diff options
Diffstat (limited to 'vm/compiler/codegen/mips/Assemble.cpp')
-rw-r--r-- | vm/compiler/codegen/mips/Assemble.cpp | 2324 |
1 files changed, 2324 insertions, 0 deletions
diff --git a/vm/compiler/codegen/mips/Assemble.cpp b/vm/compiler/codegen/mips/Assemble.cpp new file mode 100644 index 000000000..a97857d12 --- /dev/null +++ b/vm/compiler/codegen/mips/Assemble.cpp @@ -0,0 +1,2324 @@ +/* + * Copyright (C) 2009 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +#include "Dalvik.h" +#include "libdex/DexOpcodes.h" + +#include "../../CompilerInternals.h" +#include "MipsLIR.h" +#include "Codegen.h" +#include <unistd.h> /* for cacheflush */ +#include <sys/mman.h> /* for protection change */ + +#define MAX_ASSEMBLER_RETRIES 10 + +/* + * opcode: MipsOpCode enum + * skeleton: pre-designated bit-pattern for this opcode + * k0: key to applying ds/de + * ds: dest start bit position + * de: dest end bit position + * k1: key to applying s1s/s1e + * s1s: src1 start bit position + * s1e: src1 end bit position + * k2: key to applying s2s/s2e + * s2s: src2 start bit position + * s2e: src2 end bit position + * operands: number of operands (for sanity check purposes) + * name: mnemonic name + * fmt: for pretty-printing + */ +#define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \ + k3, k3s, k3e, flags, name, fmt, size) \ + {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \ + {k3, k3s, k3e}}, opcode, flags, name, fmt, size} + +/* Instruction dump string format keys: !pf, where "!" is the start + * of the key, "p" is which numeric operand to use and "f" is the + * print format. + * + * [p]ositions: + * 0 -> operands[0] (dest) + * 1 -> operands[1] (src1) + * 2 -> operands[2] (src2) + * 3 -> operands[3] (extra) + * + * [f]ormats: + * h -> 4-digit hex + * d -> decimal + * E -> decimal*4 + * F -> decimal*2 + * c -> branch condition (beq, bne, etc.) + * t -> pc-relative target + * T -> pc-region target + * u -> 1st half of bl[x] target + * v -> 2nd half ob bl[x] target + * R -> register list + * s -> single precision floating point register + * S -> double precision floating point register + * m -> Thumb2 modified immediate + * n -> complimented Thumb2 modified immediate + * M -> Thumb2 16-bit zero-extended immediate + * b -> 4-digit binary + * + * [!] escape. To insert "!", use "!!" + */ +/* NOTE: must be kept in sync with enum MipsOpcode from MipsLIR.h */ +MipsEncodingMap EncodingMap[kMipsLast] = { + ENCODING_MAP(kMips32BitData, 0x00000000, + kFmtBitBlt, 31, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_UNARY_OP, + "data", "0x!0h(!0d)", 2), + ENCODING_MAP(kMipsAddiu, 0x24000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, + "addiu", "!0r,!1r,0x!2h(!2d)", 2), + ENCODING_MAP(kMipsAddu, 0x00000021, + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "addu", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsAnd, 0x00000024, + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "and", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsAndi, 0x30000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, + "andi", "!0r,!1r,0x!2h(!2d)", 2), + ENCODING_MAP(kMipsB, 0x10000000, + kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH, + "b", "!0t", 2), + ENCODING_MAP(kMipsBal, 0x04110000, + kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH | REG_DEF_LR, + "bal", "!0t", 2), + ENCODING_MAP(kMipsBeq, 0x10000000, + kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, + kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01, + "beq", "!0r,!1r,!2t", 2), + ENCODING_MAP(kMipsBeqz, 0x10000000, /* same as beq above with t = $zero */ + kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, + "beqz", "!0r,!1t", 2), + ENCODING_MAP(kMipsBgez, 0x04010000, + kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, + "bgez", "!0r,!1t", 2), + ENCODING_MAP(kMipsBgtz, 0x1C000000, + kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, + "bgtz", "!0r,!1t", 2), + ENCODING_MAP(kMipsBlez, 0x18000000, + kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, + "blez", "!0r,!1t", 2), + ENCODING_MAP(kMipsBltz, 0x04000000, + kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, + "bltz", "!0r,!1t", 2), + ENCODING_MAP(kMipsBnez, 0x14000000, /* same as bne below with t = $zero */ + kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, + "bnez", "!0r,!1t", 2), + ENCODING_MAP(kMipsBne, 0x14000000, + kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, + kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01, + "bne", "!0r,!1r,!2t", 2), + ENCODING_MAP(kMipsDiv, 0x0000001a, + kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtBitBlt, 25, 21, + kFmtBitBlt, 20, 16, IS_QUAD_OP | REG_DEF01 | REG_USE23, + "div", "!2r,!3r", 2), +#if __mips_isa_rev>=2 + ENCODING_MAP(kMipsExt, 0x7c000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 10, 6, + kFmtBitBlt, 15, 11, IS_QUAD_OP | REG_DEF0 | REG_USE1, + "ext", "!0r,!1r,!2d,!3D", 2), +#endif + ENCODING_MAP(kMipsJal, 0x0c000000, + kFmtBitBlt, 25, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR, + "jal", "!0T(!0E)", 2), + ENCODING_MAP(kMipsJalr, 0x00000009, + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF0_USE1, + "jalr", "!0r,!1r", 2), + ENCODING_MAP(kMipsJr, 0x00000008, + kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0, + "jr", "!0r", 2), + ENCODING_MAP(kMipsLahi, 0x3C000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, + "lahi/lui", "!0r,0x!1h(!1d)", 2), + ENCODING_MAP(kMipsLalo, 0x34000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, + "lalo/ori", "!0r,!1r,0x!2h(!2d)", 2), + ENCODING_MAP(kMipsLui, 0x3C000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0, + "lui", "!0r,0x!1h(!1d)", 2), + ENCODING_MAP(kMipsLb, 0x80000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, + "lb", "!0r,!1d(!2r)", 2), + ENCODING_MAP(kMipsLbu, 0x90000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, + "lbu", "!0r,!1d(!2r)", 2), + ENCODING_MAP(kMipsLh, 0x84000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, + "lh", "!0r,!1d(!2r)", 2), + ENCODING_MAP(kMipsLhu, 0x94000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, + "lhu", "!0r,!1d(!2r)", 2), + ENCODING_MAP(kMipsLw, 0x8C000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, + "lw", "!0r,!1d(!2r)", 2), + ENCODING_MAP(kMipsMfhi, 0x00000010, + kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "mfhi", "!0r", 2), + ENCODING_MAP(kMipsMflo, 0x00000012, + kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "mflo", "!0r", 2), + ENCODING_MAP(kMipsMove, 0x00000025, /* or using zero reg */ + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "move", "!0r,!1r", 2), + ENCODING_MAP(kMipsMovz, 0x0000000a, + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "movz", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsMul, 0x70000002, + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "mul", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsNop, 0x00000000, + kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, NO_OPERAND, + "nop", "", 2), + ENCODING_MAP(kMipsNor, 0x00000027, /* used for "not" too */ + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "nor", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsOr, 0x00000025, + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "or", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsOri, 0x34000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, + "ori", "!0r,!1r,0x!2h(!2d)", 2), + ENCODING_MAP(kMipsPref, 0xCC000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE2, + "pref", "!0d,!1d(!2r)", 2), + ENCODING_MAP(kMipsSb, 0xA0000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, + "sb", "!0r,!1d(!2r)", 2), +#if __mips_isa_rev>=2 + ENCODING_MAP(kMipsSeb, 0x7c000420, + kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "seb", "!0r,!1r", 2), + ENCODING_MAP(kMipsSeh, 0x7c000620, + kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "seh", "!0r,!1r", 2), +#endif + ENCODING_MAP(kMipsSh, 0xA4000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, + "sh", "!0r,!1d(!2r)", 2), + ENCODING_MAP(kMipsSll, 0x00000000, + kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, + "sll", "!0r,!1r,0x!2h(!2d)", 2), + ENCODING_MAP(kMipsSllv, 0x00000004, + kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "sllv", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsSlt, 0x0000002a, + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "slt", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsSlti, 0x28000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, + "slti", "!0r,!1r,0x!2h(!2d)", 2), + ENCODING_MAP(kMipsSltu, 0x0000002b, + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "sltu", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsSra, 0x00000003, + kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, + "sra", "!0r,!1r,0x!2h(!2d)", 2), + ENCODING_MAP(kMipsSrav, 0x00000007, + kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "srav", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsSrl, 0x00000002, + kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, + "srl", "!0r,!1r,0x!2h(!2d)", 2), + ENCODING_MAP(kMipsSrlv, 0x00000006, + kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "srlv", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsSubu, 0x00000023, /* used for "neg" too */ + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "subu", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsSw, 0xAC000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, + "sw", "!0r,!1d(!2r)", 2), + ENCODING_MAP(kMipsXor, 0x00000026, + kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "xor", "!0r,!1r,!2r", 2), + ENCODING_MAP(kMipsXori, 0x38000000, + kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1, + "xori", "!0r,!1r,0x!2h(!2d)", 2), +#ifdef __mips_hard_float + ENCODING_MAP(kMipsFadds, 0x46000000, + kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "add.s", "!0s,!1s,!2s", 2), + ENCODING_MAP(kMipsFsubs, 0x46000001, + kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "sub.s", "!0s,!1s,!2s", 2), + ENCODING_MAP(kMipsFmuls, 0x46000002, + kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "mul.s", "!0s,!1s,!2s", 2), + ENCODING_MAP(kMipsFdivs, 0x46000003, + kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "div.s", "!0s,!1s,!2s", 2), + ENCODING_MAP(kMipsFaddd, 0x46200000, + kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "add.d", "!0S,!1S,!2S", 2), + ENCODING_MAP(kMipsFsubd, 0x46200001, + kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "sub.d", "!0S,!1S,!2S", 2), + ENCODING_MAP(kMipsFmuld, 0x46200002, + kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "mul.d", "!0S,!1S,!2S", 2), + ENCODING_MAP(kMipsFdivd, 0x46200003, + kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12, + "div.d", "!0S,!1S,!2S", 2), + ENCODING_MAP(kMipsFcvtsd, 0x46200020, + kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "cvt.s.d", "!0s,!1S", 2), + ENCODING_MAP(kMipsFcvtsw, 0x46800020, + kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "cvt.s.w", "!0s,!1s", 2), + ENCODING_MAP(kMipsFcvtds, 0x46000021, + kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "cvt.d.s", "!0S,!1s", 2), + ENCODING_MAP(kMipsFcvtdw, 0x46800021, + kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "cvt.d.w", "!0S,!1s", 2), + ENCODING_MAP(kMipsFcvtws, 0x46000024, + kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "cvt.w.s", "!0s,!1s", 2), + ENCODING_MAP(kMipsFcvtwd, 0x46200024, + kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "cvt.w.d", "!0s,!1S", 2), + ENCODING_MAP(kMipsFmovs, 0x46000006, + kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "mov.s", "!0s,!1s", 2), + ENCODING_MAP(kMipsFmovd, 0x46200006, + kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "mov.d", "!0S,!1S", 2), + ENCODING_MAP(kMipsFlwc1, 0xC4000000, + kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, + "lwc1", "!0s,!1d(!2r)", 2), + ENCODING_MAP(kMipsFldc1, 0xD4000000, + kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD, + "ldc1", "!0S,!1d(!2r)", 2), + ENCODING_MAP(kMipsFswc1, 0xE4000000, + kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, + "swc1", "!0s,!1d(!2r)", 2), + ENCODING_MAP(kMipsFsdc1, 0xF4000000, + kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21, + kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE, + "sdc1", "!0S,!1d(!2r)", 2), + ENCODING_MAP(kMipsMfc1, 0x44000000, + kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1, + "mfc1", "!0r,!1s", 2), + ENCODING_MAP(kMipsMtc1, 0x44800000, + kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | REG_DEF1, + "mtc1", "!0r,!1s", 2), +#endif + ENCODING_MAP(kMipsUndefined, 0x64000000, + kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1, + kFmtUnused, -1, -1, NO_OPERAND, + "undefined", "", 2), +}; + +/* Track the number of times that the code cache is patched */ +#if defined(WITH_JIT_TUNING) +#define UPDATE_CODE_CACHE_PATCHES() (gDvmJit.codeCachePatches++) +#else +#define UPDATE_CODE_CACHE_PATCHES() +#endif + +/* Write the numbers in the constant and class pool to the output stream */ +static void installLiteralPools(CompilationUnit *cUnit) +{ + int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset); + /* Install number of class pointer literals */ + *dataPtr++ = cUnit->numClassPointers; + MipsLIR *dataLIR = (MipsLIR *) cUnit->classPointerList; + while (dataLIR) { + /* + * Install the callsiteinfo pointers into the cells for now. They will + * be converted into real pointers in dvmJitInstallClassObjectPointers. + */ + *dataPtr++ = dataLIR->operands[0]; + dataLIR = NEXT_LIR(dataLIR); + } + dataLIR = (MipsLIR *) cUnit->literalList; + while (dataLIR) { + *dataPtr++ = dataLIR->operands[0]; + dataLIR = NEXT_LIR(dataLIR); + } +} + +/* + * Assemble the LIR into binary instruction format. Note that we may + * discover that pc-relative displacements may not fit the selected + * instruction. In those cases we will try to substitute a new code + * sequence or request that the trace be shortened and retried. + */ +static AssemblerStatus assembleInstructions(CompilationUnit *cUnit, + intptr_t startAddr) +{ + int *bufferAddr = (int *) cUnit->codeBuffer; + MipsLIR *lir; + + for (lir = (MipsLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) { + if (lir->opcode < 0) { + continue; + } + + + if (lir->flags.isNop) { + continue; + } + + if (lir->opcode == kMipsB || lir->opcode == kMipsBal) { + MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; + intptr_t pc = lir->generic.offset + 4; + intptr_t target = targetLIR->generic.offset; + int delta = target - pc; + if (delta & 0x3) { + LOGE("PC-rel distance is not multiple of 4: %d", delta); + dvmAbort(); + } + if (delta > 131068 || delta < -131069) { + LOGE("Unconditional branch distance out of range: %d", delta); + dvmAbort(); + } + lir->operands[0] = delta >> 2; + } else if (lir->opcode >= kMipsBeqz && lir->opcode <= kMipsBnez) { + MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; + intptr_t pc = lir->generic.offset + 4; + intptr_t target = targetLIR->generic.offset; + int delta = target - pc; + if (delta & 0x3) { + LOGE("PC-rel distance is not multiple of 4: %d", delta); + dvmAbort(); + } + if (delta > 131068 || delta < -131069) { + LOGE("Conditional branch distance out of range: %d", delta); + dvmAbort(); + } + lir->operands[1] = delta >> 2; + } else if (lir->opcode == kMipsBeq || lir->opcode == kMipsBne) { + MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; + intptr_t pc = lir->generic.offset + 4; + intptr_t target = targetLIR->generic.offset; + int delta = target - pc; + if (delta & 0x3) { + LOGE("PC-rel distance is not multiple of 4: %d", delta); + dvmAbort(); + } + if (delta > 131068 || delta < -131069) { + LOGE("Conditional branch distance out of range: %d", delta); + dvmAbort(); + } + lir->operands[2] = delta >> 2; + } else if (lir->opcode == kMipsJal) { + intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3; + intptr_t target = lir->operands[0]; + /* ensure PC-region branch can be used */ + assert((curPC & 0xF0000000) == (target & 0xF0000000)); + if (target & 0x3) { + LOGE("Jump target is not multiple of 4: %d", target); + dvmAbort(); + } + lir->operands[0] = target >> 2; + } else if (lir->opcode == kMipsLahi) { /* load address hi (via lui) */ + MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; + intptr_t target = startAddr + targetLIR->generic.offset; + lir->operands[1] = target >> 16; + } else if (lir->opcode == kMipsLalo) { /* load address lo (via ori) */ + MipsLIR *targetLIR = (MipsLIR *) lir->generic.target; + intptr_t target = startAddr + targetLIR->generic.offset; + lir->operands[2] = lir->operands[2] + target; + } + + + MipsEncodingMap *encoder = &EncodingMap[lir->opcode]; + u4 bits = encoder->skeleton; + int i; + for (i = 0; i < 4; i++) { + u4 operand; + u4 value; + operand = lir->operands[i]; + switch(encoder->fieldLoc[i].kind) { + case kFmtUnused: + break; + case kFmtBitBlt: + if (encoder->fieldLoc[i].start == 0 && encoder->fieldLoc[i].end == 31) { + value = operand; + } else { + value = (operand << encoder->fieldLoc[i].start) & + ((1 << (encoder->fieldLoc[i].end + 1)) - 1); + } + bits |= value; + break; + case kFmtDfp: { + assert(DOUBLEREG(operand)); + assert((operand & 0x1) == 0); + value = ((operand & FP_REG_MASK) << encoder->fieldLoc[i].start) & + ((1 << (encoder->fieldLoc[i].end + 1)) - 1); + bits |= value; + break; + } + case kFmtSfp: + assert(SINGLEREG(operand)); + value = ((operand & FP_REG_MASK) << encoder->fieldLoc[i].start) & + ((1 << (encoder->fieldLoc[i].end + 1)) - 1); + bits |= value; + break; + default: + assert(0); + } + } + assert(encoder->size == 2); + *bufferAddr++ = bits; + } + return kSuccess; +} + +static int assignLiteralOffsetCommon(LIR *lir, int offset) +{ + for (;lir != NULL; lir = lir->next) { + lir->offset = offset; + offset += 4; + } + return offset; +} + +/* Determine the offset of each literal field */ +static int assignLiteralOffset(CompilationUnit *cUnit, int offset) +{ + /* Reserved for the size field of class pointer pool */ + offset += 4; + offset = assignLiteralOffsetCommon(cUnit->classPointerList, offset); + offset = assignLiteralOffsetCommon(cUnit->literalList, offset); + return offset; +} + +/* + * Translation layout in the code cache. Note that the codeAddress pointer + * in JitTable will point directly to the code body (field codeAddress). The + * chain cell offset codeAddress - 4, and the address of the trace profile + * counter is at codeAddress - 8. + * + * +----------------------------+ + * | Trace Profile Counter addr | -> 4 bytes (PROF_COUNTER_ADDR_SIZE) + * +----------------------------+ + * +--| Offset to chain cell counts| -> 4 bytes (CHAIN_CELL_OFFSET_SIZE) + * | +----------------------------+ + * | | Trace profile code | <- entry point when profiling + * | . - - - - - - - . + * | | Code body | <- entry point when not profiling + * | . . + * | | | + * | +----------------------------+ + * | | Chaining Cells | -> 16/20 bytes, 4 byte aligned + * | . . + * | . . + * | | | + * | +----------------------------+ + * | | Gap for large switch stmt | -> # cases >= MAX_CHAINED_SWITCH_CASES + * | +----------------------------+ + * +->| Chaining cell counts | -> 8 bytes, chain cell counts by type + * +----------------------------+ + * | Trace description | -> variable sized + * . . + * | | + * +----------------------------+ + * | # Class pointer pool size | -> 4 bytes + * +----------------------------+ + * | Class pointer pool | -> 4-byte aligned, variable size + * . . + * . . + * | | + * +----------------------------+ + * | Literal pool | -> 4-byte aligned, variable size + * . . + * . . + * | | + * +----------------------------+ + * + */ + +#define PROF_COUNTER_ADDR_SIZE 4 +#define CHAIN_CELL_OFFSET_SIZE 4 + +/* + * Utility functions to navigate various parts in a trace. If we change the + * layout/offset in the future, we just modify these functions and we don't need + * to propagate the changes to all the use cases. + */ +static inline char *getTraceBase(const JitEntry *p) +{ + return (char*)p->codeAddress - + (PROF_COUNTER_ADDR_SIZE + CHAIN_CELL_OFFSET_SIZE); +} + +/* Handy function to retrieve the profile count */ +static inline JitTraceCounter_t getProfileCount(const JitEntry *entry) +{ + if (entry->dPC == 0 || entry->codeAddress == 0 || + entry->codeAddress == dvmCompilerGetInterpretTemplate()) + return 0; + + JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry); + + return **p; +} + +/* Handy function to reset the profile count */ +static inline void resetProfileCount(const JitEntry *entry) +{ + if (entry->dPC == 0 || entry->codeAddress == 0 || + entry->codeAddress == dvmCompilerGetInterpretTemplate()) + return; + + JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry); + + **p = 0; +} + +/* Get the pointer of the chain cell count */ +static inline ChainCellCounts* getChainCellCountsPointer(const char *base) +{ + /* 4 is the size of the profile count */ + u4 *chainCellOffsetP = (u4 *) (base + PROF_COUNTER_ADDR_SIZE); + u4 chainCellOffset = *chainCellOffsetP; + return (ChainCellCounts *) ((char *) chainCellOffsetP + chainCellOffset); +} + +/* Get the size of all chaining cells */ +static inline u4 getChainCellSize(const ChainCellCounts* pChainCellCounts) +{ + int cellSize = 0; + int i; + + /* Get total count of chain cells */ + for (i = 0; i < kChainingCellGap; i++) { + if (i != kChainingCellInvokePredicted) { + cellSize += pChainCellCounts->u.count[i] * + (CHAIN_CELL_NORMAL_SIZE >> 2); + } else { + cellSize += pChainCellCounts->u.count[i] * + (CHAIN_CELL_PREDICTED_SIZE >> 2); + } + } + return cellSize; +} + +/* Get the starting pointer of the trace description section */ +static JitTraceDescription* getTraceDescriptionPointer(const char *base) +{ + ChainCellCounts* pCellCounts = getChainCellCountsPointer(base); + return (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts)); +} + +/* Get the size of a trace description */ +static int getTraceDescriptionSize(const JitTraceDescription *desc) +{ + int runCount; + /* Trace end is always of non-meta type (ie isCode == true) */ + for (runCount = 0; ; runCount++) { + if (desc->trace[runCount].isCode && + desc->trace[runCount].info.frag.runEnd) + break; + } + return sizeof(JitTraceDescription) + ((runCount+1) * sizeof(JitTraceRun)); +} + +#if defined(SIGNATURE_BREAKPOINT) +/* Inspect the assembled instruction stream to find potential matches */ +static void matchSignatureBreakpoint(const CompilationUnit *cUnit, + unsigned int size) +{ + unsigned int i, j; + u4 *ptr = (u4 *) cUnit->codeBuffer; + + for (i = 0; i < size - gDvmJit.signatureBreakpointSize + 1; i++) { + if (ptr[i] == gDvmJit.signatureBreakpoint[0]) { + for (j = 1; j < gDvmJit.signatureBreakpointSize; j++) { + if (ptr[i+j] != gDvmJit.signatureBreakpoint[j]) { + break; + } + } + if (j == gDvmJit.signatureBreakpointSize) { + LOGD("Signature match starting from offset %#x (%d words)", + i*4, gDvmJit.signatureBreakpointSize); + int descSize = getTraceDescriptionSize(cUnit->traceDesc); + JitTraceDescription *newCopy = + (JitTraceDescription *) malloc(descSize); + memcpy(newCopy, cUnit->traceDesc, descSize); + dvmCompilerWorkEnqueue(NULL, kWorkOrderTraceDebug, newCopy); + break; + } + } + } +} +#endif + +/* + * Go over each instruction in the list and calculate the offset from the top + * before sending them off to the assembler. If out-of-range branch distance is + * seen rearrange the instructions a bit to correct it. + */ +void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info) +{ + MipsLIR *mipsLIR; + int offset = 0; + int i; + ChainCellCounts chainCellCounts; + int descSize = (cUnit->jitMode == kJitMethod) ? + 0 : getTraceDescriptionSize(cUnit->traceDesc); + int chainingCellGap = 0; + + info->instructionSet = cUnit->instructionSet; + + /* Beginning offset needs to allow space for chain cell offset */ + for (mipsLIR = (MipsLIR *) cUnit->firstLIRInsn; + mipsLIR; + mipsLIR = NEXT_LIR(mipsLIR)) { + mipsLIR->generic.offset = offset; + if (mipsLIR->opcode >= 0 && !mipsLIR->flags.isNop) { + mipsLIR->flags.size = EncodingMap[mipsLIR->opcode].size * 2; + offset += mipsLIR->flags.size; + } + /* Pseudo opcodes don't consume space */ + } + + /* Const values have to be word aligned */ + offset = (offset + 3) & ~3; + + u4 chainCellOffset = offset; + MipsLIR *chainCellOffsetLIR = NULL; + + if (cUnit->jitMode != kJitMethod) { + /* + * Get the gap (# of u4) between the offset of chaining cell count and + * the bottom of real chaining cells. If the translation has chaining + * cells, the gap is guaranteed to be multiples of 4. + */ + chainingCellGap = (offset - cUnit->chainingCellBottom->offset) >> 2; + + /* Add space for chain cell counts & trace description */ + chainCellOffsetLIR = (MipsLIR *) cUnit->chainCellOffsetLIR; + assert(chainCellOffsetLIR); + assert(chainCellOffset < 0x10000); + assert(chainCellOffsetLIR->opcode == kMips32BitData && + chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG); + + /* + * Adjust the CHAIN_CELL_OFFSET_TAG LIR's offset to remove the + * space occupied by the pointer to the trace profiling counter. + */ + chainCellOffsetLIR->operands[0] = chainCellOffset - 4; + + offset += sizeof(chainCellCounts) + descSize; + + assert((offset & 0x3) == 0); /* Should still be word aligned */ + } + + /* Set up offsets for literals */ + cUnit->dataOffset = offset; + + /* + * Assign each class pointer/constant an offset from the beginning of the + * compilation unit. + */ + offset = assignLiteralOffset(cUnit, offset); + + cUnit->totalSize = offset; + + if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > gDvmJit.codeCacheSize) { + gDvmJit.codeCacheFull = true; + info->discardResult = true; + return; + } + + /* Allocate enough space for the code block */ + cUnit->codeBuffer = (unsigned char *)dvmCompilerNew(chainCellOffset, true); + if (cUnit->codeBuffer == NULL) { + LOGE("Code buffer allocation failure"); + info->discardResult = true; + return; + } + + /* + * Attempt to assemble the trace. Note that assembleInstructions + * may rewrite the code sequence and request a retry. + */ + cUnit->assemblerStatus = assembleInstructions(cUnit, + (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed); + + switch(cUnit->assemblerStatus) { + case kSuccess: + break; + case kRetryAll: + if (cUnit->assemblerRetries < MAX_ASSEMBLER_RETRIES) { + if (cUnit->jitMode != kJitMethod) { + /* Restore pristine chain cell marker on retry */ + chainCellOffsetLIR->operands[0] = CHAIN_CELL_OFFSET_TAG; + } + return; + } + /* Too many retries - reset and try cutting the trace in half */ + cUnit->assemblerRetries = 0; + cUnit->assemblerStatus = kRetryHalve; + return; + case kRetryHalve: + return; + default: + LOGE("Unexpected assembler status: %d", cUnit->assemblerStatus); + dvmAbort(); + } + +#if defined(SIGNATURE_BREAKPOINT) + if (info->discardResult == false && gDvmJit.signatureBreakpoint != NULL && + chainCellOffset/4 >= gDvmJit.signatureBreakpointSize) { + matchSignatureBreakpoint(cUnit, chainCellOffset/4); + } +#endif + + /* Don't go all the way if the goal is just to get the verbose output */ + if (info->discardResult) return; + + /* + * The cache might disappear - acquire lock and check version + * Continue holding lock until translation cache update is complete. + * These actions are required here in the compiler thread because + * it is unaffected by suspend requests and doesn't know if a + * translation cache flush is in progress. + */ + dvmLockMutex(&gDvmJit.compilerLock); + if (info->cacheVersion != gDvmJit.cacheVersion) { + /* Cache changed - discard current translation */ + info->discardResult = true; + info->codeAddress = NULL; + dvmUnlockMutex(&gDvmJit.compilerLock); + return; + } + + cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed; + gDvmJit.codeCacheByteUsed += offset; + + UNPROTECT_CODE_CACHE(cUnit->baseAddr, offset); + + /* Install the code block */ + memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset); + gDvmJit.numCompilations++; + + if (cUnit->jitMode != kJitMethod) { + /* Install the chaining cell counts */ + for (i=0; i< kChainingCellGap; i++) { + chainCellCounts.u.count[i] = cUnit->numChainingCells[i]; + } + + /* Set the gap number in the chaining cell count structure */ + chainCellCounts.u.count[kChainingCellGap] = chainingCellGap; + + memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts, + sizeof(chainCellCounts)); + + /* Install the trace description */ + memcpy((char*) cUnit->baseAddr + chainCellOffset + + sizeof(chainCellCounts), + cUnit->traceDesc, descSize); + } + + /* Write the literals directly into the code cache */ + installLiteralPools(cUnit); + + /* Flush dcache and invalidate the icache to maintain coherence */ + dvmCompilerCacheFlush((long)cUnit->baseAddr, + (long)((char *) cUnit->baseAddr + offset), 0); + + UPDATE_CODE_CACHE_PATCHES(); + + PROTECT_CODE_CACHE(cUnit->baseAddr, offset); + + /* Translation cache update complete - release lock */ + dvmUnlockMutex(&gDvmJit.compilerLock); + + /* Record code entry point and instruction set */ + info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize; + /* transfer the size of the profiling code */ + info->profileCodeSize = cUnit->profileCodeSize; +} + +/* + * Returns the skeleton bit pattern associated with an opcode. All + * variable fields are zeroed. + */ +static u4 getSkeleton(MipsOpCode op) +{ + return EncodingMap[op].skeleton; +} + +static u4 assembleChainingBranch(int branchOffset, bool thumbTarget) +{ + return getSkeleton(kMipsJal) | ((branchOffset & 0x0FFFFFFF) >> 2); +} + +/* + * Perform translation chain operation. + * For MIPS, we'll use a JAL instruction to generate an + * unconditional chaining branch of up to 256M. The JAL + * instruction also has a restriction that the jump target + * must be in the same 256M page as the JAL instruction's + * delay slot address. + * If the target is out of JAL's range, don't chain. + * If one or more threads is suspended, don't chain. + */ +void* dvmJitChain(void* tgtAddr, u4* branchAddr) +{ + u4 newInst; + + /* + * Only chain translations when there is no urge to ask all threads to + * suspend themselves via the interpreter. + */ + if ((gDvmJit.pProfTable != NULL) && (gDvm.sumThreadSuspendCount == 0) && + (gDvmJit.codeCacheFull == false) && + ((((int) tgtAddr) & 0xF0000000) == (((int) branchAddr+4) & 0xF0000000))) { + gDvmJit.translationChains++; + + COMPILER_TRACE_CHAINING( + LOGD("Jit Runtime: chaining 0x%x to 0x%x", + (int) branchAddr, (int) tgtAddr & -2)); + + newInst = assembleChainingBranch((int) tgtAddr & -2, 0); + + UNPROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr)); + + *branchAddr = newInst; + dvmCompilerCacheFlush((long)branchAddr, (long)branchAddr + 4, 0); + UPDATE_CODE_CACHE_PATCHES(); + + PROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr)); + + gDvmJit.hasNewChain = true; + } + + return tgtAddr; +} + +#if !defined(WITH_SELF_VERIFICATION) +/* + * Attempt to enqueue a work order to patch an inline cache for a predicted + * chaining cell for virtual/interface calls. + */ +static void inlineCachePatchEnqueue(PredictedChainingCell *cellAddr, + PredictedChainingCell *newContent) +{ + /* + * Make sure only one thread gets here since updating the cell (ie fast + * path and queueing the request (ie the queued path) have to be done + * in an atomic fashion. + */ + dvmLockMutex(&gDvmJit.compilerICPatchLock); + + /* Fast path for uninitialized chaining cell */ + if (cellAddr->clazz == NULL && + cellAddr->branch == PREDICTED_CHAIN_BX_PAIR_INIT) { + + UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); + + cellAddr->method = newContent->method; + cellAddr->branch = newContent->branch; + + /* + * The update order matters - make sure clazz is updated last since it + * will bring the uninitialized chaining cell to life. + */ + android_atomic_release_store((int32_t)newContent->clazz, + (volatile int32_t *)(void*) &cellAddr->clazz); + dvmCompilerCacheFlush((long) cellAddr, (long) (cellAddr+1), 0); + UPDATE_CODE_CACHE_PATCHES(); + + PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); + +#if defined(WITH_JIT_TUNING) + gDvmJit.icPatchInit++; +#endif + /* Check if this is a frequently missed clazz */ + } else if (cellAddr->stagedClazz != newContent->clazz) { + /* Not proven to be frequent yet - build up the filter cache */ + UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); + + cellAddr->stagedClazz = newContent->clazz; + + UPDATE_CODE_CACHE_PATCHES(); + PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); + +#if defined(WITH_JIT_TUNING) + gDvmJit.icPatchRejected++; +#endif + /* + * Different classes but same method implementation - it is safe to just + * patch the class value without the need to stop the world. + */ + } else if (cellAddr->method == newContent->method) { + UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); + + cellAddr->clazz = newContent->clazz; + /* No need to flush the cache here since the branch is not patched */ + UPDATE_CODE_CACHE_PATCHES(); + + PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr)); + +#if defined(WITH_JIT_TUNING) + gDvmJit.icPatchLockFree++; +#endif + /* + * Cannot patch the chaining cell inline - queue it until the next safe + * point. + */ + } else if (gDvmJit.compilerICPatchIndex < COMPILER_IC_PATCH_QUEUE_SIZE) { + int index = gDvmJit.compilerICPatchIndex++; + const ClassObject *clazz = newContent->clazz; + + gDvmJit.compilerICPatchQueue[index].cellAddr = cellAddr; + gDvmJit.compilerICPatchQueue[index].cellContent = *newContent; + gDvmJit.compilerICPatchQueue[index].classDescriptor = clazz->descriptor; + gDvmJit.compilerICPatchQueue[index].classLoader = clazz->classLoader; + /* For verification purpose only */ + gDvmJit.compilerICPatchQueue[index].serialNumber = clazz->serialNumber; +#if defined(WITH_JIT_TUNING) + gDvmJit.icPatchQueued++; +#endif + } else { + /* Queue is full - just drop this patch request */ +#if defined(WITH_JIT_TUNING) + gDvmJit.icPatchDropped++; +#endif + } + + dvmUnlockMutex(&gDvmJit.compilerICPatchLock); +} +#endif + +/* + * This method is called from the invoke templates for virtual and interface + * methods to speculatively setup a chain to the callee. The templates are + * written in assembly and have setup method, cell, and clazz at r0, r2, and + * r3 respectively, so there is a unused argument in the list. Upon return one + * of the following three results may happen: + * 1) Chain is not setup because the callee is native. Reset the rechain + * count to a big number so that it will take a long time before the next + * rechain attempt to happen. + * 2) Chain is not setup because the callee has not been created yet. Reset + * the rechain count to a small number and retry in the near future. + * 3) Ask all other threads to stop before patching this chaining cell. + * This is required because another thread may have passed the class check + * but hasn't reached the chaining cell yet to follow the chain. If we + * patch the content before halting the other thread, there could be a + * small window for race conditions to happen that it may follow the new + * but wrong chain to invoke a different method. + */ +const Method *dvmJitToPatchPredictedChain(const Method *method, + Thread *self, + PredictedChainingCell *cell, + const ClassObject *clazz) +{ + int newRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN; +#if defined(WITH_SELF_VERIFICATION) + newRechainCount = PREDICTED_CHAIN_COUNTER_AVOID; + goto done; +#else + PredictedChainingCell newCell; + int baseAddr, tgtAddr; + if (dvmIsNativeMethod(method)) { + UNPROTECT_CODE_CACHE(cell, sizeof(*cell)); + + /* + * Put a non-zero/bogus value in the clazz field so that it won't + * trigger immediate patching and will continue to fail to match with + * a real clazz pointer. + */ + cell->clazz = (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ; + + UPDATE_CODE_CACHE_PATCHES(); + PROTECT_CODE_CACHE(cell, sizeof(*cell)); + goto done; + } + + tgtAddr = (int) dvmJitGetTraceAddr(method->insns); + baseAddr = (int) cell + 4; // PC is cur_addr + 4 + + if ((baseAddr & 0xF0000000) != (tgtAddr & 0xF0000000)) { + COMPILER_TRACE_CHAINING( + LOGD("Jit Runtime: predicted chain %p to distant target %s ignored", + cell, method->name)); + goto done; + } + + /* + * Compilation not made yet for the callee. Reset the counter to a small + * value and come back to check soon. + */ + if ((tgtAddr == 0) || + ((void*)tgtAddr == dvmCompilerGetInterpretTemplate())) { + COMPILER_TRACE_CHAINING( + LOGD("Jit Runtime: predicted chain %p to method %s%s delayed", + cell, method->clazz->descriptor, method->name)); + goto done; + } + + if (cell->clazz == NULL) { + newRechainCount = self->icRechainCount; + } + + newCell.branch = assembleChainingBranch(tgtAddr, true); + newCell.delay_slot = getSkeleton(kMipsNop); + newCell.clazz = clazz; + newCell.method = method; + newCell.stagedClazz = NULL; + + /* + * Enter the work order to the queue and the chaining cell will be patched + * the next time a safe point is entered. + * + * If the enqueuing fails reset the rechain count to a normal value so that + * it won't get indefinitely delayed. + */ + inlineCachePatchEnqueue(cell, &newCell); +#endif +done: + self->icRechainCount = newRechainCount; + return method; +} + +/* + * Patch the inline cache content based on the content passed from the work + * order. + */ +void dvmCompilerPatchInlineCache(void) +{ + int i; + PredictedChainingCell *minAddr, *maxAddr; + + /* Nothing to be done */ + if (gDvmJit.compilerICPatchIndex == 0) return; + + /* + * Since all threads are already stopped we don't really need to acquire + * the lock. But race condition can be easily introduced in the future w/o + * paying attention so we still acquire the lock here. + */ + dvmLockMutex(&gDvmJit.compilerICPatchLock); + + UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); + + //LOGD("Number of IC patch work orders: %d", gDvmJit.compilerICPatchIndex); + + /* Initialize the min/max address range */ + minAddr = (PredictedChainingCell *) + ((char *) gDvmJit.codeCache + gDvmJit.codeCacheSize); + maxAddr = (PredictedChainingCell *) gDvmJit.codeCache; + + for (i = 0; i < gDvmJit.compilerICPatchIndex; i++) { + ICPatchWorkOrder *workOrder = &gDvmJit.compilerICPatchQueue[i]; + PredictedChainingCell *cellAddr = workOrder->cellAddr; + PredictedChainingCell *cellContent = &workOrder->cellContent; + ClassObject *clazz = dvmFindClassNoInit(workOrder->classDescriptor, + workOrder->classLoader); + + assert(clazz->serialNumber == workOrder->serialNumber); + + /* Use the newly resolved clazz pointer */ + cellContent->clazz = clazz; + + COMPILER_TRACE_CHAINING( + LOGD("Jit Runtime: predicted chain %p from %s to %s (%s) " + "patched", + cellAddr, + cellAddr->clazz->descriptor, + cellContent->clazz->descriptor, + cellContent->method->name)); + + /* Patch the chaining cell */ + *cellAddr = *cellContent; + minAddr = (cellAddr < minAddr) ? cellAddr : minAddr; + maxAddr = (cellAddr > maxAddr) ? cellAddr : maxAddr; + } + + /* Then synchronize the I/D cache */ + dvmCompilerCacheFlush((long) minAddr, (long) (maxAddr+1), 0); + UPDATE_CODE_CACHE_PATCHES(); + + PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); + + gDvmJit.compilerICPatchIndex = 0; + dvmUnlockMutex(&gDvmJit.compilerICPatchLock); +} + +/* + * Unchain a trace given the starting address of the translation + * in the code cache. Refer to the diagram in dvmCompilerAssembleLIR. + * Returns the address following the last cell unchained. Note that + * the incoming codeAddr is a thumb code address, and therefore has + * the low bit set. + */ +static u4* unchainSingle(JitEntry *trace) +{ + const char *base = getTraceBase(trace); + ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base); + int cellSize = getChainCellSize(pChainCellCounts); + u4* pChainCells; + int i,j; + PredictedChainingCell *predChainCell; + + if (cellSize == 0) + return (u4 *) pChainCellCounts; + + /* Locate the beginning of the chain cell region */ + pChainCells = ((u4 *) pChainCellCounts) - cellSize - + pChainCellCounts->u.count[kChainingCellGap]; + + /* The cells are sorted in order - walk through them and reset */ + for (i = 0; i < kChainingCellGap; i++) { + int elemSize = CHAIN_CELL_NORMAL_SIZE >> 2; /* In 32-bit words */ + if (i == kChainingCellInvokePredicted) { + elemSize = CHAIN_CELL_PREDICTED_SIZE >> 2; + } + + for (j = 0; j < pChainCellCounts->u.count[i]; j++) { + int targetOffset; + switch(i) { + case kChainingCellNormal: + targetOffset = offsetof(Thread, + jitToInterpEntries.dvmJitToInterpNormal); + break; + case kChainingCellHot: + case kChainingCellInvokeSingleton: + targetOffset = offsetof(Thread, + jitToInterpEntries.dvmJitToInterpTraceSelect); + break; + case kChainingCellInvokePredicted: + targetOffset = 0; + predChainCell = (PredictedChainingCell *) pChainCells; + /* + * There could be a race on another mutator thread to use + * this particular predicted cell and the check has passed + * the clazz comparison. So we cannot safely wipe the + * method and branch but it is safe to clear the clazz, + * which serves as the key. + */ + predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT; + break; +#if defined(WITH_SELF_VERIFICATION) + case kChainingCellBackwardBranch: + targetOffset = offsetof(Thread, + jitToInterpEntries.dvmJitToInterpBackwardBranch); + break; +#else + case kChainingCellBackwardBranch: + targetOffset = offsetof(Thread, + jitToInterpEntries.dvmJitToInterpNormal); + break; +#endif + default: + targetOffset = 0; // make gcc happy + LOGE("Unexpected chaining type: %d", i); + dvmAbort(); // dvmAbort OK here - can't safely recover + } + COMPILER_TRACE_CHAINING( + LOGD("Jit Runtime: unchaining %#x", (int)pChainCells)); + /* + * Code sequence for a chaining cell is: + * lw a0, offset(rSELF) + * jalr ra, a0 + */ + if (i != kChainingCellInvokePredicted) { + *pChainCells = getSkeleton(kMipsLw) | (r_A0 << 16) | + targetOffset | (rSELF << 21); + *(pChainCells+1) = getSkeleton(kMipsJalr) | (r_RA << 11) | + (r_A0 << 21); + } + pChainCells += elemSize; /* Advance by a fixed number of words */ + } + } + return pChainCells; +} + +/* Unchain all translation in the cache. */ +void dvmJitUnchainAll() +{ + u4* lowAddress = NULL; + u4* highAddress = NULL; + unsigned int i; + if (gDvmJit.pJitEntryTable != NULL) { + COMPILER_TRACE_CHAINING(LOGD("Jit Runtime: unchaining all")); + dvmLockMutex(&gDvmJit.tableLock); + + UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); + + for (i = 0; i < gDvmJit.jitTableSize; i++) { + if (gDvmJit.pJitEntryTable[i].dPC && + !gDvmJit.pJitEntryTable[i].u.info.isMethodEntry && + gDvmJit.pJitEntryTable[i].codeAddress && + (gDvmJit.pJitEntryTable[i].codeAddress != + dvmCompilerGetInterpretTemplate())) { + u4* lastAddress; + lastAddress = unchainSingle(&gDvmJit.pJitEntryTable[i]); + if (lowAddress == NULL || + (u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress) + lowAddress = (u4*)gDvmJit.pJitEntryTable[i].codeAddress; + if (lastAddress > highAddress) + highAddress = lastAddress; + } + } + + if (lowAddress && highAddress) + dvmCompilerCacheFlush((long)lowAddress, (long)highAddress, 0); + + UPDATE_CODE_CACHE_PATCHES(); + + PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); + + dvmUnlockMutex(&gDvmJit.tableLock); + gDvmJit.translationChains = 0; + } + gDvmJit.hasNewChain = false; +} + +typedef struct jitProfileAddrToLine { + u4 lineNum; + u4 bytecodeOffset; +} jitProfileAddrToLine; + + +/* Callback function to track the bytecode offset/line number relationiship */ +static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum) +{ + jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt; + + /* Best match so far for this offset */ + if (addrToLine->bytecodeOffset >= bytecodeOffset) { + addrToLine->lineNum = lineNum; + } + return 0; +} + +/* Dumps profile info for a single trace */ +static int dumpTraceProfile(JitEntry *p, bool silent, bool reset, + unsigned long sum) +{ + int idx; + + if (p->codeAddress == NULL) { + if (!silent) + LOGD("TRACEPROFILE NULL"); + return 0; + } + if (p->codeAddress == dvmCompilerGetInterpretTemplate()) { + if (!silent) + LOGD("TRACEPROFILE INTERPRET_ONLY"); + return 0; + } + + JitTraceCounter_t count = getProfileCount(p); + if (reset) { + resetProfileCount(p); + } + if (silent) { + return count; + } + JitTraceDescription *desc = getTraceDescriptionPointer(getTraceBase(p)); + const Method *method = desc->method; + char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype); + jitProfileAddrToLine addrToLine = {0, desc->trace[0].info.frag.startOffset}; + + /* + * We may end up decoding the debug information for the same method + * multiple times, but the tradeoff is we don't need to allocate extra + * space to store the addr/line mapping. Since this is a debugging feature + * and done infrequently so the slower but simpler mechanism should work + * just fine. + */ + dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile, + dvmGetMethodCode(method), + method->clazz->descriptor, + method->prototype.protoIdx, + method->accessFlags, + addrToLineCb, NULL, &addrToLine); + + LOGD("TRACEPROFILE 0x%08x % 10d %5.2f%% [%#x(+%d), %d] %s%s;%s", + (int) getTraceBase(p), + count, + ((float ) count) / sum * 100.0, + desc->trace[0].info.frag.startOffset, + desc->trace[0].info.frag.numInsts, + addrToLine.lineNum, + method->clazz->descriptor, method->name, methodDesc); + free(methodDesc); + + /* Find the last fragment (ie runEnd is set) */ + for (idx = 0; + desc->trace[idx].isCode && !desc->trace[idx].info.frag.runEnd; + idx++) { + } + + /* + * runEnd must comes with a JitCodeDesc frag. If isCode is false it must + * be a meta info field (only used by callsite info for now). + */ + if (!desc->trace[idx].isCode) { + const Method *method = (const Method *) + desc->trace[idx+JIT_TRACE_CUR_METHOD-1].info.meta; + char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype); + /* Print the callee info in the trace */ + LOGD(" -> %s%s;%s", method->clazz->descriptor, method->name, + methodDesc); + } + + return count; +} + +/* Create a copy of the trace descriptor of an existing compilation */ +JitTraceDescription *dvmCopyTraceDescriptor(const u2 *pc, + const JitEntry *knownEntry) +{ + const JitEntry *jitEntry = knownEntry ? knownEntry + : dvmJitFindEntry(pc, false); + if ((jitEntry == NULL) || (jitEntry->codeAddress == 0)) + return NULL; + + JitTraceDescription *desc = + getTraceDescriptionPointer(getTraceBase(jitEntry)); + + /* Now make a copy and return */ + int descSize = getTraceDescriptionSize(desc); + JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize); + memcpy(newCopy, desc, descSize); + return newCopy; +} + +/* qsort callback function */ +static int sortTraceProfileCount(const void *entry1, const void *entry2) +{ + const JitEntry *jitEntry1 = (const JitEntry *)entry1; + const JitEntry *jitEntry2 = (const JitEntry *)entry2; + + JitTraceCounter_t count1 = getProfileCount(jitEntry1); + JitTraceCounter_t count2 = getProfileCount(jitEntry2); + return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1); +} + +/* Sort the trace profile counts and dump them */ +void dvmCompilerSortAndPrintTraceProfiles() +{ + JitEntry *sortedEntries; + int numTraces = 0; + unsigned long sum = 0; + unsigned int i; + + /* Make sure that the table is not changing */ + dvmLockMutex(&gDvmJit.tableLock); + + /* Sort the entries by descending order */ + sortedEntries = (JitEntry *)malloc(sizeof(JitEntry) * gDvmJit.jitTableSize); + if (sortedEntries == NULL) + goto done; + memcpy(sortedEntries, gDvmJit.pJitEntryTable, + sizeof(JitEntry) * gDvmJit.jitTableSize); + qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry), + sortTraceProfileCount); + + /* Analyze the sorted entries */ + for (i=0; i < gDvmJit.jitTableSize; i++) { + if (sortedEntries[i].dPC != 0) { + sum += dumpTraceProfile(&sortedEntries[i], + true /* silent */, + false /* reset */, + 0); + numTraces++; + } + } + if (numTraces == 0) + numTraces = 1; + if (sum == 0) { + sum = 1; + } + + LOGD("JIT: Average execution count -> %d",(int)(sum / numTraces)); + + /* Dump the sorted entries. The count of each trace will be reset to 0. */ + for (i=0; i < gDvmJit.jitTableSize; i++) { + if (sortedEntries[i].dPC != 0) { + dumpTraceProfile(&sortedEntries[i], + false /* silent */, + true /* reset */, + sum); + } + } + + for (i=0; i < gDvmJit.jitTableSize && i < 10; i++) { + /* Stip interpreter stubs */ + if (sortedEntries[i].codeAddress == dvmCompilerGetInterpretTemplate()) { + continue; + } + JitTraceDescription* desc = + dvmCopyTraceDescriptor(NULL, &sortedEntries[i]); + if (desc) { + dvmCompilerWorkEnqueue(sortedEntries[i].dPC, + kWorkOrderTraceDebug, desc); + } + } + + free(sortedEntries); +done: + dvmUnlockMutex(&gDvmJit.tableLock); + return; +} + +static void findClassPointersSingleTrace(char *base, void (*callback)(void *)) +{ + unsigned int chainTypeIdx, chainIdx; + ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base); + int cellSize = getChainCellSize(pChainCellCounts); + /* Scan the chaining cells */ + if (cellSize) { + /* Locate the beginning of the chain cell region */ + u4 *pChainCells = ((u4 *) pChainCellCounts) - cellSize - + pChainCellCounts->u.count[kChainingCellGap]; + /* The cells are sorted in order - walk through them */ + for (chainTypeIdx = 0; chainTypeIdx < kChainingCellGap; + chainTypeIdx++) { + if (chainTypeIdx != kChainingCellInvokePredicted) { + /* In 32-bit words */ + pChainCells += (CHAIN_CELL_NORMAL_SIZE >> 2) * + pChainCellCounts->u.count[chainTypeIdx]; + continue; + } + for (chainIdx = 0; + chainIdx < pChainCellCounts->u.count[chainTypeIdx]; + chainIdx++) { + PredictedChainingCell *cell = + (PredictedChainingCell *) pChainCells; + /* + * Report the cell if it contains a sane class + * pointer. + */ + if (cell->clazz != NULL && + cell->clazz != + (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ) { + callback(&cell->clazz); + } + pChainCells += CHAIN_CELL_PREDICTED_SIZE >> 2; + } + } + } + + /* Scan the class pointer pool */ + JitTraceDescription *desc = getTraceDescriptionPointer(base); + int descSize = getTraceDescriptionSize(desc); + int *classPointerP = (int *) ((char *) desc + descSize); + int numClassPointers = *classPointerP++; + for (; numClassPointers; numClassPointers--, classPointerP++) { + callback(classPointerP); + } +} + +/* + * Scan class pointers in each translation and pass its address to the callback + * function. Currently such a pointers can be found in the pointer pool and the + * clazz field in the predicted chaining cells. + */ +void dvmJitScanAllClassPointers(void (*callback)(void *)) +{ + UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); + + /* Handle the inflight compilation first */ + if (gDvmJit.inflightBaseAddr) + findClassPointersSingleTrace((char *) gDvmJit.inflightBaseAddr, + callback); + + if (gDvmJit.pJitEntryTable != NULL) { + unsigned int traceIdx; + dvmLockMutex(&gDvmJit.tableLock); + for (traceIdx = 0; traceIdx < gDvmJit.jitTableSize; traceIdx++) { + const JitEntry *entry = &gDvmJit.pJitEntryTable[traceIdx]; + if (entry->dPC && + !entry->u.info.isMethodEntry && + entry->codeAddress && + (entry->codeAddress != dvmCompilerGetInterpretTemplate())) { + char *base = getTraceBase(entry); + findClassPointersSingleTrace(base, callback); + } + } + dvmUnlockMutex(&gDvmJit.tableLock); + } + UPDATE_CODE_CACHE_PATCHES(); + + PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed); +} + +/* + * Provide the final touch on the class object pointer pool to install the + * actual pointers. The thread has to be in the running state. + */ +void dvmJitInstallClassObjectPointers(CompilationUnit *cUnit, char *codeAddress) +{ + char *base = codeAddress - cUnit->headerSize; + + /* Scan the class pointer pool */ + JitTraceDescription *desc = getTraceDescriptionPointer(base); + int descSize = getTraceDescriptionSize(desc); + intptr_t *classPointerP = (int *) ((char *) desc + descSize); + int numClassPointers = *(int *)classPointerP++; + intptr_t *startClassPointerP = classPointerP; + + /* + * Change the thread state to VM_RUNNING so that GC won't be happening + * when the assembler looks up the class pointers. May suspend the current + * thread if there is a pending request before the state is actually + * changed to RUNNING. + */ + dvmChangeStatus(gDvmJit.compilerThread, THREAD_RUNNING); + + /* + * Unprotecting the code cache will need to acquire the code cache + * protection lock first. Doing so after the state change may increase the + * time spent in the RUNNING state (which may delay the next GC request + * should there be contention on codeCacheProtectionLock). In practice + * this is probably not going to happen often since a GC is just served. + * More importantly, acquiring the lock before the state change will + * cause deadlock (b/4192964). + */ + UNPROTECT_CODE_CACHE(startClassPointerP, + numClassPointers * sizeof(intptr_t)); +#if defined(WITH_JIT_TUNING) + u8 startTime = dvmGetRelativeTimeUsec(); +#endif + for (;numClassPointers; numClassPointers--) { + CallsiteInfo *callsiteInfo = (CallsiteInfo *) *classPointerP; + ClassObject *clazz = dvmFindClassNoInit( + callsiteInfo->classDescriptor, callsiteInfo->classLoader); + assert(!strcmp(clazz->descriptor, callsiteInfo->classDescriptor)); + *classPointerP++ = (intptr_t) clazz; + } + + /* + * Register the base address so that if GC kicks in after the thread state + * has been changed to VMWAIT and before the compiled code is registered + * in the JIT table, its content can be patched if class objects are + * moved. + */ + gDvmJit.inflightBaseAddr = base; + +#if defined(WITH_JIT_TUNING) + u8 blockTime = dvmGetRelativeTimeUsec() - startTime; + gDvmJit.compilerThreadBlockGCTime += blockTime; + if (blockTime > gDvmJit.maxCompilerThreadBlockGCTime) + gDvmJit.maxCompilerThreadBlockGCTime = blockTime; + gDvmJit.numCompilerThreadBlockGC++; +#endif + UPDATE_CODE_CACHE_PATCHES(); + + PROTECT_CODE_CACHE(startClassPointerP, numClassPointers * sizeof(intptr_t)); + + /* Change the thread state back to VMWAIT */ + dvmChangeStatus(gDvmJit.compilerThread, THREAD_VMWAIT); +} + +#if defined(WITH_SELF_VERIFICATION) +/* + * The following are used to keep compiled loads and stores from modifying + * memory during self verification mode. + * + * Stores do not modify memory. Instead, the address and value pair are stored + * into heapSpace. Addresses within heapSpace are unique. For accesses smaller + * than a word, the word containing the address is loaded first before being + * updated. + * + * Loads check heapSpace first and return data from there if an entry exists. + * Otherwise, data is loaded from memory as usual. + */ + +/* Used to specify sizes of memory operations */ +enum { + kSVByte, + kSVSignedByte, + kSVHalfword, + kSVSignedHalfword, + kSVWord, + kSVDoubleword, + kSVVariable, +}; + +/* Load the value of a decoded register from the stack */ +static int selfVerificationMemRegLoad(int* sp, int reg) +{ +assert(0); /* MIPSTODO retarg func */ + return *(sp + reg); +} + +/* Load the value of a decoded doubleword register from the stack */ +static s8 selfVerificationMemRegLoadDouble(int* sp, int reg) +{ +assert(0); /* MIPSTODO retarg func */ + return *((s8*)(sp + reg)); +} + +/* Store the value of a decoded register out to the stack */ +static void selfVerificationMemRegStore(int* sp, int data, int reg) +{ +assert(0); /* MIPSTODO retarg func */ + *(sp + reg) = data; +} + +/* Store the value of a decoded doubleword register out to the stack */ +static void selfVerificationMemRegStoreDouble(int* sp, s8 data, int reg) +{ +assert(0); /* MIPSTODO retarg func */ + *((s8*)(sp + reg)) = data; +} + +/* + * Load the specified size of data from the specified address, checking + * heapSpace first if Self Verification mode wrote to it previously, and + * falling back to actual memory otherwise. + */ +static int selfVerificationLoad(int addr, int size) +{ +assert(0); /* MIPSTODO retarg func */ + Thread *self = dvmThreadSelf(); + ShadowSpace *shadowSpace = self->shadowSpace; + ShadowHeap *heapSpacePtr; + + int data; + int maskedAddr = addr & 0xFFFFFFFC; + int alignment = addr & 0x3; + + for (heapSpacePtr = shadowSpace->heapSpace; + heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { + if (heapSpacePtr->addr == maskedAddr) { + addr = ((unsigned int) &(heapSpacePtr->data)) | alignment; + break; + } + } + + switch (size) { + case kSVByte: + data = *((u1*) addr); + break; + case kSVSignedByte: + data = *((s1*) addr); + break; + case kSVHalfword: + data = *((u2*) addr); + break; + case kSVSignedHalfword: + data = *((s2*) addr); + break; + case kSVWord: + data = *((u4*) addr); + break; + default: + LOGE("*** ERROR: BAD SIZE IN selfVerificationLoad: %d", size); + data = 0; + dvmAbort(); + } + + //LOGD("*** HEAP LOAD: Addr: %#x Data: %#x Size: %d", addr, data, size); + return data; +} + +/* Like selfVerificationLoad, but specifically for doublewords */ +static s8 selfVerificationLoadDoubleword(int addr) +{ +assert(0); /* MIPSTODO retarg func */ + Thread *self = dvmThreadSelf(); + ShadowSpace* shadowSpace = self->shadowSpace; + ShadowHeap* heapSpacePtr; + + int addr2 = addr+4; + unsigned int data = *((unsigned int*) addr); + unsigned int data2 = *((unsigned int*) addr2); + + for (heapSpacePtr = shadowSpace->heapSpace; + heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { + if (heapSpacePtr->addr == addr) { + data = heapSpacePtr->data; + } else if (heapSpacePtr->addr == addr2) { + data2 = heapSpacePtr->data; + } + } + + //LOGD("*** HEAP LOAD DOUBLEWORD: Addr: %#x Data: %#x Data2: %#x", + // addr, data, data2); + return (((s8) data2) << 32) | data; +} + +/* + * Handles a store of a specified size of data to a specified address. + * This gets logged as an addr/data pair in heapSpace instead of modifying + * memory. Addresses in heapSpace are unique, and accesses smaller than a + * word pull the entire word from memory first before updating. + */ +static void selfVerificationStore(int addr, int data, int size) +{ +assert(0); /* MIPSTODO retarg func */ + Thread *self = dvmThreadSelf(); + ShadowSpace *shadowSpace = self->shadowSpace; + ShadowHeap *heapSpacePtr; + + int maskedAddr = addr & 0xFFFFFFFC; + int alignment = addr & 0x3; + + //LOGD("*** HEAP STORE: Addr: %#x Data: %#x Size: %d", addr, data, size); + + for (heapSpacePtr = shadowSpace->heapSpace; + heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { + if (heapSpacePtr->addr == maskedAddr) break; + } + + if (heapSpacePtr == shadowSpace->heapSpaceTail) { + heapSpacePtr->addr = maskedAddr; + heapSpacePtr->data = *((unsigned int*) maskedAddr); + shadowSpace->heapSpaceTail++; + } + + addr = ((unsigned int) &(heapSpacePtr->data)) | alignment; + switch (size) { + case kSVByte: + *((u1*) addr) = data; + break; + case kSVSignedByte: + *((s1*) addr) = data; + break; + case kSVHalfword: + *((u2*) addr) = data; + break; + case kSVSignedHalfword: + *((s2*) addr) = data; + break; + case kSVWord: + *((u4*) addr) = data; + break; + default: + LOGE("*** ERROR: BAD SIZE IN selfVerificationSave: %d", size); + dvmAbort(); + } +} + +/* Like selfVerificationStore, but specifically for doublewords */ +static void selfVerificationStoreDoubleword(int addr, s8 double_data) +{ +assert(0); /* MIPSTODO retarg func */ + Thread *self = dvmThreadSelf(); + ShadowSpace *shadowSpace = self->shadowSpace; + ShadowHeap *heapSpacePtr; + + int addr2 = addr+4; + int data = double_data; + int data2 = double_data >> 32; + bool store1 = false, store2 = false; + + //LOGD("*** HEAP STORE DOUBLEWORD: Addr: %#x Data: %#x, Data2: %#x", + // addr, data, data2); + + for (heapSpacePtr = shadowSpace->heapSpace; + heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) { + if (heapSpacePtr->addr == addr) { + heapSpacePtr->data = data; + store1 = true; + } else if (heapSpacePtr->addr == addr2) { + heapSpacePtr->data = data2; + store2 = true; + } + } + + if (!store1) { + shadowSpace->heapSpaceTail->addr = addr; + shadowSpace->heapSpaceTail->data = data; + shadowSpace->heapSpaceTail++; + } + if (!store2) { + shadowSpace->heapSpaceTail->addr = addr2; + shadowSpace->heapSpaceTail->data = data2; + shadowSpace->heapSpaceTail++; + } +} + +/* + * Decodes the memory instruction at the address specified in the link + * register. All registers (r0-r12,lr) and fp registers (d0-d15) are stored + * consecutively on the stack beginning at the specified stack pointer. + * Calls the proper Self Verification handler for the memory instruction and + * updates the link register to point past the decoded memory instruction. + */ +void dvmSelfVerificationMemOpDecode(int lr, int* sp) +{ +assert(0); /* MIPSTODO retarg func */ + enum { + kMemOpLdrPcRel = 0x09, // ldr(3) [01001] rd[10..8] imm_8[7..0] + kMemOpRRR = 0x0A, // Full opcode is 7 bits + kMemOp2Single = 0x0A, // Used for Vstrs and Vldrs + kMemOpRRR2 = 0x0B, // Full opcode is 7 bits + kMemOp2Double = 0x0B, // Used for Vstrd and Vldrd + kMemOpStrRRI5 = 0x0C, // str(1) [01100] imm_5[10..6] rn[5..3] rd[2..0] + kMemOpLdrRRI5 = 0x0D, // ldr(1) [01101] imm_5[10..6] rn[5..3] rd[2..0] + kMemOpStrbRRI5 = 0x0E, // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0] + kMemOpLdrbRRI5 = 0x0F, // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0] + kMemOpStrhRRI5 = 0x10, // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0] + kMemOpLdrhRRI5 = 0x11, // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0] + kMemOpLdrSpRel = 0x13, // ldr(4) [10011] rd[10..8] imm_8[7..0] + kMemOpStmia = 0x18, // stmia [11000] rn[10..8] reglist [7..0] + kMemOpLdmia = 0x19, // ldmia [11001] rn[10..8] reglist [7..0] + kMemOpStrRRR = 0x28, // str(2) [0101000] rm[8..6] rn[5..3] rd[2..0] + kMemOpStrhRRR = 0x29, // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0] + kMemOpStrbRRR = 0x2A, // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0] + kMemOpLdrsbRRR = 0x2B, // ldrsb [0101011] rm[8..6] rn[5..3] rd[2..0] + kMemOpLdrRRR = 0x2C, // ldr(2) [0101100] rm[8..6] rn[5..3] rd[2..0] + kMemOpLdrhRRR = 0x2D, // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0] + kMemOpLdrbRRR = 0x2E, // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0] + kMemOpLdrshRRR = 0x2F, // ldrsh [0101111] rm[8..6] rn[5..3] rd[2..0] + kMemOp2Stmia = 0xE88, // stmia [111010001000[ rn[19..16] mask[15..0] + kMemOp2Ldmia = 0xE89, // ldmia [111010001001[ rn[19..16] mask[15..0] + kMemOp2Stmia2 = 0xE8A, // stmia [111010001010[ rn[19..16] mask[15..0] + kMemOp2Ldmia2 = 0xE8B, // ldmia [111010001011[ rn[19..16] mask[15..0] + kMemOp2Vstr = 0xED8, // Used for Vstrs and Vstrd + kMemOp2Vldr = 0xED9, // Used for Vldrs and Vldrd + kMemOp2Vstr2 = 0xEDC, // Used for Vstrs and Vstrd + kMemOp2Vldr2 = 0xEDD, // Used for Vstrs and Vstrd + kMemOp2StrbRRR = 0xF80, /* str rt,[rn,rm,LSL #imm] [111110000000] + rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ + kMemOp2LdrbRRR = 0xF81, /* ldrb rt,[rn,rm,LSL #imm] [111110000001] + rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ + kMemOp2StrhRRR = 0xF82, /* str rt,[rn,rm,LSL #imm] [111110000010] + rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ + kMemOp2LdrhRRR = 0xF83, /* ldrh rt,[rn,rm,LSL #imm] [111110000011] + rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ + kMemOp2StrRRR = 0xF84, /* str rt,[rn,rm,LSL #imm] [111110000100] + rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ + kMemOp2LdrRRR = 0xF85, /* ldr rt,[rn,rm,LSL #imm] [111110000101] + rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ + kMemOp2StrbRRI12 = 0xF88, /* strb rt,[rn,#imm12] [111110001000] + rt[15..12] rn[19..16] imm12[11..0] */ + kMemOp2LdrbRRI12 = 0xF89, /* ldrb rt,[rn,#imm12] [111110001001] + rt[15..12] rn[19..16] imm12[11..0] */ + kMemOp2StrhRRI12 = 0xF8A, /* strh rt,[rn,#imm12] [111110001010] + rt[15..12] rn[19..16] imm12[11..0] */ + kMemOp2LdrhRRI12 = 0xF8B, /* ldrh rt,[rn,#imm12] [111110001011] + rt[15..12] rn[19..16] imm12[11..0] */ + kMemOp2StrRRI12 = 0xF8C, /* str(Imm,T3) rd,[rn,#imm12] [111110001100] + rn[19..16] rt[15..12] imm12[11..0] */ + kMemOp2LdrRRI12 = 0xF8D, /* ldr(Imm,T3) rd,[rn,#imm12] [111110001101] + rn[19..16] rt[15..12] imm12[11..0] */ + kMemOp2LdrsbRRR = 0xF91, /* ldrsb rt,[rn,rm,LSL #imm] [111110010001] + rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ + kMemOp2LdrshRRR = 0xF93, /* ldrsh rt,[rn,rm,LSL #imm] [111110010011] + rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */ + kMemOp2LdrsbRRI12 = 0xF99, /* ldrsb rt,[rn,#imm12] [111110011001] + rt[15..12] rn[19..16] imm12[11..0] */ + kMemOp2LdrshRRI12 = 0xF9B, /* ldrsh rt,[rn,#imm12] [111110011011] + rt[15..12] rn[19..16] imm12[11..0] */ + kMemOp2 = 0xE000, // top 3 bits set indicates Thumb2 + }; + + int addr, offset, data; + long long double_data; + int size = kSVWord; + bool store = false; + unsigned int *lr_masked = (unsigned int *) (lr & 0xFFFFFFFE); + unsigned int insn = *lr_masked; + + int old_lr; + old_lr = selfVerificationMemRegLoad(sp, 13); + + if ((insn & kMemOp2) == kMemOp2) { + insn = (insn << 16) | (insn >> 16); + //LOGD("*** THUMB2 - Addr: %#x Insn: %#x", lr, insn); + + int opcode12 = (insn >> 20) & 0xFFF; + int opcode6 = (insn >> 6) & 0x3F; + int opcode4 = (insn >> 8) & 0xF; + int imm2 = (insn >> 4) & 0x3; + int imm8 = insn & 0xFF; + int imm12 = insn & 0xFFF; + int rd = (insn >> 12) & 0xF; + int rm = insn & 0xF; + int rn = (insn >> 16) & 0xF; + int rt = (insn >> 12) & 0xF; + bool wBack = true; + + // Update the link register + selfVerificationMemRegStore(sp, old_lr+4, 13); + + // Determine whether the mem op is a store or load + switch (opcode12) { + case kMemOp2Stmia: + case kMemOp2Stmia2: + case kMemOp2Vstr: + case kMemOp2Vstr2: + case kMemOp2StrbRRR: + case kMemOp2StrhRRR: + case kMemOp2StrRRR: + case kMemOp2StrbRRI12: + case kMemOp2StrhRRI12: + case kMemOp2StrRRI12: + store = true; + } + + // Determine the size of the mem access + switch (opcode12) { + case kMemOp2StrbRRR: + case kMemOp2LdrbRRR: + case kMemOp2StrbRRI12: + case kMemOp2LdrbRRI12: + size = kSVByte; + break; + case kMemOp2LdrsbRRR: + case kMemOp2LdrsbRRI12: + size = kSVSignedByte; + break; + case kMemOp2StrhRRR: + case kMemOp2LdrhRRR: + case kMemOp2StrhRRI12: + case kMemOp2LdrhRRI12: + size = kSVHalfword; + break; + case kMemOp2LdrshRRR: + case kMemOp2LdrshRRI12: + size = kSVSignedHalfword; + break; + case kMemOp2Vstr: + case kMemOp2Vstr2: + case kMemOp2Vldr: + case kMemOp2Vldr2: + if (opcode4 == kMemOp2Double) size = kSVDoubleword; + break; + case kMemOp2Stmia: + case kMemOp2Ldmia: + case kMemOp2Stmia2: + case kMemOp2Ldmia2: + size = kSVVariable; + break; + } + + // Load the value of the address + addr = selfVerificationMemRegLoad(sp, rn); + + // Figure out the offset + switch (opcode12) { + case kMemOp2Vstr: + case kMemOp2Vstr2: + case kMemOp2Vldr: + case kMemOp2Vldr2: + offset = imm8 << 2; + if (opcode4 == kMemOp2Single) { + rt = rd << 1; + if (insn & 0x400000) rt |= 0x1; + } else if (opcode4 == kMemOp2Double) { + if (insn & 0x400000) rt |= 0x10; + rt = rt << 1; + } else { + LOGE("*** ERROR: UNRECOGNIZED VECTOR MEM OP: %x", opcode4); + dvmAbort(); + } + rt += 14; + break; + case kMemOp2StrbRRR: + case kMemOp2LdrbRRR: + case kMemOp2StrhRRR: + case kMemOp2LdrhRRR: + case kMemOp2StrRRR: + case kMemOp2LdrRRR: + case kMemOp2LdrsbRRR: + case kMemOp2LdrshRRR: + offset = selfVerificationMemRegLoad(sp, rm) << imm2; + break; + case kMemOp2StrbRRI12: + case kMemOp2LdrbRRI12: + case kMemOp2StrhRRI12: + case kMemOp2LdrhRRI12: + case kMemOp2StrRRI12: + case kMemOp2LdrRRI12: + case kMemOp2LdrsbRRI12: + case kMemOp2LdrshRRI12: + offset = imm12; + break; + case kMemOp2Stmia: + case kMemOp2Ldmia: + wBack = false; + case kMemOp2Stmia2: + case kMemOp2Ldmia2: + offset = 0; + break; + default: + LOGE("*** ERROR: UNRECOGNIZED THUMB2 MEM OP: %x", opcode12); + offset = 0; + dvmAbort(); + } + + // Handle the decoded mem op accordingly + if (store) { + if (size == kSVVariable) { + LOGD("*** THUMB2 STMIA CURRENTLY UNUSED (AND UNTESTED)"); + int i; + int regList = insn & 0xFFFF; + for (i = 0; i < 16; i++) { + if (regList & 0x1) { + data = selfVerificationMemRegLoad(sp, i); + selfVerificationStore(addr, data, kSVWord); + addr += 4; + } + regList = regList >> 1; + } + if (wBack) selfVerificationMemRegStore(sp, addr, rn); + } else if (size == kSVDoubleword) { + double_data = selfVerificationMemRegLoadDouble(sp, rt); + selfVerificationStoreDoubleword(addr+offset, double_data); + } else { + data = selfVerificationMemRegLoad(sp, rt); + selfVerificationStore(addr+offset, data, size); + } + } else { + if (size == kSVVariable) { + LOGD("*** THUMB2 LDMIA CURRENTLY UNUSED (AND UNTESTED)"); + int i; + int regList = insn & 0xFFFF; + for (i = 0; i < 16; i++) { + if (regList & 0x1) { + data = selfVerificationLoad(addr, kSVWord); + selfVerificationMemRegStore(sp, data, i); + addr += 4; + } + regList = regList >> 1; + } + if (wBack) selfVerificationMemRegStore(sp, addr, rn); + } else if (size == kSVDoubleword) { + double_data = selfVerificationLoadDoubleword(addr+offset); + selfVerificationMemRegStoreDouble(sp, double_data, rt); + } else { + data = selfVerificationLoad(addr+offset, size); + selfVerificationMemRegStore(sp, data, rt); + } + } + } else { + //LOGD("*** THUMB - Addr: %#x Insn: %#x", lr, insn); + + // Update the link register + selfVerificationMemRegStore(sp, old_lr+2, 13); + + int opcode5 = (insn >> 11) & 0x1F; + int opcode7 = (insn >> 9) & 0x7F; + int imm = (insn >> 6) & 0x1F; + int rd = (insn >> 8) & 0x7; + int rm = (insn >> 6) & 0x7; + int rn = (insn >> 3) & 0x7; + int rt = insn & 0x7; + + // Determine whether the mem op is a store or load + switch (opcode5) { + case kMemOpRRR: + switch (opcode7) { + case kMemOpStrRRR: + case kMemOpStrhRRR: + case kMemOpStrbRRR: + store = true; + } + break; + case kMemOpStrRRI5: + case kMemOpStrbRRI5: + case kMemOpStrhRRI5: + case kMemOpStmia: + store = true; + } + + // Determine the size of the mem access + switch (opcode5) { + case kMemOpRRR: + case kMemOpRRR2: + switch (opcode7) { + case kMemOpStrbRRR: + case kMemOpLdrbRRR: + size = kSVByte; + break; + case kMemOpLdrsbRRR: + size = kSVSignedByte; + break; + case kMemOpStrhRRR: + case kMemOpLdrhRRR: + size = kSVHalfword; + break; + case kMemOpLdrshRRR: + size = kSVSignedHalfword; + break; + } + break; + case kMemOpStrbRRI5: + case kMemOpLdrbRRI5: + size = kSVByte; + break; + case kMemOpStrhRRI5: + case kMemOpLdrhRRI5: + size = kSVHalfword; + break; + case kMemOpStmia: + case kMemOpLdmia: + size = kSVVariable; + break; + } + + // Load the value of the address + if (opcode5 == kMemOpLdrPcRel) + addr = selfVerificationMemRegLoad(sp, 4); + else if (opcode5 == kMemOpStmia || opcode5 == kMemOpLdmia) + addr = selfVerificationMemRegLoad(sp, rd); + else + addr = selfVerificationMemRegLoad(sp, rn); + + // Figure out the offset + switch (opcode5) { + case kMemOpLdrPcRel: + offset = (insn & 0xFF) << 2; + rt = rd; + break; + case kMemOpRRR: + case kMemOpRRR2: + offset = selfVerificationMemRegLoad(sp, rm); + break; + case kMemOpStrRRI5: + case kMemOpLdrRRI5: + offset = imm << 2; + break; + case kMemOpStrhRRI5: + case kMemOpLdrhRRI5: + offset = imm << 1; + break; + case kMemOpStrbRRI5: + case kMemOpLdrbRRI5: + offset = imm; + break; + case kMemOpStmia: + case kMemOpLdmia: + offset = 0; + break; + default: + LOGE("*** ERROR: UNRECOGNIZED THUMB MEM OP: %x", opcode5); + offset = 0; + dvmAbort(); + } + + // Handle the decoded mem op accordingly + if (store) { + if (size == kSVVariable) { + int i; + int regList = insn & 0xFF; + for (i = 0; i < 8; i++) { + if (regList & 0x1) { + data = selfVerificationMemRegLoad(sp, i); + selfVerificationStore(addr, data, kSVWord); + addr += 4; + } + regList = regList >> 1; + } + selfVerificationMemRegStore(sp, addr, rd); + } else { + data = selfVerificationMemRegLoad(sp, rt); + selfVerificationStore(addr+offset, data, size); + } + } else { + if (size == kSVVariable) { + bool wBack = true; + int i; + int regList = insn & 0xFF; + for (i = 0; i < 8; i++) { + if (regList & 0x1) { + if (i == rd) wBack = false; + data = selfVerificationLoad(addr, kSVWord); + selfVerificationMemRegStore(sp, data, i); + addr += 4; + } + regList = regList >> 1; + } + if (wBack) selfVerificationMemRegStore(sp, addr, rd); + } else { + data = selfVerificationLoad(addr+offset, size); + selfVerificationMemRegStore(sp, data, rt); + } + } + } +} +#endif |