUL_FLOAT_2ADDR by calling common_alu_float
+
+//!
+int op_mul_float_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_float(mul_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! common code to handle DIV of float
+
+//! It uses FP stack
+int common_div_float(u2 vA, u2 v1, u2 v2) {
+ load_fp_stack_VR(OpndSize_32, v1); //flds
+ fpu_VR(div_opc, OpndSize_32, v2);
+ store_fp_stack_VR(true, OpndSize_32, vA); //fstps
+ return 0;
+}
+//! lower bytecode DIV_FLOAT by calling common_div_float
+
+//!
+int op_div_float() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_float(div_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode DIV_FLOAT_2ADDR by calling common_div_float
+
+//!
+int op_div_float_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_float(div_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! common code to handle DIV of double
+
+//! It uses XMM
+int common_alu_double(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {//add, sub, mul
+ get_VR_sd(v1, 1, false);
+#ifdef USE_MEM_OPERAND
+ alu_sd_binary_VR_reg(opc, v2, 1, false, true /*isSD*/);
+#else
+ get_VR_sd(v2, 2, false);
+ alu_sd_binary_reg_reg(opc, 2, false, 1, false);
+#endif
+ set_VR_sd(vA, 1, false);
+ return 0;
+}
+//! lower bytecode ADD_DOUBLE by calling common_alu_double
+
+//!
+int op_add_double() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_double(add_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode SUB_DOUBLE by calling common_alu_double
+
+//!
+int op_sub_double() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_double(sub_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode MUL_DOUBLE by calling common_alu_double
+
+//!
+int op_mul_double() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_double(mul_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode ADD_DOUBLE_2ADDR by calling common_alu_double
+
+//!
+int op_add_double_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_double(add_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode SUB_DOUBLE_2ADDR by calling common_alu_double
+
+//!
+int op_sub_double_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_double(sub_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode MUL_DOUBLE_2ADDR by calling common_alu_double
+
+//!
+int op_mul_double_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_double(mul_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! common code to handle DIV of double
+
+//! It uses FP stack
+int common_div_double(u2 vA, u2 v1, u2 v2) {
+ load_fp_stack_VR(OpndSize_64, v1); //fldl
+ fpu_VR(div_opc, OpndSize_64, v2); //fdivl
+ store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
+ return 0;
+}
+//! lower bytecode DIV_DOUBLE by calling common_div_double
+
+//!
+int op_div_double() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_alu_double(div_opc, vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode DIV_DOUBLE_2ADDR by calling common_div_double
+
+//!
+int op_div_double_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_alu_double(div_opc, vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+#define P_GPR_1 PhysicalReg_EBX
+#define P_GPR_2 PhysicalReg_ECX
+//! common code to handle REM of float
+
+//! It uses GPR & calls call_fmodf
+int common_rem_float(u2 vA, u2 v1, u2 v2) {
+ get_virtual_reg(v1, OpndSize_32, 1, false);
+ get_virtual_reg(v2, OpndSize_32, 2, false);
+ load_effective_addr(-8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ move_reg_to_mem(OpndSize_32, 1, false, 0, PhysicalReg_ESP, true);
+ move_reg_to_mem(OpndSize_32, 2, false, 4, PhysicalReg_ESP, true);
+ scratchRegs[0] = PhysicalReg_SCRATCH_1;
+ call_fmodf(); //(float x, float y) return float
+ load_effective_addr(8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ store_fp_stack_VR(true, OpndSize_32, vA); //fstps
+ return 0;
+}
+#undef P_GPR_1
+#undef P_GPR_2
+//! lower bytecode REM_FLOAT by calling common_rem_float
+
+//!
+int op_rem_float() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_rem_float(vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode REM_FLOAT_2ADDR by calling common_rem_float
+
+//!
+int op_rem_float_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_rem_float(vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! common code to handle REM of double
+
+//! It uses XMM & calls call_fmod
+int common_rem_double(u2 vA, u2 v1, u2 v2) {
+ get_virtual_reg(v1, OpndSize_64, 1, false);
+ get_virtual_reg(v2, OpndSize_64, 2, false);
+ load_effective_addr(-16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ move_reg_to_mem(OpndSize_64, 1, false, 0, PhysicalReg_ESP, true);
+ move_reg_to_mem(OpndSize_64, 2, false, 8, PhysicalReg_ESP, true);
+ scratchRegs[0] = PhysicalReg_SCRATCH_1;
+ call_fmod(); //(long double x, long double y) return double
+ load_effective_addr(16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
+ store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
+ return 0;
+}
+//! lower bytecode REM_DOUBLE by calling common_rem_double
+
+//!
+int op_rem_double() {
+ u2 vA = INST_AA(inst);
+ u2 v1 = *((u1*)rPC + 2);
+ u2 v2 = *((u1*)rPC + 3);
+ int retval = common_rem_double(vA, v1, v2);
+ rPC += 2;
+ return retval;
+}
+//! lower bytecode REM_DOUBLE_2ADDR by calling common_rem_double
+
+//!
+int op_rem_double_2addr() {
+ u2 vA = INST_A(inst);
+ u2 v1 = vA;
+ u2 v2 = INST_B(inst);
+ int retval = common_rem_double(vA, v1, v2);
+ rPC += 1;
+ return retval;
+}
+//! lower bytecode CMPL_FLOAT
+
+//!
+int op_cmpl_float() {
+ u2 vA = INST_AA(inst);
+ u4 v1 = FETCH(1) & 0xff;
+ u4 v2 = FETCH(1) >> 8;
+ get_VR_ss(v1, 1, false); //xmm
+ move_imm_to_reg(OpndSize_32, 0, 1, false);
+ move_imm_to_reg(OpndSize_32, 1, 2, false);
+ move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
+ compare_VR_ss_reg(v2, 1, false);
+ //default: 0xffffffff??
+ move_imm_to_reg(OpndSize_32,
+ 0xffffffff, 4, false);
+ //ORDER of cmov matters !!! (Z,P,A)
+ //finalNaN: unordered 0xffffffff
+ conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
+ 1, false, 4, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_P,
+ 3, false, 4, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_A,
+ 2, false, 4, false);
+ set_virtual_reg(vA, OpndSize_32, 4, false);
+ rPC += 2;
+ return 0;
+}
+//! lower bytecode CMPG_FLOAT
+
+//!
+int op_cmpg_float() {
+ u2 vA = INST_AA(inst);
+ u4 v1 = FETCH(1) & 0xff;
+ u4 v2 = FETCH(1) >> 8;
+ get_VR_ss(v1, 1, false);
+ compare_VR_ss_reg(v2, 1, false);
+ move_imm_to_reg(OpndSize_32, 0, 1, false);
+ move_imm_to_reg(OpndSize_32, 1, 2, false);
+ //default: 0xffffffff??
+ move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
+ 1, false, 3, false);
+ //finalNaN: unordered
+ conditional_move_reg_to_reg(OpndSize_32, Condition_P,
+ 2, false, 3, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_A,
+ 2, false, 3, false);
+ set_virtual_reg(vA, OpndSize_32, 3, false);
+ rPC += 2;
+ return 0;
+}
+//! lower bytecode CMPL_DOUBLE
+
+//!
+int op_cmpl_double() {
+ u2 vA = INST_AA(inst);
+ u4 v1 = FETCH(1) & 0xff;
+ u4 v2 = FETCH(1) >> 8;
+ get_VR_sd(v1, 1, false);
+ compare_VR_sd_reg(v2, 1, false);
+ move_imm_to_reg(OpndSize_32, 0, 1, false);
+ move_imm_to_reg(OpndSize_32, 1, 2, false);
+ move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
+
+ //default: 0xffffffff??
+ move_imm_to_reg(OpndSize_32, 0xffffffff, 4, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
+ 1, false, 4, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_P,
+ 3, false, 4, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_A,
+ 2, false, 4, false);
+ set_virtual_reg(vA, OpndSize_32, 4, false);
+ rPC += 2;
+ return 0;
+}
+//! lower bytecode CMPG_DOUBLE
+
+//!
+int op_cmpg_double() {
+ u2 vA = INST_AA(inst);
+ u4 v1 = FETCH(1) & 0xff;
+ u4 v2 = FETCH(1) >> 8;
+ get_VR_sd(v1, 1, false);
+ compare_VR_sd_reg(v2, 1, false);
+ move_imm_to_reg(OpndSize_32, 0, 1, false);
+ move_imm_to_reg(OpndSize_32, 1, 2, false);
+
+ //default: 0xffffffff??
+ move_imm_to_reg(OpndSize_32,
+ 0xffffffff, 3, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
+ 1, false, 3, false);
+ //finalNaN: unordered
+ conditional_move_reg_to_reg(OpndSize_32, Condition_P,
+ 2, false, 3, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_A,
+ 2, false, 3, false);
+ set_virtual_reg(vA, OpndSize_32, 3, false);
+ rPC += 2;
+ return 0;
+}
+#define P_GPR_1 PhysicalReg_EBX
+#define P_GPR_2 PhysicalReg_ECX
+#define P_GPR_3 PhysicalReg_ESI
+#define P_SCRATCH_1 PhysicalReg_EDX
+#define P_SCRATCH_2 PhysicalReg_EAX
+#define OPTION_OLD //for simpler cfg
+//! lower bytecode CMP_LONG
+
+//!
+int op_cmp_long() {
+ u2 vA = INST_AA(inst);
+ u4 v1 = FETCH(1) & 0xff;
+ u4 v2 = FETCH(1) >> 8;
+ get_virtual_reg(v1+1, OpndSize_32, 2, false);
+#ifdef OPTION_OLD
+ move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
+ move_imm_to_reg(OpndSize_32, 1, 4, false);
+ move_imm_to_reg(OpndSize_32, 0, 5, false);
+#endif
+ compare_VR_reg(OpndSize_32,
+ v2+1, 2, false);
+#ifndef OPTION_OLD
+ conditional_jump(Condition_L, ".cmp_long_less", true);
+ conditional_jump(Condition_G, ".cmp_long_greater", true);
+#else
+ conditional_jump(Condition_E, ".cmp_long_equal", true);
+ rememberState(1);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_L, //below vs less
+ 3, false, 6, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_G, //above vs greater
+ 4, false, 6, false);
+ set_virtual_reg(vA, OpndSize_32, 6, false);
+ rememberState(2);
+ unconditional_jump(".cmp_long_okay", true);
+ insertLabel(".cmp_long_equal", true);
+ goToState(1);
+#endif
+
+ get_virtual_reg(v1, OpndSize_32, 1, false);
+ compare_VR_reg(OpndSize_32,
+ v2, 1, false);
+#ifdef OPTION_OLD
+ conditional_move_reg_to_reg(OpndSize_32, Condition_E,
+ 5, false, 6, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_B, //below vs less
+ 3, false, 6, false);
+ conditional_move_reg_to_reg(OpndSize_32, Condition_A, //above vs greater
+ 4, false, 6, false);
+ set_virtual_reg(vA, OpndSize_32, 6, false);
+ transferToState(2);
+#else
+ conditional_jump(Condition_A, ".cmp_long_greater", true);
+ conditional_jump(Condition_NE, ".cmp_long_less", true);
+ set_VR_to_imm(vA, OpndSize_32, 0);
+ unconditional_jump(".cmp_long_okay", true);
+
+ insertLabel(".cmp_long_less", true);
+ set_VR_to_imm(vA, OpndSize_32, 0xffffffff);
+ unconditional_jump(".cmp_long_okay", true);
+
+ insertLabel(".cmp_long_greater", true);
+ set_VR_to_imm(vA, OpndSize_32, 1);
+#endif
+ insertLabel(".cmp_long_okay", true);
+ rPC += 2;
+ return 0;
+}
+#undef P_GPR_1
+#undef P_GPR_2
+#undef P_GPR_3