summaryrefslogtreecommitdiffstats
path: root/vm/compiler/codegen/mips/Assemble.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'vm/compiler/codegen/mips/Assemble.cpp')
-rw-r--r--vm/compiler/codegen/mips/Assemble.cpp2329
1 files changed, 0 insertions, 2329 deletions
diff --git a/vm/compiler/codegen/mips/Assemble.cpp b/vm/compiler/codegen/mips/Assemble.cpp
deleted file mode 100644
index 76aa60657..000000000
--- a/vm/compiler/codegen/mips/Assemble.cpp
+++ /dev/null
@@ -1,2329 +0,0 @@
-/*
- * Copyright (C) 2009 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-#include "Dalvik.h"
-#include "libdex/DexOpcodes.h"
-
-#include "../../CompilerInternals.h"
-#include "MipsLIR.h"
-#include "Codegen.h"
-#include <unistd.h> /* for cacheflush */
-#include <sys/mman.h> /* for protection change */
-
-#define MAX_ASSEMBLER_RETRIES 10
-
-/*
- * opcode: MipsOpCode enum
- * skeleton: pre-designated bit-pattern for this opcode
- * k0: key to applying ds/de
- * ds: dest start bit position
- * de: dest end bit position
- * k1: key to applying s1s/s1e
- * s1s: src1 start bit position
- * s1e: src1 end bit position
- * k2: key to applying s2s/s2e
- * s2s: src2 start bit position
- * s2e: src2 end bit position
- * operands: number of operands (for sanity check purposes)
- * name: mnemonic name
- * fmt: for pretty-printing
- */
-#define ENCODING_MAP(opcode, skeleton, k0, ds, de, k1, s1s, s1e, k2, s2s, s2e, \
- k3, k3s, k3e, flags, name, fmt, size) \
- {skeleton, {{k0, ds, de}, {k1, s1s, s1e}, {k2, s2s, s2e}, \
- {k3, k3s, k3e}}, opcode, flags, name, fmt, size}
-
-/* Instruction dump string format keys: !pf, where "!" is the start
- * of the key, "p" is which numeric operand to use and "f" is the
- * print format.
- *
- * [p]ositions:
- * 0 -> operands[0] (dest)
- * 1 -> operands[1] (src1)
- * 2 -> operands[2] (src2)
- * 3 -> operands[3] (extra)
- *
- * [f]ormats:
- * h -> 4-digit hex
- * d -> decimal
- * E -> decimal*4
- * F -> decimal*2
- * c -> branch condition (beq, bne, etc.)
- * t -> pc-relative target
- * T -> pc-region target
- * u -> 1st half of bl[x] target
- * v -> 2nd half ob bl[x] target
- * R -> register list
- * s -> single precision floating point register
- * S -> double precision floating point register
- * m -> Thumb2 modified immediate
- * n -> complimented Thumb2 modified immediate
- * M -> Thumb2 16-bit zero-extended immediate
- * b -> 4-digit binary
- * B -> sync option string (SY, WMB, MB, ACQUIRE, RELEASE, RMB)
- *
- * [!] escape. To insert "!", use "!!"
- */
-/* NOTE: must be kept in sync with enum MipsOpcode from MipsLIR.h */
-MipsEncodingMap EncodingMap[kMipsLast] = {
- ENCODING_MAP(kMips32BitData, 0x00000000,
- kFmtBitBlt, 31, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP,
- "data", "0x!0h(!0d)", 2),
- ENCODING_MAP(kMipsAddiu, 0x24000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
- "addiu", "!0r,!1r,0x!2h(!2d)", 2),
- ENCODING_MAP(kMipsAddu, 0x00000021,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "addu", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsAnd, 0x00000024,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "and", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsAndi, 0x30000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
- "andi", "!0r,!1r,0x!2h(!2d)", 2),
- ENCODING_MAP(kMipsB, 0x10000000,
- kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH,
- "b", "!0t", 2),
- ENCODING_MAP(kMipsBal, 0x04110000,
- kFmtBitBlt, 15, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, NO_OPERAND | IS_BRANCH | REG_DEF_LR,
- "bal", "!0t", 2),
- ENCODING_MAP(kMipsBeq, 0x10000000,
- kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0,
- kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01,
- "beq", "!0r,!1r,!2t", 2),
- ENCODING_MAP(kMipsBeqz, 0x10000000, /* same as beq above with t = $zero */
- kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
- "beqz", "!0r,!1t", 2),
- ENCODING_MAP(kMipsBgez, 0x04010000,
- kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
- "bgez", "!0r,!1t", 2),
- ENCODING_MAP(kMipsBgtz, 0x1C000000,
- kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
- "bgtz", "!0r,!1t", 2),
- ENCODING_MAP(kMipsBlez, 0x18000000,
- kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
- "blez", "!0r,!1t", 2),
- ENCODING_MAP(kMipsBltz, 0x04000000,
- kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
- "bltz", "!0r,!1t", 2),
- ENCODING_MAP(kMipsBnez, 0x14000000, /* same as bne below with t = $zero */
- kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
- "bnez", "!0r,!1t", 2),
- ENCODING_MAP(kMipsBne, 0x14000000,
- kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0,
- kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_USE01,
- "bne", "!0r,!1r,!2t", 2),
- ENCODING_MAP(kMipsDiv, 0x0000001a,
- kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtBitBlt, 25, 21,
- kFmtBitBlt, 20, 16, IS_QUAD_OP | REG_DEF01 | REG_USE23,
- "div", "!2r,!3r", 2),
-#if __mips_isa_rev>=2
- ENCODING_MAP(kMipsExt, 0x7c000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 10, 6,
- kFmtBitBlt, 15, 11, IS_QUAD_OP | REG_DEF0 | REG_USE1,
- "ext", "!0r,!1r,!2d,!3D", 2),
-#endif
- ENCODING_MAP(kMipsJal, 0x0c000000,
- kFmtBitBlt, 25, 0, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_DEF_LR,
- "jal", "!0T(!0E)", 2),
- ENCODING_MAP(kMipsJalr, 0x00000009,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | IS_BRANCH | REG_DEF0_USE1,
- "jalr", "!0r,!1r", 2),
- ENCODING_MAP(kMipsJr, 0x00000008,
- kFmtBitBlt, 25, 21, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP | IS_BRANCH | REG_USE0,
- "jr", "!0r", 2),
- ENCODING_MAP(kMipsLahi, 0x3C000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
- "lahi/lui", "!0r,0x!1h(!1d)", 2),
- ENCODING_MAP(kMipsLalo, 0x34000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
- "lalo/ori", "!0r,!1r,0x!2h(!2d)", 2),
- ENCODING_MAP(kMipsLui, 0x3C000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0,
- "lui", "!0r,0x!1h(!1d)", 2),
- ENCODING_MAP(kMipsLb, 0x80000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
- "lb", "!0r,!1d(!2r)", 2),
- ENCODING_MAP(kMipsLbu, 0x90000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
- "lbu", "!0r,!1d(!2r)", 2),
- ENCODING_MAP(kMipsLh, 0x84000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
- "lh", "!0r,!1d(!2r)", 2),
- ENCODING_MAP(kMipsLhu, 0x94000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
- "lhu", "!0r,!1d(!2r)", 2),
- ENCODING_MAP(kMipsLw, 0x8C000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
- "lw", "!0r,!1d(!2r)", 2),
- ENCODING_MAP(kMipsMfhi, 0x00000010,
- kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "mfhi", "!0r", 2),
- ENCODING_MAP(kMipsMflo, 0x00000012,
- kFmtBitBlt, 15, 11, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "mflo", "!0r", 2),
- ENCODING_MAP(kMipsMove, 0x00000025, /* or using zero reg */
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "move", "!0r,!1r", 2),
- ENCODING_MAP(kMipsMovz, 0x0000000a,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "movz", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsMul, 0x70000002,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "mul", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsNop, 0x00000000,
- kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, NO_OPERAND,
- "nop", "", 2),
- ENCODING_MAP(kMipsNor, 0x00000027, /* used for "not" too */
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "nor", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsOr, 0x00000025,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "or", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsOri, 0x34000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
- "ori", "!0r,!1r,0x!2h(!2d)", 2),
- ENCODING_MAP(kMipsPref, 0xCC000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE2,
- "pref", "!0d,!1d(!2r)", 2),
- ENCODING_MAP(kMipsSb, 0xA0000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
- "sb", "!0r,!1d(!2r)", 2),
-#if __mips_isa_rev>=2
- ENCODING_MAP(kMipsSeb, 0x7c000420,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "seb", "!0r,!1r", 2),
- ENCODING_MAP(kMipsSeh, 0x7c000620,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "seh", "!0r,!1r", 2),
-#endif
- ENCODING_MAP(kMipsSh, 0xA4000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
- "sh", "!0r,!1d(!2r)", 2),
- ENCODING_MAP(kMipsSll, 0x00000000,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
- "sll", "!0r,!1r,0x!2h(!2d)", 2),
- ENCODING_MAP(kMipsSllv, 0x00000004,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "sllv", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsSlt, 0x0000002a,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "slt", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsSlti, 0x28000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
- "slti", "!0r,!1r,0x!2h(!2d)", 2),
- ENCODING_MAP(kMipsSltu, 0x0000002b,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "sltu", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsSra, 0x00000003,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
- "sra", "!0r,!1r,0x!2h(!2d)", 2),
- ENCODING_MAP(kMipsSrav, 0x00000007,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "srav", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsSrl, 0x00000002,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 10, 6,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
- "srl", "!0r,!1r,0x!2h(!2d)", 2),
- ENCODING_MAP(kMipsSrlv, 0x00000006,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "srlv", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsSubu, 0x00000023, /* used for "neg" too */
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "subu", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsSw, 0xAC000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
- "sw", "!0r,!1d(!2r)", 2),
- ENCODING_MAP(kMipsSync, 0x0000000F,
- kFmtBitBlt, 10, 6, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_UNARY_OP,
- "sync", "!0B", 2),
- ENCODING_MAP(kMipsXor, 0x00000026,
- kFmtBitBlt, 15, 11, kFmtBitBlt, 25, 21, kFmtBitBlt, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "xor", "!0r,!1r,!2r", 2),
- ENCODING_MAP(kMipsXori, 0x38000000,
- kFmtBitBlt, 20, 16, kFmtBitBlt, 25, 21, kFmtBitBlt, 15, 0,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE1,
- "xori", "!0r,!1r,0x!2h(!2d)", 2),
-#ifdef __mips_hard_float
- ENCODING_MAP(kMipsFadds, 0x46000000,
- kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "add.s", "!0s,!1s,!2s", 2),
- ENCODING_MAP(kMipsFsubs, 0x46000001,
- kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "sub.s", "!0s,!1s,!2s", 2),
- ENCODING_MAP(kMipsFmuls, 0x46000002,
- kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "mul.s", "!0s,!1s,!2s", 2),
- ENCODING_MAP(kMipsFdivs, 0x46000003,
- kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtSfp, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "div.s", "!0s,!1s,!2s", 2),
- ENCODING_MAP(kMipsFaddd, 0x46200000,
- kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "add.d", "!0S,!1S,!2S", 2),
- ENCODING_MAP(kMipsFsubd, 0x46200001,
- kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "sub.d", "!0S,!1S,!2S", 2),
- ENCODING_MAP(kMipsFmuld, 0x46200002,
- kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "mul.d", "!0S,!1S,!2S", 2),
- ENCODING_MAP(kMipsFdivd, 0x46200003,
- kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtDfp, 20, 16,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE12,
- "div.d", "!0S,!1S,!2S", 2),
- ENCODING_MAP(kMipsFcvtsd, 0x46200020,
- kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "cvt.s.d", "!0s,!1S", 2),
- ENCODING_MAP(kMipsFcvtsw, 0x46800020,
- kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "cvt.s.w", "!0s,!1s", 2),
- ENCODING_MAP(kMipsFcvtds, 0x46000021,
- kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "cvt.d.s", "!0S,!1s", 2),
- ENCODING_MAP(kMipsFcvtdw, 0x46800021,
- kFmtDfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "cvt.d.w", "!0S,!1s", 2),
- ENCODING_MAP(kMipsFcvtws, 0x46000024,
- kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "cvt.w.s", "!0s,!1s", 2),
- ENCODING_MAP(kMipsFcvtwd, 0x46200024,
- kFmtSfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "cvt.w.d", "!0s,!1S", 2),
- ENCODING_MAP(kMipsFmovs, 0x46000006,
- kFmtSfp, 10, 6, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "mov.s", "!0s,!1s", 2),
- ENCODING_MAP(kMipsFmovd, 0x46200006,
- kFmtDfp, 10, 6, kFmtDfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "mov.d", "!0S,!1S", 2),
- ENCODING_MAP(kMipsFlwc1, 0xC4000000,
- kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
- "lwc1", "!0s,!1d(!2r)", 2),
- ENCODING_MAP(kMipsFldc1, 0xD4000000,
- kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_DEF0_USE2 | IS_LOAD,
- "ldc1", "!0S,!1d(!2r)", 2),
- ENCODING_MAP(kMipsFswc1, 0xE4000000,
- kFmtSfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
- "swc1", "!0s,!1d(!2r)", 2),
- ENCODING_MAP(kMipsFsdc1, 0xF4000000,
- kFmtDfp, 20, 16, kFmtBitBlt, 15, 0, kFmtBitBlt, 25, 21,
- kFmtUnused, -1, -1, IS_TERTIARY_OP | REG_USE02 | IS_STORE,
- "sdc1", "!0S,!1d(!2r)", 2),
- ENCODING_MAP(kMipsMfc1, 0x44000000,
- kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_DEF0_USE1,
- "mfc1", "!0r,!1s", 2),
- ENCODING_MAP(kMipsMtc1, 0x44800000,
- kFmtBitBlt, 20, 16, kFmtSfp, 15, 11, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, IS_BINARY_OP | REG_USE0 | REG_DEF1,
- "mtc1", "!0r,!1s", 2),
-#endif
- ENCODING_MAP(kMipsUndefined, 0x64000000,
- kFmtUnused, -1, -1, kFmtUnused, -1, -1, kFmtUnused, -1, -1,
- kFmtUnused, -1, -1, NO_OPERAND,
- "undefined", "", 2),
-};
-
-/* Track the number of times that the code cache is patched */
-#if defined(WITH_JIT_TUNING)
-#define UPDATE_CODE_CACHE_PATCHES() (gDvmJit.codeCachePatches++)
-#else
-#define UPDATE_CODE_CACHE_PATCHES()
-#endif
-
-/* Write the numbers in the constant and class pool to the output stream */
-static void installLiteralPools(CompilationUnit *cUnit)
-{
- int *dataPtr = (int *) ((char *) cUnit->baseAddr + cUnit->dataOffset);
- /* Install number of class pointer literals */
- *dataPtr++ = cUnit->numClassPointers;
- MipsLIR *dataLIR = (MipsLIR *) cUnit->classPointerList;
- while (dataLIR) {
- /*
- * Install the callsiteinfo pointers into the cells for now. They will
- * be converted into real pointers in dvmJitInstallClassObjectPointers.
- */
- *dataPtr++ = dataLIR->operands[0];
- dataLIR = NEXT_LIR(dataLIR);
- }
- dataLIR = (MipsLIR *) cUnit->literalList;
- while (dataLIR) {
- *dataPtr++ = dataLIR->operands[0];
- dataLIR = NEXT_LIR(dataLIR);
- }
-}
-
-/*
- * Assemble the LIR into binary instruction format. Note that we may
- * discover that pc-relative displacements may not fit the selected
- * instruction. In those cases we will try to substitute a new code
- * sequence or request that the trace be shortened and retried.
- */
-static AssemblerStatus assembleInstructions(CompilationUnit *cUnit,
- intptr_t startAddr)
-{
- int *bufferAddr = (int *) cUnit->codeBuffer;
- MipsLIR *lir;
-
- for (lir = (MipsLIR *) cUnit->firstLIRInsn; lir; lir = NEXT_LIR(lir)) {
- if (lir->opcode < 0) {
- continue;
- }
-
-
- if (lir->flags.isNop) {
- continue;
- }
-
- if (lir->opcode == kMipsB || lir->opcode == kMipsBal) {
- MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
- intptr_t pc = lir->generic.offset + 4;
- intptr_t target = targetLIR->generic.offset;
- int delta = target - pc;
- if (delta & 0x3) {
- ALOGE("PC-rel distance is not multiple of 4: %d", delta);
- dvmAbort();
- }
- if (delta > 131068 || delta < -131069) {
- ALOGE("Unconditional branch distance out of range: %d", delta);
- dvmAbort();
- }
- lir->operands[0] = delta >> 2;
- } else if (lir->opcode >= kMipsBeqz && lir->opcode <= kMipsBnez) {
- MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
- intptr_t pc = lir->generic.offset + 4;
- intptr_t target = targetLIR->generic.offset;
- int delta = target - pc;
- if (delta & 0x3) {
- ALOGE("PC-rel distance is not multiple of 4: %d", delta);
- dvmAbort();
- }
- if (delta > 131068 || delta < -131069) {
- ALOGE("Conditional branch distance out of range: %d", delta);
- dvmAbort();
- }
- lir->operands[1] = delta >> 2;
- } else if (lir->opcode == kMipsBeq || lir->opcode == kMipsBne) {
- MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
- intptr_t pc = lir->generic.offset + 4;
- intptr_t target = targetLIR->generic.offset;
- int delta = target - pc;
- if (delta & 0x3) {
- ALOGE("PC-rel distance is not multiple of 4: %d", delta);
- dvmAbort();
- }
- if (delta > 131068 || delta < -131069) {
- ALOGE("Conditional branch distance out of range: %d", delta);
- dvmAbort();
- }
- lir->operands[2] = delta >> 2;
- } else if (lir->opcode == kMipsJal) {
- intptr_t curPC = (startAddr + lir->generic.offset + 4) & ~3;
- intptr_t target = lir->operands[0];
- /* ensure PC-region branch can be used */
- assert((curPC & 0xF0000000) == (target & 0xF0000000));
- if (target & 0x3) {
- ALOGE("Jump target is not multiple of 4: %d", target);
- dvmAbort();
- }
- lir->operands[0] = target >> 2;
- } else if (lir->opcode == kMipsLahi) { /* load address hi (via lui) */
- MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
- intptr_t target = startAddr + targetLIR->generic.offset;
- lir->operands[1] = target >> 16;
- } else if (lir->opcode == kMipsLalo) { /* load address lo (via ori) */
- MipsLIR *targetLIR = (MipsLIR *) lir->generic.target;
- intptr_t target = startAddr + targetLIR->generic.offset;
- lir->operands[2] = lir->operands[2] + target;
- }
-
-
- MipsEncodingMap *encoder = &EncodingMap[lir->opcode];
- u4 bits = encoder->skeleton;
- int i;
- for (i = 0; i < 4; i++) {
- u4 operand;
- u4 value;
- operand = lir->operands[i];
- switch(encoder->fieldLoc[i].kind) {
- case kFmtUnused:
- break;
- case kFmtBitBlt:
- if (encoder->fieldLoc[i].start == 0 && encoder->fieldLoc[i].end == 31) {
- value = operand;
- } else {
- value = (operand << encoder->fieldLoc[i].start) &
- ((1 << (encoder->fieldLoc[i].end + 1)) - 1);
- }
- bits |= value;
- break;
- case kFmtDfp: {
- assert(DOUBLEREG(operand));
- assert((operand & 0x1) == 0);
- value = ((operand & FP_REG_MASK) << encoder->fieldLoc[i].start) &
- ((1 << (encoder->fieldLoc[i].end + 1)) - 1);
- bits |= value;
- break;
- }
- case kFmtSfp:
- assert(SINGLEREG(operand));
- value = ((operand & FP_REG_MASK) << encoder->fieldLoc[i].start) &
- ((1 << (encoder->fieldLoc[i].end + 1)) - 1);
- bits |= value;
- break;
- default:
- assert(0);
- }
- }
- assert(encoder->size == 2);
- *bufferAddr++ = bits;
- }
- return kSuccess;
-}
-
-static int assignLiteralOffsetCommon(LIR *lir, int offset)
-{
- for (;lir != NULL; lir = lir->next) {
- lir->offset = offset;
- offset += 4;
- }
- return offset;
-}
-
-/* Determine the offset of each literal field */
-static int assignLiteralOffset(CompilationUnit *cUnit, int offset)
-{
- /* Reserved for the size field of class pointer pool */
- offset += 4;
- offset = assignLiteralOffsetCommon(cUnit->classPointerList, offset);
- offset = assignLiteralOffsetCommon(cUnit->literalList, offset);
- return offset;
-}
-
-/*
- * Translation layout in the code cache. Note that the codeAddress pointer
- * in JitTable will point directly to the code body (field codeAddress). The
- * chain cell offset codeAddress - 4, and the address of the trace profile
- * counter is at codeAddress - 8.
- *
- * +----------------------------+
- * | Trace Profile Counter addr | -> 4 bytes (PROF_COUNTER_ADDR_SIZE)
- * +----------------------------+
- * +--| Offset to chain cell counts| -> 4 bytes (CHAIN_CELL_OFFSET_SIZE)
- * | +----------------------------+
- * | | Trace profile code | <- entry point when profiling
- * | . - - - - - - - .
- * | | Code body | <- entry point when not profiling
- * | . .
- * | | |
- * | +----------------------------+
- * | | Chaining Cells | -> 16/20 bytes, 4 byte aligned
- * | . .
- * | . .
- * | | |
- * | +----------------------------+
- * | | Gap for large switch stmt | -> # cases >= MAX_CHAINED_SWITCH_CASES
- * | +----------------------------+
- * +->| Chaining cell counts | -> 8 bytes, chain cell counts by type
- * +----------------------------+
- * | Trace description | -> variable sized
- * . .
- * | |
- * +----------------------------+
- * | # Class pointer pool size | -> 4 bytes
- * +----------------------------+
- * | Class pointer pool | -> 4-byte aligned, variable size
- * . .
- * . .
- * | |
- * +----------------------------+
- * | Literal pool | -> 4-byte aligned, variable size
- * . .
- * . .
- * | |
- * +----------------------------+
- *
- */
-
-#define PROF_COUNTER_ADDR_SIZE 4
-#define CHAIN_CELL_OFFSET_SIZE 4
-
-/*
- * Utility functions to navigate various parts in a trace. If we change the
- * layout/offset in the future, we just modify these functions and we don't need
- * to propagate the changes to all the use cases.
- */
-static inline char *getTraceBase(const JitEntry *p)
-{
- return (char*)p->codeAddress -
- (PROF_COUNTER_ADDR_SIZE + CHAIN_CELL_OFFSET_SIZE);
-}
-
-/* Handy function to retrieve the profile count */
-static inline JitTraceCounter_t getProfileCount(const JitEntry *entry)
-{
- if (entry->dPC == 0 || entry->codeAddress == 0 ||
- entry->codeAddress == dvmCompilerGetInterpretTemplate())
- return 0;
-
- JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry);
-
- return **p;
-}
-
-/* Handy function to reset the profile count */
-static inline void resetProfileCount(const JitEntry *entry)
-{
- if (entry->dPC == 0 || entry->codeAddress == 0 ||
- entry->codeAddress == dvmCompilerGetInterpretTemplate())
- return;
-
- JitTraceCounter_t **p = (JitTraceCounter_t **) getTraceBase(entry);
-
- **p = 0;
-}
-
-/* Get the pointer of the chain cell count */
-static inline ChainCellCounts* getChainCellCountsPointer(const char *base)
-{
- /* 4 is the size of the profile count */
- u4 *chainCellOffsetP = (u4 *) (base + PROF_COUNTER_ADDR_SIZE);
- u4 chainCellOffset = *chainCellOffsetP;
- return (ChainCellCounts *) ((char *) chainCellOffsetP + chainCellOffset);
-}
-
-/* Get the size of all chaining cells */
-static inline u4 getChainCellSize(const ChainCellCounts* pChainCellCounts)
-{
- int cellSize = 0;
- int i;
-
- /* Get total count of chain cells */
- for (i = 0; i < kChainingCellGap; i++) {
- if (i != kChainingCellInvokePredicted) {
- cellSize += pChainCellCounts->u.count[i] *
- (CHAIN_CELL_NORMAL_SIZE >> 2);
- } else {
- cellSize += pChainCellCounts->u.count[i] *
- (CHAIN_CELL_PREDICTED_SIZE >> 2);
- }
- }
- return cellSize;
-}
-
-/* Get the starting pointer of the trace description section */
-static JitTraceDescription* getTraceDescriptionPointer(const char *base)
-{
- ChainCellCounts* pCellCounts = getChainCellCountsPointer(base);
- return (JitTraceDescription*) ((char*)pCellCounts + sizeof(*pCellCounts));
-}
-
-/* Get the size of a trace description */
-static int getTraceDescriptionSize(const JitTraceDescription *desc)
-{
- int runCount;
- /* Trace end is always of non-meta type (ie isCode == true) */
- for (runCount = 0; ; runCount++) {
- if (desc->trace[runCount].isCode &&
- desc->trace[runCount].info.frag.runEnd)
- break;
- }
- return sizeof(JitTraceDescription) + ((runCount+1) * sizeof(JitTraceRun));
-}
-
-#if defined(SIGNATURE_BREAKPOINT)
-/* Inspect the assembled instruction stream to find potential matches */
-static void matchSignatureBreakpoint(const CompilationUnit *cUnit,
- unsigned int size)
-{
- unsigned int i, j;
- u4 *ptr = (u4 *) cUnit->codeBuffer;
-
- for (i = 0; i < size - gDvmJit.signatureBreakpointSize + 1; i++) {
- if (ptr[i] == gDvmJit.signatureBreakpoint[0]) {
- for (j = 1; j < gDvmJit.signatureBreakpointSize; j++) {
- if (ptr[i+j] != gDvmJit.signatureBreakpoint[j]) {
- break;
- }
- }
- if (j == gDvmJit.signatureBreakpointSize) {
- ALOGD("Signature match starting from offset %#x (%d words)",
- i*4, gDvmJit.signatureBreakpointSize);
- int descSize = getTraceDescriptionSize(cUnit->traceDesc);
- JitTraceDescription *newCopy =
- (JitTraceDescription *) malloc(descSize);
- memcpy(newCopy, cUnit->traceDesc, descSize);
- dvmCompilerWorkEnqueue(NULL, kWorkOrderTraceDebug, newCopy);
- break;
- }
- }
- }
-}
-#endif
-
-/*
- * Go over each instruction in the list and calculate the offset from the top
- * before sending them off to the assembler. If out-of-range branch distance is
- * seen rearrange the instructions a bit to correct it.
- */
-void dvmCompilerAssembleLIR(CompilationUnit *cUnit, JitTranslationInfo *info)
-{
- MipsLIR *mipsLIR;
- int offset = 0;
- int i;
- ChainCellCounts chainCellCounts;
- int descSize = (cUnit->jitMode == kJitMethod) ?
- 0 : getTraceDescriptionSize(cUnit->traceDesc);
- int chainingCellGap = 0;
-
- info->instructionSet = cUnit->instructionSet;
-
- /* Beginning offset needs to allow space for chain cell offset */
- for (mipsLIR = (MipsLIR *) cUnit->firstLIRInsn;
- mipsLIR;
- mipsLIR = NEXT_LIR(mipsLIR)) {
- mipsLIR->generic.offset = offset;
- if (mipsLIR->opcode >= 0 && !mipsLIR->flags.isNop) {
- mipsLIR->flags.size = EncodingMap[mipsLIR->opcode].size * 2;
- offset += mipsLIR->flags.size;
- }
- /* Pseudo opcodes don't consume space */
- }
-
- /* Const values have to be word aligned */
- offset = (offset + 3) & ~3;
-
- u4 chainCellOffset = offset;
- MipsLIR *chainCellOffsetLIR = NULL;
-
- if (cUnit->jitMode != kJitMethod) {
- /*
- * Get the gap (# of u4) between the offset of chaining cell count and
- * the bottom of real chaining cells. If the translation has chaining
- * cells, the gap is guaranteed to be multiples of 4.
- */
- chainingCellGap = (offset - cUnit->chainingCellBottom->offset) >> 2;
-
- /* Add space for chain cell counts & trace description */
- chainCellOffsetLIR = (MipsLIR *) cUnit->chainCellOffsetLIR;
- assert(chainCellOffsetLIR);
- assert(chainCellOffset < 0x10000);
- assert(chainCellOffsetLIR->opcode == kMips32BitData &&
- chainCellOffsetLIR->operands[0] == CHAIN_CELL_OFFSET_TAG);
-
- /*
- * Adjust the CHAIN_CELL_OFFSET_TAG LIR's offset to remove the
- * space occupied by the pointer to the trace profiling counter.
- */
- chainCellOffsetLIR->operands[0] = chainCellOffset - 4;
-
- offset += sizeof(chainCellCounts) + descSize;
-
- assert((offset & 0x3) == 0); /* Should still be word aligned */
- }
-
- /* Set up offsets for literals */
- cUnit->dataOffset = offset;
-
- /*
- * Assign each class pointer/constant an offset from the beginning of the
- * compilation unit.
- */
- offset = assignLiteralOffset(cUnit, offset);
-
- cUnit->totalSize = offset;
-
- if (gDvmJit.codeCacheByteUsed + cUnit->totalSize > gDvmJit.codeCacheSize) {
- gDvmJit.codeCacheFull = true;
- info->discardResult = true;
- return;
- }
-
- /* Allocate enough space for the code block */
- cUnit->codeBuffer = (unsigned char *)dvmCompilerNew(chainCellOffset, true);
- if (cUnit->codeBuffer == NULL) {
- ALOGE("Code buffer allocation failure");
- info->discardResult = true;
- return;
- }
-
- /*
- * Attempt to assemble the trace. Note that assembleInstructions
- * may rewrite the code sequence and request a retry.
- */
- cUnit->assemblerStatus = assembleInstructions(cUnit,
- (intptr_t) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed);
-
- switch(cUnit->assemblerStatus) {
- case kSuccess:
- break;
- case kRetryAll:
- if (cUnit->assemblerRetries < MAX_ASSEMBLER_RETRIES) {
- if (cUnit->jitMode != kJitMethod) {
- /* Restore pristine chain cell marker on retry */
- chainCellOffsetLIR->operands[0] = CHAIN_CELL_OFFSET_TAG;
- }
- return;
- }
- /* Too many retries - reset and try cutting the trace in half */
- cUnit->assemblerRetries = 0;
- cUnit->assemblerStatus = kRetryHalve;
- return;
- case kRetryHalve:
- return;
- default:
- ALOGE("Unexpected assembler status: %d", cUnit->assemblerStatus);
- dvmAbort();
- }
-
-#if defined(SIGNATURE_BREAKPOINT)
- if (info->discardResult == false && gDvmJit.signatureBreakpoint != NULL &&
- chainCellOffset/4 >= gDvmJit.signatureBreakpointSize) {
- matchSignatureBreakpoint(cUnit, chainCellOffset/4);
- }
-#endif
-
- /* Don't go all the way if the goal is just to get the verbose output */
- if (info->discardResult) return;
-
- /*
- * The cache might disappear - acquire lock and check version
- * Continue holding lock until translation cache update is complete.
- * These actions are required here in the compiler thread because
- * it is unaffected by suspend requests and doesn't know if a
- * translation cache flush is in progress.
- */
- dvmLockMutex(&gDvmJit.compilerLock);
- if (info->cacheVersion != gDvmJit.cacheVersion) {
- /* Cache changed - discard current translation */
- info->discardResult = true;
- info->codeAddress = NULL;
- dvmUnlockMutex(&gDvmJit.compilerLock);
- return;
- }
-
- cUnit->baseAddr = (char *) gDvmJit.codeCache + gDvmJit.codeCacheByteUsed;
- gDvmJit.codeCacheByteUsed += offset;
-
- UNPROTECT_CODE_CACHE(cUnit->baseAddr, offset);
-
- /* Install the code block */
- memcpy((char*)cUnit->baseAddr, cUnit->codeBuffer, chainCellOffset);
- gDvmJit.numCompilations++;
-
- if (cUnit->jitMode != kJitMethod) {
- /* Install the chaining cell counts */
- for (i=0; i< kChainingCellGap; i++) {
- chainCellCounts.u.count[i] = cUnit->numChainingCells[i];
- }
-
- /* Set the gap number in the chaining cell count structure */
- chainCellCounts.u.count[kChainingCellGap] = chainingCellGap;
-
- memcpy((char*)cUnit->baseAddr + chainCellOffset, &chainCellCounts,
- sizeof(chainCellCounts));
-
- /* Install the trace description */
- memcpy((char*) cUnit->baseAddr + chainCellOffset +
- sizeof(chainCellCounts),
- cUnit->traceDesc, descSize);
- }
-
- /* Write the literals directly into the code cache */
- installLiteralPools(cUnit);
-
- /* Flush dcache and invalidate the icache to maintain coherence */
- dvmCompilerCacheFlush((long)cUnit->baseAddr,
- (long)((char *) cUnit->baseAddr + offset));
-
- UPDATE_CODE_CACHE_PATCHES();
-
- PROTECT_CODE_CACHE(cUnit->baseAddr, offset);
-
- /* Translation cache update complete - release lock */
- dvmUnlockMutex(&gDvmJit.compilerLock);
-
- /* Record code entry point and instruction set */
- info->codeAddress = (char*)cUnit->baseAddr + cUnit->headerSize;
- /* transfer the size of the profiling code */
- info->profileCodeSize = cUnit->profileCodeSize;
-}
-
-/*
- * Returns the skeleton bit pattern associated with an opcode. All
- * variable fields are zeroed.
- */
-static u4 getSkeleton(MipsOpCode op)
-{
- return EncodingMap[op].skeleton;
-}
-
-static u4 assembleChainingBranch(int branchOffset, bool thumbTarget)
-{
- return getSkeleton(kMipsJal) | ((branchOffset & 0x0FFFFFFF) >> 2);
-}
-
-/*
- * Perform translation chain operation.
- * For MIPS, we'll use a JAL instruction to generate an
- * unconditional chaining branch of up to 256M. The JAL
- * instruction also has a restriction that the jump target
- * must be in the same 256M page as the JAL instruction's
- * delay slot address.
- * If the target is out of JAL's range, don't chain.
- * If one or more threads is suspended, don't chain.
- */
-void* dvmJitChain(void* tgtAddr, u4* branchAddr)
-{
- u4 newInst;
-
- /*
- * Only chain translations when there is no urge to ask all threads to
- * suspend themselves via the interpreter.
- */
- if ((gDvmJit.pProfTable != NULL) && (gDvm.sumThreadSuspendCount == 0) &&
- (gDvmJit.codeCacheFull == false) &&
- ((((int) tgtAddr) & 0xF0000000) == (((int) branchAddr+4) & 0xF0000000))) {
- gDvmJit.translationChains++;
-
- COMPILER_TRACE_CHAINING(
- ALOGD("Jit Runtime: chaining 0x%x to 0x%x",
- (int) branchAddr, (int) tgtAddr & -2));
-
- newInst = assembleChainingBranch((int) tgtAddr & -2, 0);
-
- UNPROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
-
- *branchAddr = newInst;
- dvmCompilerCacheFlush((long)branchAddr, (long)branchAddr + 4);
- UPDATE_CODE_CACHE_PATCHES();
-
- PROTECT_CODE_CACHE(branchAddr, sizeof(*branchAddr));
-
- gDvmJit.hasNewChain = true;
- }
-
- return tgtAddr;
-}
-
-#if !defined(WITH_SELF_VERIFICATION)
-/*
- * Attempt to enqueue a work order to patch an inline cache for a predicted
- * chaining cell for virtual/interface calls.
- */
-static void inlineCachePatchEnqueue(PredictedChainingCell *cellAddr,
- PredictedChainingCell *newContent)
-{
- /*
- * Make sure only one thread gets here since updating the cell (ie fast
- * path and queueing the request (ie the queued path) have to be done
- * in an atomic fashion.
- */
- dvmLockMutex(&gDvmJit.compilerICPatchLock);
-
- /* Fast path for uninitialized chaining cell */
- if (cellAddr->clazz == NULL &&
- cellAddr->branch == PREDICTED_CHAIN_BX_PAIR_INIT) {
-
- UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
-
- cellAddr->method = newContent->method;
- cellAddr->branch = newContent->branch;
-
- /*
- * The update order matters - make sure clazz is updated last since it
- * will bring the uninitialized chaining cell to life.
- */
- android_atomic_release_store((int32_t)newContent->clazz,
- (volatile int32_t *)(void*) &cellAddr->clazz);
- dvmCompilerCacheFlush((long) cellAddr, (long) (cellAddr+1));
- UPDATE_CODE_CACHE_PATCHES();
-
- PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
-
-#if defined(WITH_JIT_TUNING)
- gDvmJit.icPatchInit++;
-#endif
- /* Check if this is a frequently missed clazz */
- } else if (cellAddr->stagedClazz != newContent->clazz) {
- /* Not proven to be frequent yet - build up the filter cache */
- UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
-
- cellAddr->stagedClazz = newContent->clazz;
-
- UPDATE_CODE_CACHE_PATCHES();
- PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
-
-#if defined(WITH_JIT_TUNING)
- gDvmJit.icPatchRejected++;
-#endif
- /*
- * Different classes but same method implementation - it is safe to just
- * patch the class value without the need to stop the world.
- */
- } else if (cellAddr->method == newContent->method) {
- UNPROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
-
- cellAddr->clazz = newContent->clazz;
- /* No need to flush the cache here since the branch is not patched */
- UPDATE_CODE_CACHE_PATCHES();
-
- PROTECT_CODE_CACHE(cellAddr, sizeof(*cellAddr));
-
-#if defined(WITH_JIT_TUNING)
- gDvmJit.icPatchLockFree++;
-#endif
- /*
- * Cannot patch the chaining cell inline - queue it until the next safe
- * point.
- */
- } else if (gDvmJit.compilerICPatchIndex < COMPILER_IC_PATCH_QUEUE_SIZE) {
- int index = gDvmJit.compilerICPatchIndex++;
- const ClassObject *clazz = newContent->clazz;
-
- gDvmJit.compilerICPatchQueue[index].cellAddr = cellAddr;
- gDvmJit.compilerICPatchQueue[index].cellContent = *newContent;
- gDvmJit.compilerICPatchQueue[index].classDescriptor = clazz->descriptor;
- gDvmJit.compilerICPatchQueue[index].classLoader = clazz->classLoader;
- /* For verification purpose only */
- gDvmJit.compilerICPatchQueue[index].serialNumber = clazz->serialNumber;
-#if defined(WITH_JIT_TUNING)
- gDvmJit.icPatchQueued++;
-#endif
- } else {
- /* Queue is full - just drop this patch request */
-#if defined(WITH_JIT_TUNING)
- gDvmJit.icPatchDropped++;
-#endif
- }
-
- dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
-}
-#endif
-
-/*
- * This method is called from the invoke templates for virtual and interface
- * methods to speculatively setup a chain to the callee. The templates are
- * written in assembly and have setup method, cell, and clazz at r0, r2, and
- * r3 respectively, so there is a unused argument in the list. Upon return one
- * of the following three results may happen:
- * 1) Chain is not setup because the callee is native. Reset the rechain
- * count to a big number so that it will take a long time before the next
- * rechain attempt to happen.
- * 2) Chain is not setup because the callee has not been created yet. Reset
- * the rechain count to a small number and retry in the near future.
- * 3) Ask all other threads to stop before patching this chaining cell.
- * This is required because another thread may have passed the class check
- * but hasn't reached the chaining cell yet to follow the chain. If we
- * patch the content before halting the other thread, there could be a
- * small window for race conditions to happen that it may follow the new
- * but wrong chain to invoke a different method.
- */
-const Method *dvmJitToPatchPredictedChain(const Method *method,
- Thread *self,
- PredictedChainingCell *cell,
- const ClassObject *clazz)
-{
- int newRechainCount = PREDICTED_CHAIN_COUNTER_RECHAIN;
-#if defined(WITH_SELF_VERIFICATION)
- newRechainCount = PREDICTED_CHAIN_COUNTER_AVOID;
- goto done;
-#else
- PredictedChainingCell newCell;
- int baseAddr, tgtAddr;
- if (dvmIsNativeMethod(method)) {
- UNPROTECT_CODE_CACHE(cell, sizeof(*cell));
-
- /*
- * Put a non-zero/bogus value in the clazz field so that it won't
- * trigger immediate patching and will continue to fail to match with
- * a real clazz pointer.
- */
- cell->clazz = (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ;
-
- UPDATE_CODE_CACHE_PATCHES();
- PROTECT_CODE_CACHE(cell, sizeof(*cell));
- goto done;
- }
-
- tgtAddr = (int) dvmJitGetTraceAddr(method->insns);
- baseAddr = (int) cell + 4; // PC is cur_addr + 4
-
- if ((baseAddr & 0xF0000000) != (tgtAddr & 0xF0000000)) {
- COMPILER_TRACE_CHAINING(
- ALOGD("Jit Runtime: predicted chain %p to distant target %s ignored",
- cell, method->name));
- goto done;
- }
-
- /*
- * Compilation not made yet for the callee. Reset the counter to a small
- * value and come back to check soon.
- */
- if ((tgtAddr == 0) ||
- ((void*)tgtAddr == dvmCompilerGetInterpretTemplate())) {
- COMPILER_TRACE_CHAINING(
- ALOGD("Jit Runtime: predicted chain %p to method %s%s delayed",
- cell, method->clazz->descriptor, method->name));
- goto done;
- }
-
- if (cell->clazz == NULL) {
- newRechainCount = self->icRechainCount;
- }
-
- newCell.branch = assembleChainingBranch(tgtAddr, true);
- newCell.delay_slot = getSkeleton(kMipsNop);
- newCell.clazz = clazz;
- newCell.method = method;
- newCell.stagedClazz = NULL;
-
- /*
- * Enter the work order to the queue and the chaining cell will be patched
- * the next time a safe point is entered.
- *
- * If the enqueuing fails reset the rechain count to a normal value so that
- * it won't get indefinitely delayed.
- */
- inlineCachePatchEnqueue(cell, &newCell);
-#endif
-done:
- self->icRechainCount = newRechainCount;
- return method;
-}
-
-/*
- * Patch the inline cache content based on the content passed from the work
- * order.
- */
-void dvmCompilerPatchInlineCache(void)
-{
- int i;
- PredictedChainingCell *minAddr, *maxAddr;
-
- /* Nothing to be done */
- if (gDvmJit.compilerICPatchIndex == 0) return;
-
- /*
- * Since all threads are already stopped we don't really need to acquire
- * the lock. But race condition can be easily introduced in the future w/o
- * paying attention so we still acquire the lock here.
- */
- dvmLockMutex(&gDvmJit.compilerICPatchLock);
-
- UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
-
- //ALOGD("Number of IC patch work orders: %d", gDvmJit.compilerICPatchIndex);
-
- /* Initialize the min/max address range */
- minAddr = (PredictedChainingCell *)
- ((char *) gDvmJit.codeCache + gDvmJit.codeCacheSize);
- maxAddr = (PredictedChainingCell *) gDvmJit.codeCache;
-
- for (i = 0; i < gDvmJit.compilerICPatchIndex; i++) {
- ICPatchWorkOrder *workOrder = &gDvmJit.compilerICPatchQueue[i];
- PredictedChainingCell *cellAddr = workOrder->cellAddr;
- PredictedChainingCell *cellContent = &workOrder->cellContent;
- ClassObject *clazz = dvmFindClassNoInit(workOrder->classDescriptor,
- workOrder->classLoader);
-
- assert(clazz->serialNumber == workOrder->serialNumber);
-
- /* Use the newly resolved clazz pointer */
- cellContent->clazz = clazz;
-
- COMPILER_TRACE_CHAINING(
- ALOGD("Jit Runtime: predicted chain %p from %s to %s (%s) "
- "patched",
- cellAddr,
- cellAddr->clazz->descriptor,
- cellContent->clazz->descriptor,
- cellContent->method->name));
-
- /* Patch the chaining cell */
- *cellAddr = *cellContent;
- minAddr = (cellAddr < minAddr) ? cellAddr : minAddr;
- maxAddr = (cellAddr > maxAddr) ? cellAddr : maxAddr;
- }
-
- /* Then synchronize the I/D cache */
- dvmCompilerCacheFlush((long) minAddr, (long) (maxAddr+1));
- UPDATE_CODE_CACHE_PATCHES();
-
- PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
-
- gDvmJit.compilerICPatchIndex = 0;
- dvmUnlockMutex(&gDvmJit.compilerICPatchLock);
-}
-
-/*
- * Unchain a trace given the starting address of the translation
- * in the code cache. Refer to the diagram in dvmCompilerAssembleLIR.
- * Returns the address following the last cell unchained. Note that
- * the incoming codeAddr is a thumb code address, and therefore has
- * the low bit set.
- */
-static u4* unchainSingle(JitEntry *trace)
-{
- const char *base = getTraceBase(trace);
- ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base);
- int cellSize = getChainCellSize(pChainCellCounts);
- u4* pChainCells;
- int i,j;
- PredictedChainingCell *predChainCell;
-
- if (cellSize == 0)
- return (u4 *) pChainCellCounts;
-
- /* Locate the beginning of the chain cell region */
- pChainCells = ((u4 *) pChainCellCounts) - cellSize -
- pChainCellCounts->u.count[kChainingCellGap];
-
- /* The cells are sorted in order - walk through them and reset */
- for (i = 0; i < kChainingCellGap; i++) {
- int elemSize = CHAIN_CELL_NORMAL_SIZE >> 2; /* In 32-bit words */
- if (i == kChainingCellInvokePredicted) {
- elemSize = CHAIN_CELL_PREDICTED_SIZE >> 2;
- }
-
- for (j = 0; j < pChainCellCounts->u.count[i]; j++) {
- int targetOffset;
- switch(i) {
- case kChainingCellNormal:
- targetOffset = offsetof(Thread,
- jitToInterpEntries.dvmJitToInterpNormal);
- break;
- case kChainingCellHot:
- case kChainingCellInvokeSingleton:
- targetOffset = offsetof(Thread,
- jitToInterpEntries.dvmJitToInterpTraceSelect);
- break;
- case kChainingCellInvokePredicted:
- targetOffset = 0;
- predChainCell = (PredictedChainingCell *) pChainCells;
- /*
- * There could be a race on another mutator thread to use
- * this particular predicted cell and the check has passed
- * the clazz comparison. So we cannot safely wipe the
- * method and branch but it is safe to clear the clazz,
- * which serves as the key.
- */
- predChainCell->clazz = PREDICTED_CHAIN_CLAZZ_INIT;
- break;
-#if defined(WITH_SELF_VERIFICATION)
- case kChainingCellBackwardBranch:
- targetOffset = offsetof(Thread,
- jitToInterpEntries.dvmJitToInterpBackwardBranch);
- break;
-#else
- case kChainingCellBackwardBranch:
- targetOffset = offsetof(Thread,
- jitToInterpEntries.dvmJitToInterpNormal);
- break;
-#endif
- default:
- targetOffset = 0; // make gcc happy
- ALOGE("Unexpected chaining type: %d", i);
- dvmAbort(); // dvmAbort OK here - can't safely recover
- }
- COMPILER_TRACE_CHAINING(
- ALOGD("Jit Runtime: unchaining %#x", (int)pChainCells));
- /*
- * Code sequence for a chaining cell is:
- * lw a0, offset(rSELF)
- * jalr ra, a0
- */
- if (i != kChainingCellInvokePredicted) {
- *pChainCells = getSkeleton(kMipsLw) | (r_A0 << 16) |
- targetOffset | (rSELF << 21);
- *(pChainCells+1) = getSkeleton(kMipsJalr) | (r_RA << 11) |
- (r_A0 << 21);
- }
- pChainCells += elemSize; /* Advance by a fixed number of words */
- }
- }
- return pChainCells;
-}
-
-/* Unchain all translation in the cache. */
-void dvmJitUnchainAll()
-{
- u4* lowAddress = NULL;
- u4* highAddress = NULL;
- unsigned int i;
- if (gDvmJit.pJitEntryTable != NULL) {
- COMPILER_TRACE_CHAINING(ALOGD("Jit Runtime: unchaining all"));
- dvmLockMutex(&gDvmJit.tableLock);
-
- UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
-
- for (i = 0; i < gDvmJit.jitTableSize; i++) {
- if (gDvmJit.pJitEntryTable[i].dPC &&
- !gDvmJit.pJitEntryTable[i].u.info.isMethodEntry &&
- gDvmJit.pJitEntryTable[i].codeAddress &&
- (gDvmJit.pJitEntryTable[i].codeAddress !=
- dvmCompilerGetInterpretTemplate())) {
- u4* lastAddress;
- lastAddress = unchainSingle(&gDvmJit.pJitEntryTable[i]);
- if (lowAddress == NULL ||
- (u4*)gDvmJit.pJitEntryTable[i].codeAddress < lowAddress)
- lowAddress = (u4*)gDvmJit.pJitEntryTable[i].codeAddress;
- if (lastAddress > highAddress)
- highAddress = lastAddress;
- }
- }
-
- if (lowAddress && highAddress)
- dvmCompilerCacheFlush((long)lowAddress, (long)highAddress);
-
- UPDATE_CODE_CACHE_PATCHES();
-
- PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
-
- dvmUnlockMutex(&gDvmJit.tableLock);
- gDvmJit.translationChains = 0;
- }
- gDvmJit.hasNewChain = false;
-}
-
-typedef struct jitProfileAddrToLine {
- u4 lineNum;
- u4 bytecodeOffset;
-} jitProfileAddrToLine;
-
-
-/* Callback function to track the bytecode offset/line number relationiship */
-static int addrToLineCb (void *cnxt, u4 bytecodeOffset, u4 lineNum)
-{
- jitProfileAddrToLine *addrToLine = (jitProfileAddrToLine *) cnxt;
-
- /* Best match so far for this offset */
- if (addrToLine->bytecodeOffset >= bytecodeOffset) {
- addrToLine->lineNum = lineNum;
- }
- return 0;
-}
-
-/* Dumps profile info for a single trace */
-static int dumpTraceProfile(JitEntry *p, bool silent, bool reset,
- unsigned long sum)
-{
- int idx;
-
- if (p->codeAddress == NULL) {
- if (!silent)
- ALOGD("TRACEPROFILE NULL");
- return 0;
- }
- if (p->codeAddress == dvmCompilerGetInterpretTemplate()) {
- if (!silent)
- ALOGD("TRACEPROFILE INTERPRET_ONLY");
- return 0;
- }
-
- JitTraceCounter_t count = getProfileCount(p);
- if (reset) {
- resetProfileCount(p);
- }
- if (silent) {
- return count;
- }
- JitTraceDescription *desc = getTraceDescriptionPointer(getTraceBase(p));
- const Method *method = desc->method;
- char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
- jitProfileAddrToLine addrToLine = {0, desc->trace[0].info.frag.startOffset};
-
- /*
- * We may end up decoding the debug information for the same method
- * multiple times, but the tradeoff is we don't need to allocate extra
- * space to store the addr/line mapping. Since this is a debugging feature
- * and done infrequently so the slower but simpler mechanism should work
- * just fine.
- */
- dexDecodeDebugInfo(method->clazz->pDvmDex->pDexFile,
- dvmGetMethodCode(method),
- method->clazz->descriptor,
- method->prototype.protoIdx,
- method->accessFlags,
- addrToLineCb, NULL, &addrToLine);
-
- ALOGD("TRACEPROFILE 0x%08x % 10d %5.2f%% [%#x(+%d), %d] %s%s;%s",
- (int) getTraceBase(p),
- count,
- ((float ) count) / sum * 100.0,
- desc->trace[0].info.frag.startOffset,
- desc->trace[0].info.frag.numInsts,
- addrToLine.lineNum,
- method->clazz->descriptor, method->name, methodDesc);
- free(methodDesc);
-
- /* Find the last fragment (ie runEnd is set) */
- for (idx = 0;
- desc->trace[idx].isCode && !desc->trace[idx].info.frag.runEnd;
- idx++) {
- }
-
- /*
- * runEnd must comes with a JitCodeDesc frag. If isCode is false it must
- * be a meta info field (only used by callsite info for now).
- */
- if (!desc->trace[idx].isCode) {
- const Method *method = (const Method *)
- desc->trace[idx+JIT_TRACE_CUR_METHOD-1].info.meta;
- char *methodDesc = dexProtoCopyMethodDescriptor(&method->prototype);
- /* Print the callee info in the trace */
- ALOGD(" -> %s%s;%s", method->clazz->descriptor, method->name,
- methodDesc);
- }
-
- return count;
-}
-
-/* Create a copy of the trace descriptor of an existing compilation */
-JitTraceDescription *dvmCopyTraceDescriptor(const u2 *pc,
- const JitEntry *knownEntry)
-{
- const JitEntry *jitEntry = knownEntry ? knownEntry
- : dvmJitFindEntry(pc, false);
- if ((jitEntry == NULL) || (jitEntry->codeAddress == 0))
- return NULL;
-
- JitTraceDescription *desc =
- getTraceDescriptionPointer(getTraceBase(jitEntry));
-
- /* Now make a copy and return */
- int descSize = getTraceDescriptionSize(desc);
- JitTraceDescription *newCopy = (JitTraceDescription *) malloc(descSize);
- memcpy(newCopy, desc, descSize);
- return newCopy;
-}
-
-/* qsort callback function */
-static int sortTraceProfileCount(const void *entry1, const void *entry2)
-{
- const JitEntry *jitEntry1 = (const JitEntry *)entry1;
- const JitEntry *jitEntry2 = (const JitEntry *)entry2;
-
- JitTraceCounter_t count1 = getProfileCount(jitEntry1);
- JitTraceCounter_t count2 = getProfileCount(jitEntry2);
- return (count1 == count2) ? 0 : ((count1 > count2) ? -1 : 1);
-}
-
-/* Sort the trace profile counts and dump them */
-void dvmCompilerSortAndPrintTraceProfiles()
-{
- JitEntry *sortedEntries;
- int numTraces = 0;
- unsigned long sum = 0;
- unsigned int i;
-
- /* Make sure that the table is not changing */
- dvmLockMutex(&gDvmJit.tableLock);
-
- /* Sort the entries by descending order */
- sortedEntries = (JitEntry *)malloc(sizeof(JitEntry) * gDvmJit.jitTableSize);
- if (sortedEntries == NULL)
- goto done;
- memcpy(sortedEntries, gDvmJit.pJitEntryTable,
- sizeof(JitEntry) * gDvmJit.jitTableSize);
- qsort(sortedEntries, gDvmJit.jitTableSize, sizeof(JitEntry),
- sortTraceProfileCount);
-
- /* Analyze the sorted entries */
- for (i=0; i < gDvmJit.jitTableSize; i++) {
- if (sortedEntries[i].dPC != 0) {
- sum += dumpTraceProfile(&sortedEntries[i],
- true /* silent */,
- false /* reset */,
- 0);
- numTraces++;
- }
- }
- if (numTraces == 0)
- numTraces = 1;
- if (sum == 0) {
- sum = 1;
- }
-
- ALOGD("JIT: Average execution count -> %d",(int)(sum / numTraces));
-
- /* Dump the sorted entries. The count of each trace will be reset to 0. */
- for (i=0; i < gDvmJit.jitTableSize; i++) {
- if (sortedEntries[i].dPC != 0) {
- dumpTraceProfile(&sortedEntries[i],
- false /* silent */,
- true /* reset */,
- sum);
- }
- }
-
- for (i=0; i < gDvmJit.jitTableSize && i < 10; i++) {
- /* Stip interpreter stubs */
- if (sortedEntries[i].codeAddress == dvmCompilerGetInterpretTemplate()) {
- continue;
- }
- JitTraceDescription* desc =
- dvmCopyTraceDescriptor(NULL, &sortedEntries[i]);
- if (desc) {
- dvmCompilerWorkEnqueue(sortedEntries[i].dPC,
- kWorkOrderTraceDebug, desc);
- }
- }
-
- free(sortedEntries);
-done:
- dvmUnlockMutex(&gDvmJit.tableLock);
- return;
-}
-
-static void findClassPointersSingleTrace(char *base, void (*callback)(void *))
-{
- unsigned int chainTypeIdx, chainIdx;
- ChainCellCounts *pChainCellCounts = getChainCellCountsPointer(base);
- int cellSize = getChainCellSize(pChainCellCounts);
- /* Scan the chaining cells */
- if (cellSize) {
- /* Locate the beginning of the chain cell region */
- u4 *pChainCells = ((u4 *) pChainCellCounts) - cellSize -
- pChainCellCounts->u.count[kChainingCellGap];
- /* The cells are sorted in order - walk through them */
- for (chainTypeIdx = 0; chainTypeIdx < kChainingCellGap;
- chainTypeIdx++) {
- if (chainTypeIdx != kChainingCellInvokePredicted) {
- /* In 32-bit words */
- pChainCells += (CHAIN_CELL_NORMAL_SIZE >> 2) *
- pChainCellCounts->u.count[chainTypeIdx];
- continue;
- }
- for (chainIdx = 0;
- chainIdx < pChainCellCounts->u.count[chainTypeIdx];
- chainIdx++) {
- PredictedChainingCell *cell =
- (PredictedChainingCell *) pChainCells;
- /*
- * Report the cell if it contains a sane class
- * pointer.
- */
- if (cell->clazz != NULL &&
- cell->clazz !=
- (ClassObject *) PREDICTED_CHAIN_FAKE_CLAZZ) {
- callback(&cell->clazz);
- }
- pChainCells += CHAIN_CELL_PREDICTED_SIZE >> 2;
- }
- }
- }
-
- /* Scan the class pointer pool */
- JitTraceDescription *desc = getTraceDescriptionPointer(base);
- int descSize = getTraceDescriptionSize(desc);
- int *classPointerP = (int *) ((char *) desc + descSize);
- int numClassPointers = *classPointerP++;
- for (; numClassPointers; numClassPointers--, classPointerP++) {
- callback(classPointerP);
- }
-}
-
-/*
- * Scan class pointers in each translation and pass its address to the callback
- * function. Currently such a pointers can be found in the pointer pool and the
- * clazz field in the predicted chaining cells.
- */
-void dvmJitScanAllClassPointers(void (*callback)(void *))
-{
- UNPROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
-
- /* Handle the inflight compilation first */
- if (gDvmJit.inflightBaseAddr)
- findClassPointersSingleTrace((char *) gDvmJit.inflightBaseAddr,
- callback);
-
- if (gDvmJit.pJitEntryTable != NULL) {
- unsigned int traceIdx;
- dvmLockMutex(&gDvmJit.tableLock);
- for (traceIdx = 0; traceIdx < gDvmJit.jitTableSize; traceIdx++) {
- const JitEntry *entry = &gDvmJit.pJitEntryTable[traceIdx];
- if (entry->dPC &&
- !entry->u.info.isMethodEntry &&
- entry->codeAddress &&
- (entry->codeAddress != dvmCompilerGetInterpretTemplate())) {
- char *base = getTraceBase(entry);
- findClassPointersSingleTrace(base, callback);
- }
- }
- dvmUnlockMutex(&gDvmJit.tableLock);
- }
- UPDATE_CODE_CACHE_PATCHES();
-
- PROTECT_CODE_CACHE(gDvmJit.codeCache, gDvmJit.codeCacheByteUsed);
-}
-
-/*
- * Provide the final touch on the class object pointer pool to install the
- * actual pointers. The thread has to be in the running state.
- */
-void dvmJitInstallClassObjectPointers(CompilationUnit *cUnit, char *codeAddress)
-{
- char *base = codeAddress - cUnit->headerSize;
-
- /* Scan the class pointer pool */
- JitTraceDescription *desc = getTraceDescriptionPointer(base);
- int descSize = getTraceDescriptionSize(desc);
- intptr_t *classPointerP = (int *) ((char *) desc + descSize);
- int numClassPointers = *(int *)classPointerP++;
- intptr_t *startClassPointerP = classPointerP;
-
- /*
- * Change the thread state to VM_RUNNING so that GC won't be happening
- * when the assembler looks up the class pointers. May suspend the current
- * thread if there is a pending request before the state is actually
- * changed to RUNNING.
- */
- dvmChangeStatus(gDvmJit.compilerThread, THREAD_RUNNING);
-
- /*
- * Unprotecting the code cache will need to acquire the code cache
- * protection lock first. Doing so after the state change may increase the
- * time spent in the RUNNING state (which may delay the next GC request
- * should there be contention on codeCacheProtectionLock). In practice
- * this is probably not going to happen often since a GC is just served.
- * More importantly, acquiring the lock before the state change will
- * cause deadlock (b/4192964).
- */
- UNPROTECT_CODE_CACHE(startClassPointerP,
- numClassPointers * sizeof(intptr_t));
-#if defined(WITH_JIT_TUNING)
- u8 startTime = dvmGetRelativeTimeUsec();
-#endif
- for (;numClassPointers; numClassPointers--) {
- CallsiteInfo *callsiteInfo = (CallsiteInfo *) *classPointerP;
- ClassObject *clazz = dvmFindClassNoInit(
- callsiteInfo->classDescriptor, callsiteInfo->classLoader);
- assert(!strcmp(clazz->descriptor, callsiteInfo->classDescriptor));
- *classPointerP++ = (intptr_t) clazz;
- }
-
- /*
- * Register the base address so that if GC kicks in after the thread state
- * has been changed to VMWAIT and before the compiled code is registered
- * in the JIT table, its content can be patched if class objects are
- * moved.
- */
- gDvmJit.inflightBaseAddr = base;
-
-#if defined(WITH_JIT_TUNING)
- u8 blockTime = dvmGetRelativeTimeUsec() - startTime;
- gDvmJit.compilerThreadBlockGCTime += blockTime;
- if (blockTime > gDvmJit.maxCompilerThreadBlockGCTime)
- gDvmJit.maxCompilerThreadBlockGCTime = blockTime;
- gDvmJit.numCompilerThreadBlockGC++;
-#endif
- UPDATE_CODE_CACHE_PATCHES();
-
- PROTECT_CODE_CACHE(startClassPointerP, numClassPointers * sizeof(intptr_t));
-
- /* Change the thread state back to VMWAIT */
- dvmChangeStatus(gDvmJit.compilerThread, THREAD_VMWAIT);
-}
-
-#if defined(WITH_SELF_VERIFICATION)
-/*
- * The following are used to keep compiled loads and stores from modifying
- * memory during self verification mode.
- *
- * Stores do not modify memory. Instead, the address and value pair are stored
- * into heapSpace. Addresses within heapSpace are unique. For accesses smaller
- * than a word, the word containing the address is loaded first before being
- * updated.
- *
- * Loads check heapSpace first and return data from there if an entry exists.
- * Otherwise, data is loaded from memory as usual.
- */
-
-/* Used to specify sizes of memory operations */
-enum {
- kSVByte,
- kSVSignedByte,
- kSVHalfword,
- kSVSignedHalfword,
- kSVWord,
- kSVDoubleword,
- kSVVariable,
-};
-
-/* Load the value of a decoded register from the stack */
-static int selfVerificationMemRegLoad(int* sp, int reg)
-{
-assert(0); /* MIPSTODO retarg func */
- return *(sp + reg);
-}
-
-/* Load the value of a decoded doubleword register from the stack */
-static s8 selfVerificationMemRegLoadDouble(int* sp, int reg)
-{
-assert(0); /* MIPSTODO retarg func */
- return *((s8*)(sp + reg));
-}
-
-/* Store the value of a decoded register out to the stack */
-static void selfVerificationMemRegStore(int* sp, int data, int reg)
-{
-assert(0); /* MIPSTODO retarg func */
- *(sp + reg) = data;
-}
-
-/* Store the value of a decoded doubleword register out to the stack */
-static void selfVerificationMemRegStoreDouble(int* sp, s8 data, int reg)
-{
-assert(0); /* MIPSTODO retarg func */
- *((s8*)(sp + reg)) = data;
-}
-
-/*
- * Load the specified size of data from the specified address, checking
- * heapSpace first if Self Verification mode wrote to it previously, and
- * falling back to actual memory otherwise.
- */
-static int selfVerificationLoad(int addr, int size)
-{
-assert(0); /* MIPSTODO retarg func */
- Thread *self = dvmThreadSelf();
- ShadowSpace *shadowSpace = self->shadowSpace;
- ShadowHeap *heapSpacePtr;
-
- int data;
- int maskedAddr = addr & 0xFFFFFFFC;
- int alignment = addr & 0x3;
-
- for (heapSpacePtr = shadowSpace->heapSpace;
- heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
- if (heapSpacePtr->addr == maskedAddr) {
- addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
- break;
- }
- }
-
- switch (size) {
- case kSVByte:
- data = *((u1*) addr);
- break;
- case kSVSignedByte:
- data = *((s1*) addr);
- break;
- case kSVHalfword:
- data = *((u2*) addr);
- break;
- case kSVSignedHalfword:
- data = *((s2*) addr);
- break;
- case kSVWord:
- data = *((u4*) addr);
- break;
- default:
- ALOGE("*** ERROR: BAD SIZE IN selfVerificationLoad: %d", size);
- data = 0;
- dvmAbort();
- }
-
- //ALOGD("*** HEAP LOAD: Addr: %#x Data: %#x Size: %d", addr, data, size);
- return data;
-}
-
-/* Like selfVerificationLoad, but specifically for doublewords */
-static s8 selfVerificationLoadDoubleword(int addr)
-{
-assert(0); /* MIPSTODO retarg func */
- Thread *self = dvmThreadSelf();
- ShadowSpace* shadowSpace = self->shadowSpace;
- ShadowHeap* heapSpacePtr;
-
- int addr2 = addr+4;
- unsigned int data = *((unsigned int*) addr);
- unsigned int data2 = *((unsigned int*) addr2);
-
- for (heapSpacePtr = shadowSpace->heapSpace;
- heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
- if (heapSpacePtr->addr == addr) {
- data = heapSpacePtr->data;
- } else if (heapSpacePtr->addr == addr2) {
- data2 = heapSpacePtr->data;
- }
- }
-
- //ALOGD("*** HEAP LOAD DOUBLEWORD: Addr: %#x Data: %#x Data2: %#x",
- // addr, data, data2);
- return (((s8) data2) << 32) | data;
-}
-
-/*
- * Handles a store of a specified size of data to a specified address.
- * This gets logged as an addr/data pair in heapSpace instead of modifying
- * memory. Addresses in heapSpace are unique, and accesses smaller than a
- * word pull the entire word from memory first before updating.
- */
-static void selfVerificationStore(int addr, int data, int size)
-{
-assert(0); /* MIPSTODO retarg func */
- Thread *self = dvmThreadSelf();
- ShadowSpace *shadowSpace = self->shadowSpace;
- ShadowHeap *heapSpacePtr;
-
- int maskedAddr = addr & 0xFFFFFFFC;
- int alignment = addr & 0x3;
-
- //ALOGD("*** HEAP STORE: Addr: %#x Data: %#x Size: %d", addr, data, size);
-
- for (heapSpacePtr = shadowSpace->heapSpace;
- heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
- if (heapSpacePtr->addr == maskedAddr) break;
- }
-
- if (heapSpacePtr == shadowSpace->heapSpaceTail) {
- heapSpacePtr->addr = maskedAddr;
- heapSpacePtr->data = *((unsigned int*) maskedAddr);
- shadowSpace->heapSpaceTail++;
- }
-
- addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
- switch (size) {
- case kSVByte:
- *((u1*) addr) = data;
- break;
- case kSVSignedByte:
- *((s1*) addr) = data;
- break;
- case kSVHalfword:
- *((u2*) addr) = data;
- break;
- case kSVSignedHalfword:
- *((s2*) addr) = data;
- break;
- case kSVWord:
- *((u4*) addr) = data;
- break;
- default:
- ALOGE("*** ERROR: BAD SIZE IN selfVerificationSave: %d", size);
- dvmAbort();
- }
-}
-
-/* Like selfVerificationStore, but specifically for doublewords */
-static void selfVerificationStoreDoubleword(int addr, s8 double_data)
-{
-assert(0); /* MIPSTODO retarg func */
- Thread *self = dvmThreadSelf();
- ShadowSpace *shadowSpace = self->shadowSpace;
- ShadowHeap *heapSpacePtr;
-
- int addr2 = addr+4;
- int data = double_data;
- int data2 = double_data >> 32;
- bool store1 = false, store2 = false;
-
- //ALOGD("*** HEAP STORE DOUBLEWORD: Addr: %#x Data: %#x, Data2: %#x",
- // addr, data, data2);
-
- for (heapSpacePtr = shadowSpace->heapSpace;
- heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
- if (heapSpacePtr->addr == addr) {
- heapSpacePtr->data = data;
- store1 = true;
- } else if (heapSpacePtr->addr == addr2) {
- heapSpacePtr->data = data2;
- store2 = true;
- }
- }
-
- if (!store1) {
- shadowSpace->heapSpaceTail->addr = addr;
- shadowSpace->heapSpaceTail->data = data;
- shadowSpace->heapSpaceTail++;
- }
- if (!store2) {
- shadowSpace->heapSpaceTail->addr = addr2;
- shadowSpace->heapSpaceTail->data = data2;
- shadowSpace->heapSpaceTail++;
- }
-}
-
-/*
- * Decodes the memory instruction at the address specified in the link
- * register. All registers (r0-r12,lr) and fp registers (d0-d15) are stored
- * consecutively on the stack beginning at the specified stack pointer.
- * Calls the proper Self Verification handler for the memory instruction and
- * updates the link register to point past the decoded memory instruction.
- */
-void dvmSelfVerificationMemOpDecode(int lr, int* sp)
-{
-assert(0); /* MIPSTODO retarg func */
- enum {
- kMemOpLdrPcRel = 0x09, // ldr(3) [01001] rd[10..8] imm_8[7..0]
- kMemOpRRR = 0x0A, // Full opcode is 7 bits
- kMemOp2Single = 0x0A, // Used for Vstrs and Vldrs
- kMemOpRRR2 = 0x0B, // Full opcode is 7 bits
- kMemOp2Double = 0x0B, // Used for Vstrd and Vldrd
- kMemOpStrRRI5 = 0x0C, // str(1) [01100] imm_5[10..6] rn[5..3] rd[2..0]
- kMemOpLdrRRI5 = 0x0D, // ldr(1) [01101] imm_5[10..6] rn[5..3] rd[2..0]
- kMemOpStrbRRI5 = 0x0E, // strb(1) [01110] imm_5[10..6] rn[5..3] rd[2..0]
- kMemOpLdrbRRI5 = 0x0F, // ldrb(1) [01111] imm_5[10..6] rn[5..3] rd[2..0]
- kMemOpStrhRRI5 = 0x10, // strh(1) [10000] imm_5[10..6] rn[5..3] rd[2..0]
- kMemOpLdrhRRI5 = 0x11, // ldrh(1) [10001] imm_5[10..6] rn[5..3] rd[2..0]
- kMemOpLdrSpRel = 0x13, // ldr(4) [10011] rd[10..8] imm_8[7..0]
- kMemOpStmia = 0x18, // stmia [11000] rn[10..8] reglist [7..0]
- kMemOpLdmia = 0x19, // ldmia [11001] rn[10..8] reglist [7..0]
- kMemOpStrRRR = 0x28, // str(2) [0101000] rm[8..6] rn[5..3] rd[2..0]
- kMemOpStrhRRR = 0x29, // strh(2) [0101001] rm[8..6] rn[5..3] rd[2..0]
- kMemOpStrbRRR = 0x2A, // strb(2) [0101010] rm[8..6] rn[5..3] rd[2..0]
- kMemOpLdrsbRRR = 0x2B, // ldrsb [0101011] rm[8..6] rn[5..3] rd[2..0]
- kMemOpLdrRRR = 0x2C, // ldr(2) [0101100] rm[8..6] rn[5..3] rd[2..0]
- kMemOpLdrhRRR = 0x2D, // ldrh(2) [0101101] rm[8..6] rn[5..3] rd[2..0]
- kMemOpLdrbRRR = 0x2E, // ldrb(2) [0101110] rm[8..6] rn[5..3] rd[2..0]
- kMemOpLdrshRRR = 0x2F, // ldrsh [0101111] rm[8..6] rn[5..3] rd[2..0]
- kMemOp2Stmia = 0xE88, // stmia [111010001000[ rn[19..16] mask[15..0]
- kMemOp2Ldmia = 0xE89, // ldmia [111010001001[ rn[19..16] mask[15..0]
- kMemOp2Stmia2 = 0xE8A, // stmia [111010001010[ rn[19..16] mask[15..0]
- kMemOp2Ldmia2 = 0xE8B, // ldmia [111010001011[ rn[19..16] mask[15..0]
- kMemOp2Vstr = 0xED8, // Used for Vstrs and Vstrd
- kMemOp2Vldr = 0xED9, // Used for Vldrs and Vldrd
- kMemOp2Vstr2 = 0xEDC, // Used for Vstrs and Vstrd
- kMemOp2Vldr2 = 0xEDD, // Used for Vstrs and Vstrd
- kMemOp2StrbRRR = 0xF80, /* str rt,[rn,rm,LSL #imm] [111110000000]
- rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
- kMemOp2LdrbRRR = 0xF81, /* ldrb rt,[rn,rm,LSL #imm] [111110000001]
- rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
- kMemOp2StrhRRR = 0xF82, /* str rt,[rn,rm,LSL #imm] [111110000010]
- rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
- kMemOp2LdrhRRR = 0xF83, /* ldrh rt,[rn,rm,LSL #imm] [111110000011]
- rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
- kMemOp2StrRRR = 0xF84, /* str rt,[rn,rm,LSL #imm] [111110000100]
- rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
- kMemOp2LdrRRR = 0xF85, /* ldr rt,[rn,rm,LSL #imm] [111110000101]
- rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
- kMemOp2StrbRRI12 = 0xF88, /* strb rt,[rn,#imm12] [111110001000]
- rt[15..12] rn[19..16] imm12[11..0] */
- kMemOp2LdrbRRI12 = 0xF89, /* ldrb rt,[rn,#imm12] [111110001001]
- rt[15..12] rn[19..16] imm12[11..0] */
- kMemOp2StrhRRI12 = 0xF8A, /* strh rt,[rn,#imm12] [111110001010]
- rt[15..12] rn[19..16] imm12[11..0] */
- kMemOp2LdrhRRI12 = 0xF8B, /* ldrh rt,[rn,#imm12] [111110001011]
- rt[15..12] rn[19..16] imm12[11..0] */
- kMemOp2StrRRI12 = 0xF8C, /* str(Imm,T3) rd,[rn,#imm12] [111110001100]
- rn[19..16] rt[15..12] imm12[11..0] */
- kMemOp2LdrRRI12 = 0xF8D, /* ldr(Imm,T3) rd,[rn,#imm12] [111110001101]
- rn[19..16] rt[15..12] imm12[11..0] */
- kMemOp2LdrsbRRR = 0xF91, /* ldrsb rt,[rn,rm,LSL #imm] [111110010001]
- rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
- kMemOp2LdrshRRR = 0xF93, /* ldrsh rt,[rn,rm,LSL #imm] [111110010011]
- rn[19-16] rt[15-12] [000000] imm[5-4] rm[3-0] */
- kMemOp2LdrsbRRI12 = 0xF99, /* ldrsb rt,[rn,#imm12] [111110011001]
- rt[15..12] rn[19..16] imm12[11..0] */
- kMemOp2LdrshRRI12 = 0xF9B, /* ldrsh rt,[rn,#imm12] [111110011011]
- rt[15..12] rn[19..16] imm12[11..0] */
- kMemOp2 = 0xE000, // top 3 bits set indicates Thumb2
- };
-
- int addr, offset, data;
- long long double_data;
- int size = kSVWord;
- bool store = false;
- unsigned int *lr_masked = (unsigned int *) (lr & 0xFFFFFFFE);
- unsigned int insn = *lr_masked;
-
- int old_lr;
- old_lr = selfVerificationMemRegLoad(sp, 13);
-
- if ((insn & kMemOp2) == kMemOp2) {
- insn = (insn << 16) | (insn >> 16);
- //ALOGD("*** THUMB2 - Addr: %#x Insn: %#x", lr, insn);
-
- int opcode12 = (insn >> 20) & 0xFFF;
- int opcode6 = (insn >> 6) & 0x3F;
- int opcode4 = (insn >> 8) & 0xF;
- int imm2 = (insn >> 4) & 0x3;
- int imm8 = insn & 0xFF;
- int imm12 = insn & 0xFFF;
- int rd = (insn >> 12) & 0xF;
- int rm = insn & 0xF;
- int rn = (insn >> 16) & 0xF;
- int rt = (insn >> 12) & 0xF;
- bool wBack = true;
-
- // Update the link register
- selfVerificationMemRegStore(sp, old_lr+4, 13);
-
- // Determine whether the mem op is a store or load
- switch (opcode12) {
- case kMemOp2Stmia:
- case kMemOp2Stmia2:
- case kMemOp2Vstr:
- case kMemOp2Vstr2:
- case kMemOp2StrbRRR:
- case kMemOp2StrhRRR:
- case kMemOp2StrRRR:
- case kMemOp2StrbRRI12:
- case kMemOp2StrhRRI12:
- case kMemOp2StrRRI12:
- store = true;
- }
-
- // Determine the size of the mem access
- switch (opcode12) {
- case kMemOp2StrbRRR:
- case kMemOp2LdrbRRR:
- case kMemOp2StrbRRI12:
- case kMemOp2LdrbRRI12:
- size = kSVByte;
- break;
- case kMemOp2LdrsbRRR:
- case kMemOp2LdrsbRRI12:
- size = kSVSignedByte;
- break;
- case kMemOp2StrhRRR:
- case kMemOp2LdrhRRR:
- case kMemOp2StrhRRI12:
- case kMemOp2LdrhRRI12:
- size = kSVHalfword;
- break;
- case kMemOp2LdrshRRR:
- case kMemOp2LdrshRRI12:
- size = kSVSignedHalfword;
- break;
- case kMemOp2Vstr:
- case kMemOp2Vstr2:
- case kMemOp2Vldr:
- case kMemOp2Vldr2:
- if (opcode4 == kMemOp2Double) size = kSVDoubleword;
- break;
- case kMemOp2Stmia:
- case kMemOp2Ldmia:
- case kMemOp2Stmia2:
- case kMemOp2Ldmia2:
- size = kSVVariable;
- break;
- }
-
- // Load the value of the address
- addr = selfVerificationMemRegLoad(sp, rn);
-
- // Figure out the offset
- switch (opcode12) {
- case kMemOp2Vstr:
- case kMemOp2Vstr2:
- case kMemOp2Vldr:
- case kMemOp2Vldr2:
- offset = imm8 << 2;
- if (opcode4 == kMemOp2Single) {
- rt = rd << 1;
- if (insn & 0x400000) rt |= 0x1;
- } else if (opcode4 == kMemOp2Double) {
- if (insn & 0x400000) rt |= 0x10;
- rt = rt << 1;
- } else {
- ALOGE("*** ERROR: UNRECOGNIZED VECTOR MEM OP: %x", opcode4);
- dvmAbort();
- }
- rt += 14;
- break;
- case kMemOp2StrbRRR:
- case kMemOp2LdrbRRR:
- case kMemOp2StrhRRR:
- case kMemOp2LdrhRRR:
- case kMemOp2StrRRR:
- case kMemOp2LdrRRR:
- case kMemOp2LdrsbRRR:
- case kMemOp2LdrshRRR:
- offset = selfVerificationMemRegLoad(sp, rm) << imm2;
- break;
- case kMemOp2StrbRRI12:
- case kMemOp2LdrbRRI12:
- case kMemOp2StrhRRI12:
- case kMemOp2LdrhRRI12:
- case kMemOp2StrRRI12:
- case kMemOp2LdrRRI12:
- case kMemOp2LdrsbRRI12:
- case kMemOp2LdrshRRI12:
- offset = imm12;
- break;
- case kMemOp2Stmia:
- case kMemOp2Ldmia:
- wBack = false;
- case kMemOp2Stmia2:
- case kMemOp2Ldmia2:
- offset = 0;
- break;
- default:
- ALOGE("*** ERROR: UNRECOGNIZED THUMB2 MEM OP: %x", opcode12);
- offset = 0;
- dvmAbort();
- }
-
- // Handle the decoded mem op accordingly
- if (store) {
- if (size == kSVVariable) {
- ALOGD("*** THUMB2 STMIA CURRENTLY UNUSED (AND UNTESTED)");
- int i;
- int regList = insn & 0xFFFF;
- for (i = 0; i < 16; i++) {
- if (regList & 0x1) {
- data = selfVerificationMemRegLoad(sp, i);
- selfVerificationStore(addr, data, kSVWord);
- addr += 4;
- }
- regList = regList >> 1;
- }
- if (wBack) selfVerificationMemRegStore(sp, addr, rn);
- } else if (size == kSVDoubleword) {
- double_data = selfVerificationMemRegLoadDouble(sp, rt);
- selfVerificationStoreDoubleword(addr+offset, double_data);
- } else {
- data = selfVerificationMemRegLoad(sp, rt);
- selfVerificationStore(addr+offset, data, size);
- }
- } else {
- if (size == kSVVariable) {
- ALOGD("*** THUMB2 LDMIA CURRENTLY UNUSED (AND UNTESTED)");
- int i;
- int regList = insn & 0xFFFF;
- for (i = 0; i < 16; i++) {
- if (regList & 0x1) {
- data = selfVerificationLoad(addr, kSVWord);
- selfVerificationMemRegStore(sp, data, i);
- addr += 4;
- }
- regList = regList >> 1;
- }
- if (wBack) selfVerificationMemRegStore(sp, addr, rn);
- } else if (size == kSVDoubleword) {
- double_data = selfVerificationLoadDoubleword(addr+offset);
- selfVerificationMemRegStoreDouble(sp, double_data, rt);
- } else {
- data = selfVerificationLoad(addr+offset, size);
- selfVerificationMemRegStore(sp, data, rt);
- }
- }
- } else {
- //ALOGD("*** THUMB - Addr: %#x Insn: %#x", lr, insn);
-
- // Update the link register
- selfVerificationMemRegStore(sp, old_lr+2, 13);
-
- int opcode5 = (insn >> 11) & 0x1F;
- int opcode7 = (insn >> 9) & 0x7F;
- int imm = (insn >> 6) & 0x1F;
- int rd = (insn >> 8) & 0x7;
- int rm = (insn >> 6) & 0x7;
- int rn = (insn >> 3) & 0x7;
- int rt = insn & 0x7;
-
- // Determine whether the mem op is a store or load
- switch (opcode5) {
- case kMemOpRRR:
- switch (opcode7) {
- case kMemOpStrRRR:
- case kMemOpStrhRRR:
- case kMemOpStrbRRR:
- store = true;
- }
- break;
- case kMemOpStrRRI5:
- case kMemOpStrbRRI5:
- case kMemOpStrhRRI5:
- case kMemOpStmia:
- store = true;
- }
-
- // Determine the size of the mem access
- switch (opcode5) {
- case kMemOpRRR:
- case kMemOpRRR2:
- switch (opcode7) {
- case kMemOpStrbRRR:
- case kMemOpLdrbRRR:
- size = kSVByte;
- break;
- case kMemOpLdrsbRRR:
- size = kSVSignedByte;
- break;
- case kMemOpStrhRRR:
- case kMemOpLdrhRRR:
- size = kSVHalfword;
- break;
- case kMemOpLdrshRRR:
- size = kSVSignedHalfword;
- break;
- }
- break;
- case kMemOpStrbRRI5:
- case kMemOpLdrbRRI5:
- size = kSVByte;
- break;
- case kMemOpStrhRRI5:
- case kMemOpLdrhRRI5:
- size = kSVHalfword;
- break;
- case kMemOpStmia:
- case kMemOpLdmia:
- size = kSVVariable;
- break;
- }
-
- // Load the value of the address
- if (opcode5 == kMemOpLdrPcRel)
- addr = selfVerificationMemRegLoad(sp, 4);
- else if (opcode5 == kMemOpStmia || opcode5 == kMemOpLdmia)
- addr = selfVerificationMemRegLoad(sp, rd);
- else
- addr = selfVerificationMemRegLoad(sp, rn);
-
- // Figure out the offset
- switch (opcode5) {
- case kMemOpLdrPcRel:
- offset = (insn & 0xFF) << 2;
- rt = rd;
- break;
- case kMemOpRRR:
- case kMemOpRRR2:
- offset = selfVerificationMemRegLoad(sp, rm);
- break;
- case kMemOpStrRRI5:
- case kMemOpLdrRRI5:
- offset = imm << 2;
- break;
- case kMemOpStrhRRI5:
- case kMemOpLdrhRRI5:
- offset = imm << 1;
- break;
- case kMemOpStrbRRI5:
- case kMemOpLdrbRRI5:
- offset = imm;
- break;
- case kMemOpStmia:
- case kMemOpLdmia:
- offset = 0;
- break;
- default:
- ALOGE("*** ERROR: UNRECOGNIZED THUMB MEM OP: %x", opcode5);
- offset = 0;
- dvmAbort();
- }
-
- // Handle the decoded mem op accordingly
- if (store) {
- if (size == kSVVariable) {
- int i;
- int regList = insn & 0xFF;
- for (i = 0; i < 8; i++) {
- if (regList & 0x1) {
- data = selfVerificationMemRegLoad(sp, i);
- selfVerificationStore(addr, data, kSVWord);
- addr += 4;
- }
- regList = regList >> 1;
- }
- selfVerificationMemRegStore(sp, addr, rd);
- } else {
- data = selfVerificationMemRegLoad(sp, rt);
- selfVerificationStore(addr+offset, data, size);
- }
- } else {
- if (size == kSVVariable) {
- bool wBack = true;
- int i;
- int regList = insn & 0xFF;
- for (i = 0; i < 8; i++) {
- if (regList & 0x1) {
- if (i == rd) wBack = false;
- data = selfVerificationLoad(addr, kSVWord);
- selfVerificationMemRegStore(sp, data, i);
- addr += 4;
- }
- regList = regList >> 1;
- }
- if (wBack) selfVerificationMemRegStore(sp, addr, rd);
- } else {
- data = selfVerificationLoad(addr+offset, size);
- selfVerificationMemRegStore(sp, data, rt);
- }
- }
- }
-}
-#endif