summaryrefslogtreecommitdiffstats
path: root/vm/compiler/codegen/x86/LowerAlu.cpp
diff options
context:
space:
mode:
authorBrian Carlstrom <bdc@google.com>2014-08-05 12:46:17 -0700
committerBrian Carlstrom <bdc@google.com>2014-08-05 12:51:13 -0700
commit870b4f2d70d67d6dbb7d0881d101c61bed8caad2 (patch)
tree7487dad3970556a040f88a49852a3dc9ed19bebd /vm/compiler/codegen/x86/LowerAlu.cpp
parent76e15e367ae1189b6f641ba8d16ca92bd179dac0 (diff)
downloadandroid_dalvik-870b4f2d70d67d6dbb7d0881d101c61bed8caad2.tar.gz
android_dalvik-870b4f2d70d67d6dbb7d0881d101c61bed8caad2.tar.bz2
android_dalvik-870b4f2d70d67d6dbb7d0881d101c61bed8caad2.zip
Dalvik is dead, long live Dalvik!
croot cd dalvik repo start dalvik-is-dead-long-live-dalvik . repo sync -c . git rm -r README.txt git rm -r dexopt git rm -r tools/deadcode.py git rm -r tools/dex-preopt git rm -r tools/dexcheck git rm -r tools/gdbjithelper git rm -r unit-tests git rm -r vm git checkout HEAD vm/Common.h (needed by libdex) git checkout HEAD vm/DalvikVersion.h (needed by libdex) git checkout HEAD vm/Profile.h (needed by dmtracedump) git add Android.mk (after removing vm, dexopt, and unit-tests references) git commit -a -m 'Dalvik is dead, long live Dalvik!' Bug: 14298175 Change-Id: I9dd13053677629d13496d4238af4374452cda415
Diffstat (limited to 'vm/compiler/codegen/x86/LowerAlu.cpp')
-rw-r--r--vm/compiler/codegen/x86/LowerAlu.cpp1980
1 files changed, 0 insertions, 1980 deletions
diff --git a/vm/compiler/codegen/x86/LowerAlu.cpp b/vm/compiler/codegen/x86/LowerAlu.cpp
deleted file mode 100644
index c8c4d66e8..000000000
--- a/vm/compiler/codegen/x86/LowerAlu.cpp
+++ /dev/null
@@ -1,1980 +0,0 @@
-/*
- * Copyright (C) 2012 The Android Open Source Project
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
-
-/*! \file LowerAlu.cpp
- \brief This file lowers ALU bytecodes.
-*/
-#include "libdex/DexOpcodes.h"
-#include "libdex/DexFile.h"
-#include "Lower.h"
-#include "NcgAot.h"
-#include "enc_wrapper.h"
-
-/////////////////////////////////////////////
-#define P_GPR_1 PhysicalReg_EBX
-//! lower bytecode NEG_INT
-
-//!
-int op_neg_int() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_32, 1, false);
- alu_unary_reg(OpndSize_32, neg_opc, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- rPC += 1;
- return 0;
-}
-//! lower bytecode NOT_INT
-
-//!
-int op_not_int() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_32, 1, false);
- alu_unary_reg(OpndSize_32, not_opc, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- rPC += 1;
- return 0;
-}
-#undef P_GPR_1
-//! lower bytecode NEG_LONG
-
-//! This implementation uses XMM registers
-int op_neg_long() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_64, 1, false);
- alu_binary_reg_reg(OpndSize_64, xor_opc, 2, false, 2, false);
- alu_binary_reg_reg(OpndSize_64, sub_opc, 1, false, 2, false);
- set_virtual_reg(vA, OpndSize_64, 2, false);
- rPC += 1;
- return 0;
-}
-//! lower bytecode NOT_LONG
-
-//! This implementation uses XMM registers
-int op_not_long() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_64, 1, false);
- load_global_data_API("64bits", OpndSize_64, 2, false);
- alu_binary_reg_reg(OpndSize_64, andn_opc, 2, false, 1, false);
- set_virtual_reg(vA, OpndSize_64, 1, false);
- rPC += 1;
- return 0;
-}
-#define P_GPR_1 PhysicalReg_EBX
-//! lower bytecode NEG_FLOAT
-
-//! This implementation uses GPR
-int op_neg_float() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_32, 1, false);
- alu_binary_imm_reg(OpndSize_32, add_opc, 0x80000000, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- rPC += 1;
- return 0;
-}
-#undef P_GPR_1
-
-//! lower bytecode NEG_DOUBLE
-
-//! This implementation uses XMM registers
-int op_neg_double() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_64, 1, false);
- load_global_data_API("doubNeg", OpndSize_64, 2, false);
- alu_binary_reg_reg(OpndSize_64, xor_opc, 1, false, 2, false);
- set_virtual_reg(vA, OpndSize_64, 2, false);
- rPC += 1;
- return 0;
-}
-
-//! lower bytecode INT_TO_LONG
-
-//! It uses native instruction cdq
-int op_int_to_long() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_32, PhysicalReg_EAX, true);
- convert_integer(OpndSize_32, OpndSize_64);
- set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
- set_virtual_reg(vA+1, OpndSize_32, PhysicalReg_EDX, true);
- rPC += 1;
- return 0;
-}
-//! lower bytecode INT_TO_FLOAT
-
-//! This implementation uses FP stack
-int op_int_to_float() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- load_int_fp_stack_VR(OpndSize_32, vB); //fildl
- store_fp_stack_VR(true, OpndSize_32, vA); //fstps
- rPC += 1;
- return 0;
-}
-//! lower bytecode INT_TO_DOUBLE
-
-//! This implementation uses FP stack
-int op_int_to_double() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- load_int_fp_stack_VR(OpndSize_32, vB); //fildl
- store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
- rPC += 1;
- return 0;
-}
-//! lower bytecode LONG_TO_FLOAT
-
-//! This implementation uses FP stack
-int op_long_to_float() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- load_int_fp_stack_VR(OpndSize_64, vB); //fildll
- store_fp_stack_VR(true, OpndSize_32, vA); //fstps
- rPC += 1;
- return 0;
-}
-//! lower bytecode LONG_TO_DOUBLE
-
-//! This implementation uses FP stack
-int op_long_to_double() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- load_int_fp_stack_VR(OpndSize_64, vB); //fildll
- store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
- rPC += 1;
- return 0;
-}
-//! lower bytecode FLOAT_TO_DOUBLE
-
-//! This implementation uses FP stack
-int op_float_to_double() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- load_fp_stack_VR(OpndSize_32, vB); //flds
- store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
- rPC += 1;
- return 0;
-}
-//! lower bytecode DOUBLE_TO_FLOAT
-
-//! This implementation uses FP stack
-int op_double_to_float() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- load_fp_stack_VR(OpndSize_64, vB); //fldl
- store_fp_stack_VR(true, OpndSize_32, vA); //fstps
- rPC += 1;
- return 0;
-}
-#define P_GPR_1 PhysicalReg_EBX
-//! lower bytecode LONG_TO_INT
-
-//! This implementation uses GPR
-int op_long_to_int() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_32, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- rPC += 1;
- return 0;
-}
-#undef P_GPR_1
-
-//! common code to convert a float or double to integer
-
-//! It uses FP stack
-int common_fp_to_int(bool isDouble, u2 vA, u2 vB) {
- if(isDouble) {
- load_fp_stack_VR(OpndSize_64, vB); //fldl
- }
- else {
- load_fp_stack_VR(OpndSize_32, vB); //flds
- }
-
- load_fp_stack_global_data_API("intMax", OpndSize_32);
- load_fp_stack_global_data_API("intMin", OpndSize_32);
-
- //ST(0) ST(1) ST(2) --> LintMin LintMax value
- compare_fp_stack(true, 2, false/*isDouble*/); //ST(2)
- //ST(0) ST(1) --> LintMax value
- conditional_jump(Condition_AE, ".float_to_int_negInf", true);
- rememberState(1);
- compare_fp_stack(true, 1, false/*isDouble*/); //ST(1)
- //ST(0) --> value
- rememberState(2);
- conditional_jump(Condition_C, ".float_to_int_nanInf", true);
- //fnstcw, orw, fldcw, xorw
- load_effective_addr(-2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- store_fpu_cw(false/*checkException*/, 0, PhysicalReg_ESP, true);
- alu_binary_imm_mem(OpndSize_16, or_opc, 0xc00, 0, PhysicalReg_ESP, true);
- load_fpu_cw(0, PhysicalReg_ESP, true);
- alu_binary_imm_mem(OpndSize_16, xor_opc, 0xc00, 0, PhysicalReg_ESP, true);
- store_int_fp_stack_VR(true/*pop*/, OpndSize_32, vA); //fistpl
- //fldcw
- load_fpu_cw(0, PhysicalReg_ESP, true);
- load_effective_addr(2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- rememberState(3);
- unconditional_jump(".float_to_int_okay", true);
- insertLabel(".float_to_int_nanInf", true);
- conditional_jump(Condition_NP, ".float_to_int_posInf", true);
- //fstps CHECK
- goToState(2);
- store_fp_stack_VR(true, OpndSize_32, vA);
- set_VR_to_imm(vA, OpndSize_32, 0);
- transferToState(3);
- unconditional_jump(".float_to_int_okay", true);
- insertLabel(".float_to_int_posInf", true);
- //fstps CHECK
- goToState(2);
- store_fp_stack_VR(true, OpndSize_32, vA);
- set_VR_to_imm(vA, OpndSize_32, 0x7fffffff);
- transferToState(3);
- unconditional_jump(".float_to_int_okay", true);
- insertLabel(".float_to_int_negInf", true);
- goToState(1);
- //fstps CHECK
- store_fp_stack_VR(true, OpndSize_32, vA);
- store_fp_stack_VR(true, OpndSize_32, vA);
- set_VR_to_imm(vA, OpndSize_32, 0x80000000);
- transferToState(3);
- insertLabel(".float_to_int_okay", true);
- return 0;
-}
-//! lower bytecode FLOAT_TO_INT by calling common_fp_to_int
-
-//!
-int op_float_to_int() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- int retval = common_fp_to_int(false, vA, vB);
- rPC += 1;
- return retval;
-}
-//! lower bytecode DOUBLE_TO_INT by calling common_fp_to_int
-
-//!
-int op_double_to_int() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- int retval = common_fp_to_int(true, vA, vB);
- rPC += 1;
- return retval;
-}
-
-//! common code to convert float or double to long
-
-//! It uses FP stack
-int common_fp_to_long(bool isDouble, u2 vA, u2 vB) {
- if(isDouble) {
- load_fp_stack_VR(OpndSize_64, vB); //fldl
- }
- else {
- load_fp_stack_VR(OpndSize_32, vB); //flds
- }
-
- //Check if it is the special Negative Infinity value
- load_fp_stack_global_data_API("valueNegInfLong", OpndSize_64);
- //Stack status: ST(0) ST(1) --> LlongMin value
- compare_fp_stack(true, 1, false/*isDouble*/); // Pops ST(1)
- conditional_jump(Condition_AE, ".float_to_long_negInf", true);
- rememberState(1);
-
- //Check if it is the special Positive Infinity value
- load_fp_stack_global_data_API("valuePosInfLong", OpndSize_64);
- //Stack status: ST(0) ST(1) --> LlongMax value
- compare_fp_stack(true, 1, false/*isDouble*/); // Pops ST(1)
- rememberState(2);
- conditional_jump(Condition_C, ".float_to_long_nanInf", true);
-
- //Normal Case
- //We want to truncate to 0 for conversion. That will be rounding mode 0x11
- load_effective_addr(-2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- store_fpu_cw(false/*checkException*/, 0, PhysicalReg_ESP, true);
- //Change control word to rounding mode 11:
- alu_binary_imm_mem(OpndSize_16, or_opc, 0xc00, 0, PhysicalReg_ESP, true);
- //Load the control word
- load_fpu_cw(0, PhysicalReg_ESP, true);
- //Reset the control word
- alu_binary_imm_mem(OpndSize_16, xor_opc, 0xc00, 0, PhysicalReg_ESP, true);
- //Perform the actual conversion
- store_int_fp_stack_VR(true/*pop*/, OpndSize_64, vA); //fistpll
- // Restore the original control word
- load_fpu_cw(0, PhysicalReg_ESP, true);
- load_effective_addr(2, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- rememberState(3);
- /* NOTE: We do not need to pop out the original value we pushed
- * since load_fpu_cw above already clears the stack for
- * normal values.
- */
- unconditional_jump(".float_to_long_okay", true);
-
- //We can be here for positive infinity or NaN. Check parity bit
- insertLabel(".float_to_long_nanInf", true);
- conditional_jump(Condition_NP, ".float_to_long_posInf", true);
- goToState(2);
- //Save corresponding Long NaN value
- load_global_data_API("valueNanLong", OpndSize_64, 1, false);
- set_virtual_reg(vA, OpndSize_64, 1, false);
- transferToState(3);
- //Pop out the original value we pushed
- compare_fp_stack(true, 0, false/*isDouble*/); //ST(0)
- unconditional_jump(".float_to_long_okay", true);
-
- insertLabel(".float_to_long_posInf", true);
- goToState(2);
- //Save corresponding Long Positive Infinity value
- load_global_data_API("valuePosInfLong", OpndSize_64, 2, false);
- set_virtual_reg(vA, OpndSize_64, 2, false);
- transferToState(3);
- //Pop out the original value we pushed
- compare_fp_stack(true, 0, false/*isDouble*/); //ST(0)
- unconditional_jump(".float_to_long_okay", true);
-
- insertLabel(".float_to_long_negInf", true);
- //fstpl
- goToState(1);
- //Load corresponding Long Negative Infinity value
- load_global_data_API("valueNegInfLong", OpndSize_64, 3, false);
- set_virtual_reg(vA, OpndSize_64, 3, false);
- transferToState(3);
- //Pop out the original value we pushed
- compare_fp_stack(true, 0, false/*isDouble*/); //ST(0)
-
- insertLabel(".float_to_long_okay", true);
- return 0;
-}
-//! lower bytecode FLOAT_TO_LONG by calling common_fp_to_long
-
-//!
-int op_float_to_long() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- int retval = common_fp_to_long(false, vA, vB);
- rPC += 1;
- return retval;
-}
-//! lower bytecode DOUBLE_TO_LONG by calling common_fp_to_long
-
-//!
-int op_double_to_long() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- int retval = common_fp_to_long(true, vA, vB);
- rPC += 1;
- return retval;
-}
-#define P_GPR_1 PhysicalReg_EBX
-//! lower bytecode INT_TO_BYTE
-
-//! It uses GPR
-int op_int_to_byte() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_32, 1, false);
- alu_binary_imm_reg(OpndSize_32, sal_opc, 24, 1, false);
- alu_binary_imm_reg(OpndSize_32, sar_opc, 24, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- rPC += 1;
- return 0;
-}
-//! lower bytecode INT_TO_CHAR
-
-//! It uses GPR
-int op_int_to_char() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_32, 1, false);
- alu_binary_imm_reg(OpndSize_32, sal_opc, 16, 1, false);
- alu_binary_imm_reg(OpndSize_32, shr_opc, 16, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- rPC += 1;
- return 0;
-}
-//! lower bytecode INT_TO_SHORT
-
-//! It uses GPR
-int op_int_to_short() {
- u2 vA = INST_A(inst); //destination
- u2 vB = INST_B(inst);
- get_virtual_reg(vB, OpndSize_32, 1, false);
- alu_binary_imm_reg(OpndSize_32, sal_opc, 16, 1, false);
- alu_binary_imm_reg(OpndSize_32, sar_opc, 16, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- rPC += 1;
- return 0;
-}
-//! common code to handle integer ALU ops
-
-//! It uses GPR
-int common_alu_int(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) { //except div and rem
- get_virtual_reg(v1, OpndSize_32, 1, false);
- //in encoder, reg is first operand, which is the destination
- //gpr_1 op v2(rFP) --> gpr_1
- //shift only works with reg cl, v2 should be in %ecx
- alu_binary_VR_reg(OpndSize_32, opc, v2, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- return 0;
-}
-#undef P_GPR_1
-#define P_GPR_1 PhysicalReg_EBX
-//! common code to handle integer shift ops
-
-//! It uses GPR
-int common_shift_int(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {
- get_virtual_reg(v2, OpndSize_32, PhysicalReg_ECX, true);
- get_virtual_reg(v1, OpndSize_32, 1, false);
- //in encoder, reg2 is first operand, which is the destination
- //gpr_1 op v2(rFP) --> gpr_1
- //shift only works with reg cl, v2 should be in %ecx
- alu_binary_reg_reg(OpndSize_32, opc, PhysicalReg_ECX, true, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- return 0;
-}
-#undef p_GPR_1
-//! lower bytecode ADD_INT by calling common_alu_int
-
-//!
-int op_add_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_alu_int(add_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SUB_INT by calling common_alu_int
-
-//!
-int op_sub_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_alu_int(sub_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode MUL_INT by calling common_alu_int
-
-//!
-int op_mul_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_alu_int(imul_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode AND_INT by calling common_alu_int
-
-//!
-int op_and_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_alu_int(and_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode OR_INT by calling common_alu_int
-
-//!
-int op_or_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_alu_int(or_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode XOR_INT by calling common_alu_int
-
-//!
-int op_xor_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_alu_int(xor_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SHL_INT by calling common_shift_int
-
-//!
-int op_shl_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_shift_int(shl_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SHR_INT by calling common_shift_int
-
-//!
-int op_shr_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_shift_int(sar_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode USHR_INT by calling common_shift_int
-
-//!
-int op_ushr_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_shift_int(shr_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode ADD_INT_2ADDR by calling common_alu_int
-
-//!
-int op_add_int_2addr() {
- u2 vA, v1, v2;
- vA = INST_A(inst);
- v1 = vA;
- v2 = INST_B(inst);
- int retval = common_alu_int(add_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode SUB_INT_2ADDR by calling common_alu_int
-
-//!
-int op_sub_int_2addr() {
- u2 vA, v1, v2;
- vA = INST_A(inst);
- v1 = vA;
- v2 = INST_B(inst);
- int retval = common_alu_int(sub_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode MUL_INT_2ADDR by calling common_alu_int
-
-//!
-int op_mul_int_2addr() {
- u2 vA, v1, v2;
- vA = INST_A(inst);
- v1 = vA;
- v2 = INST_B(inst);
- int retval = common_alu_int(imul_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode AND_INT_2ADDR by calling common_alu_int
-
-//!
-int op_and_int_2addr() {
- u2 vA, v1, v2;
- vA = INST_A(inst);
- v1 = vA;
- v2 = INST_B(inst);
- int retval = common_alu_int(and_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode OR_INT_2ADDR by calling common_alu_int
-
-//!
-int op_or_int_2addr() {
- u2 vA, v1, v2;
- vA = INST_A(inst);
- v1 = vA;
- v2 = INST_B(inst);
- int retval = common_alu_int(or_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode XOR_INT_2ADDR by calling common_alu_int
-
-//!
-int op_xor_int_2addr() {
- u2 vA, v1, v2;
- vA = INST_A(inst);
- v1 = vA;
- v2 = INST_B(inst);
- int retval = common_alu_int(xor_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode SHL_INT_2ADDR by calling common_shift_int
-
-//!
-int op_shl_int_2addr() {
- u2 vA, v1, v2;
- vA = INST_A(inst);
- v1 = vA;
- v2 = INST_B(inst);
- int retval = common_shift_int(shl_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode SHR_INT_2ADDR by calling common_shift_int
-
-//!
-int op_shr_int_2addr() {
- u2 vA, v1, v2;
- vA = INST_A(inst);
- v1 = vA;
- v2 = INST_B(inst);
- int retval = common_shift_int(sar_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode USHR_INT_2ADDR by calling common_shift_int
-
-//!
-int op_ushr_int_2addr() {
- u2 vA, v1, v2;
- vA = INST_A(inst);
- v1 = vA;
- v2 = INST_B(inst);
- int retval = common_shift_int(shr_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-#define P_GPR_1 PhysicalReg_EBX
-//!common code to handle integer DIV & REM, it used GPR
-
-//!The special case: when op0 == minint && op1 == -1, return 0 for isRem, return 0x80000000 for isDiv
-//!There are two merge points in the control flow for this bytecode
-//!make sure the reg. alloc. state is the same at merge points by calling transferToState
-int common_div_rem_int(bool isRem, u2 vA, u2 v1, u2 v2) {
- get_virtual_reg(v1, OpndSize_32, PhysicalReg_EAX, true);
- get_virtual_reg(v2, OpndSize_32, 2, false);
- compare_imm_reg(OpndSize_32, 0, 2, false);
- handlePotentialException(
- Condition_E, Condition_NE,
- 1, "common_errDivideByZero");
- /////////////////// handle special cases
- //conditional move 0 to $edx for rem for the two special cases
- //conditional move 0x80000000 to $eax for div
- //handle -1 special case divide error
- compare_imm_reg(OpndSize_32, -1, 2, false);
- conditional_jump(Condition_NE, ".common_div_rem_int_normal", true);
- //handle min int special case divide error
- rememberState(1);
- compare_imm_reg(OpndSize_32, 0x80000000, PhysicalReg_EAX, true);
- transferToState(1);
- conditional_jump(Condition_E, ".common_div_rem_int_special", true);
-
- insertLabel(".common_div_rem_int_normal", true); //merge point
- convert_integer(OpndSize_32, OpndSize_64); //cdq
- //idiv: dividend in edx:eax; quotient in eax; remainder in edx
- alu_unary_reg(OpndSize_32, idiv_opc, 2, false);
- if(isRem)
- set_virtual_reg(vA, OpndSize_32, PhysicalReg_EDX, true);
- else //divide: quotient in %eax
- set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
- rememberState(2);
- unconditional_jump(".common_div_rem_int_okay", true);
-
- insertLabel(".common_div_rem_int_special", true);
- goToState(1);
- if(isRem)
- set_VR_to_imm(vA, OpndSize_32, 0);
- else
- set_VR_to_imm(vA, OpndSize_32, 0x80000000);
- transferToState(2);
- insertLabel(".common_div_rem_int_okay", true); //merge point 2
- return 0;
-}
-#undef P_GPR_1
-//! lower bytecode DIV_INT by calling common_div_rem_int
-
-//!
-int op_div_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_div_rem_int(false, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode REM_INT by calling common_div_rem_int
-
-//!
-int op_rem_int() {
- u2 vA, v1, v2;
- vA = INST_AA(inst);
- v1 = *((u1*)rPC + 2);
- v2 = *((u1*)rPC + 3);
- int retval = common_div_rem_int(true, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode DIV_INT_2ADDR by calling common_div_rem_int
-
-//!
-int op_div_int_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_div_rem_int(false, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode REM_INT_2ADDR by calling common_div_rem_int
-
-//!
-int op_rem_int_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_div_rem_int(true, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-
-#define P_GPR_1 PhysicalReg_EBX
-//! common code to handle integer ALU ops with literal
-
-//! It uses GPR
-int common_alu_int_lit(ALU_Opcode opc, u2 vA, u2 vB, s2 imm) { //except div and rem
- get_virtual_reg(vB, OpndSize_32, 1, false);
- alu_binary_imm_reg(OpndSize_32, opc, imm, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- return 0;
-}
-//! calls common_alu_int_lit
-int common_shift_int_lit(ALU_Opcode opc, u2 vA, u2 vB, s2 imm) {
- return common_alu_int_lit(opc, vA, vB, imm);
-}
-#undef p_GPR_1
-//! lower bytecode ADD_INT_LIT16 by calling common_alu_int_lit
-
-//!
-int op_add_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_alu_int_lit(add_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-
-int alu_rsub_int(ALU_Opcode opc, u2 vA, s2 imm, u2 vB) {
- move_imm_to_reg(OpndSize_32, imm, 2, false);
- get_virtual_reg(vB, OpndSize_32, 1, false);
- alu_binary_reg_reg(OpndSize_32, opc, 1, false, 2, false);
- set_virtual_reg(vA, OpndSize_32, 2, false);
- return 0;
-}
-
-
-//! lower bytecode RSUB_INT by calling common_alu_int_lit
-
-//!
-int op_rsub_int() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = alu_rsub_int(sub_opc, vA, tmp, vB);
- rPC += 2;
- return retval;
-}
-//! lower bytecode MUL_INT_LIT16 by calling common_alu_int_lit
-
-//!
-int op_mul_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_alu_int_lit(imul_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode AND_INT_LIT16 by calling common_alu_int_lit
-
-//!
-int op_and_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_alu_int_lit(and_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode OR_INT_LIT16 by calling common_alu_int_lit
-
-//!
-int op_or_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_alu_int_lit(or_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode XOR_INT_LIT16 by calling common_alu_int_lit
-
-//!
-int op_xor_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_alu_int_lit(xor_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SHL_INT_LIT16 by calling common_shift_int_lit
-
-//!
-int op_shl_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_shift_int_lit(shl_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SHR_INT_LIT16 by calling common_shift_int_lit
-
-//!
-int op_shr_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_shift_int_lit(sar_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode USHR_INT_LIT16 by calling common_shift_int_lit
-
-//!
-int op_ushr_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_shift_int_lit(shr_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode ADD_INT_LIT8 by calling common_alu_int_lit
-
-//!
-int op_add_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_alu_int_lit(add_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode RSUB_INT_LIT8 by calling common_alu_int_lit
-
-//!
-int op_rsub_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = alu_rsub_int(sub_opc, vA, tmp, vB);
- rPC += 2;
- return retval;
-}
-//! lower bytecode MUL_INT_LIT8 by calling common_alu_int_lit
-
-//!
-int op_mul_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_alu_int_lit(imul_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode AND_INT_LIT8 by calling common_alu_int_lit
-
-//!
-int op_and_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_alu_int_lit(and_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode OR_INT_LIT8 by calling common_alu_int_lit
-
-//!
-int op_or_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_alu_int_lit(or_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode XOR_INT_LIT8 by calling common_alu_int_lit
-
-//!
-int op_xor_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_alu_int_lit(xor_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SHL_INT_LIT8 by calling common_shift_int_lit
-
-//!
-int op_shl_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_shift_int_lit(shl_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SHR_INT_LIT8 by calling common_shift_int_lit
-
-//!
-int op_shr_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_shift_int_lit(sar_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode USHR_INT_LIT8 by calling common_shift_int_lit
-
-//!
-int op_ushr_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_shift_int_lit(shr_opc, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-
-int isPowerOfTwo(int imm) {
- int i;
- for(i = 1; i < 17; i++) {
- if(imm == (1 << i)) return i;
- }
- return -1;
-}
-
-#define P_GPR_1 PhysicalReg_EBX
-int div_lit_strength_reduction(u2 vA, u2 vB, s2 imm) {
- if(gDvm.executionMode == kExecutionModeNcgO1) {
- //strength reduction for div by 2,4,8,...
- int power = isPowerOfTwo(imm);
- if(power < 1) return 0;
- //tmp2 is not updated, so it can share with vB
- get_virtual_reg(vB, OpndSize_32, 2, false);
- //if imm is 2, power will be 1
- if(power == 1) {
- /* mov tmp1, tmp2
- shrl $31, tmp1
- addl tmp2, tmp1
- sarl $1, tmp1 */
- move_reg_to_reg(OpndSize_32, 2, false, 1, false);
- alu_binary_imm_reg(OpndSize_32, shr_opc, 31, 1, false);
- alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false);
- alu_binary_imm_reg(OpndSize_32, sar_opc, 1, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- return 1;
- }
- //power > 1
- /* mov tmp1, tmp2
- sarl $power-1, tmp1
- shrl 32-$power, tmp1
- addl tmp2, tmp1
- sarl $power, tmp1 */
- move_reg_to_reg(OpndSize_32, 2, false, 1, false);
- alu_binary_imm_reg(OpndSize_32, sar_opc, power-1, 1, false);
- alu_binary_imm_reg(OpndSize_32, shr_opc, 32-power, 1, false);
- alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false);
- alu_binary_imm_reg(OpndSize_32, sar_opc, power, 1, false);
- set_virtual_reg(vA, OpndSize_32, 1, false);
- return 1;
- }
- return 0;
-}
-
-////////// throws exception!!!
-//! common code to handle integer DIV & REM with literal
-
-//! It uses GPR
-int common_div_rem_int_lit(bool isRem, u2 vA, u2 vB, s2 imm) {
- if(!isRem) {
- int retCode = div_lit_strength_reduction(vA, vB, imm);
- if(retCode > 0) return 0;
- }
- if(imm == 0) {
- export_pc(); //use %edx
-#ifdef DEBUG_EXCEPTION
- LOGI("EXTRA code to handle exception");
-#endif
- constVREndOfBB();
- beforeCall("exception"); //dump GG, GL VRs
- unconditional_jump_global_API(
- "common_errDivideByZero", false);
-
- return 0;
- }
- get_virtual_reg(vB, OpndSize_32, PhysicalReg_EAX, true);
- //check against -1 for DIV_INT??
- if(imm == -1) {
- compare_imm_reg(OpndSize_32, 0x80000000, PhysicalReg_EAX, true);
- conditional_jump(Condition_E, ".div_rem_int_lit_special", true);
- rememberState(1);
- }
- move_imm_to_reg(OpndSize_32, imm, 2, false);
- convert_integer(OpndSize_32, OpndSize_64); //cdq
- //idiv: dividend in edx:eax; quotient in eax; remainder in edx
- alu_unary_reg(OpndSize_32, idiv_opc, 2, false);
- if(isRem)
- set_virtual_reg(vA, OpndSize_32, PhysicalReg_EDX, true);
- else
- set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
-
- if(imm == -1) {
- unconditional_jump(".div_rem_int_lit_okay", true);
- rememberState(2);
- insertLabel(".div_rem_int_lit_special", true);
- goToState(1);
- if(isRem)
- set_VR_to_imm(vA, OpndSize_32, 0);
- else
- set_VR_to_imm(vA, OpndSize_32, 0x80000000);
- transferToState(2);
- }
-
- insertLabel(".div_rem_int_lit_okay", true); //merge point 2
- return 0;
-}
-#undef P_GPR_1
-//! lower bytecode DIV_INT_LIT16 by calling common_div_rem_int_lit
-
-//!
-int op_div_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_div_rem_int_lit(false, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode REM_INT_LIT16 by calling common_div_rem_int_lit
-
-//!
-int op_rem_int_lit16() {
- u2 vA = INST_A(inst);
- u2 vB = INST_B(inst);
- s4 tmp = (s2)FETCH(1);
- int retval = common_div_rem_int_lit(true, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode DIV_INT_LIT8 by calling common_div_rem_int_lit
-
-//!
-int op_div_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_div_rem_int_lit(false, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! lower bytecode REM_INT_LIT8 by calling common_div_rem_int_lit
-
-//!
-int op_rem_int_lit8() {
- u2 vA = INST_AA(inst);
- u2 vB = (u2)FETCH(1) & 0xff;
- s2 tmp = (s2)FETCH(1) >> 8;
- int retval = common_div_rem_int_lit(true, vA, vB, tmp);
- rPC += 2;
- return retval;
-}
-//! common code to hanle long ALU ops
-
-//! It uses XMM
-int common_alu_long(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) { //except div and rem
- get_virtual_reg(v1, OpndSize_64, 1, false);
- get_virtual_reg(v2, OpndSize_64, 2, false);
- alu_binary_reg_reg(OpndSize_64, opc, 2, false, 1, false);
- set_virtual_reg(vA, OpndSize_64, 1, false);
- return 0;
-}
-//! lower bytecode ADD_LONG by calling common_alu_long
-
-//!
-int op_add_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_long(add_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SUB_LONG by calling common_alu_long
-
-//!
-int op_sub_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_long(sub_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode AND_LONG by calling common_alu_long
-
-//!
-int op_and_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_long(and_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode OR_LONG by calling common_alu_long
-
-//!
-int op_or_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_long(or_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode XOR_LONG by calling common_alu_long
-
-//!
-int op_xor_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_long(xor_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode ADD_LONG_2ADDR by calling common_alu_long
-
-//!
-int op_add_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_long(add_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode SUB_LONG_2ADDR by calling common_alu_long
-
-//!
-int op_sub_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_long(sub_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode AND_LONG_2ADDR by calling common_alu_long
-
-//!
-int op_and_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_long(and_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode OR_LONG_2ADDR by calling common_alu_long
-
-//!
-int op_or_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_long(or_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode XOR_LONG_2ADDR by calling common_alu_long
-
-//!
-int op_xor_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_long(xor_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-
-//signed vs unsigned imul and mul?
-#define P_GPR_1 PhysicalReg_EBX
-#define P_GPR_2 PhysicalReg_ECX
-#define P_GPR_3 PhysicalReg_ESI
-//! common code to handle multiplication of long
-
-//! It uses GPR
-int common_mul_long(u2 vA, u2 v1, u2 v2) {
- get_virtual_reg(v2, OpndSize_32, 1, false);
- move_reg_to_reg(OpndSize_32, 1, false, PhysicalReg_EAX, true);
- //imul: 2L * 1H update temporary 1
- alu_binary_VR_reg(OpndSize_32, imul_opc, (v1+1), 1, false);
- get_virtual_reg(v1, OpndSize_32, 3, false);
- move_reg_to_reg(OpndSize_32, 3, false, 2, false);
- //imul: 1L * 2H
- alu_binary_VR_reg(OpndSize_32, imul_opc, (v2+1), 2, false);
- alu_binary_reg_reg(OpndSize_32, add_opc, 2, false, 1, false);
- alu_unary_reg(OpndSize_32, mul_opc, 3, false);
- alu_binary_reg_reg(OpndSize_32, add_opc, PhysicalReg_EDX, true, 1, false);
- set_virtual_reg(vA+1, OpndSize_32, 1, false);
- set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
- return 0;
-}
-#undef P_GPR_1
-#undef P_GPR_2
-#undef P_GPR_3
-//! lower bytecode MUL_LONG by calling common_mul_long
-
-//!
-int op_mul_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_mul_long(vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode MUL_LONG_2ADDR by calling common_mul_long
-
-//!
-int op_mul_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_mul_long(vA, v1, v2);
- rPC += 1;
- return retval;
-}
-
-#define P_GPR_1 PhysicalReg_EBX
-#define P_GPR_2 PhysicalReg_ECX
-//! common code to handle DIV & REM of long
-
-//! It uses GPR & XMM; and calls call_moddi3 & call_divdi3
-int common_div_rem_long(bool isRem, u2 vA, u2 v1, u2 v2) {
- get_virtual_reg(v2, OpndSize_32, 1, false);
- get_virtual_reg(v2+1, OpndSize_32, 2, false);
- //save to native stack before changing register P_GPR_1
- load_effective_addr(-16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- move_reg_to_mem(OpndSize_32, 1, false, 8, PhysicalReg_ESP, true);
- alu_binary_reg_reg(OpndSize_32, or_opc, 2, false, 1, false);
-
- handlePotentialException(
- Condition_E, Condition_NE,
- 1, "common_errDivideByZero");
- move_reg_to_mem(OpndSize_32, 2, false, 12, PhysicalReg_ESP, true);
- get_virtual_reg(v1, OpndSize_64, 1, false);
- move_reg_to_mem(OpndSize_64, 1, false, 0, PhysicalReg_ESP, true);
- scratchRegs[0] = PhysicalReg_SCRATCH_1;
- nextVersionOfHardReg(PhysicalReg_EDX, 2); //next version has 2 refs
- if(isRem)
- call_moddi3();
- else
- call_divdi3();
- load_effective_addr(16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- set_virtual_reg(vA+1, OpndSize_32,PhysicalReg_EDX, true);
- set_virtual_reg(vA, OpndSize_32, PhysicalReg_EAX, true);
- return 0;
-}
-#undef P_GPR_1
-#undef P_GPR_2
-//! lower bytecode DIV_LONG by calling common_div_rem_long
-
-//!
-int op_div_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_div_rem_long(false, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode REM_LONG by calling common_div_rem_long
-
-//!
-int op_rem_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_div_rem_long(true, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode DIV_LONG_2ADDR by calling common_div_rem_long
-
-//!
-int op_div_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_div_rem_long(false, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode REM_LONG_2ADDR by calling common_div_rem_long
-
-//!
-int op_rem_long_2addr() { //call __moddi3 instead of __divdi3
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_div_rem_long(true, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-
-//! common code to handle SHL long
-
-//! It uses XMM
-int common_shl_long(u2 vA, u2 v1, u2 v2) {
- get_VR_ss(v2, 2, false);
-
- load_global_data_API("shiftMask", OpndSize_64, 3, false);
-
- get_virtual_reg(v1, OpndSize_64, 1, false);
- alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false);
- alu_binary_reg_reg(OpndSize_64, sll_opc, 2, false, 1, false);
- set_virtual_reg(vA, OpndSize_64, 1, false);
- return 0;
-}
-
-//! common code to handle SHR long
-
-//! It uses XMM
-int common_shr_long(u2 vA, u2 v1, u2 v2) {
- get_VR_ss(v2, 2, false);
-
- load_global_data_API("shiftMask", OpndSize_64, 3, false);
-
- get_virtual_reg(v1, OpndSize_64, 1, false);
- alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false);
- alu_binary_reg_reg(OpndSize_64, srl_opc, 2, false, 1, false);
- compare_imm_VR(OpndSize_32, 0, (v1+1));
- conditional_jump(Condition_GE, ".common_shr_long_special", true);
- rememberState(1);
-
- load_global_data_API("value64", OpndSize_64, 4, false);
-
- alu_binary_reg_reg(OpndSize_64, sub_opc, 2, false, 4, false);
-
- load_global_data_API("64bits", OpndSize_64, 5, false);
-
- alu_binary_reg_reg(OpndSize_64, sll_opc, 4, false, 5, false);
- alu_binary_reg_reg(OpndSize_64, or_opc, 5, false, 1, false);
- rememberState(2);
- //check whether the target is next instruction TODO
- unconditional_jump(".common_shr_long_done", true);
-
- insertLabel(".common_shr_long_special", true);
- goToState(1);
- transferToState(2);
- insertLabel(".common_shr_long_done", true);
- set_virtual_reg(vA, OpndSize_64, 1, false);
- return 0;
-}
-
-//! common code to handle USHR long
-
-//! It uses XMM
-int common_ushr_long(u2 vA, u2 v1, u2 v2) {
- get_VR_sd(v1, 1, false);
- get_VR_ss(v2, 2, false);
-
- load_sd_global_data_API("shiftMask", 3, false);
-
- alu_binary_reg_reg(OpndSize_64, and_opc, 3, false, 2, false);
- alu_binary_reg_reg(OpndSize_64, srl_opc, 2, false, 1, false);
- set_VR_sd(vA, 1, false);
- return 0;
-}
-//! lower bytecode SHL_LONG by calling common_shl_long
-
-//!
-int op_shl_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_shl_long(vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SHL_LONG_2ADDR by calling common_shl_long
-
-//!
-int op_shl_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_shl_long(vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode SHR_LONG by calling common_shr_long
-
-//!
-int op_shr_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_shr_long(vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SHR_LONG_2ADDR by calling common_shr_long
-
-//!
-int op_shr_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_shr_long(vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode USHR_LONG by calling common_ushr_long
-
-//!
-int op_ushr_long() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_ushr_long(vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode USHR_LONG_2ADDR by calling common_ushr_long
-
-//!
-int op_ushr_long_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_ushr_long(vA, v1, v2);
- rPC += 1;
- return retval;
-}
-#define USE_MEM_OPERAND
-///////////////////////////////////////////
-//! common code to handle ALU of floats
-
-//! It uses XMM
-int common_alu_float(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {//add, sub, mul
- get_VR_ss(v1, 1, false);
-#ifdef USE_MEM_OPERAND
- alu_sd_binary_VR_reg(opc, v2, 1, false, false/*isSD*/);
-#else
- get_VR_ss(v2, 2, false);
- alu_ss_binary_reg_reg(opc, 2, false, 1, false);
-#endif
- set_VR_ss(vA, 1, false);
- return 0;
-}
-//! lower bytecode ADD_FLOAT by calling common_alu_float
-
-//!
-int op_add_float() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_float(add_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SUB_FLOAT by calling common_alu_float
-
-//!
-int op_sub_float() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_float(sub_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode MUL_FLOAT by calling common_alu_float
-
-//!
-int op_mul_float() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_float(mul_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode ADD_FLOAT_2ADDR by calling common_alu_float
-
-//!
-int op_add_float_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_float(add_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode SUB_FLOAT_2ADDR by calling common_alu_float
-
-//!
-int op_sub_float_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_float(sub_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode MUL_FLOAT_2ADDR by calling common_alu_float
-
-//!
-int op_mul_float_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_float(mul_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! common code to handle DIV of float
-
-//! It uses FP stack
-int common_div_float(u2 vA, u2 v1, u2 v2) {
- load_fp_stack_VR(OpndSize_32, v1); //flds
- fpu_VR(div_opc, OpndSize_32, v2);
- store_fp_stack_VR(true, OpndSize_32, vA); //fstps
- return 0;
-}
-//! lower bytecode DIV_FLOAT by calling common_div_float
-
-//!
-int op_div_float() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_float(div_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode DIV_FLOAT_2ADDR by calling common_div_float
-
-//!
-int op_div_float_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_float(div_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! common code to handle DIV of double
-
-//! It uses XMM
-int common_alu_double(ALU_Opcode opc, u2 vA, u2 v1, u2 v2) {//add, sub, mul
- get_VR_sd(v1, 1, false);
-#ifdef USE_MEM_OPERAND
- alu_sd_binary_VR_reg(opc, v2, 1, false, true /*isSD*/);
-#else
- get_VR_sd(v2, 2, false);
- alu_sd_binary_reg_reg(opc, 2, false, 1, false);
-#endif
- set_VR_sd(vA, 1, false);
- return 0;
-}
-//! lower bytecode ADD_DOUBLE by calling common_alu_double
-
-//!
-int op_add_double() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_double(add_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode SUB_DOUBLE by calling common_alu_double
-
-//!
-int op_sub_double() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_double(sub_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode MUL_DOUBLE by calling common_alu_double
-
-//!
-int op_mul_double() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_double(mul_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode ADD_DOUBLE_2ADDR by calling common_alu_double
-
-//!
-int op_add_double_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_double(add_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode SUB_DOUBLE_2ADDR by calling common_alu_double
-
-//!
-int op_sub_double_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_double(sub_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode MUL_DOUBLE_2ADDR by calling common_alu_double
-
-//!
-int op_mul_double_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_double(mul_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! common code to handle DIV of double
-
-//! It uses FP stack
-int common_div_double(u2 vA, u2 v1, u2 v2) {
- load_fp_stack_VR(OpndSize_64, v1); //fldl
- fpu_VR(div_opc, OpndSize_64, v2); //fdivl
- store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
- return 0;
-}
-//! lower bytecode DIV_DOUBLE by calling common_div_double
-
-//!
-int op_div_double() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_alu_double(div_opc, vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode DIV_DOUBLE_2ADDR by calling common_div_double
-
-//!
-int op_div_double_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_alu_double(div_opc, vA, v1, v2);
- rPC += 1;
- return retval;
-}
-#define P_GPR_1 PhysicalReg_EBX
-#define P_GPR_2 PhysicalReg_ECX
-//! common code to handle REM of float
-
-//! It uses GPR & calls call_fmodf
-int common_rem_float(u2 vA, u2 v1, u2 v2) {
- get_virtual_reg(v1, OpndSize_32, 1, false);
- get_virtual_reg(v2, OpndSize_32, 2, false);
- load_effective_addr(-8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- move_reg_to_mem(OpndSize_32, 1, false, 0, PhysicalReg_ESP, true);
- move_reg_to_mem(OpndSize_32, 2, false, 4, PhysicalReg_ESP, true);
- scratchRegs[0] = PhysicalReg_SCRATCH_1;
- call_fmodf(); //(float x, float y) return float
- load_effective_addr(8, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- store_fp_stack_VR(true, OpndSize_32, vA); //fstps
- return 0;
-}
-#undef P_GPR_1
-#undef P_GPR_2
-//! lower bytecode REM_FLOAT by calling common_rem_float
-
-//!
-int op_rem_float() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_rem_float(vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode REM_FLOAT_2ADDR by calling common_rem_float
-
-//!
-int op_rem_float_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_rem_float(vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! common code to handle REM of double
-
-//! It uses XMM & calls call_fmod
-int common_rem_double(u2 vA, u2 v1, u2 v2) {
- get_virtual_reg(v1, OpndSize_64, 1, false);
- get_virtual_reg(v2, OpndSize_64, 2, false);
- load_effective_addr(-16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- move_reg_to_mem(OpndSize_64, 1, false, 0, PhysicalReg_ESP, true);
- move_reg_to_mem(OpndSize_64, 2, false, 8, PhysicalReg_ESP, true);
- scratchRegs[0] = PhysicalReg_SCRATCH_1;
- call_fmod(); //(long double x, long double y) return double
- load_effective_addr(16, PhysicalReg_ESP, true, PhysicalReg_ESP, true);
- store_fp_stack_VR(true, OpndSize_64, vA); //fstpl
- return 0;
-}
-//! lower bytecode REM_DOUBLE by calling common_rem_double
-
-//!
-int op_rem_double() {
- u2 vA = INST_AA(inst);
- u2 v1 = *((u1*)rPC + 2);
- u2 v2 = *((u1*)rPC + 3);
- int retval = common_rem_double(vA, v1, v2);
- rPC += 2;
- return retval;
-}
-//! lower bytecode REM_DOUBLE_2ADDR by calling common_rem_double
-
-//!
-int op_rem_double_2addr() {
- u2 vA = INST_A(inst);
- u2 v1 = vA;
- u2 v2 = INST_B(inst);
- int retval = common_rem_double(vA, v1, v2);
- rPC += 1;
- return retval;
-}
-//! lower bytecode CMPL_FLOAT
-
-//!
-int op_cmpl_float() {
- u2 vA = INST_AA(inst);
- u4 v1 = FETCH(1) & 0xff;
- u4 v2 = FETCH(1) >> 8;
- get_VR_ss(v1, 1, false); //xmm
- move_imm_to_reg(OpndSize_32, 0, 1, false);
- move_imm_to_reg(OpndSize_32, 1, 2, false);
- move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
- compare_VR_ss_reg(v2, 1, false);
- //default: 0xffffffff??
- move_imm_to_reg(OpndSize_32,
- 0xffffffff, 4, false);
- //ORDER of cmov matters !!! (Z,P,A)
- //finalNaN: unordered 0xffffffff
- conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
- 1, false, 4, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_P,
- 3, false, 4, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_A,
- 2, false, 4, false);
- set_virtual_reg(vA, OpndSize_32, 4, false);
- rPC += 2;
- return 0;
-}
-//! lower bytecode CMPG_FLOAT
-
-//!
-int op_cmpg_float() {
- u2 vA = INST_AA(inst);
- u4 v1 = FETCH(1) & 0xff;
- u4 v2 = FETCH(1) >> 8;
- get_VR_ss(v1, 1, false);
- compare_VR_ss_reg(v2, 1, false);
- move_imm_to_reg(OpndSize_32, 0, 1, false);
- move_imm_to_reg(OpndSize_32, 1, 2, false);
- //default: 0xffffffff??
- move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
- 1, false, 3, false);
- //finalNaN: unordered
- conditional_move_reg_to_reg(OpndSize_32, Condition_P,
- 2, false, 3, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_A,
- 2, false, 3, false);
- set_virtual_reg(vA, OpndSize_32, 3, false);
- rPC += 2;
- return 0;
-}
-//! lower bytecode CMPL_DOUBLE
-
-//!
-int op_cmpl_double() {
- u2 vA = INST_AA(inst);
- u4 v1 = FETCH(1) & 0xff;
- u4 v2 = FETCH(1) >> 8;
- get_VR_sd(v1, 1, false);
- compare_VR_sd_reg(v2, 1, false);
- move_imm_to_reg(OpndSize_32, 0, 1, false);
- move_imm_to_reg(OpndSize_32, 1, 2, false);
- move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
-
- //default: 0xffffffff??
- move_imm_to_reg(OpndSize_32, 0xffffffff, 4, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
- 1, false, 4, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_P,
- 3, false, 4, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_A,
- 2, false, 4, false);
- set_virtual_reg(vA, OpndSize_32, 4, false);
- rPC += 2;
- return 0;
-}
-//! lower bytecode CMPG_DOUBLE
-
-//!
-int op_cmpg_double() {
- u2 vA = INST_AA(inst);
- u4 v1 = FETCH(1) & 0xff;
- u4 v2 = FETCH(1) >> 8;
- get_VR_sd(v1, 1, false);
- compare_VR_sd_reg(v2, 1, false);
- move_imm_to_reg(OpndSize_32, 0, 1, false);
- move_imm_to_reg(OpndSize_32, 1, 2, false);
-
- //default: 0xffffffff??
- move_imm_to_reg(OpndSize_32,
- 0xffffffff, 3, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_Z,
- 1, false, 3, false);
- //finalNaN: unordered
- conditional_move_reg_to_reg(OpndSize_32, Condition_P,
- 2, false, 3, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_A,
- 2, false, 3, false);
- set_virtual_reg(vA, OpndSize_32, 3, false);
- rPC += 2;
- return 0;
-}
-#define P_GPR_1 PhysicalReg_EBX
-#define P_GPR_2 PhysicalReg_ECX
-#define P_GPR_3 PhysicalReg_ESI
-#define P_SCRATCH_1 PhysicalReg_EDX
-#define P_SCRATCH_2 PhysicalReg_EAX
-#define OPTION_OLD //for simpler cfg
-//! lower bytecode CMP_LONG
-
-//!
-int op_cmp_long() {
- u2 vA = INST_AA(inst);
- u4 v1 = FETCH(1) & 0xff;
- u4 v2 = FETCH(1) >> 8;
- get_virtual_reg(v1+1, OpndSize_32, 2, false);
-#ifdef OPTION_OLD
- move_imm_to_reg(OpndSize_32, 0xffffffff, 3, false);
- move_imm_to_reg(OpndSize_32, 1, 4, false);
- move_imm_to_reg(OpndSize_32, 0, 5, false);
-#endif
- compare_VR_reg(OpndSize_32,
- v2+1, 2, false);
-#ifndef OPTION_OLD
- conditional_jump(Condition_L, ".cmp_long_less", true);
- conditional_jump(Condition_G, ".cmp_long_greater", true);
-#else
- conditional_jump(Condition_E, ".cmp_long_equal", true);
- rememberState(1);
- conditional_move_reg_to_reg(OpndSize_32, Condition_L, //below vs less
- 3, false, 6, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_G, //above vs greater
- 4, false, 6, false);
- set_virtual_reg(vA, OpndSize_32, 6, false);
- rememberState(2);
- unconditional_jump(".cmp_long_okay", true);
- insertLabel(".cmp_long_equal", true);
- goToState(1);
-#endif
-
- get_virtual_reg(v1, OpndSize_32, 1, false);
- compare_VR_reg(OpndSize_32,
- v2, 1, false);
-#ifdef OPTION_OLD
- conditional_move_reg_to_reg(OpndSize_32, Condition_E,
- 5, false, 6, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_B, //below vs less
- 3, false, 6, false);
- conditional_move_reg_to_reg(OpndSize_32, Condition_A, //above vs greater
- 4, false, 6, false);
- set_virtual_reg(vA, OpndSize_32, 6, false);
- transferToState(2);
-#else
- conditional_jump(Condition_A, ".cmp_long_greater", true);
- conditional_jump(Condition_NE, ".cmp_long_less", true);
- set_VR_to_imm(vA, OpndSize_32, 0);
- unconditional_jump(".cmp_long_okay", true);
-
- insertLabel(".cmp_long_less", true);
- set_VR_to_imm(vA, OpndSize_32, 0xffffffff);
- unconditional_jump(".cmp_long_okay", true);
-
- insertLabel(".cmp_long_greater", true);
- set_VR_to_imm(vA, OpndSize_32, 1);
-#endif
- insertLabel(".cmp_long_okay", true);
- rPC += 2;
- return 0;
-}
-#undef P_GPR_1
-#undef P_GPR_2
-#undef P_GPR_3