summaryrefslogtreecommitdiffstats
path: root/vm/compiler/codegen/arm/CodegenDriver.c
diff options
context:
space:
mode:
authorBen Cheng <bccheng@google.com>2009-11-22 23:31:11 -0800
committerBen Cheng <bccheng@google.com>2009-11-22 23:31:11 -0800
commit5d90c20bd7903d7bba966b224e576bf137bf8b4b (patch)
tree0e83785f8132c4397aa9438325c1503e37a54b0e /vm/compiler/codegen/arm/CodegenDriver.c
parentec6029afbfb9aafec2b54b447dff7ddef81e49f5 (diff)
downloadandroid_dalvik-5d90c20bd7903d7bba966b224e576bf137bf8b4b.tar.gz
android_dalvik-5d90c20bd7903d7bba966b224e576bf137bf8b4b.tar.bz2
android_dalvik-5d90c20bd7903d7bba966b224e576bf137bf8b4b.zip
Restructure the codegen to make architectural depedency explicit.
The original Codegen.c is broken into three components: - CodegenCommon.c (arch-independend) - CodegenFactory.c (Thumb1/2 dependent) - CodegenDriver.c (Dalvik dependent) For the Thumb/Thumb2 directories, each contain the followin three files: - Factory.c (low-level routines for instruction selections) - Gen.c (invoke the ISA-specific instruction selection routines) - Ralloc.c (arch-dependent register pools) The FP directory contains FP-specific codegen routines depending on Thumb/Thumb2/VFP/PortableFP: - Thumb2VFP.c - ThumbVFP.c - ThumbPortableFP.c Then the hierarchy is formed by stacking these files in the following top-down order: 1 CodegenCommon.c 2 Thumb[2]/Factory.c 3 CodegenFactory.c 4 Thumb[2]/Gen.c 5 FP stuff 6 Thumb[2]/Ralloc.c 7 CodegenDriver.c
Diffstat (limited to 'vm/compiler/codegen/arm/CodegenDriver.c')
-rw-r--r--vm/compiler/codegen/arm/CodegenDriver.c4220
1 files changed, 4220 insertions, 0 deletions
diff --git a/vm/compiler/codegen/arm/CodegenDriver.c b/vm/compiler/codegen/arm/CodegenDriver.c
new file mode 100644
index 000000000..857536f48
--- /dev/null
+++ b/vm/compiler/codegen/arm/CodegenDriver.c
@@ -0,0 +1,4220 @@
+/*
+ * Copyright (C) 2009 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+/*
+ * This file contains codegen and support common to all supported
+ * ARM variants. It is included by:
+ *
+ * Codegen-$(TARGET_ARCH_VARIANT).c
+ *
+ * which combines this common code with specific support found in the
+ * applicable directory below this one.
+ */
+
+static bool genConversionCall(CompilationUnit *cUnit, MIR *mir, void *funct,
+ int srcSize, int tgtSize)
+{
+ /*
+ * Don't optimize the register usage since it calls out to template
+ * functions
+ */
+ RegLocation rlSrc;
+ RegLocation rlDest;
+ flushAllRegs(cUnit); /* Send everything to home location */
+ if (srcSize == 1) {
+ rlSrc = getSrcLoc(cUnit, mir, 0);
+ loadValueDirectFixed(cUnit, rlSrc, r0);
+ } else {
+ rlSrc = getSrcLocWide(cUnit, mir, 0, 1);
+ loadValueDirectWideFixed(cUnit, rlSrc, r0, r1);
+ }
+ loadConstant(cUnit, r2, (int)funct);
+ opReg(cUnit, kOpBlx, r2);
+ clobberCallRegs(cUnit);
+ if (tgtSize == 1) {
+ RegLocation rlResult;
+ rlDest = getDestLoc(cUnit, mir, 0);
+ rlResult = getReturnLoc(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ } else {
+ RegLocation rlResult;
+ rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ rlResult = getReturnLocWide(cUnit);
+ storeValueWide(cUnit, rlDest, rlResult);
+ }
+ return false;
+}
+
+
+static bool genArithOpFloatPortable(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlSrc2)
+{
+ RegLocation rlResult;
+ void* funct;
+
+ /* TODO: use a proper include file to define these */
+ float __aeabi_fadd(float a, float b);
+ float __aeabi_fsub(float a, float b);
+ float __aeabi_fdiv(float a, float b);
+ float __aeabi_fmul(float a, float b);
+ float fmodf(float a, float b);
+
+ switch (mir->dalvikInsn.opCode) {
+ case OP_ADD_FLOAT_2ADDR:
+ case OP_ADD_FLOAT:
+ funct = (void*) __aeabi_fadd;
+ break;
+ case OP_SUB_FLOAT_2ADDR:
+ case OP_SUB_FLOAT:
+ funct = (void*) __aeabi_fsub;
+ break;
+ case OP_DIV_FLOAT_2ADDR:
+ case OP_DIV_FLOAT:
+ funct = (void*) __aeabi_fdiv;
+ break;
+ case OP_MUL_FLOAT_2ADDR:
+ case OP_MUL_FLOAT:
+ funct = (void*) __aeabi_fmul;
+ break;
+ case OP_REM_FLOAT_2ADDR:
+ case OP_REM_FLOAT:
+ funct = (void*) fmodf;
+ break;
+ case OP_NEG_FLOAT: {
+ genNegFloat(cUnit, rlDest, rlSrc1);
+ return false;
+ }
+ default:
+ return true;
+ }
+ flushAllRegs(cUnit); /* Send everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc1, r0);
+ loadValueDirectFixed(cUnit, rlSrc2, r1);
+ loadConstant(cUnit, r2, (int)funct);
+ opReg(cUnit, kOpBlx, r2);
+ clobberCallRegs(cUnit);
+ rlResult = getReturnLoc(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool genArithOpDoublePortable(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlSrc2)
+{
+ RegLocation rlResult;
+ void* funct;
+
+ /* TODO: use a proper include file to define these */
+ double __aeabi_dadd(double a, double b);
+ double __aeabi_dsub(double a, double b);
+ double __aeabi_ddiv(double a, double b);
+ double __aeabi_dmul(double a, double b);
+ double fmod(double a, double b);
+
+ switch (mir->dalvikInsn.opCode) {
+ case OP_ADD_DOUBLE_2ADDR:
+ case OP_ADD_DOUBLE:
+ funct = (void*) __aeabi_dadd;
+ break;
+ case OP_SUB_DOUBLE_2ADDR:
+ case OP_SUB_DOUBLE:
+ funct = (void*) __aeabi_dsub;
+ break;
+ case OP_DIV_DOUBLE_2ADDR:
+ case OP_DIV_DOUBLE:
+ funct = (void*) __aeabi_ddiv;
+ break;
+ case OP_MUL_DOUBLE_2ADDR:
+ case OP_MUL_DOUBLE:
+ funct = (void*) __aeabi_dmul;
+ break;
+ case OP_REM_DOUBLE_2ADDR:
+ case OP_REM_DOUBLE:
+ funct = (void*) fmod;
+ break;
+ case OP_NEG_DOUBLE: {
+ genNegDouble(cUnit, rlDest, rlSrc1);
+ return false;
+ }
+ default:
+ return true;
+ }
+ flushAllRegs(cUnit); /* Send everything to home location */
+ loadConstant(cUnit, rlr, (int)funct);
+ loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
+ loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
+ opReg(cUnit, kOpBlx, rlr);
+ clobberCallRegs(cUnit);
+ rlResult = getReturnLocWide(cUnit);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool genConversionPortable(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode opCode = mir->dalvikInsn.opCode;
+
+ float __aeabi_i2f( int op1 );
+ int __aeabi_f2iz( float op1 );
+ float __aeabi_d2f( double op1 );
+ double __aeabi_f2d( float op1 );
+ double __aeabi_i2d( int op1 );
+ int __aeabi_d2iz( double op1 );
+ float __aeabi_l2f( long op1 );
+ double __aeabi_l2d( long op1 );
+ s8 dvmJitf2l( float op1 );
+ s8 dvmJitd2l( double op1 );
+
+ switch (opCode) {
+ case OP_INT_TO_FLOAT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_i2f, 1, 1);
+ case OP_FLOAT_TO_INT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_f2iz, 1, 1);
+ case OP_DOUBLE_TO_FLOAT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_d2f, 2, 1);
+ case OP_FLOAT_TO_DOUBLE:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_f2d, 1, 2);
+ case OP_INT_TO_DOUBLE:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_i2d, 1, 2);
+ case OP_DOUBLE_TO_INT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_d2iz, 2, 1);
+ case OP_FLOAT_TO_LONG:
+ return genConversionCall(cUnit, mir, (void*)dvmJitf2l, 1, 2);
+ case OP_LONG_TO_FLOAT:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_l2f, 2, 1);
+ case OP_DOUBLE_TO_LONG:
+ return genConversionCall(cUnit, mir, (void*)dvmJitd2l, 2, 2);
+ case OP_LONG_TO_DOUBLE:
+ return genConversionCall(cUnit, mir, (void*)__aeabi_l2d, 2, 2);
+ default:
+ return true;
+ }
+ return false;
+}
+
+#if defined(WITH_SELF_VERIFICATION)
+/* Prevent certain opcodes from being jitted */
+static inline bool selfVerificationPuntOps(OpCode op)
+{
+ return (op == OP_MONITOR_ENTER || op == OP_MONITOR_EXIT ||
+ op == OP_NEW_INSTANCE || op == OP_NEW_ARRAY);
+}
+
+/*
+ * The following are used to keep compiled loads and stores from modifying
+ * memory during self verification mode.
+ *
+ * Stores do not modify memory. Instead, the address and value pair are stored
+ * into heapSpace. Addresses within heapSpace are unique. For accesses smaller
+ * than a word, the word containing the address is loaded first before being
+ * updated.
+ *
+ * Loads check heapSpace first and return data from there if an entry exists.
+ * Otherwise, data is loaded from memory as usual.
+ */
+
+/* Decode contents of heapArgSpace to determine addr to load from */
+static void selfVerificationLoadDecode(HeapArgSpace* heapArgSpace, int* addr)
+{
+ int reg = heapArgSpace->regMap & 0xFF;
+ if (!FPREG(reg)) {
+ assert(reg < 16);
+ *addr = heapArgSpace->coreRegs[reg];
+ } else {
+ assert(!DOUBLEREG(reg));
+ *addr = heapArgSpace->fpRegs[(reg & FP_REG_MASK)];
+ }
+}
+
+/* Decode contents of heapArgSpace to determine reg to load into */
+static void selfVerificationLoadDecodeData(HeapArgSpace* heapArgSpace,
+ int data, int reg)
+{
+ if (!FPREG(reg)) {
+ assert(reg < 16);
+ heapArgSpace->coreRegs[reg] = data;
+ } else {
+ assert(!DOUBLEREG(reg));
+ heapArgSpace->fpRegs[(reg & FP_REG_MASK)] = data;
+ }
+}
+
+static void selfVerificationLoad(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap *heapSpacePtr;
+ ShadowSpace *shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr, data;
+ selfVerificationLoadDecode(heapArgSpace, &addr);
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == addr) {
+ data = heapSpacePtr->data;
+ break;
+ }
+ }
+
+ if (heapSpacePtr == shadowSpace->heapSpaceTail)
+ data = *((unsigned int*) addr);
+
+ int reg = (heapArgSpace->regMap >> 8) & 0xFF;
+
+ // LOGD("*** HEAP LOAD: Reg:%d Addr: 0x%x Data: 0x%x", reg, addr, data);
+
+ selfVerificationLoadDecodeData(heapArgSpace, data, reg);
+}
+
+static void selfVerificationLoadByte(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap *heapSpacePtr;
+ ShadowSpace *shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr, data;
+ selfVerificationLoadDecode(heapArgSpace, &addr);
+
+ int maskedAddr = addr & 0xFFFFFFFC;
+ int alignment = addr & 0x3;
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == maskedAddr) {
+ addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
+ data = *((unsigned char*) addr);
+ break;
+ }
+ }
+
+ if (heapSpacePtr == shadowSpace->heapSpaceTail)
+ data = *((unsigned char*) addr);
+
+ //LOGD("*** HEAP LOAD BYTE: Addr: 0x%x Data: 0x%x", addr, data);
+
+ int reg = (heapArgSpace->regMap >> 8) & 0xFF;
+ selfVerificationLoadDecodeData(heapArgSpace, data, reg);
+}
+
+static void selfVerificationLoadHalfword(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap *heapSpacePtr;
+ ShadowSpace *shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr, data;
+ selfVerificationLoadDecode(heapArgSpace, &addr);
+
+ int maskedAddr = addr & 0xFFFFFFFC;
+ int alignment = addr & 0x2;
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == maskedAddr) {
+ addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
+ data = *((unsigned short*) addr);
+ break;
+ }
+ }
+
+ if (heapSpacePtr == shadowSpace->heapSpaceTail)
+ data = *((unsigned short*) addr);
+
+ //LOGD("*** HEAP LOAD kHalfWord: Addr: 0x%x Data: 0x%x", addr, data);
+
+ int reg = (heapArgSpace->regMap >> 8) & 0xFF;
+ selfVerificationLoadDecodeData(heapArgSpace, data, reg);
+}
+
+static void selfVerificationLoadSignedByte(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap* heapSpacePtr;
+ ShadowSpace* shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr, data;
+ selfVerificationLoadDecode(heapArgSpace, &addr);
+
+ int maskedAddr = addr & 0xFFFFFFFC;
+ int alignment = addr & 0x3;
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == maskedAddr) {
+ addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
+ data = *((signed char*) addr);
+ break;
+ }
+ }
+
+ if (heapSpacePtr == shadowSpace->heapSpaceTail)
+ data = *((signed char*) addr);
+
+ //LOGD("*** HEAP LOAD SIGNED BYTE: Addr: 0x%x Data: 0x%x", addr, data);
+
+ int reg = (heapArgSpace->regMap >> 8) & 0xFF;
+ selfVerificationLoadDecodeData(heapArgSpace, data, reg);
+}
+
+static void selfVerificationLoadSignedHalfword(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap* heapSpacePtr;
+ ShadowSpace* shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr, data;
+ selfVerificationLoadDecode(heapArgSpace, &addr);
+
+ int maskedAddr = addr & 0xFFFFFFFC;
+ int alignment = addr & 0x2;
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == maskedAddr) {
+ addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
+ data = *((signed short*) addr);
+ break;
+ }
+ }
+
+ if (heapSpacePtr == shadowSpace->heapSpaceTail)
+ data = *((signed short*) addr);
+
+ //LOGD("*** HEAP LOAD SIGNED kHalfWord: Addr: 0x%x Data: 0x%x", addr, data);
+
+ int reg = (heapArgSpace->regMap >> 8) & 0xFF;
+ selfVerificationLoadDecodeData(heapArgSpace, data, reg);
+}
+
+static void selfVerificationLoadDoubleword(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap* heapSpacePtr;
+ ShadowSpace* shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr;
+ selfVerificationLoadDecode(heapArgSpace, &addr);
+
+ int addr2 = addr+4;
+ unsigned int data = *((unsigned int*) addr);
+ unsigned int data2 = *((unsigned int*) addr2);
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == addr) {
+ data = heapSpacePtr->data;
+ } else if (heapSpacePtr->addr == addr2) {
+ data2 = heapSpacePtr->data;
+ }
+ }
+
+ // LOGD("*** HEAP LOAD DOUBLEWORD: Addr: 0x%x Data: 0x%x Data2: 0x%x",
+ // addr, data, data2);
+
+ int reg = (heapArgSpace->regMap >> 8) & 0xFF;
+ int reg2 = (heapArgSpace->regMap >> 16) & 0xFF;
+ selfVerificationLoadDecodeData(heapArgSpace, data, reg);
+ selfVerificationLoadDecodeData(heapArgSpace, data2, reg2);
+}
+
+/* Decode contents of heapArgSpace to determine arguments to store. */
+static void selfVerificationStoreDecode(HeapArgSpace* heapArgSpace,
+ int* value, int reg)
+{
+ if (!FPREG(reg)) {
+ assert(reg < 16);
+ *value = heapArgSpace->coreRegs[reg];
+ } else {
+ assert(!DOUBLEREG(reg));
+ *value = heapArgSpace->fpRegs[(reg & FP_REG_MASK)];
+ }
+}
+
+static void selfVerificationStore(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap *heapSpacePtr;
+ ShadowSpace *shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr, data;
+ int reg0 = heapArgSpace->regMap & 0xFF;
+ int reg1 = (heapArgSpace->regMap >> 8) & 0xFF;
+ selfVerificationStoreDecode(heapArgSpace, &addr, reg0);
+ selfVerificationStoreDecode(heapArgSpace, &data, reg1);
+
+ //LOGD("*** HEAP STORE: Addr: 0x%x Data: 0x%x", addr, data);
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == addr) break;
+ }
+
+ if (heapSpacePtr == shadowSpace->heapSpaceTail) {
+ heapSpacePtr->addr = addr;
+ shadowSpace->heapSpaceTail++;
+ }
+
+ heapSpacePtr->data = data;
+}
+
+static void selfVerificationStoreByte(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap *heapSpacePtr;
+ ShadowSpace *shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr, data;
+ int reg0 = heapArgSpace->regMap & 0xFF;
+ int reg1 = (heapArgSpace->regMap >> 8) & 0xFF;
+ selfVerificationStoreDecode(heapArgSpace, &addr, reg0);
+ selfVerificationStoreDecode(heapArgSpace, &data, reg1);
+
+ int maskedAddr = addr & 0xFFFFFFFC;
+ int alignment = addr & 0x3;
+
+ //LOGD("*** HEAP STORE BYTE: Addr: 0x%x Data: 0x%x", addr, data);
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == maskedAddr) break;
+ }
+
+ if (heapSpacePtr == shadowSpace->heapSpaceTail) {
+ heapSpacePtr->addr = maskedAddr;
+ heapSpacePtr->data = *((unsigned int*) maskedAddr);
+ shadowSpace->heapSpaceTail++;
+ }
+
+ addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
+ *((unsigned char*) addr) = (char) data;
+
+ //LOGD("*** HEAP STORE BYTE: Addr: 0x%x Final Data: 0x%x",
+ // addr, heapSpacePtr->data);
+}
+
+static void selfVerificationStoreHalfword(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap *heapSpacePtr;
+ ShadowSpace *shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr, data;
+ int reg0 = heapArgSpace->regMap & 0xFF;
+ int reg1 = (heapArgSpace->regMap >> 8) & 0xFF;
+ selfVerificationStoreDecode(heapArgSpace, &addr, reg0);
+ selfVerificationStoreDecode(heapArgSpace, &data, reg1);
+
+ int maskedAddr = addr & 0xFFFFFFFC;
+ int alignment = addr & 0x2;
+
+ //LOGD("*** HEAP STORE kHalfWord: Addr: 0x%x Data: 0x%x", addr, data);
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == maskedAddr) break;
+ }
+
+ if (heapSpacePtr == shadowSpace->heapSpaceTail) {
+ heapSpacePtr->addr = maskedAddr;
+ heapSpacePtr->data = *((unsigned int*) maskedAddr);
+ shadowSpace->heapSpaceTail++;
+ }
+
+ addr = ((unsigned int) &(heapSpacePtr->data)) | alignment;
+ *((unsigned short*) addr) = (short) data;
+
+ //LOGD("*** HEAP STORE kHalfWord: Addr: 0x%x Final Data: 0x%x",
+ // addr, heapSpacePtr->data);
+}
+
+static void selfVerificationStoreDoubleword(InterpState* interpState)
+{
+ Thread *self = dvmThreadSelf();
+ ShadowHeap *heapSpacePtr;
+ ShadowSpace *shadowSpace = self->shadowSpace;
+ HeapArgSpace *heapArgSpace = &(interpState->heapArgSpace);
+
+ int addr, data, data2;
+ int reg0 = heapArgSpace->regMap & 0xFF;
+ int reg1 = (heapArgSpace->regMap >> 8) & 0xFF;
+ int reg2 = (heapArgSpace->regMap >> 16) & 0xFF;
+ selfVerificationStoreDecode(heapArgSpace, &addr, reg0);
+ selfVerificationStoreDecode(heapArgSpace, &data, reg1);
+ selfVerificationStoreDecode(heapArgSpace, &data2, reg2);
+
+ int addr2 = addr+4;
+ bool store1 = false, store2 = false;
+
+ //LOGD("*** HEAP STORE DOUBLEWORD: Addr: 0x%x Data: 0x%x, Data2: 0x%x",
+ // addr, data, data2);
+
+ for (heapSpacePtr = shadowSpace->heapSpace;
+ heapSpacePtr != shadowSpace->heapSpaceTail; heapSpacePtr++) {
+ if (heapSpacePtr->addr == addr) {
+ heapSpacePtr->data = data;
+ store1 = true;
+ } else if (heapSpacePtr->addr == addr2) {
+ heapSpacePtr->data = data2;
+ store2 = true;
+ }
+ }
+
+ if (!store1) {
+ shadowSpace->heapSpaceTail->addr = addr;
+ shadowSpace->heapSpaceTail->data = data;
+ shadowSpace->heapSpaceTail++;
+ }
+ if (!store2) {
+ shadowSpace->heapSpaceTail->addr = addr2;
+ shadowSpace->heapSpaceTail->data = data2;
+ shadowSpace->heapSpaceTail++;
+ }
+}
+
+/* Common wrapper function for all memory operations */
+static void selfVerificationMemOpWrapper(CompilationUnit *cUnit, int regMap,
+ void* funct)
+{
+ /* push r0 and r7 to give us a foothold */
+ newLIR1(cUnit, kThumbPush, (1 << r0) | (1 << r7));
+
+ /* Let the save handler know where the save record is */
+ loadConstant(cUnit, r0, offsetof(InterpState, heapArgSpace));
+
+ /* Load the regMap and call the save handler [note: handler pops r0/r7] */
+ loadConstant(cUnit, r7, regMap);
+ genDispatchToHandler(cUnit, TEMPLATE_SAVE_STATE);
+
+ /* Set function pointer, pass rGLUE and branch */
+ loadConstant(cUnit, r1, (int) funct);
+ newLIR2(cUnit, kThumbMovRR, r0, rGLUE);
+ newLIR1(cUnit, kThumbBlxR, r1);
+
+ /* Let the recover handler know where coreRegs[0] and restore regs */
+ loadConstant(cUnit, r0, offsetof(InterpState, heapArgSpace) +
+ offsetof(HeapArgSpace, coreRegs));
+ genDispatchToHandler(cUnit, TEMPLATE_RESTORE_STATE);
+}
+
+#endif
+
+/* Generate a unconditional branch to go to the interpreter */
+static inline ArmLIR *genTrap(CompilationUnit *cUnit, int dOffset,
+ ArmLIR *pcrLabel)
+{
+ ArmLIR *branch = opNone(cUnit, kOpUncondBr);
+ return genCheckCommon(cUnit, dOffset, branch, pcrLabel);
+}
+
+/* Load a wide field from an object instance */
+static void genIGetWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ RegLocation rlObj = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ RegLocation rlResult;
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ int regPtr = allocTemp(cUnit);
+
+ assert(rlDest.wide);
+
+ genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
+ NULL);/* null object? */
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+#if !defined(WITH_SELF_VERIFICATION)
+ loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
+#else
+ int regMap = rlResult.highReg << 16 | rlResult.lowReg << 8 | regPtr;
+ selfVerificationMemOpWrapper(cUnit, regMap,
+ &selfVerificationLoadDoubleword);
+#endif
+ freeTemp(cUnit, regPtr);
+ storeValueWide(cUnit, rlDest, rlResult);
+}
+
+/* Store a wide field to an object instance */
+static void genIPutWide(CompilationUnit *cUnit, MIR *mir, int fieldOffset)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ RegLocation rlSrc = getSrcLocWide(cUnit, mir, 0, 1);
+ RegLocation rlObj = getSrcLoc(cUnit, mir, 2);
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ int regPtr;
+ rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
+ genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
+ NULL);/* null object? */
+ regPtr = allocTemp(cUnit);
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
+#if !defined(WITH_SELF_VERIFICATION)
+ storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
+#else
+ int regMap = rlSrc.highReg << 16 | rlSrc.lowReg << 8 | regPtr;
+ selfVerificationMemOpWrapper(cUnit, regMap,
+ &selfVerificationStoreDoubleword);
+#endif
+ freeTemp(cUnit, regPtr);
+}
+
+/*
+ * Load a field from an object instance
+ *
+ */
+static void genIGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
+ int fieldOffset)
+{
+ int regPtr;
+ RegLocation rlResult;
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ RegLocation rlObj = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlDest = getDestLoc(cUnit, mir, 0);
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+ genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
+ NULL);/* null object? */
+#if !defined(WITH_SELF_VERIFICATION)
+ loadBaseDisp(cUnit, mir, rlObj.lowReg, fieldOffset, rlResult.lowReg,
+ size, rlObj.sRegLow);
+#else
+ /* Combine address and offset */
+ regPtr = allocTemp(cUnit);
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
+
+ int regMap = rlResult.lowReg << 8 | regPtr;
+ selfVerificationMemOpWrapper(cUnit, regMap, &selfVerificationLoad);
+ freeTemp(cUnit, regPtr);
+#endif
+ storeValue(cUnit, rlDest, rlResult);
+}
+
+/*
+ * Store a field to an object instance
+ *
+ */
+static void genIPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
+ int fieldOffset)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ RegLocation rlSrc = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlObj = getSrcLoc(cUnit, mir, 1);
+ rlObj = loadValue(cUnit, rlObj, kCoreReg);
+ rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
+ int regPtr;
+ genNullCheck(cUnit, rlObj.sRegLow, rlObj.lowReg, mir->offset,
+ NULL);/* null object? */
+#if !defined(WITH_SELF_VERIFICATION)
+ storeBaseDisp(cUnit, rlObj.lowReg, fieldOffset, rlSrc.lowReg, size);
+#else
+ /* Combine address and offset */
+ regPtr = allocTemp(cUnit);
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlObj.lowReg, fieldOffset);
+
+ int regMap = rlSrc.lowReg << 8 | regPtr;
+ selfVerificationMemOpWrapper(cUnit, regMap, &selfVerificationStore);
+#endif
+}
+
+
+/*
+ * Generate array load
+ */
+static void genArrayGet(CompilationUnit *cUnit, MIR *mir, OpSize size,
+ RegLocation rlArray, RegLocation rlIndex,
+ RegLocation rlDest, int scale)
+{
+ int lenOffset = offsetof(ArrayObject, length);
+ int dataOffset = offsetof(ArrayObject, contents);
+ RegLocation rlResult;
+ rlArray = loadValue(cUnit, rlArray, kCoreReg);
+ rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
+ int regPtr;
+
+ /* null object? */
+ ArmLIR * pcrLabel = NULL;
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
+ pcrLabel = genNullCheck(cUnit, rlArray.sRegLow,
+ rlArray.lowReg, mir->offset, NULL);
+ }
+
+ regPtr = allocTemp(cUnit);
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
+ int regLen = allocTemp(cUnit);
+ /* Get len */
+ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
+ /* regPtr -> array data */
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
+ genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
+ pcrLabel);
+ freeTemp(cUnit, regLen);
+ } else {
+ /* regPtr -> array data */
+ opRegRegImm(cUnit, kOpAdd, regPtr, rlArray.lowReg, dataOffset);
+ }
+#if !defined(WITH_SELF_VERIFICATION)
+ if ((size == kLong) || (size == kDouble)) {
+ if (scale) {
+ int rNewIndex = allocTemp(cUnit);
+ opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
+ opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
+ freeTemp(cUnit, rNewIndex);
+ } else {
+ opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
+ }
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+ loadPair(cUnit, regPtr, rlResult.lowReg, rlResult.highReg);
+ freeTemp(cUnit, regPtr);
+ storeValueWide(cUnit, rlDest, rlResult);
+ } else {
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+ loadBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlResult.lowReg,
+ scale, size);
+ freeTemp(cUnit, regPtr);
+ storeValue(cUnit, rlDest, rlResult);
+ }
+#else
+ //TODO: probably want to move this into loadBaseIndexed
+ void *funct = NULL;
+ switch(size) {
+ case kLong:
+ case kDouble:
+ funct = (void*) &selfVerificationLoadDoubleword;
+ break;
+ case kWord:
+ funct = (void*) &selfVerificationLoad;
+ break;
+ case kUnsignedHalf:
+ funct = (void*) &selfVerificationLoadHalfword;
+ break;
+ case kSignedHalf:
+ funct = (void*) &selfVerificationLoadSignedHalfword;
+ break;
+ case kUnsignedByte:
+ funct = (void*) &selfVerificationLoadByte;
+ break;
+ case kSignedByte:
+ funct = (void*) &selfVerificationLoadSignedByte;
+ break;
+ default:
+ assert(0);
+ dvmAbort();
+ }
+ /* Combine address and index */
+ if (scale) {
+ int regTmp = allocTemp(cUnit);
+ opRegRegImm(cUnit, kOpLsl, regTmp, rlIndex.lowReg, scale);
+ opRegReg(cUnit, kOpAdd, regPtr, regTmp);
+ freeTemp(cUnit, regTmp);
+ } else {
+ opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
+ }
+
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+ int regMap = rlResult.highReg << 16 | rlResult.lowReg << 8 | regPtr;
+ selfVerificationMemOpWrapper(cUnit, regMap, funct);
+
+ freeTemp(cUnit, regPtr);
+ if ((size == kLong) || (size == kDouble))
+ storeValueWide(cUnit, rlDest, rlResult);
+ else
+ storeValue(cUnit, rlDest, rlResult);
+#endif
+}
+
+/*
+ * Generate array store
+ *
+ */
+static void genArrayPut(CompilationUnit *cUnit, MIR *mir, OpSize size,
+ RegLocation rlArray, RegLocation rlIndex,
+ RegLocation rlSrc, int scale)
+{
+ int lenOffset = offsetof(ArrayObject, length);
+ int dataOffset = offsetof(ArrayObject, contents);
+
+ int regPtr;
+ rlArray = loadValue(cUnit, rlArray, kCoreReg);
+ rlIndex = loadValue(cUnit, rlIndex, kCoreReg);
+
+ if (isTemp(cUnit, rlArray.lowReg)) {
+ clobberReg(cUnit, rlArray.lowReg);
+ regPtr = rlArray.lowReg;
+ } else {
+ regPtr = allocTemp(cUnit);
+ genRegCopy(cUnit, regPtr, rlArray.lowReg);
+ }
+
+ /* null object? */
+ ArmLIR * pcrLabel = NULL;
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_NULL_CHECK)) {
+ pcrLabel = genNullCheck(cUnit, rlArray.sRegLow, rlArray.lowReg,
+ mir->offset, NULL);
+ }
+
+ if (!(mir->OptimizationFlags & MIR_IGNORE_RANGE_CHECK)) {
+ int regLen = allocTemp(cUnit);
+ //NOTE: max live temps(4) here.
+ /* Get len */
+ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLen);
+ /* regPtr -> array data */
+ opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
+ genBoundsCheck(cUnit, rlIndex.lowReg, regLen, mir->offset,
+ pcrLabel);
+ freeTemp(cUnit, regLen);
+ } else {
+ /* regPtr -> array data */
+ opRegImm(cUnit, kOpAdd, regPtr, dataOffset);
+ }
+ /* at this point, regPtr points to array, 2 live temps */
+#if !defined(WITH_SELF_VERIFICATION)
+ if ((size == kLong) || (size == kDouble)) {
+ //TODO: need specific wide routine that can handle fp regs
+ if (scale) {
+ int rNewIndex = allocTemp(cUnit);
+ opRegRegImm(cUnit, kOpLsl, rNewIndex, rlIndex.lowReg, scale);
+ opRegReg(cUnit, kOpAdd, regPtr, rNewIndex);
+ freeTemp(cUnit, rNewIndex);
+ } else {
+ opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
+ }
+ rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
+ storePair(cUnit, regPtr, rlSrc.lowReg, rlSrc.highReg);
+ freeTemp(cUnit, regPtr);
+ } else {
+ rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
+ storeBaseIndexed(cUnit, regPtr, rlIndex.lowReg, rlSrc.lowReg,
+ scale, size);
+ }
+#else
+ //TODO: probably want to move this into storeBaseIndexed
+ void *funct = NULL;
+ switch(size) {
+ case kLong:
+ case kDouble:
+ funct = (void*) &selfVerificationStoreDoubleword;
+ break;
+ case kWord:
+ funct = (void*) &selfVerificationStore;
+ break;
+ case kSignedHalf:
+ case kUnsignedHalf:
+ funct = (void*) &selfVerificationStoreHalfword;
+ break;
+ case kSignedByte:
+ case kUnsignedByte:
+ funct = (void*) &selfVerificationStoreByte;
+ break;
+ default:
+ assert(0);
+ dvmAbort();
+ }
+
+ if (scale) {
+ int regTmpIndex = allocTemp(cUnit);
+ // 3 live temps
+ opRegRegImm(cUnit, kOpLsl, regTmpIndex, rlIndex.lowReg, scale);
+ opRegReg(cUnit, kOpAdd, regPtr, regTmpIndex);
+ freeTemp(cUnit, regTmpIndex);
+ } else {
+ opRegReg(cUnit, kOpAdd, regPtr, rlIndex.lowReg);
+ }
+ /* Combine address and index */
+ if ((size == kLong) || (size == kDouble)) {
+ rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
+ } else {
+ rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
+ }
+
+ int regMap = rlSrc.highReg << 16 | rlSrc.lowReg << 8 | regPtr;
+ selfVerificationMemOpWrapper(cUnit, regMap, funct);
+
+#endif
+}
+
+static bool genShiftOpLong(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlShift)
+{
+ /*
+ * Don't mess with the regsiters here as there is a particular calling
+ * convention to the out-of-line handler.
+ */
+ RegLocation rlResult;
+
+ loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
+ loadValueDirect(cUnit, rlShift, r2);
+ switch( mir->dalvikInsn.opCode) {
+ case OP_SHL_LONG:
+ case OP_SHL_LONG_2ADDR:
+ genDispatchToHandler(cUnit, TEMPLATE_SHL_LONG);
+ break;
+ case OP_SHR_LONG:
+ case OP_SHR_LONG_2ADDR:
+ genDispatchToHandler(cUnit, TEMPLATE_SHR_LONG);
+ break;
+ case OP_USHR_LONG:
+ case OP_USHR_LONG_2ADDR:
+ genDispatchToHandler(cUnit, TEMPLATE_USHR_LONG);
+ break;
+ default:
+ return true;
+ }
+ rlResult = getReturnLocWide(cUnit);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool genArithOpLong(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlSrc2)
+{
+ RegLocation rlResult;
+ OpKind firstOp = kOpBkpt;
+ OpKind secondOp = kOpBkpt;
+ bool callOut = false;
+ void *callTgt;
+ int retReg = r0;
+ /* TODO - find proper .h file to declare these */
+ long long __aeabi_ldivmod(long long op1, long long op2);
+
+ switch (mir->dalvikInsn.opCode) {
+ case OP_NOT_LONG:
+ rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, kOpMvn, rlResult.lowReg, rlSrc2.lowReg);
+ opRegReg(cUnit, kOpMvn, rlResult.highReg, rlSrc2.highReg);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+ break;
+ case OP_ADD_LONG:
+ case OP_ADD_LONG_2ADDR:
+ firstOp = kOpAdd;
+ secondOp = kOpAdc;
+ break;
+ case OP_SUB_LONG:
+ case OP_SUB_LONG_2ADDR:
+ firstOp = kOpSub;
+ secondOp = kOpSbc;
+ break;
+ case OP_MUL_LONG:
+ case OP_MUL_LONG_2ADDR:
+ genMulLong(cUnit, rlDest, rlSrc1, rlSrc2);
+ return false;
+ case OP_DIV_LONG:
+ case OP_DIV_LONG_2ADDR:
+ callOut = true;
+ retReg = r0;
+ callTgt = (void*)__aeabi_ldivmod;
+ break;
+ /* NOTE - result is in r2/r3 instead of r0/r1 */
+ case OP_REM_LONG:
+ case OP_REM_LONG_2ADDR:
+ callOut = true;
+ callTgt = (void*)__aeabi_ldivmod;
+ retReg = r2;
+ break;
+ case OP_AND_LONG_2ADDR:
+ case OP_AND_LONG:
+ firstOp = kOpAnd;
+ secondOp = kOpAnd;
+ break;
+ case OP_OR_LONG:
+ case OP_OR_LONG_2ADDR:
+ firstOp = kOpOr;
+ secondOp = kOpOr;
+ break;
+ case OP_XOR_LONG:
+ case OP_XOR_LONG_2ADDR:
+ firstOp = kOpXor;
+ secondOp = kOpXor;
+ break;
+ case OP_NEG_LONG: {
+ rlSrc2 = loadValueWide(cUnit, rlSrc2, kCoreReg);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantValue(cUnit, rlResult.highReg, 0);
+ opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
+ rlResult.highReg, rlSrc2.lowReg);
+ opRegReg(cUnit, kOpSbc, rlResult.highReg, rlSrc2.highReg);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+ }
+ default:
+ LOGE("Invalid long arith op");
+ dvmAbort();
+ }
+ if (!callOut) {
+ genLong3Addr(cUnit, firstOp, secondOp, rlDest, rlSrc1, rlSrc2);
+ } else {
+ // Adjust return regs in to handle case of rem returning r2/r3
+ flushAllRegs(cUnit); /* Send everything to home location */
+ loadValueDirectWideFixed(cUnit, rlSrc1, r0, r1);
+ loadConstant(cUnit, rlr, (int) callTgt);
+ loadValueDirectWideFixed(cUnit, rlSrc2, r2, r3);
+ opReg(cUnit, kOpBlx, rlr);
+ clobberCallRegs(cUnit);
+ if (retReg == r0)
+ rlResult = getReturnLocWide(cUnit);
+ else
+ rlResult = getReturnLocWideAlt(cUnit);
+ storeValueWide(cUnit, rlDest, rlResult);
+ }
+ return false;
+}
+
+static bool genArithOpInt(CompilationUnit *cUnit, MIR *mir,
+ RegLocation rlDest, RegLocation rlSrc1,
+ RegLocation rlSrc2)
+{
+ OpKind op = kOpBkpt;
+ bool callOut = false;
+ bool checkZero = false;
+ bool unary = false;
+ int retReg = r0;
+ void *callTgt;
+ RegLocation rlResult;
+
+ /* TODO - find proper .h file to declare these */
+ int __aeabi_idivmod(int op1, int op2);
+ int __aeabi_idiv(int op1, int op2);
+
+ switch (mir->dalvikInsn.opCode) {
+ case OP_NEG_INT:
+ op = kOpNeg;
+ unary = true;
+ break;
+ case OP_NOT_INT:
+ op = kOpMvn;
+ unary = true;
+ break;
+ case OP_ADD_INT:
+ case OP_ADD_INT_2ADDR:
+ op = kOpAdd;
+ break;
+ case OP_SUB_INT:
+ case OP_SUB_INT_2ADDR:
+ op = kOpSub;
+ break;
+ case OP_MUL_INT:
+ case OP_MUL_INT_2ADDR:
+ op = kOpMul;
+ break;
+ case OP_DIV_INT:
+ case OP_DIV_INT_2ADDR:
+ callOut = true;
+ checkZero = true;
+ callTgt = __aeabi_idiv;
+ retReg = r0;
+ break;
+ /* NOTE: returns in r1 */
+ case OP_REM_INT:
+ case OP_REM_INT_2ADDR:
+ callOut = true;
+ checkZero = true;
+ callTgt = __aeabi_idivmod;
+ retReg = r1;
+ break;
+ case OP_AND_INT:
+ case OP_AND_INT_2ADDR:
+ op = kOpAnd;
+ break;
+ case OP_OR_INT:
+ case OP_OR_INT_2ADDR:
+ op = kOpOr;
+ break;
+ case OP_XOR_INT:
+ case OP_XOR_INT_2ADDR:
+ op = kOpXor;
+ break;
+ case OP_SHL_INT:
+ case OP_SHL_INT_2ADDR:
+ op = kOpLsl;
+ break;
+ case OP_SHR_INT:
+ case OP_SHR_INT_2ADDR:
+ op = kOpAsr;
+ break;
+ case OP_USHR_INT:
+ case OP_USHR_INT_2ADDR:
+ op = kOpLsr;
+ break;
+ default:
+ LOGE("Invalid word arith op: 0x%x(%d)",
+ mir->dalvikInsn.opCode, mir->dalvikInsn.opCode);
+ dvmAbort();
+ }
+ if (!callOut) {
+ rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
+ if (unary) {
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, op, rlResult.lowReg,
+ rlSrc1.lowReg);
+ } else {
+ rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegRegReg(cUnit, op, rlResult.lowReg,
+ rlSrc1.lowReg, rlSrc2.lowReg);
+ }
+ storeValue(cUnit, rlDest, rlResult);
+ } else {
+ RegLocation rlResult;
+ flushAllRegs(cUnit); /* Send everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc2, r1);
+ loadConstant(cUnit, r2, (int) callTgt);
+ loadValueDirectFixed(cUnit, rlSrc1, r0);
+ if (checkZero) {
+ genNullCheck(cUnit, rlSrc2.sRegLow, r1, mir->offset, NULL);
+ }
+ opReg(cUnit, kOpBlx, r2);
+ clobberCallRegs(cUnit);
+ if (retReg == r0)
+ rlResult = getReturnLoc(cUnit);
+ else
+ rlResult = getReturnLocAlt(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ }
+ return false;
+}
+
+static bool genArithOp(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode opCode = mir->dalvikInsn.opCode;
+ RegLocation rlDest;
+ RegLocation rlSrc1;
+ RegLocation rlSrc2;
+ /* Deduce sizes of operands */
+ if (mir->ssaRep->numUses == 2) {
+ rlSrc1 = getSrcLoc(cUnit, mir, 0);
+ rlSrc2 = getSrcLoc(cUnit, mir, 1);
+ } else if (mir->ssaRep->numUses == 3) {
+ rlSrc1 = getSrcLocWide(cUnit, mir, 0, 1);
+ rlSrc2 = getSrcLoc(cUnit, mir, 2);
+ } else {
+ rlSrc1 = getSrcLocWide(cUnit, mir, 0, 1);
+ rlSrc2 = getSrcLocWide(cUnit, mir, 2, 3);
+ assert(mir->ssaRep->numUses == 4);
+ }
+ if (mir->ssaRep->numDefs == 1) {
+ rlDest = getDestLoc(cUnit, mir, 0);
+ } else {
+ assert(mir->ssaRep->numDefs == 2);
+ rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ }
+
+ if ((opCode >= OP_ADD_LONG_2ADDR) && (opCode <= OP_XOR_LONG_2ADDR)) {
+ return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opCode >= OP_ADD_LONG) && (opCode <= OP_XOR_LONG)) {
+ return genArithOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opCode >= OP_SHL_LONG_2ADDR) && (opCode <= OP_USHR_LONG_2ADDR)) {
+ return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opCode >= OP_SHL_LONG) && (opCode <= OP_USHR_LONG)) {
+ return genShiftOpLong(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_USHR_INT_2ADDR)) {
+ return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opCode >= OP_ADD_INT) && (opCode <= OP_USHR_INT)) {
+ return genArithOpInt(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opCode >= OP_ADD_FLOAT_2ADDR) && (opCode <= OP_REM_FLOAT_2ADDR)) {
+ return genArithOpFloat(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opCode >= OP_ADD_FLOAT) && (opCode <= OP_REM_FLOAT)) {
+ return genArithOpFloat(cUnit, mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opCode >= OP_ADD_DOUBLE_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
+ return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ if ((opCode >= OP_ADD_DOUBLE) && (opCode <= OP_REM_DOUBLE)) {
+ return genArithOpDouble(cUnit,mir, rlDest, rlSrc1, rlSrc2);
+ }
+ return true;
+}
+
+/* Generate conditional branch instructions */
+static ArmLIR *genConditionalBranch(CompilationUnit *cUnit,
+ ArmConditionCode cond,
+ ArmLIR *target)
+{
+ ArmLIR *branch = opCondBranch(cUnit, cond);
+ branch->generic.target = (LIR *) target;
+ return branch;
+}
+
+/* Generate unconditional branch instructions */
+static ArmLIR *genUnconditionalBranch(CompilationUnit *cUnit, ArmLIR *target)
+{
+ ArmLIR *branch = opNone(cUnit, kOpUncondBr);
+ branch->generic.target = (LIR *) target;
+ return branch;
+}
+
+/* Perform the actual operation for OP_RETURN_* */
+static void genReturnCommon(CompilationUnit *cUnit, MIR *mir)
+{
+ genDispatchToHandler(cUnit, TEMPLATE_RETURN);
+#if defined(INVOKE_STATS)
+ gDvmJit.returnOp++;
+#endif
+ int dPC = (int) (cUnit->method->insns + mir->offset);
+ /* Insert branch, but defer setting of target */
+ ArmLIR *branch = genUnconditionalBranch(cUnit, NULL);
+ /* Set up the place holder to reconstruct this Dalvik PC */
+ ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
+ pcrLabel->opCode = ARM_PSEUDO_kPCReconstruction_CELL;
+ pcrLabel->operands[0] = dPC;
+ pcrLabel->operands[1] = mir->offset;
+ /* Insert the place holder to the growable list */
+ dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
+ /* Branch to the PC reconstruction code */
+ branch->generic.target = (LIR *) pcrLabel;
+}
+
+static void genProcessArgsNoRange(CompilationUnit *cUnit, MIR *mir,
+ DecodedInstruction *dInsn,
+ ArmLIR **pcrLabel)
+{
+ unsigned int i;
+ unsigned int regMask = 0;
+ RegLocation rlArg;
+ int numDone = 0;
+
+ /*
+ * Load arguments to r0..r4. Note that these registers may contain
+ * live values, so we clobber them immediately after loading to prevent
+ * them from being used as sources for subsequent loads.
+ */
+ lockAllTemps(cUnit);
+ for (i = 0; i < dInsn->vA; i++) {
+ regMask |= 1 << i;
+ rlArg = getSrcLoc(cUnit, mir, numDone++);
+ loadValueDirectFixed(cUnit, rlArg, i);
+ }
+ if (regMask) {
+ /* Up to 5 args are pushed on top of FP - sizeofStackSaveArea */
+ opRegRegImm(cUnit, kOpSub, r7, rFP,
+ sizeof(StackSaveArea) + (dInsn->vA << 2));
+ /* generate null check */
+ if (pcrLabel) {
+ *pcrLabel = genNullCheck(cUnit, getSrcSSAName(mir, 0), r0,
+ mir->offset, NULL);
+ }
+ storeMultiple(cUnit, r7, regMask);
+ }
+}
+
+static void genProcessArgsRange(CompilationUnit *cUnit, MIR *mir,
+ DecodedInstruction *dInsn,
+ ArmLIR **pcrLabel)
+{
+ int srcOffset = dInsn->vC << 2;
+ int numArgs = dInsn->vA;
+ int regMask;
+
+ /*
+ * Note: here, all promoted registers will have been flushed
+ * back to the Dalvik base locations, so register usage restrictins
+ * are lifted. All parms loaded from original Dalvik register
+ * region - even though some might conceivably have valid copies
+ * cached in a preserved register.
+ */
+ lockAllTemps(cUnit);
+
+ /*
+ * r4PC : &rFP[vC]
+ * r7: &newFP[0]
+ */
+ opRegRegImm(cUnit, kOpAdd, r4PC, rFP, srcOffset);
+ /* load [r0 .. min(numArgs,4)] */
+ regMask = (1 << ((numArgs < 4) ? numArgs : 4)) - 1;
+ /*
+ * Protect the loadMultiple instruction from being reordered with other
+ * Dalvik stack accesses.
+ */
+ loadMultiple(cUnit, r4PC, regMask);
+
+ opRegRegImm(cUnit, kOpSub, r7, rFP,
+ sizeof(StackSaveArea) + (numArgs << 2));
+ /* generate null check */
+ if (pcrLabel) {
+ *pcrLabel = genNullCheck(cUnit, getSrcSSAName(mir, 0), r0,
+ mir->offset, NULL);
+ }
+
+ /*
+ * Handle remaining 4n arguments:
+ * store previously loaded 4 values and load the next 4 values
+ */
+ if (numArgs >= 8) {
+ ArmLIR *loopLabel = NULL;
+ /*
+ * r0 contains "this" and it will be used later, so push it to the stack
+ * first. Pushing r5 (rFP) is just for stack alignment purposes.
+ */
+ opImm(cUnit, kOpPush, (1 << r0 | 1 << rFP));
+ /* No need to generate the loop structure if numArgs <= 11 */
+ if (numArgs > 11) {
+ loadConstant(cUnit, 5, ((numArgs - 4) >> 2) << 2);
+ loopLabel = newLIR0(cUnit, kArmPseudoTargetLabel);
+ loopLabel->defMask = ENCODE_ALL;
+ }
+ storeMultiple(cUnit, r7, regMask);
+ /*
+ * Protect the loadMultiple instruction from being reordered with other
+ * Dalvik stack accesses.
+ */
+ loadMultiple(cUnit, r4PC, regMask);
+ /* No need to generate the loop structure if numArgs <= 11 */
+ if (numArgs > 11) {
+ opRegImm(cUnit, kOpSub, rFP, 4);
+ genConditionalBranch(cUnit, kArmCondNe, loopLabel);
+ }
+ }
+
+ /* Save the last batch of loaded values */
+ storeMultiple(cUnit, r7, regMask);
+
+ /* Generate the loop epilogue - don't use r0 */
+ if ((numArgs > 4) && (numArgs % 4)) {
+ regMask = ((1 << (numArgs & 0x3)) - 1) << 1;
+ /*
+ * Protect the loadMultiple instruction from being reordered with other
+ * Dalvik stack accesses.
+ */
+ loadMultiple(cUnit, r4PC, regMask);
+ }
+ if (numArgs >= 8)
+ opImm(cUnit, kOpPop, (1 << r0 | 1 << rFP));
+
+ /* Save the modulo 4 arguments */
+ if ((numArgs > 4) && (numArgs % 4)) {
+ storeMultiple(cUnit, r7, regMask);
+ }
+}
+
+/*
+ * Generate code to setup the call stack then jump to the chaining cell if it
+ * is not a native method.
+ */
+static void genInvokeSingletonCommon(CompilationUnit *cUnit, MIR *mir,
+ BasicBlock *bb, ArmLIR *labelList,
+ ArmLIR *pcrLabel,
+ const Method *calleeMethod)
+{
+ /*
+ * Note: all Dalvik register state should be flushed to
+ * memory by the point, so register usage restrictions no
+ * longer apply. All temp & preserved registers may be used.
+ */
+ lockAllTemps(cUnit);
+ ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
+
+ /* r1 = &retChainingCell */
+ lockTemp(cUnit, r1);
+ ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
+ /* r4PC = dalvikCallsite */
+ loadConstant(cUnit, r4PC,
+ (int) (cUnit->method->insns + mir->offset));
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+ /*
+ * r0 = calleeMethod (loaded upon calling genInvokeSingletonCommon)
+ * r1 = &ChainingCell
+ * r4PC = callsiteDPC
+ */
+ if (dvmIsNativeMethod(calleeMethod)) {
+ genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NATIVE);
+#if defined(INVOKE_STATS)
+ gDvmJit.invokeNative++;
+#endif
+ } else {
+ genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_CHAIN);
+#if defined(INVOKE_STATS)
+ gDvmJit.invokeChain++;
+#endif
+ /* Branch to the chaining cell */
+ genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
+ }
+ /* Handle exceptions using the interpreter */
+ genTrap(cUnit, mir->offset, pcrLabel);
+}
+
+/*
+ * Generate code to check the validity of a predicted chain and take actions
+ * based on the result.
+ *
+ * 0x426a99aa : ldr r4, [pc, #72] --> r4 <- dalvikPC of this invoke
+ * 0x426a99ac : add r1, pc, #32 --> r1 <- &retChainingCell
+ * 0x426a99ae : add r2, pc, #40 --> r2 <- &predictedChainingCell
+ * 0x426a99b0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN
+ * 0x426a99b2 : blx_2 see above --+
+ * 0x426a99b4 : b 0x426a99d8 --> off to the predicted chain
+ * 0x426a99b6 : b 0x426a99c8 --> punt to the interpreter
+ * 0x426a99b8 : ldr r0, [r7, #44] --> r0 <- this->class->vtable[methodIdx]
+ * 0x426a99ba : cmp r1, #0 --> compare r1 (rechain count) against 0
+ * 0x426a99bc : bgt 0x426a99c2 --> >=0? don't rechain
+ * 0x426a99be : ldr r7, [r6, #96] --+ dvmJitToPatchPredictedChain
+ * 0x426a99c0 : blx r7 --+
+ * 0x426a99c2 : add r1, pc, #12 --> r1 <- &retChainingCell
+ * 0x426a99c4 : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT
+ * 0x426a99c6 : blx_2 see above --+
+ */
+static void genInvokeVirtualCommon(CompilationUnit *cUnit, MIR *mir,
+ int methodIndex,
+ ArmLIR *retChainingCell,
+ ArmLIR *predChainingCell,
+ ArmLIR *pcrLabel)
+{
+ /*
+ * Note: all Dalvik register state should be flushed to
+ * memory by the point, so register usage restrictions no
+ * longer apply. Lock temps to prevent them from being
+ * allocated by utility routines.
+ */
+ lockAllTemps(cUnit);
+
+ /* "this" is already left in r0 by genProcessArgs* */
+
+ /* r4PC = dalvikCallsite */
+ loadConstant(cUnit, r4PC,
+ (int) (cUnit->method->insns + mir->offset));
+
+ /* r1 = &retChainingCell */
+ ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ /* r2 = &predictedChainingCell */
+ ArmLIR *predictedChainingCell = opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
+ predictedChainingCell->generic.target = (LIR *) predChainingCell;
+
+ genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
+
+ /* return through lr - jump to the chaining cell */
+ genUnconditionalBranch(cUnit, predChainingCell);
+
+ /*
+ * null-check on "this" may have been eliminated, but we still need a PC-
+ * reconstruction label for stack overflow bailout.
+ */
+ if (pcrLabel == NULL) {
+ int dPC = (int) (cUnit->method->insns + mir->offset);
+ pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
+ pcrLabel->opCode = ARM_PSEUDO_kPCReconstruction_CELL;
+ pcrLabel->operands[0] = dPC;
+ pcrLabel->operands[1] = mir->offset;
+ /* Insert the place holder to the growable list */
+ dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
+ }
+
+ /* return through lr+2 - punt to the interpreter */
+ genUnconditionalBranch(cUnit, pcrLabel);
+
+ /*
+ * return through lr+4 - fully resolve the callee method.
+ * r1 <- count
+ * r2 <- &predictedChainCell
+ * r3 <- this->class
+ * r4 <- dPC
+ * r7 <- this->class->vtable
+ */
+
+ /* r0 <- calleeMethod */
+ loadWordDisp(cUnit, r7, methodIndex * 4, r0);
+
+ /* Check if rechain limit is reached */
+ opRegImm(cUnit, kOpCmp, r1, 0);
+
+ ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt);
+
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
+ jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
+
+ /*
+ * r0 = calleeMethod
+ * r2 = &predictedChainingCell
+ * r3 = class
+ *
+ * &returnChainingCell has been loaded into r1 but is not needed
+ * when patching the chaining cell and will be clobbered upon
+ * returning so it will be reconstructed again.
+ */
+ opReg(cUnit, kOpBlx, r7);
+
+ /* r1 = &retChainingCell */
+ addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ bypassRechaining->generic.target = (LIR *) addrRetChain;
+ /*
+ * r0 = calleeMethod,
+ * r1 = &ChainingCell,
+ * r4PC = callsiteDPC,
+ */
+ genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
+#if defined(INVOKE_STATS)
+ gDvmJit.invokePredictedChain++;
+#endif
+ /* Handle exceptions using the interpreter */
+ genTrap(cUnit, mir->offset, pcrLabel);
+}
+
+/*
+ * Up calling this function, "this" is stored in r0. The actual class will be
+ * chased down off r0 and the predicted one will be retrieved through
+ * predictedChainingCell then a comparison is performed to see whether the
+ * previously established chaining is still valid.
+ *
+ * The return LIR is a branch based on the comparison result. The actual branch
+ * target will be setup in the caller.
+ */
+static ArmLIR *genCheckPredictedChain(CompilationUnit *cUnit,
+ ArmLIR *predChainingCell,
+ ArmLIR *retChainingCell,
+ MIR *mir)
+{
+ /*
+ * Note: all Dalvik register state should be flushed to
+ * memory by the point, so register usage restrictions no
+ * longer apply. All temp & preserved registers may be used.
+ */
+ lockAllTemps(cUnit);
+
+ /* r3 now contains this->clazz */
+ loadWordDisp(cUnit, r0, offsetof(Object, clazz), r3);
+
+ /*
+ * r2 now contains predicted class. The starting offset of the
+ * cached value is 4 bytes into the chaining cell.
+ */
+ ArmLIR *getPredictedClass =
+ loadWordDisp(cUnit, rpc, offsetof(PredictedChainingCell, clazz), r2);
+ getPredictedClass->generic.target = (LIR *) predChainingCell;
+
+ /*
+ * r0 now contains predicted method. The starting offset of the
+ * cached value is 8 bytes into the chaining cell.
+ */
+ ArmLIR *getPredictedMethod =
+ loadWordDisp(cUnit, rpc, offsetof(PredictedChainingCell, method), r0);
+ getPredictedMethod->generic.target = (LIR *) predChainingCell;
+
+ /* Load the stats counter to see if it is time to unchain and refresh */
+ ArmLIR *getRechainingRequestCount =
+ loadWordDisp(cUnit, rpc, offsetof(PredictedChainingCell, counter), r7);
+ getRechainingRequestCount->generic.target =
+ (LIR *) predChainingCell;
+
+ /* r4PC = dalvikCallsite */
+ loadConstant(cUnit, r4PC,
+ (int) (cUnit->method->insns + mir->offset));
+
+ /* r1 = &retChainingCell */
+ ArmLIR *addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ /* Check if r2 (predicted class) == r3 (actual class) */
+ opRegReg(cUnit, kOpCmp, r2, r3);
+
+ return opCondBranch(cUnit, kArmCondEq);
+}
+
+/* Geneate a branch to go back to the interpreter */
+static void genPuntToInterp(CompilationUnit *cUnit, unsigned int offset)
+{
+ /* r0 = dalvik pc */
+ flushAllRegs(cUnit);
+ loadConstant(cUnit, r0, (int) (cUnit->method->insns + offset));
+ loadWordDisp(cUnit, r0, offsetof(Object, clazz), r3);
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
+ jitToInterpEntries.dvmJitToInterpPunt), r1);
+ opReg(cUnit, kOpBlx, r1);
+}
+
+/*
+ * Attempt to single step one instruction using the interpreter and return
+ * to the compiled code for the next Dalvik instruction
+ */
+static void genInterpSingleStep(CompilationUnit *cUnit, MIR *mir)
+{
+ int flags = dexGetInstrFlags(gDvm.instrFlags, mir->dalvikInsn.opCode);
+ int flagsToCheck = kInstrCanBranch | kInstrCanSwitch | kInstrCanReturn |
+ kInstrCanThrow;
+
+ //Ugly, but necessary. Flush all Dalvik regs so Interp can find them
+ flushAllRegs(cUnit);
+
+ if ((mir->next == NULL) || (flags & flagsToCheck)) {
+ genPuntToInterp(cUnit, mir->offset);
+ return;
+ }
+ int entryAddr = offsetof(InterpState,
+ jitToInterpEntries.dvmJitToInterpSingleStep);
+ loadWordDisp(cUnit, rGLUE, entryAddr, r2);
+ /* r0 = dalvik pc */
+ loadConstant(cUnit, r0, (int) (cUnit->method->insns + mir->offset));
+ /* r1 = dalvik pc of following instruction */
+ loadConstant(cUnit, r1, (int) (cUnit->method->insns + mir->next->offset));
+ opReg(cUnit, kOpBlx, r2);
+}
+
+static void genMonitorPortable(CompilationUnit *cUnit, MIR *mir)
+{
+ bool isEnter = (mir->dalvikInsn.opCode == OP_MONITOR_ENTER);
+ flushAllRegs(cUnit); /* Send everything to home location */
+ genExportPC(cUnit, mir);
+ RegLocation rlSrc = getSrcLoc(cUnit, mir, 0);
+ loadValueDirectFixed(cUnit, rlSrc, r1);
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0);
+ if (isEnter) {
+ loadConstant(cUnit, r2, (int)dvmLockObject);
+ } else {
+ loadConstant(cUnit, r2, (int)dvmUnlockObject);
+ }
+ genNullCheck(cUnit, rlSrc.sRegLow, r1, mir->offset, NULL);
+ /* Do the call */
+ opReg(cUnit, kOpBlx, r2);
+#if defined(WITH_DEADLOCK_PREDICTION)
+ if (isEnter) {
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState, self), r0);
+ loadWordDisp(cUnit, r0, offsetof(Thread, exception), r1);
+ opRegImm(cUnit, kOpCmp, r1, 0);
+ ArmLIR *branchOver = opCondBranch(cUnit, kArmCondEq);
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ /* noreturn */
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+ }
+#endif
+ clobberCallRegs(cUnit);
+}
+
+/*
+ * The following are the first-level codegen routines that analyze the format
+ * of each bytecode then either dispatch special purpose codegen routines
+ * or produce corresponding Thumb instructions directly.
+ */
+
+static bool handleFmt10t_Fmt20t_Fmt30t(CompilationUnit *cUnit, MIR *mir,
+ BasicBlock *bb, ArmLIR *labelList)
+{
+ /* For OP_GOTO, OP_GOTO_16, and OP_GOTO_32 */
+ genUnconditionalBranch(cUnit, &labelList[bb->taken->id]);
+ return false;
+}
+
+static bool handleFmt10x(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ if (((dalvikOpCode >= OP_UNUSED_3E) && (dalvikOpCode <= OP_UNUSED_43)) ||
+ ((dalvikOpCode >= OP_UNUSED_E3) && (dalvikOpCode <= OP_UNUSED_EB))) {
+ LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
+ return true;
+ }
+ switch (dalvikOpCode) {
+ case OP_RETURN_VOID:
+ genReturnCommon(cUnit,mir);
+ break;
+ case OP_UNUSED_73:
+ case OP_UNUSED_79:
+ case OP_UNUSED_7A:
+ LOGE("Codegen: got unused opcode 0x%x\n",dalvikOpCode);
+ return true;
+ case OP_NOP:
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt11n_Fmt31i(CompilationUnit *cUnit, MIR *mir)
+{
+ RegLocation rlDest;
+ RegLocation rlResult;
+ if (mir->ssaRep->numDefs == 2) {
+ rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ } else {
+ rlDest = getDestLoc(cUnit, mir, 0);
+ }
+
+ switch (mir->dalvikInsn.opCode) {
+ case OP_CONST:
+ case OP_CONST_4: {
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+ loadConstantValue(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_CONST_WIDE_32: {
+ //TUNING: single routine to load constant pair for support doubles
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantValue(cUnit, rlResult.lowReg, mir->dalvikInsn.vB);
+ opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
+ rlResult.lowReg, 31);
+ storeValueWide(cUnit, rlDest, rlResult);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt21h(CompilationUnit *cUnit, MIR *mir)
+{
+ RegLocation rlDest;
+ RegLocation rlResult;
+ if (mir->ssaRep->numDefs == 2) {
+ rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ } else {
+ rlDest = getDestLoc(cUnit, mir, 0);
+ }
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+
+ switch (mir->dalvikInsn.opCode) {
+ case OP_CONST_HIGH16: {
+ loadConstantValue(cUnit, rlResult.lowReg, mir->dalvikInsn.vB << 16);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_CONST_WIDE_HIGH16: {
+ loadConstantValueWide(cUnit, rlResult.lowReg, rlResult.highReg,
+ 0, mir->dalvikInsn.vB << 16);
+ storeValueWide(cUnit, rlDest, rlResult);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt20bc(CompilationUnit *cUnit, MIR *mir)
+{
+ /* For OP_THROW_VERIFICATION_ERROR */
+ genInterpSingleStep(cUnit, mir);
+ return false;
+}
+
+static bool handleFmt21c_Fmt31c(CompilationUnit *cUnit, MIR *mir)
+{
+ RegLocation rlResult;
+ RegLocation rlDest;
+ RegLocation rlSrc;
+
+ switch (mir->dalvikInsn.opCode) {
+ case OP_CONST_STRING_JUMBO:
+ case OP_CONST_STRING: {
+ void *strPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResStrings[mir->dalvikInsn.vB]);
+ assert(strPtr != NULL);
+ rlDest = getDestLoc(cUnit, mir, 0);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantValue(cUnit, rlResult.lowReg, (int) strPtr );
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_CONST_CLASS: {
+ void *classPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
+ assert(classPtr != NULL);
+ rlDest = getDestLoc(cUnit, mir, 0);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantValue(cUnit, rlResult.lowReg, (int) classPtr );
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_SGET_OBJECT:
+ case OP_SGET_BOOLEAN:
+ case OP_SGET_CHAR:
+ case OP_SGET_BYTE:
+ case OP_SGET_SHORT:
+ case OP_SGET: {
+ int valOffset = offsetof(StaticField, value);
+ int tReg = allocTemp(cUnit);
+ void *fieldPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
+ assert(fieldPtr != NULL);
+ rlDest = getDestLoc(cUnit, mir, 0);
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+ loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
+#if !defined(WITH_SELF_VERIFICATION)
+ loadWordDisp(cUnit, tReg, 0, rlResult.lowReg);
+#else
+ int regMap = rlResult.lowReg << 8 | tReg;
+ selfVerificationMemOpWrapper(cUnit, regMap, &selfVerificationLoad);
+
+#endif
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_SGET_WIDE: {
+ int valOffset = offsetof(StaticField, value);
+ void *fieldPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
+ int tReg = allocTemp(cUnit);
+ assert(fieldPtr != NULL);
+ rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+ loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
+#if !defined(WITH_SELF_VERIFICATION)
+ loadPair(cUnit, tReg, rlResult.lowReg, rlResult.highReg);
+#else
+ int regMap = rlResult.highReg << 16 |
+ rlResult.lowReg << 8 | tReg;
+ selfVerificationMemOpWrapper(cUnit, regMap,
+ &selfVerificationLoadDoubleword);
+
+#endif
+ storeValueWide(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_SPUT_OBJECT:
+ case OP_SPUT_BOOLEAN:
+ case OP_SPUT_CHAR:
+ case OP_SPUT_BYTE:
+ case OP_SPUT_SHORT:
+ case OP_SPUT: {
+ int valOffset = offsetof(StaticField, value);
+ int tReg = allocTemp(cUnit);
+ void *fieldPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
+
+ assert(fieldPtr != NULL);
+ rlSrc = getSrcLoc(cUnit, mir, 0);
+ rlSrc = loadValue(cUnit, rlSrc, kAnyReg);
+ loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
+#if !defined(WITH_SELF_VERIFICATION)
+ storeWordDisp(cUnit, tReg, 0 ,rlSrc.lowReg);
+#else
+ int regMap = rlSrc.lowReg << 8 | tReg;
+ selfVerificationMemOpWrapper(cUnit, regMap, &selfVerificationStore);
+#endif
+ break;
+ }
+ case OP_SPUT_WIDE: {
+ int tReg = allocTemp(cUnit);
+ int valOffset = offsetof(StaticField, value);
+ void *fieldPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vB]);
+
+ assert(fieldPtr != NULL);
+ rlSrc = getSrcLocWide(cUnit, mir, 0, 1);
+ rlSrc = loadValueWide(cUnit, rlSrc, kAnyReg);
+ loadConstant(cUnit, tReg, (int) fieldPtr + valOffset);
+#if !defined(WITH_SELF_VERIFICATION)
+ storePair(cUnit, tReg, rlSrc.lowReg, rlSrc.highReg);
+#else
+ int regMap = rlSrc.highReg << 16 | rlSrc.lowReg << 8 | tReg;
+ selfVerificationMemOpWrapper(cUnit, regMap,
+ &selfVerificationStoreDoubleword);
+#endif
+ break;
+ }
+ case OP_NEW_INSTANCE: {
+ /*
+ * Obey the calling convention and don't mess with the register
+ * usage.
+ */
+ ClassObject *classPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
+ assert(classPtr != NULL);
+ assert(classPtr->status & CLASS_INITIALIZED);
+ /*
+ * If it is going to throw, it should not make to the trace to begin
+ * with. However, Alloc might throw, so we need to genExportPC()
+ */
+ assert((classPtr->accessFlags & (ACC_INTERFACE|ACC_ABSTRACT)) == 0);
+ flushAllRegs(cUnit); /* Send everything to home location */
+ genExportPC(cUnit, mir);
+ loadConstant(cUnit, r2, (int)dvmAllocObject);
+ loadConstant(cUnit, r0, (int) classPtr);
+ loadConstant(cUnit, r1, ALLOC_DONT_TRACK);
+ opReg(cUnit, kOpBlx, r2);
+ clobberCallRegs(cUnit);
+ /* generate a branch over if allocation is successful */
+ opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
+ ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
+ /*
+ * OOM exception needs to be thrown here and cannot re-execute
+ */
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ /* noreturn */
+
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+ rlDest = getDestLoc(cUnit, mir, 0);
+ rlResult = getReturnLoc(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_CHECK_CAST: {
+ /*
+ * Obey the calling convention and don't mess with the register
+ * usage.
+ */
+ ClassObject *classPtr =
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vB]);
+ /*
+ * Note: It is possible that classPtr is NULL at this point,
+ * even though this instruction has been successfully interpreted.
+ * If the previous interpretation had a null source, the
+ * interpreter would not have bothered to resolve the clazz.
+ * Bail out to the interpreter in this case, and log it
+ * so that we can tell if it happens frequently.
+ */
+ if (classPtr == NULL) {
+ LOGD("null clazz in OP_CHECK_CAST, single-stepping");
+ genInterpSingleStep(cUnit, mir);
+ return false;
+ }
+ flushAllRegs(cUnit); /* Send everything to home location */
+ loadConstant(cUnit, r1, (int) classPtr );
+ rlSrc = getSrcLoc(cUnit, mir, 0);
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0); /* Null? */
+ ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq);
+ /*
+ * rlSrc.lowReg now contains object->clazz. Note that
+ * it could have been allocated r0, but we're okay so long
+ * as we don't do anything desctructive until r0 is loaded
+ * with clazz.
+ */
+ /* r0 now contains object->clazz */
+ loadWordDisp(cUnit, rlSrc.lowReg, offsetof(Object, clazz), r0);
+ loadConstant(cUnit, r2, (int)dvmInstanceofNonTrivial);
+ opRegReg(cUnit, kOpCmp, r0, r1);
+ ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
+ opReg(cUnit, kOpBlx, r2);
+ clobberCallRegs(cUnit);
+ /*
+ * If null, check cast failed - punt to the interpreter. Because
+ * interpreter will be the one throwing, we don't need to
+ * genExportPC() here.
+ */
+ genZeroCheck(cUnit, r0, mir->offset, NULL);
+ /* check cast passed - branch target here */
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branch1->generic.target = (LIR *)target;
+ branch2->generic.target = (LIR *)target;
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt11x(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ RegLocation rlResult;
+ switch (dalvikOpCode) {
+ case OP_MOVE_EXCEPTION: {
+ int offset = offsetof(InterpState, self);
+ int exOffset = offsetof(Thread, exception);
+ int selfReg = allocTemp(cUnit);
+ RegLocation rlDest = getDestLoc(cUnit, mir, 0);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ loadWordDisp(cUnit, rGLUE, offset, selfReg);
+ loadWordDisp(cUnit, selfReg, exOffset, rlResult.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_MOVE_RESULT:
+ case OP_MOVE_RESULT_OBJECT: {
+ RegLocation rlDest = getDestLoc(cUnit, mir, 0);
+ RegLocation rlSrc = LOC_DALVIK_RETURN_VAL;
+ rlSrc.fp = rlDest.fp;
+ storeValue(cUnit, rlDest, rlSrc);
+ break;
+ }
+ case OP_MOVE_RESULT_WIDE: {
+ RegLocation rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ RegLocation rlSrc = LOC_DALVIK_RETURN_VAL_WIDE;
+ rlSrc.fp = rlDest.fp;
+ storeValueWide(cUnit, rlDest, rlSrc);
+ break;
+ }
+ case OP_RETURN_WIDE: {
+ RegLocation rlSrc = getSrcLocWide(cUnit, mir, 0, 1);
+ RegLocation rlDest = LOC_DALVIK_RETURN_VAL_WIDE;
+ rlDest.fp = rlSrc.fp;
+ storeValueWide(cUnit, rlDest, rlSrc);
+ genReturnCommon(cUnit,mir);
+ break;
+ }
+ case OP_RETURN:
+ case OP_RETURN_OBJECT: {
+ RegLocation rlSrc = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlDest = LOC_DALVIK_RETURN_VAL;
+ rlDest.fp = rlSrc.fp;
+ storeValue(cUnit, rlDest, rlSrc);
+ genReturnCommon(cUnit,mir);
+ break;
+ }
+ case OP_MONITOR_EXIT:
+ case OP_MONITOR_ENTER:
+#if defined(WITH_DEADLOCK_PREDICTION) || defined(WITH_MONITOR_TRACKING)
+ genMonitorPortable(cUnit, mir);
+#else
+ genMonitor(cUnit, mir);
+#endif
+ break;
+ case OP_THROW: {
+ genInterpSingleStep(cUnit, mir);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt12x(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode opCode = mir->dalvikInsn.opCode;
+ RegLocation rlDest;
+ RegLocation rlSrc;
+ RegLocation rlResult;
+
+ if ( (opCode >= OP_ADD_INT_2ADDR) && (opCode <= OP_REM_DOUBLE_2ADDR)) {
+ return genArithOp( cUnit, mir );
+ }
+
+ if (mir->ssaRep->numUses == 2)
+ rlSrc = getSrcLocWide(cUnit, mir, 0, 1);
+ else
+ rlSrc = getSrcLoc(cUnit, mir, 0);
+ if (mir->ssaRep->numDefs == 2)
+ rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ else
+ rlDest = getDestLoc(cUnit, mir, 0);
+
+ switch (opCode) {
+ case OP_DOUBLE_TO_INT:
+ case OP_INT_TO_FLOAT:
+ case OP_FLOAT_TO_INT:
+ case OP_DOUBLE_TO_FLOAT:
+ case OP_FLOAT_TO_DOUBLE:
+ case OP_INT_TO_DOUBLE:
+ case OP_FLOAT_TO_LONG:
+ case OP_LONG_TO_FLOAT:
+ case OP_DOUBLE_TO_LONG:
+ case OP_LONG_TO_DOUBLE:
+ return genConversion(cUnit, mir);
+ case OP_NEG_INT:
+ case OP_NOT_INT:
+ return genArithOpInt(cUnit, mir, rlDest, rlSrc, rlSrc);
+ case OP_NEG_LONG:
+ case OP_NOT_LONG:
+ return genArithOpLong(cUnit, mir, rlDest, rlSrc, rlSrc);
+ case OP_NEG_FLOAT:
+ return genArithOpFloat(cUnit, mir, rlDest, rlSrc, rlSrc);
+ case OP_NEG_DOUBLE:
+ return genArithOpDouble(cUnit, mir, rlDest, rlSrc, rlSrc);
+ case OP_MOVE_WIDE:
+ storeValueWide(cUnit, rlDest, rlSrc);
+ break;
+ case OP_INT_TO_LONG:
+ rlSrc = updateLoc(cUnit, rlSrc);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ if (rlSrc.location == kLocPhysReg) {
+ genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
+ } else {
+ loadValueDirect(cUnit, rlSrc, rlResult.lowReg);
+ }
+ opRegRegImm(cUnit, kOpAsr, rlResult.highReg,
+ rlResult.lowReg, 31);
+ storeValueWide(cUnit, rlDest, rlResult);
+ break;
+ case OP_LONG_TO_INT:
+ rlSrc = updateLocWide(cUnit, rlSrc);
+ rlSrc = wideToNarrowLoc(cUnit, rlSrc);
+ // Intentional fallthrough
+ case OP_MOVE:
+ case OP_MOVE_OBJECT:
+ storeValue(cUnit, rlDest, rlSrc);
+ break;
+ case OP_INT_TO_BYTE:
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, kOp2Byte, rlResult.lowReg, rlSrc.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ case OP_INT_TO_SHORT:
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, kOp2Short, rlResult.lowReg, rlSrc.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ case OP_INT_TO_CHAR:
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegReg(cUnit, kOp2Char, rlResult.lowReg, rlSrc.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ case OP_ARRAY_LENGTH: {
+ int lenOffset = offsetof(ArrayObject, length);
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ genNullCheck(cUnit, rlSrc.sRegLow, rlSrc.lowReg,
+ mir->offset, NULL);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ loadWordDisp(cUnit, rlSrc.lowReg, lenOffset,
+ rlResult.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt21s(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ RegLocation rlDest;
+ RegLocation rlResult;
+ int BBBB = mir->dalvikInsn.vB;
+ if (dalvikOpCode == OP_CONST_WIDE_16) {
+ rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantValue(cUnit, rlResult.lowReg, BBBB);
+ opRegRegImm(cUnit, kOpAsr, rlResult.highReg, rlResult.lowReg, 31);
+ storeValueWide(cUnit, rlDest, rlResult);
+ } else if (dalvikOpCode == OP_CONST_16) {
+ rlDest = getDestLoc(cUnit, mir, 0);
+ rlResult = evalLoc(cUnit, rlDest, kAnyReg, true);
+ loadConstantValue(cUnit, rlResult.lowReg, BBBB);
+ storeValue(cUnit, rlDest, rlResult);
+ } else
+ return true;
+ return false;
+}
+
+/* Compare agaist zero */
+static bool handleFmt21t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
+ ArmLIR *labelList)
+{
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ ArmConditionCode cond;
+ RegLocation rlSrc = getSrcLoc(cUnit, mir, 0);
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ opRegImm(cUnit, kOpCmp, rlSrc.lowReg, 0);
+
+//TUNING: break this out to allow use of Thumb2 CB[N]Z
+ switch (dalvikOpCode) {
+ case OP_IF_EQZ:
+ cond = kArmCondEq;
+ break;
+ case OP_IF_NEZ:
+ cond = kArmCondNe;
+ break;
+ case OP_IF_LTZ:
+ cond = kArmCondLt;
+ break;
+ case OP_IF_GEZ:
+ cond = kArmCondGe;
+ break;
+ case OP_IF_GTZ:
+ cond = kArmCondGt;
+ break;
+ case OP_IF_LEZ:
+ cond = kArmCondLe;
+ break;
+ default:
+ cond = 0;
+ LOGE("Unexpected opcode (%d) for Fmt21t\n", dalvikOpCode);
+ dvmAbort();
+ }
+ genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
+ /* This mostly likely will be optimized away in a later phase */
+ genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
+ return false;
+}
+
+static bool handleFmt22b_Fmt22s(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ RegLocation rlSrc = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlDest = getDestLoc(cUnit, mir, 0);
+ RegLocation rlResult;
+ int lit = mir->dalvikInsn.vC;
+ OpKind op = 0; /* Make gcc happy */
+ int shiftOp = false;
+ bool isDiv = false;
+
+ int __aeabi_idivmod(int op1, int op2);
+ int __aeabi_idiv(int op1, int op2);
+
+ switch (dalvikOpCode) {
+ case OP_RSUB_INT_LIT8:
+ case OP_RSUB_INT: {
+ int tReg;
+ //TUNING: add support for use of Arm rsub op
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ tReg = allocTemp(cUnit);
+ loadConstant(cUnit, tReg, lit);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ opRegRegReg(cUnit, kOpSub, rlResult.lowReg,
+ tReg, rlSrc.lowReg);
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+ break;
+ }
+
+ case OP_ADD_INT_LIT8:
+ case OP_ADD_INT_LIT16:
+ op = kOpAdd;
+ break;
+ case OP_MUL_INT_LIT8:
+ case OP_MUL_INT_LIT16:
+ op = kOpMul;
+ break;
+ case OP_AND_INT_LIT8:
+ case OP_AND_INT_LIT16:
+ op = kOpAnd;
+ break;
+ case OP_OR_INT_LIT8:
+ case OP_OR_INT_LIT16:
+ op = kOpOr;
+ break;
+ case OP_XOR_INT_LIT8:
+ case OP_XOR_INT_LIT16:
+ op = kOpXor;
+ break;
+ case OP_SHL_INT_LIT8:
+ shiftOp = true;
+ op = kOpLsl;
+ break;
+ case OP_SHR_INT_LIT8:
+ shiftOp = true;
+ op = kOpAsr;
+ break;
+ case OP_USHR_INT_LIT8:
+ shiftOp = true;
+ op = kOpLsr;
+ break;
+
+ case OP_DIV_INT_LIT8:
+ case OP_DIV_INT_LIT16:
+ case OP_REM_INT_LIT8:
+ case OP_REM_INT_LIT16:
+ if (lit == 0) {
+ /* Let the interpreter deal with div by 0 */
+ genInterpSingleStep(cUnit, mir);
+ return false;
+ }
+ flushAllRegs(cUnit); /* Send everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc, r0);
+ clobberReg(cUnit, r0);
+ if ((dalvikOpCode == OP_DIV_INT_LIT8) ||
+ (dalvikOpCode == OP_DIV_INT_LIT16)) {
+ loadConstant(cUnit, r2, (int)__aeabi_idiv);
+ isDiv = true;
+ } else {
+ loadConstant(cUnit, r2, (int)__aeabi_idivmod);
+ isDiv = false;
+ }
+ loadConstant(cUnit, r1, lit);
+ opReg(cUnit, kOpBlx, r2);
+ clobberCallRegs(cUnit);
+ if (isDiv)
+ rlResult = getReturnLoc(cUnit);
+ else
+ rlResult = getReturnLocAlt(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+ break;
+ default:
+ return true;
+ }
+ rlSrc = loadValue(cUnit, rlSrc, kCoreReg);
+ rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ // Avoid shifts by literal 0 - no support in Thumb. Change to copy
+ if (shiftOp && (lit == 0)) {
+ genRegCopy(cUnit, rlResult.lowReg, rlSrc.lowReg);
+ } else {
+ opRegRegImm(cUnit, op, rlResult.lowReg, rlSrc.lowReg, lit);
+ }
+ storeValue(cUnit, rlDest, rlResult);
+ return false;
+}
+
+static bool handleFmt22c(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ int fieldOffset;
+
+ if (dalvikOpCode >= OP_IGET && dalvikOpCode <= OP_IPUT_SHORT) {
+ InstField *pInstField = (InstField *)
+ cUnit->method->clazz->pDvmDex->pResFields[mir->dalvikInsn.vC];
+
+ assert(pInstField != NULL);
+ fieldOffset = pInstField->byteOffset;
+ } else {
+ /* Deliberately break the code while make the compiler happy */
+ fieldOffset = -1;
+ }
+ switch (dalvikOpCode) {
+ case OP_NEW_ARRAY: {
+ // Generates a call - use explicit registers
+ RegLocation rlSrc = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlDest = getDestLoc(cUnit, mir, 0);
+ RegLocation rlResult;
+ void *classPtr = (void*)
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
+ assert(classPtr != NULL);
+ flushAllRegs(cUnit); /* Send everything to home location */
+ genExportPC(cUnit, mir);
+ loadValueDirectFixed(cUnit, rlSrc, r1); /* Len */
+ loadConstant(cUnit, r0, (int) classPtr );
+ loadConstant(cUnit, r3, (int)dvmAllocArrayByClass);
+ /*
+ * "len < 0": bail to the interpreter to re-execute the
+ * instruction
+ */
+ ArmLIR *pcrLabel =
+ genRegImmCheck(cUnit, kArmCondMi, r1, 0, mir->offset, NULL);
+ loadConstant(cUnit, r2, ALLOC_DONT_TRACK);
+ opReg(cUnit, kOpBlx, r3);
+ clobberCallRegs(cUnit);
+ /* generate a branch over if allocation is successful */
+ opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
+ ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
+ /*
+ * OOM exception needs to be thrown here and cannot re-execute
+ */
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ /* noreturn */
+
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+ rlResult = getReturnLoc(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ break;
+ }
+ case OP_INSTANCE_OF: {
+ // May generate a call - use explicit registers
+ RegLocation rlSrc = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlDest = getDestLoc(cUnit, mir, 0);
+ RegLocation rlResult;
+ ClassObject *classPtr =
+ (cUnit->method->clazz->pDvmDex->pResClasses[mir->dalvikInsn.vC]);
+ assert(classPtr != NULL);
+ flushAllRegs(cUnit); /* Send everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc, r0); /* Ref */
+ loadConstant(cUnit, r2, (int) classPtr );
+//TUNING: compare to 0 primative to allow use of CB[N]Z
+ opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
+ /* When taken r0 has NULL which can be used for store directly */
+ ArmLIR *branch1 = opCondBranch(cUnit, kArmCondEq);
+ /* r1 now contains object->clazz */
+ loadWordDisp(cUnit, r0, offsetof(Object, clazz), r1);
+ /* r1 now contains object->clazz */
+ loadConstant(cUnit, r3, (int)dvmInstanceofNonTrivial);
+ loadConstant(cUnit, r0, 1); /* Assume true */
+ opRegReg(cUnit, kOpCmp, r1, r2);
+ ArmLIR *branch2 = opCondBranch(cUnit, kArmCondEq);
+ genRegCopy(cUnit, r0, r1);
+ genRegCopy(cUnit, r1, r2);
+ opReg(cUnit, kOpBlx, r3);
+ clobberCallRegs(cUnit);
+ /* branch target here */
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ rlResult = getReturnLoc(cUnit);
+ storeValue(cUnit, rlDest, rlResult);
+ branch1->generic.target = (LIR *)target;
+ branch2->generic.target = (LIR *)target;
+ break;
+ }
+ case OP_IGET_WIDE:
+ genIGetWide(cUnit, mir, fieldOffset);
+ break;
+ case OP_IGET:
+ case OP_IGET_OBJECT:
+ genIGet(cUnit, mir, kWord, fieldOffset);
+ break;
+ case OP_IGET_BOOLEAN:
+ genIGet(cUnit, mir, kUnsignedByte, fieldOffset);
+ break;
+ case OP_IGET_BYTE:
+ genIGet(cUnit, mir, kSignedByte, fieldOffset);
+ break;
+ case OP_IGET_CHAR:
+ genIGet(cUnit, mir, kUnsignedHalf, fieldOffset);
+ break;
+ case OP_IGET_SHORT:
+ genIGet(cUnit, mir, kSignedHalf, fieldOffset);
+ break;
+ case OP_IPUT_WIDE:
+ genIPutWide(cUnit, mir, fieldOffset);
+ break;
+ case OP_IPUT:
+ case OP_IPUT_OBJECT:
+ genIPut(cUnit, mir, kWord, fieldOffset);
+ break;
+ case OP_IPUT_SHORT:
+ case OP_IPUT_CHAR:
+ genIPut(cUnit, mir, kUnsignedHalf, fieldOffset);
+ break;
+ case OP_IPUT_BYTE:
+ case OP_IPUT_BOOLEAN:
+ genIPut(cUnit, mir, kUnsignedByte, fieldOffset);
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt22cs(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ int fieldOffset = mir->dalvikInsn.vC;
+ switch (dalvikOpCode) {
+ case OP_IGET_QUICK:
+ case OP_IGET_OBJECT_QUICK:
+ genIGet(cUnit, mir, kWord, fieldOffset);
+ break;
+ case OP_IPUT_QUICK:
+ case OP_IPUT_OBJECT_QUICK:
+ genIPut(cUnit, mir, kWord, fieldOffset);
+ break;
+ case OP_IGET_WIDE_QUICK:
+ genIGetWide(cUnit, mir, fieldOffset);
+ break;
+ case OP_IPUT_WIDE_QUICK:
+ genIPutWide(cUnit, mir, fieldOffset);
+ break;
+ default:
+ return true;
+ }
+ return false;
+
+}
+
+/* Compare agaist zero */
+static bool handleFmt22t(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
+ ArmLIR *labelList)
+{
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ ArmConditionCode cond;
+ RegLocation rlSrc1 = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlSrc2 = getSrcLoc(cUnit, mir, 1);
+
+ rlSrc1 = loadValue(cUnit, rlSrc1, kCoreReg);
+ rlSrc2 = loadValue(cUnit, rlSrc2, kCoreReg);
+ opRegReg(cUnit, kOpCmp, rlSrc1.lowReg, rlSrc2.lowReg);
+
+ switch (dalvikOpCode) {
+ case OP_IF_EQ:
+ cond = kArmCondEq;
+ break;
+ case OP_IF_NE:
+ cond = kArmCondNe;
+ break;
+ case OP_IF_LT:
+ cond = kArmCondLt;
+ break;
+ case OP_IF_GE:
+ cond = kArmCondGe;
+ break;
+ case OP_IF_GT:
+ cond = kArmCondGt;
+ break;
+ case OP_IF_LE:
+ cond = kArmCondLe;
+ break;
+ default:
+ cond = 0;
+ LOGE("Unexpected opcode (%d) for Fmt22t\n", dalvikOpCode);
+ dvmAbort();
+ }
+ genConditionalBranch(cUnit, cond, &labelList[bb->taken->id]);
+ /* This mostly likely will be optimized away in a later phase */
+ genUnconditionalBranch(cUnit, &labelList[bb->fallThrough->id]);
+ return false;
+}
+
+static bool handleFmt22x_Fmt32x(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode opCode = mir->dalvikInsn.opCode;
+
+ switch (opCode) {
+ case OP_MOVE_16:
+ case OP_MOVE_OBJECT_16:
+ case OP_MOVE_FROM16:
+ case OP_MOVE_OBJECT_FROM16: {
+ storeValue(cUnit, getDestLoc(cUnit, mir, 0),
+ getSrcLoc(cUnit, mir, 0));
+ break;
+ }
+ case OP_MOVE_WIDE_16:
+ case OP_MOVE_WIDE_FROM16: {
+ storeValueWide(cUnit, getDestLocWide(cUnit, mir, 0, 1),
+ getSrcLocWide(cUnit, mir, 0, 1));
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt23x(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode opCode = mir->dalvikInsn.opCode;
+ RegLocation rlSrc1;
+ RegLocation rlSrc2;
+ RegLocation rlDest;
+
+ if ( (opCode >= OP_ADD_INT) && (opCode <= OP_REM_DOUBLE)) {
+ return genArithOp( cUnit, mir );
+ }
+
+ /* APUTs have 3 sources and no targets */
+ if (mir->ssaRep->numDefs == 0) {
+ if (mir->ssaRep->numUses == 3) {
+ rlDest = getSrcLoc(cUnit, mir, 0);
+ rlSrc1 = getSrcLoc(cUnit, mir, 1);
+ rlSrc2 = getSrcLoc(cUnit, mir, 2);
+ } else {
+ assert(mir->ssaRep->numUses == 4);
+ rlDest = getSrcLocWide(cUnit, mir, 0, 1);
+ rlSrc1 = getSrcLoc(cUnit, mir, 2);
+ rlSrc2 = getSrcLoc(cUnit, mir, 3);
+ }
+ } else {
+ /* Two sources and 1 dest. Deduce the operand sizes */
+ if (mir->ssaRep->numUses == 4) {
+ rlSrc1 = getSrcLocWide(cUnit, mir, 0, 1);
+ rlSrc2 = getSrcLocWide(cUnit, mir, 2, 3);
+ } else {
+ assert(mir->ssaRep->numUses == 2);
+ rlSrc1 = getSrcLoc(cUnit, mir, 0);
+ rlSrc2 = getSrcLoc(cUnit, mir, 1);
+ }
+ if (mir->ssaRep->numDefs == 2) {
+ rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ } else {
+ assert(mir->ssaRep->numDefs == 1);
+ rlDest = getDestLoc(cUnit, mir, 0);
+ }
+ }
+
+
+ switch (opCode) {
+ case OP_CMPL_FLOAT:
+ case OP_CMPG_FLOAT:
+ case OP_CMPL_DOUBLE:
+ case OP_CMPG_DOUBLE:
+ return genCmpFP(cUnit, mir, rlDest, rlSrc1, rlSrc2);
+ case OP_CMP_LONG:
+ genCmpLong(cUnit, mir, rlDest, rlSrc1, rlSrc2);
+ break;
+ case OP_AGET_WIDE:
+ genArrayGet(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
+ break;
+ case OP_AGET:
+ case OP_AGET_OBJECT:
+ genArrayGet(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
+ break;
+ case OP_AGET_BOOLEAN:
+ genArrayGet(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
+ break;
+ case OP_AGET_BYTE:
+ genArrayGet(cUnit, mir, kSignedByte, rlSrc1, rlSrc2, rlDest, 0);
+ break;
+ case OP_AGET_CHAR:
+ genArrayGet(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
+ break;
+ case OP_AGET_SHORT:
+ genArrayGet(cUnit, mir, kSignedHalf, rlSrc1, rlSrc2, rlDest, 1);
+ break;
+ case OP_APUT_WIDE:
+ genArrayPut(cUnit, mir, kLong, rlSrc1, rlSrc2, rlDest, 3);
+ break;
+ case OP_APUT:
+ case OP_APUT_OBJECT:
+ genArrayPut(cUnit, mir, kWord, rlSrc1, rlSrc2, rlDest, 2);
+ break;
+ case OP_APUT_SHORT:
+ case OP_APUT_CHAR:
+ genArrayPut(cUnit, mir, kUnsignedHalf, rlSrc1, rlSrc2, rlDest, 1);
+ break;
+ case OP_APUT_BYTE:
+ case OP_APUT_BOOLEAN:
+ genArrayPut(cUnit, mir, kUnsignedByte, rlSrc1, rlSrc2, rlDest, 0);
+ break;
+ default:
+ return true;
+ }
+ return false;
+}
+
+/*
+ * Find the matching case.
+ *
+ * return values:
+ * r0 (low 32-bit): pc of the chaining cell corresponding to the resolved case,
+ * including default which is placed at MIN(size, MAX_CHAINED_SWITCH_CASES).
+ * r1 (high 32-bit): the branch offset of the matching case (only for indexes
+ * above MAX_CHAINED_SWITCH_CASES).
+ *
+ * Instructions around the call are:
+ *
+ * mov r2, pc
+ * blx &findPackedSwitchIndex
+ * mov pc, r0
+ * .align4
+ * chaining cell for case 0 [8 bytes]
+ * chaining cell for case 1 [8 bytes]
+ * :
+ * chaining cell for case MIN(size, MAX_CHAINED_SWITCH_CASES)-1 [8 bytes]
+ * chaining cell for case default [8 bytes]
+ * noChain exit
+ */
+s8 findPackedSwitchIndex(const u2* switchData, int testVal, int pc)
+{
+ int size;
+ int firstKey;
+ const int *entries;
+ int index;
+ int jumpIndex;
+ int caseDPCOffset = 0;
+ /* In Thumb mode pc is 4 ahead of the "mov r2, pc" instruction */
+ int chainingPC = (pc + 4) & ~3;
+
+ /*
+ * Packed switch data format:
+ * ushort ident = 0x0100 magic value
+ * ushort size number of entries in the table
+ * int first_key first (and lowest) switch case value
+ * int targets[size] branch targets, relative to switch opcode
+ *
+ * Total size is (4+size*2) 16-bit code units.
+ */
+ size = switchData[1];
+ assert(size > 0);
+
+ firstKey = switchData[2];
+ firstKey |= switchData[3] << 16;
+
+
+ /* The entries are guaranteed to be aligned on a 32-bit boundary;
+ * we can treat them as a native int array.
+ */
+ entries = (const int*) &switchData[4];
+ assert(((u4)entries & 0x3) == 0);
+
+ index = testVal - firstKey;
+
+ /* Jump to the default cell */
+ if (index < 0 || index >= size) {
+ jumpIndex = MIN(size, MAX_CHAINED_SWITCH_CASES);
+ /* Jump to the non-chaining exit point */
+ } else if (index >= MAX_CHAINED_SWITCH_CASES) {
+ jumpIndex = MAX_CHAINED_SWITCH_CASES + 1;
+ caseDPCOffset = entries[index];
+ /* Jump to the inline chaining cell */
+ } else {
+ jumpIndex = index;
+ }
+
+ chainingPC += jumpIndex * 8;
+ return (((s8) caseDPCOffset) << 32) | (u8) chainingPC;
+}
+
+/* See comments for findPackedSwitchIndex */
+s8 findSparseSwitchIndex(const u2* switchData, int testVal, int pc)
+{
+ int size;
+ const int *keys;
+ const int *entries;
+ int chainingPC = (pc + 4) & ~3;
+ int i;
+
+ /*
+ * Sparse switch data format:
+ * ushort ident = 0x0200 magic value
+ * ushort size number of entries in the table; > 0
+ * int keys[size] keys, sorted low-to-high; 32-bit aligned
+ * int targets[size] branch targets, relative to switch opcode
+ *
+ * Total size is (2+size*4) 16-bit code units.
+ */
+
+ size = switchData[1];
+ assert(size > 0);
+
+ /* The keys are guaranteed to be aligned on a 32-bit boundary;
+ * we can treat them as a native int array.
+ */
+ keys = (const int*) &switchData[2];
+ assert(((u4)keys & 0x3) == 0);
+
+ /* The entries are guaranteed to be aligned on a 32-bit boundary;
+ * we can treat them as a native int array.
+ */
+ entries = keys + size;
+ assert(((u4)entries & 0x3) == 0);
+
+ /*
+ * Run through the list of keys, which are guaranteed to
+ * be sorted low-to-high.
+ *
+ * Most tables have 3-4 entries. Few have more than 10. A binary
+ * search here is probably not useful.
+ */
+ for (i = 0; i < size; i++) {
+ int k = keys[i];
+ if (k == testVal) {
+ /* MAX_CHAINED_SWITCH_CASES + 1 is the start of the overflow case */
+ int jumpIndex = (i < MAX_CHAINED_SWITCH_CASES) ?
+ i : MAX_CHAINED_SWITCH_CASES + 1;
+ chainingPC += jumpIndex * 8;
+ return (((s8) entries[i]) << 32) | (u8) chainingPC;
+ } else if (k > testVal) {
+ break;
+ }
+ }
+ return chainingPC + MIN(size, MAX_CHAINED_SWITCH_CASES) * 8;
+}
+
+static bool handleFmt31t(CompilationUnit *cUnit, MIR *mir)
+{
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ switch (dalvikOpCode) {
+ case OP_FILL_ARRAY_DATA: {
+ RegLocation rlSrc = getSrcLoc(cUnit, mir, 0);
+ // Making a call - use explicit registers
+ flushAllRegs(cUnit); /* Send everything to home location */
+ genExportPC(cUnit, mir);
+ loadValueDirectFixed(cUnit, rlSrc, r0);
+ loadConstant(cUnit, r2, (int)dvmInterpHandleFillArrayData);
+ loadConstant(cUnit, r1,
+ (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
+ opReg(cUnit, kOpBlx, r2);
+ clobberCallRegs(cUnit);
+ /* generate a branch over if successful */
+ opRegImm(cUnit, kOpCmp, r0, 0); /* NULL? */
+ ArmLIR *branchOver = opCondBranch(cUnit, kArmCondNe);
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset));
+ genDispatchToHandler(cUnit, TEMPLATE_THROW_EXCEPTION_COMMON);
+ ArmLIR *target = newLIR0(cUnit, kArmPseudoTargetLabel);
+ target->defMask = ENCODE_ALL;
+ branchOver->generic.target = (LIR *) target;
+ break;
+ }
+ /*
+ * Compute the goto target of up to
+ * MIN(switchSize, MAX_CHAINED_SWITCH_CASES) + 1 chaining cells.
+ * See the comment before findPackedSwitchIndex for the code layout.
+ */
+ case OP_PACKED_SWITCH:
+ case OP_SPARSE_SWITCH: {
+ RegLocation rlSrc = getSrcLoc(cUnit, mir, 0);
+ flushAllRegs(cUnit); /* Send everything to home location */
+ loadValueDirectFixed(cUnit, rlSrc, r1);
+ lockAllTemps(cUnit);
+ const u2 *switchData =
+ cUnit->method->insns + mir->offset + mir->dalvikInsn.vB;
+ u2 size = switchData[1];
+
+ if (dalvikOpCode == OP_PACKED_SWITCH) {
+ loadConstant(cUnit, r4PC, (int)findPackedSwitchIndex);
+ } else {
+ loadConstant(cUnit, r4PC, (int)findSparseSwitchIndex);
+ }
+ /* r0 <- Addr of the switch data */
+ loadConstant(cUnit, r0,
+ (int) (cUnit->method->insns + mir->offset + mir->dalvikInsn.vB));
+ /* r2 <- pc of the instruction following the blx */
+ opRegReg(cUnit, kOpMov, r2, rpc);
+ opReg(cUnit, kOpBlx, r4PC);
+ clobberCallRegs(cUnit);
+ /* pc <- computed goto target */
+ opRegReg(cUnit, kOpMov, rpc, r0);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt35c_3rc(CompilationUnit *cUnit, MIR *mir, BasicBlock *bb,
+ ArmLIR *labelList)
+{
+ ArmLIR *retChainingCell = NULL;
+ ArmLIR *pcrLabel = NULL;
+
+ if (bb->fallThrough != NULL)
+ retChainingCell = &labelList[bb->fallThrough->id];
+
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ switch (mir->dalvikInsn.opCode) {
+ /*
+ * calleeMethod = this->clazz->vtable[
+ * method->clazz->pDvmDex->pResMethods[BBBB]->methodIndex
+ * ]
+ */
+ case OP_INVOKE_VIRTUAL:
+ case OP_INVOKE_VIRTUAL_RANGE: {
+ ArmLIR *predChainingCell = &labelList[bb->taken->id];
+ int methodIndex =
+ cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB]->
+ methodIndex;
+
+ if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ genInvokeVirtualCommon(cUnit, mir, methodIndex,
+ retChainingCell,
+ predChainingCell,
+ pcrLabel);
+ break;
+ }
+ /*
+ * calleeMethod = method->clazz->super->vtable[method->clazz->pDvmDex
+ * ->pResMethods[BBBB]->methodIndex]
+ */
+ /* TODO - not excersized in RunPerf.jar */
+ case OP_INVOKE_SUPER:
+ case OP_INVOKE_SUPER_RANGE: {
+ int mIndex = cUnit->method->clazz->pDvmDex->
+ pResMethods[dInsn->vB]->methodIndex;
+ const Method *calleeMethod =
+ cUnit->method->clazz->super->vtable[mIndex];
+
+ if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ /* r0 = calleeMethod */
+ loadConstant(cUnit, r0, (int) calleeMethod);
+
+ genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
+ calleeMethod);
+ break;
+ }
+ /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
+ case OP_INVOKE_DIRECT:
+ case OP_INVOKE_DIRECT_RANGE: {
+ const Method *calleeMethod =
+ cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB];
+
+ if (mir->dalvikInsn.opCode == OP_INVOKE_DIRECT)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ /* r0 = calleeMethod */
+ loadConstant(cUnit, r0, (int) calleeMethod);
+
+ genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
+ calleeMethod);
+ break;
+ }
+ /* calleeMethod = method->clazz->pDvmDex->pResMethods[BBBB] */
+ case OP_INVOKE_STATIC:
+ case OP_INVOKE_STATIC_RANGE: {
+ const Method *calleeMethod =
+ cUnit->method->clazz->pDvmDex->pResMethods[dInsn->vB];
+
+ if (mir->dalvikInsn.opCode == OP_INVOKE_STATIC)
+ genProcessArgsNoRange(cUnit, mir, dInsn,
+ NULL /* no null check */);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn,
+ NULL /* no null check */);
+
+ /* r0 = calleeMethod */
+ loadConstant(cUnit, r0, (int) calleeMethod);
+
+ genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
+ calleeMethod);
+ break;
+ }
+ /*
+ * calleeMethod = dvmFindInterfaceMethodInCache(this->clazz,
+ * BBBB, method, method->clazz->pDvmDex)
+ *
+ * Given "invoke-interface {v0}", the following is the generated code:
+ *
+ * 0x426a9abe : ldr r0, [r5, #0] --+
+ * 0x426a9ac0 : mov r7, r5 |
+ * 0x426a9ac2 : sub r7, #24 |
+ * 0x426a9ac4 : cmp r0, #0 | genProcessArgsNoRange
+ * 0x426a9ac6 : beq 0x426a9afe |
+ * 0x426a9ac8 : stmia r7, <r0> --+
+ * 0x426a9aca : ldr r4, [pc, #104] --> r4 <- dalvikPC of this invoke
+ * 0x426a9acc : add r1, pc, #52 --> r1 <- &retChainingCell
+ * 0x426a9ace : add r2, pc, #60 --> r2 <- &predictedChainingCell
+ * 0x426a9ad0 : blx_1 0x426a918c --+ TEMPLATE_INVOKE_METHOD_
+ * 0x426a9ad2 : blx_2 see above --+ PREDICTED_CHAIN
+ * 0x426a9ad4 : b 0x426a9b0c --> off to the predicted chain
+ * 0x426a9ad6 : b 0x426a9afe --> punt to the interpreter
+ * 0x426a9ad8 : mov r8, r1 --+
+ * 0x426a9ada : mov r9, r2 |
+ * 0x426a9adc : mov r10, r3 |
+ * 0x426a9ade : mov r0, r3 |
+ * 0x426a9ae0 : mov r1, #74 | dvmFindInterfaceMethodInCache
+ * 0x426a9ae2 : ldr r2, [pc, #76] |
+ * 0x426a9ae4 : ldr r3, [pc, #68] |
+ * 0x426a9ae6 : ldr r7, [pc, #64] |
+ * 0x426a9ae8 : blx r7 --+
+ * 0x426a9aea : mov r1, r8 --> r1 <- rechain count
+ * 0x426a9aec : cmp r1, #0 --> compare against 0
+ * 0x426a9aee : bgt 0x426a9af8 --> >=0? don't rechain
+ * 0x426a9af0 : ldr r7, [r6, #96] --+
+ * 0x426a9af2 : mov r2, r9 | dvmJitToPatchPredictedChain
+ * 0x426a9af4 : mov r3, r10 |
+ * 0x426a9af6 : blx r7 --+
+ * 0x426a9af8 : add r1, pc, #8 --> r1 <- &retChainingCell
+ * 0x426a9afa : blx_1 0x426a9098 --+ TEMPLATE_INVOKE_METHOD_NO_OPT
+ * 0x426a9afc : blx_2 see above --+
+ * -------- reconstruct dalvik PC : 0x428b786c @ +0x001e
+ * 0x426a9afe (0042): ldr r0, [pc, #52]
+ * Exception_Handling:
+ * 0x426a9b00 (0044): ldr r1, [r6, #84]
+ * 0x426a9b02 (0046): blx r1
+ * 0x426a9b04 (0048): .align4
+ * -------- chaining cell (hot): 0x0021
+ * 0x426a9b04 (0048): ldr r0, [r6, #92]
+ * 0x426a9b06 (004a): blx r0
+ * 0x426a9b08 (004c): data 0x7872(30834)
+ * 0x426a9b0a (004e): data 0x428b(17035)
+ * 0x426a9b0c (0050): .align4
+ * -------- chaining cell (predicted)
+ * 0x426a9b0c (0050): data 0x0000(0) --> will be patched into bx
+ * 0x426a9b0e (0052): data 0x0000(0)
+ * 0x426a9b10 (0054): data 0x0000(0) --> class
+ * 0x426a9b12 (0056): data 0x0000(0)
+ * 0x426a9b14 (0058): data 0x0000(0) --> method
+ * 0x426a9b16 (005a): data 0x0000(0)
+ * 0x426a9b18 (005c): data 0x0000(0) --> reset count
+ * 0x426a9b1a (005e): data 0x0000(0)
+ * 0x426a9b28 (006c): .word (0xad0392a5)
+ * 0x426a9b2c (0070): .word (0x6e750)
+ * 0x426a9b30 (0074): .word (0x4109a618)
+ * 0x426a9b34 (0078): .word (0x428b786c)
+ */
+ case OP_INVOKE_INTERFACE:
+ case OP_INVOKE_INTERFACE_RANGE: {
+ ArmLIR *predChainingCell = &labelList[bb->taken->id];
+ int methodIndex = dInsn->vB;
+
+ /* Ensure that nothing is both live and dirty */
+ flushAllRegs(cUnit);
+
+ if (mir->dalvikInsn.opCode == OP_INVOKE_INTERFACE)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ /* "this" is already left in r0 by genProcessArgs* */
+
+ /* r4PC = dalvikCallsite */
+ loadConstant(cUnit, r4PC,
+ (int) (cUnit->method->insns + mir->offset));
+
+ /* r1 = &retChainingCell */
+ ArmLIR *addrRetChain =
+ opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ /* r2 = &predictedChainingCell */
+ ArmLIR *predictedChainingCell =
+ opRegRegImm(cUnit, kOpAdd, r2, rpc, 0);
+ predictedChainingCell->generic.target = (LIR *) predChainingCell;
+
+ genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_PREDICTED_CHAIN);
+
+ /* return through lr - jump to the chaining cell */
+ genUnconditionalBranch(cUnit, predChainingCell);
+
+ /*
+ * null-check on "this" may have been eliminated, but we still need
+ * a PC-reconstruction label for stack overflow bailout.
+ */
+ if (pcrLabel == NULL) {
+ int dPC = (int) (cUnit->method->insns + mir->offset);
+ pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
+ pcrLabel->opCode = ARM_PSEUDO_kPCReconstruction_CELL;
+ pcrLabel->operands[0] = dPC;
+ pcrLabel->operands[1] = mir->offset;
+ /* Insert the place holder to the growable list */
+ dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
+ }
+
+ /* return through lr+2 - punt to the interpreter */
+ genUnconditionalBranch(cUnit, pcrLabel);
+
+ /*
+ * return through lr+4 - fully resolve the callee method.
+ * r1 <- count
+ * r2 <- &predictedChainCell
+ * r3 <- this->class
+ * r4 <- dPC
+ * r7 <- this->class->vtable
+ */
+
+ /* Save count, &predictedChainCell, and class to high regs first */
+ genRegCopy(cUnit, r8, r1);
+ genRegCopy(cUnit, r9, r2);
+ genRegCopy(cUnit, r10, r3);
+
+ /* r0 now contains this->clazz */
+ genRegCopy(cUnit, r0, r3);
+
+ /* r1 = BBBB */
+ loadConstant(cUnit, r1, dInsn->vB);
+
+ /* r2 = method (caller) */
+ loadConstant(cUnit, r2, (int) cUnit->method);
+
+ /* r3 = pDvmDex */
+ loadConstant(cUnit, r3, (int) cUnit->method->clazz->pDvmDex);
+
+ loadConstant(cUnit, r7,
+ (intptr_t) dvmFindInterfaceMethodInCache);
+ opReg(cUnit, kOpBlx, r7);
+
+ /* r0 = calleeMethod (returned from dvmFindInterfaceMethodInCache */
+
+ genRegCopy(cUnit, r1, r8);
+
+ /* Check if rechain limit is reached */
+ opRegImm(cUnit, kOpCmp, r1, 0);
+
+ ArmLIR *bypassRechaining = opCondBranch(cUnit, kArmCondGt);
+
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
+ jitToInterpEntries.dvmJitToPatchPredictedChain), r7);
+
+ genRegCopy(cUnit, r2, r9);
+ genRegCopy(cUnit, r3, r10);
+
+ /*
+ * r0 = calleeMethod
+ * r2 = &predictedChainingCell
+ * r3 = class
+ *
+ * &returnChainingCell has been loaded into r1 but is not needed
+ * when patching the chaining cell and will be clobbered upon
+ * returning so it will be reconstructed again.
+ */
+ opReg(cUnit, kOpBlx, r7);
+
+ /* r1 = &retChainingCell */
+ addrRetChain = opRegRegImm(cUnit, kOpAdd, r1, rpc, 0);
+ addrRetChain->generic.target = (LIR *) retChainingCell;
+
+ bypassRechaining->generic.target = (LIR *) addrRetChain;
+
+ /*
+ * r0 = this, r1 = calleeMethod,
+ * r1 = &ChainingCell,
+ * r4PC = callsiteDPC,
+ */
+ genDispatchToHandler(cUnit, TEMPLATE_INVOKE_METHOD_NO_OPT);
+#if defined(INVOKE_STATS)
+ gDvmJit.invokePredictedChain++;
+#endif
+ /* Handle exceptions using the interpreter */
+ genTrap(cUnit, mir->offset, pcrLabel);
+ break;
+ }
+ /* NOP */
+ case OP_INVOKE_DIRECT_EMPTY: {
+ return false;
+ }
+ case OP_FILLED_NEW_ARRAY:
+ case OP_FILLED_NEW_ARRAY_RANGE: {
+ /* Just let the interpreter deal with these */
+ genInterpSingleStep(cUnit, mir);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt35ms_3rms(CompilationUnit *cUnit, MIR *mir,
+ BasicBlock *bb, ArmLIR *labelList)
+{
+ ArmLIR *retChainingCell = &labelList[bb->fallThrough->id];
+ ArmLIR *predChainingCell = &labelList[bb->taken->id];
+ ArmLIR *pcrLabel = NULL;
+
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ switch (mir->dalvikInsn.opCode) {
+ /* calleeMethod = this->clazz->vtable[BBBB] */
+ case OP_INVOKE_VIRTUAL_QUICK_RANGE:
+ case OP_INVOKE_VIRTUAL_QUICK: {
+ int methodIndex = dInsn->vB;
+ if (mir->dalvikInsn.opCode == OP_INVOKE_VIRTUAL_QUICK)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ genInvokeVirtualCommon(cUnit, mir, methodIndex,
+ retChainingCell,
+ predChainingCell,
+ pcrLabel);
+ break;
+ }
+ /* calleeMethod = method->clazz->super->vtable[BBBB] */
+ case OP_INVOKE_SUPER_QUICK:
+ case OP_INVOKE_SUPER_QUICK_RANGE: {
+ const Method *calleeMethod =
+ cUnit->method->clazz->super->vtable[dInsn->vB];
+
+ if (mir->dalvikInsn.opCode == OP_INVOKE_SUPER_QUICK)
+ genProcessArgsNoRange(cUnit, mir, dInsn, &pcrLabel);
+ else
+ genProcessArgsRange(cUnit, mir, dInsn, &pcrLabel);
+
+ /* r0 = calleeMethod */
+ loadConstant(cUnit, r0, (int) calleeMethod);
+
+ genInvokeSingletonCommon(cUnit, mir, bb, labelList, pcrLabel,
+ calleeMethod);
+ /* Handle exceptions using the interpreter */
+ genTrap(cUnit, mir->offset, pcrLabel);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+/*
+ * This operation is complex enough that we'll do it partly inline
+ * and partly with a handler. NOTE: the handler uses hardcoded
+ * values for string object offsets and must be revisitied if the
+ * layout changes.
+ */
+static bool genInlinedCompareTo(CompilationUnit *cUnit, MIR *mir)
+{
+#if defined(USE_GLOBAL_STRING_DEFS)
+ return false;
+#else
+ ArmLIR *rollback;
+ RegLocation rlThis = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlComp = getSrcLoc(cUnit, mir, 1);
+
+ loadValueDirectFixed(cUnit, rlThis, r0);
+ loadValueDirectFixed(cUnit, rlComp, r1);
+ /* Test objects for NULL */
+ rollback = genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
+ genNullCheck(cUnit, rlComp.sRegLow, r1, mir->offset, rollback);
+ /*
+ * TUNING: we could check for object pointer equality before invoking
+ * handler. Unclear whether the gain would be worth the added code size
+ * expansion.
+ */
+ genDispatchToHandler(cUnit, TEMPLATE_STRING_COMPARETO);
+ storeValue(cUnit, inlinedTarget(cUnit, mir, false), getReturnLoc(cUnit));
+ return true;
+#endif
+}
+
+static bool genInlinedIndexOf(CompilationUnit *cUnit, MIR *mir, bool singleI)
+{
+#if defined(USE_GLOBAL_STRING_DEFS)
+ return false;
+#else
+ RegLocation rlThis = getSrcLoc(cUnit, mir, 0);
+ RegLocation rlChar = getSrcLoc(cUnit, mir, 1);
+
+ loadValueDirectFixed(cUnit, rlThis, r0);
+ loadValueDirectFixed(cUnit, rlChar, r1);
+ if (!singleI) {
+ RegLocation rlStart = getSrcLoc(cUnit, mir, 2);
+ loadValueDirectFixed(cUnit, rlStart, r2);
+ } else {
+ loadConstant(cUnit, r2, 0);
+ }
+ /* Test objects for NULL */
+ genNullCheck(cUnit, rlThis.sRegLow, r0, mir->offset, NULL);
+ genDispatchToHandler(cUnit, TEMPLATE_STRING_INDEXOF);
+ storeValue(cUnit, inlinedTarget(cUnit, mir, false), getReturnLoc(cUnit));
+ return true;
+#endif
+}
+
+
+/*
+ * NOTE: We assume here that the special native inline routines
+ * are side-effect free. By making this assumption, we can safely
+ * re-execute the routine from the interpreter if it decides it
+ * wants to throw an exception. We still need to EXPORT_PC(), though.
+ */
+static bool handleFmt3inline(CompilationUnit *cUnit, MIR *mir)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ switch( mir->dalvikInsn.opCode) {
+ case OP_EXECUTE_INLINE: {
+ unsigned int i;
+ const InlineOperation* inLineTable = dvmGetInlineOpsTable();
+ int offset = offsetof(InterpState, retval);
+ int operation = dInsn->vB;
+ int tReg1;
+ int tReg2;
+ switch (operation) {
+ case INLINE_EMPTYINLINEMETHOD:
+ return false; /* Nop */
+ case INLINE_STRING_LENGTH:
+ return genInlinedStringLength(cUnit, mir);
+ case INLINE_MATH_ABS_INT:
+ return genInlinedAbsInt(cUnit, mir);
+ case INLINE_MATH_ABS_LONG:
+ return genInlinedAbsLong(cUnit, mir);
+ case INLINE_MATH_MIN_INT:
+ return genInlinedMinMaxInt(cUnit, mir, true);
+ case INLINE_MATH_MAX_INT:
+ return genInlinedMinMaxInt(cUnit, mir, false);
+ case INLINE_STRING_CHARAT:
+ return genInlinedStringCharAt(cUnit, mir);
+ case INLINE_MATH_SQRT:
+ if (genInlineSqrt(cUnit, mir))
+ return false;
+ else
+ break; /* Handle with C routine */
+ case INLINE_MATH_ABS_FLOAT:
+ if (genInlinedAbsFloat(cUnit, mir))
+ return false;
+ else
+ break;
+ case INLINE_MATH_ABS_DOUBLE:
+ if (genInlinedAbsDouble(cUnit, mir))
+ return false;
+ else
+ break;
+ case INLINE_STRING_COMPARETO:
+ if (genInlinedCompareTo(cUnit, mir))
+ return false;
+ else
+ break;
+ case INLINE_STRING_INDEXOF_I:
+ if (genInlinedIndexOf(cUnit, mir, true /* I */))
+ return false;
+ else
+ break;
+ case INLINE_STRING_INDEXOF_II:
+ if (genInlinedIndexOf(cUnit, mir, false /* I */))
+ return false;
+ else
+ break;
+ case INLINE_STRING_EQUALS:
+ case INLINE_MATH_COS:
+ case INLINE_MATH_SIN:
+ break; /* Handle with C routine */
+ default:
+ dvmAbort();
+ }
+ flushAllRegs(cUnit); /* Send everything to home location */
+ clobberCallRegs(cUnit);
+ clobberReg(cUnit, r4PC);
+ clobberReg(cUnit, r7);
+ opRegRegImm(cUnit, kOpAdd, r4PC, rGLUE, offset);
+ opImm(cUnit, kOpPush, (1<<r4PC) | (1<<r7));
+ loadConstant(cUnit, r4PC, (int)inLineTable[operation].func);
+ genExportPC(cUnit, mir);
+ for (i=0; i < dInsn->vA; i++) {
+ loadValueDirect(cUnit, getSrcLoc(cUnit, mir, i), i);
+ }
+ opReg(cUnit, kOpBlx, r4PC);
+ opRegImm(cUnit, kOpAdd, r13, 8);
+ genZeroCheck(cUnit, r0, mir->offset, NULL);
+ break;
+ }
+ default:
+ return true;
+ }
+ return false;
+}
+
+static bool handleFmt3rinline(CompilationUnit *cUnit, MIR *mir)
+{
+ /* For OP_EXECUTE_INLINE_RANGE */
+ genInterpSingleStep(cUnit, mir);
+ return false;
+}
+
+static bool handleFmt51l(CompilationUnit *cUnit, MIR *mir)
+{
+ //TUNING: We're using core regs here - not optimal when target is a double
+ RegLocation rlDest = getDestLocWide(cUnit, mir, 0, 1);
+ RegLocation rlResult = evalLoc(cUnit, rlDest, kCoreReg, true);
+ loadConstantValue(cUnit, rlResult.lowReg,
+ mir->dalvikInsn.vB_wide & 0xFFFFFFFFUL);
+ loadConstantValue(cUnit, rlResult.highReg,
+ (mir->dalvikInsn.vB_wide>>32) & 0xFFFFFFFFUL);
+ storeValueWide(cUnit, rlDest, rlResult);
+ return false;
+}
+
+/*
+ * The following are special processing routines that handle transfer of
+ * controls between compiled code and the interpreter. Certain VM states like
+ * Dalvik PC and special-purpose registers are reconstructed here.
+ */
+
+/* Chaining cell for code that may need warmup. */
+static void handleNormalChainingCell(CompilationUnit *cUnit,
+ unsigned int offset)
+{
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
+ jitToInterpEntries.dvmJitToInterpNormal), r0);
+ opReg(cUnit, kOpBlx, r0);
+ addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
+}
+
+/*
+ * Chaining cell for instructions that immediately following already translated
+ * code.
+ */
+static void handleHotChainingCell(CompilationUnit *cUnit,
+ unsigned int offset)
+{
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
+ jitToInterpEntries.dvmJitToTraceSelect), r0);
+ opReg(cUnit, kOpBlx, r0);
+ addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
+}
+
+#if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
+/* Chaining cell for branches that branch back into the same basic block */
+static void handleBackwardBranchChainingCell(CompilationUnit *cUnit,
+ unsigned int offset)
+{
+#if defined(WITH_SELF_VERIFICATION)
+ newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
+ offsetof(InterpState, jitToInterpEntries.dvmJitToBackwardBranch) >> 2);
+#else
+ newLIR3(cUnit, kThumbLdrRRI5, r0, rGLUE,
+ offsetof(InterpState, jitToInterpEntries.dvmJitToInterpNormal) >> 2);
+#endif
+ newLIR1(cUnit, kThumbBlxR, r0);
+ addWordData(cUnit, (int) (cUnit->method->insns + offset), true);
+}
+
+#endif
+/* Chaining cell for monomorphic method invocations. */
+static void handleInvokeSingletonChainingCell(CompilationUnit *cUnit,
+ const Method *callee)
+{
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
+ jitToInterpEntries.dvmJitToTraceSelect), r0);
+ opReg(cUnit, kOpBlx, r0);
+ addWordData(cUnit, (int) (callee->insns), true);
+}
+
+/* Chaining cell for monomorphic method invocations. */
+static void handleInvokePredictedChainingCell(CompilationUnit *cUnit)
+{
+
+ /* Should not be executed in the initial state */
+ addWordData(cUnit, PREDICTED_CHAIN_BX_PAIR_INIT, true);
+ /* To be filled: class */
+ addWordData(cUnit, PREDICTED_CHAIN_CLAZZ_INIT, true);
+ /* To be filled: method */
+ addWordData(cUnit, PREDICTED_CHAIN_METHOD_INIT, true);
+ /*
+ * Rechain count. The initial value of 0 here will trigger chaining upon
+ * the first invocation of this callsite.
+ */
+ addWordData(cUnit, PREDICTED_CHAIN_COUNTER_INIT, true);
+}
+
+/* Load the Dalvik PC into r0 and jump to the specified target */
+static void handlePCReconstruction(CompilationUnit *cUnit,
+ ArmLIR *targetLabel)
+{
+ ArmLIR **pcrLabel =
+ (ArmLIR **) cUnit->pcReconstructionList.elemList;
+ int numElems = cUnit->pcReconstructionList.numUsed;
+ int i;
+ for (i = 0; i < numElems; i++) {
+ dvmCompilerAppendLIR(cUnit, (LIR *) pcrLabel[i]);
+ /* r0 = dalvik PC */
+ loadConstant(cUnit, r0, pcrLabel[i]->operands[0]);
+ genUnconditionalBranch(cUnit, targetLabel);
+ }
+}
+
+static char *extendedMIROpNames[kMirOpLast - kMirOpFirst] = {
+ "kMirOpPhi",
+ "kMirOpNullNRangeUpCheck",
+ "kMirOpNullNRangeDownCheck",
+ "kMirOpLowerBound",
+ "kMirOpPunt",
+};
+
+/*
+ * vA = arrayReg;
+ * vB = idxReg;
+ * vC = endConditionReg;
+ * arg[0] = maxC
+ * arg[1] = minC
+ * arg[2] = loopBranchConditionCode
+ */
+static void genHoistedChecksForCountUpLoop(CompilationUnit *cUnit, MIR *mir)
+{
+ /*
+ * NOTE: these synthesized blocks don't have ssa names assigned
+ * for Dalvik registers. However, because they dominate the following
+ * blocks we can simply use the Dalvik name w/ subscript 0 as the
+ * ssa name.
+ */
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ const int lenOffset = offsetof(ArrayObject, length);
+ const int maxC = dInsn->arg[0];
+ const int minC = dInsn->arg[1];
+ int regLength;
+ RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
+ RegLocation rlIdxEnd = cUnit->regLocation[mir->dalvikInsn.vC];
+
+ /* regArray <- arrayRef */
+ rlArray = loadValue(cUnit, rlArray, kCoreReg);
+ rlIdxEnd = loadValue(cUnit, rlIdxEnd, kCoreReg);
+ genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+
+ /* regLength <- len(arrayRef) */
+ regLength = allocTemp(cUnit);
+ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
+
+ int delta = maxC;
+ /*
+ * If the loop end condition is ">=" instead of ">", then the largest value
+ * of the index is "endCondition - 1".
+ */
+ if (dInsn->arg[2] == OP_IF_GE) {
+ delta--;
+ }
+
+ if (delta) {
+ int tReg = allocTemp(cUnit);
+ opRegRegImm(cUnit, kOpAdd, tReg, rlIdxEnd.lowReg, delta);
+ rlIdxEnd.lowReg = tReg;
+ freeTemp(cUnit, tReg);
+ }
+ /* Punt if "regIdxEnd < len(Array)" is false */
+ genRegRegCheck(cUnit, kArmCondGe, rlIdxEnd.lowReg, regLength, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+}
+
+/*
+ * vA = arrayReg;
+ * vB = idxReg;
+ * vC = endConditionReg;
+ * arg[0] = maxC
+ * arg[1] = minC
+ * arg[2] = loopBranchConditionCode
+ */
+static void genHoistedChecksForCountDownLoop(CompilationUnit *cUnit, MIR *mir)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ const int lenOffset = offsetof(ArrayObject, length);
+ const int regLength = allocTemp(cUnit);
+ const int maxC = dInsn->arg[0];
+ const int minC = dInsn->arg[1];
+ RegLocation rlArray = cUnit->regLocation[mir->dalvikInsn.vA];
+ RegLocation rlIdxInit = cUnit->regLocation[mir->dalvikInsn.vB];
+
+ /* regArray <- arrayRef */
+ rlArray = loadValue(cUnit, rlArray, kCoreReg);
+ rlIdxInit = loadValue(cUnit, rlIdxInit, kCoreReg);
+ genRegImmCheck(cUnit, kArmCondEq, rlArray.lowReg, 0, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+
+ /* regLength <- len(arrayRef) */
+ loadWordDisp(cUnit, rlArray.lowReg, lenOffset, regLength);
+
+ if (maxC) {
+ int tReg = allocTemp(cUnit);
+ opRegRegImm(cUnit, kOpAdd, tReg, rlIdxInit.lowReg, maxC);
+ rlIdxInit.lowReg = tReg;
+ freeTemp(cUnit, tReg);
+ }
+
+ /* Punt if "regIdxInit < len(Array)" is false */
+ genRegRegCheck(cUnit, kArmCondGe, rlIdxInit.lowReg, regLength, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+}
+
+/*
+ * vA = idxReg;
+ * vB = minC;
+ */
+static void genHoistedLowerBoundCheck(CompilationUnit *cUnit, MIR *mir)
+{
+ DecodedInstruction *dInsn = &mir->dalvikInsn;
+ const int minC = dInsn->vB;
+ RegLocation rlIdx = cUnit->regLocation[mir->dalvikInsn.vA];
+
+ /* regIdx <- initial index value */
+ rlIdx = loadValue(cUnit, rlIdx, kCoreReg);
+
+ /* Punt if "regIdxInit + minC >= 0" is false */
+ genRegImmCheck(cUnit, kArmCondLt, rlIdx.lowReg, -minC, 0,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+}
+
+/* Extended MIR instructions like PHI */
+static void handleExtendedMIR(CompilationUnit *cUnit, MIR *mir)
+{
+ int opOffset = mir->dalvikInsn.opCode - kMirOpFirst;
+ char *msg = dvmCompilerNew(strlen(extendedMIROpNames[opOffset]) + 1,
+ false);
+ strcpy(msg, extendedMIROpNames[opOffset]);
+ newLIR1(cUnit, kArmPseudoExtended, (int) msg);
+
+ switch (mir->dalvikInsn.opCode) {
+ case kMirOpPhi: {
+ char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
+ newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
+ break;
+ }
+ case kMirOpNullNRangeUpCheck: {
+ genHoistedChecksForCountUpLoop(cUnit, mir);
+ break;
+ }
+ case kMirOpNullNRangeDownCheck: {
+ genHoistedChecksForCountDownLoop(cUnit, mir);
+ break;
+ }
+ case kMirOpLowerBound: {
+ genHoistedLowerBoundCheck(cUnit, mir);
+ break;
+ }
+ case kMirOpPunt: {
+ genUnconditionalBranch(cUnit,
+ (ArmLIR *) cUnit->loopAnalysis->branchToPCR);
+ break;
+ }
+ default:
+ break;
+ }
+}
+
+/*
+ * Create a PC-reconstruction cell for the starting offset of this trace.
+ * Since the PCR cell is placed near the end of the compiled code which is
+ * usually out of range for a conditional branch, we put two branches (one
+ * branch over to the loop body and one layover branch to the actual PCR) at the
+ * end of the entry block.
+ */
+static void setupLoopEntryBlock(CompilationUnit *cUnit, BasicBlock *entry,
+ ArmLIR *bodyLabel)
+{
+ /* Set up the place holder to reconstruct this Dalvik PC */
+ ArmLIR *pcrLabel = dvmCompilerNew(sizeof(ArmLIR), true);
+ pcrLabel->opCode = ARM_PSEUDO_kPCReconstruction_CELL;
+ pcrLabel->operands[0] =
+ (int) (cUnit->method->insns + entry->startOffset);
+ pcrLabel->operands[1] = entry->startOffset;
+ /* Insert the place holder to the growable list */
+ dvmInsertGrowableList(&cUnit->pcReconstructionList, pcrLabel);
+
+ /*
+ * Next, create two branches - one branch over to the loop body and the
+ * other branch to the PCR cell to punt.
+ */
+ ArmLIR *branchToBody = dvmCompilerNew(sizeof(ArmLIR), true);
+ branchToBody->opCode = kThumbBUncond;
+ branchToBody->generic.target = (LIR *) bodyLabel;
+ setupResourceMasks(branchToBody);
+ cUnit->loopAnalysis->branchToBody = (LIR *) branchToBody;
+
+ ArmLIR *branchToPCR = dvmCompilerNew(sizeof(ArmLIR), true);
+ branchToPCR->opCode = kThumbBUncond;
+ branchToPCR->generic.target = (LIR *) pcrLabel;
+ setupResourceMasks(branchToPCR);
+ cUnit->loopAnalysis->branchToPCR = (LIR *) branchToPCR;
+}
+
+void dvmCompilerMIR2LIR(CompilationUnit *cUnit)
+{
+ /* Used to hold the labels of each block */
+ ArmLIR *labelList =
+ dvmCompilerNew(sizeof(ArmLIR) * cUnit->numBlocks, true);
+ GrowableList chainingListByType[kChainingCellLast];
+ int i;
+
+ /*
+ * Initialize various types chaining lists.
+ */
+ for (i = 0; i < kChainingCellLast; i++) {
+ dvmInitGrowableList(&chainingListByType[i], 2);
+ }
+
+ BasicBlock **blockList = cUnit->blockList;
+
+ if (cUnit->executionCount) {
+ /*
+ * Reserve 6 bytes at the beginning of the trace
+ * +----------------------------+
+ * | execution count (4 bytes) |
+ * +----------------------------+
+ * | chain cell offset (2 bytes)|
+ * +----------------------------+
+ * ...and then code to increment the execution
+ * count:
+ * mov r0, pc @ move adr of "mov r0,pc" + 4 to r0
+ * sub r0, #10 @ back up to addr of executionCount
+ * ldr r1, [r0]
+ * add r1, #1
+ * str r1, [r0]
+ */
+ newLIR1(cUnit, kArm16BitData, 0);
+ newLIR1(cUnit, kArm16BitData, 0);
+ cUnit->chainCellOffsetLIR =
+ (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
+ cUnit->headerSize = 6;
+ /* Thumb instruction used directly here to ensure correct size */
+ newLIR2(cUnit, kThumbMovRR_H2L, r0, rpc);
+ newLIR2(cUnit, kThumbSubRI8, r0, 10);
+ newLIR3(cUnit, kThumbLdrRRI5, r1, r0, 0);
+ newLIR2(cUnit, kThumbAddRI8, r1, 1);
+ newLIR3(cUnit, kThumbStrRRI5, r1, r0, 0);
+ } else {
+ /* Just reserve 2 bytes for the chain cell offset */
+ cUnit->chainCellOffsetLIR =
+ (LIR *) newLIR1(cUnit, kArm16BitData, CHAIN_CELL_OFFSET_TAG);
+ cUnit->headerSize = 2;
+ }
+
+ /* Handle the content in each basic block */
+ for (i = 0; i < cUnit->numBlocks; i++) {
+ blockList[i]->visited = true;
+ MIR *mir;
+
+ labelList[i].operands[0] = blockList[i]->startOffset;
+
+ if (blockList[i]->blockType >= kChainingCellLast) {
+ /*
+ * Append the label pseudo LIR first. Chaining cells will be handled
+ * separately afterwards.
+ */
+ dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[i]);
+ }
+
+ if (blockList[i]->blockType == kEntryBlock) {
+ labelList[i].opCode = ARM_PSEUDO_kEntryBlock;
+ if (blockList[i]->firstMIRInsn == NULL) {
+ continue;
+ } else {
+ setupLoopEntryBlock(cUnit, blockList[i],
+ &labelList[blockList[i]->fallThrough->id]);
+ }
+ } else if (blockList[i]->blockType == kExitBlock) {
+ labelList[i].opCode = ARM_PSEUDO_kExitBlock;
+ goto gen_fallthrough;
+ } else if (blockList[i]->blockType == kDalvikByteCode) {
+ labelList[i].opCode = kArmPseudoNormalBlockLabel;
+ /* Reset the register state */
+ resetRegPool(cUnit);
+ clobberAllRegs(cUnit);
+ resetNullCheckTracker(cUnit);
+ } else {
+ switch (blockList[i]->blockType) {
+ case kChainingCellNormal:
+ labelList[i].opCode = ARM_PSEUDO_kChainingCellNormal;
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellNormal], (void *) i);
+ break;
+ case kChainingCellInvokeSingleton:
+ labelList[i].opCode =
+ ARM_PSEUDO_kChainingCellInvokeSingleton;
+ labelList[i].operands[0] =
+ (int) blockList[i]->containingMethod;
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellInvokeSingleton],
+ (void *) i);
+ break;
+ case kChainingCellInvokePredicted:
+ labelList[i].opCode =
+ ARM_PSEUDO_kChainingCellInvokePredicted;
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellInvokePredicted],
+ (void *) i);
+ break;
+ case kChainingCellHot:
+ labelList[i].opCode =
+ ARM_PSEUDO_kChainingCellHot;
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellHot],
+ (void *) i);
+ break;
+ case kPCReconstruction:
+ /* Make sure exception handling block is next */
+ labelList[i].opCode =
+ ARM_PSEUDO_kPCReconstruction_BLOCK_LABEL;
+ assert (i == cUnit->numBlocks - 2);
+ handlePCReconstruction(cUnit, &labelList[i+1]);
+ break;
+ case kExceptionHandling:
+ labelList[i].opCode = kArmPseudoEHBlockLabel;
+ if (cUnit->pcReconstructionList.numUsed) {
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
+ jitToInterpEntries.dvmJitToInterpPunt),
+ r1);
+ opReg(cUnit, kOpBlx, r1);
+ }
+ break;
+#if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
+ case kChainingCellBackwardBranch:
+ labelList[i].opCode =
+ ARM_PSEUDO_kChainingCellBackwardBranch;
+ /* handle the codegen later */
+ dvmInsertGrowableList(
+ &chainingListByType[kChainingCellBackwardBranch],
+ (void *) i);
+ break;
+#endif
+ default:
+ break;
+ }
+ continue;
+ }
+
+ ArmLIR *headLIR = NULL;
+
+ for (mir = blockList[i]->firstMIRInsn; mir; mir = mir->next) {
+
+ resetRegPool(cUnit);
+ if (gDvmJit.disableOpt & (1 << kTrackLiveTemps)) {
+ clobberAllRegs(cUnit);
+ }
+
+ if (gDvmJit.disableOpt & (1 << kSuppressLoads)) {
+ resetDefTracking(cUnit);
+ }
+
+ if (mir->dalvikInsn.opCode >= kMirOpFirst) {
+ handleExtendedMIR(cUnit, mir);
+ continue;
+ }
+
+
+ OpCode dalvikOpCode = mir->dalvikInsn.opCode;
+ InstructionFormat dalvikFormat =
+ dexGetInstrFormat(gDvm.instrFormat, dalvikOpCode);
+ ArmLIR *boundaryLIR =
+ newLIR2(cUnit, ARM_PSEUDO_kDalvikByteCode_BOUNDARY,
+ mir->offset,
+ (int) dvmCompilerGetDalvikDisassembly(&mir->dalvikInsn)
+ );
+ if (mir->ssaRep) {
+ char *ssaString = dvmCompilerGetSSAString(cUnit, mir->ssaRep);
+ newLIR1(cUnit, kArmPseudoSSARep, (int) ssaString);
+ }
+
+ /* Remember the first LIR for this block */
+ if (headLIR == NULL) {
+ headLIR = boundaryLIR;
+ /* Set the first boundaryLIR as a scheduling barrier */
+ headLIR->defMask = ENCODE_ALL;
+ }
+
+ bool notHandled;
+ /*
+ * Debugging: screen the opcode first to see if it is in the
+ * do[-not]-compile list
+ */
+ bool singleStepMe =
+ gDvmJit.includeSelectedOp !=
+ ((gDvmJit.opList[dalvikOpCode >> 3] &
+ (1 << (dalvikOpCode & 0x7))) !=
+ 0);
+#if defined(WITH_SELF_VERIFICATION)
+ /* Punt on opcodes we can't replay */
+ if (selfVerificationPuntOps(dalvikOpCode))
+ singleStepMe = true;
+#endif
+ if (singleStepMe || cUnit->allSingleStep) {
+ notHandled = false;
+ genInterpSingleStep(cUnit, mir);
+ } else {
+ opcodeCoverage[dalvikOpCode]++;
+ switch (dalvikFormat) {
+ case kFmt10t:
+ case kFmt20t:
+ case kFmt30t:
+ notHandled = handleFmt10t_Fmt20t_Fmt30t(cUnit,
+ mir, blockList[i], labelList);
+ break;
+ case kFmt10x:
+ notHandled = handleFmt10x(cUnit, mir);
+ break;
+ case kFmt11n:
+ case kFmt31i:
+ notHandled = handleFmt11n_Fmt31i(cUnit, mir);
+ break;
+ case kFmt11x:
+ notHandled = handleFmt11x(cUnit, mir);
+ break;
+ case kFmt12x:
+ notHandled = handleFmt12x(cUnit, mir);
+ break;
+ case kFmt20bc:
+ notHandled = handleFmt20bc(cUnit, mir);
+ break;
+ case kFmt21c:
+ case kFmt31c:
+ notHandled = handleFmt21c_Fmt31c(cUnit, mir);
+ break;
+ case kFmt21h:
+ notHandled = handleFmt21h(cUnit, mir);
+ break;
+ case kFmt21s:
+ notHandled = handleFmt21s(cUnit, mir);
+ break;
+ case kFmt21t:
+ notHandled = handleFmt21t(cUnit, mir, blockList[i],
+ labelList);
+ break;
+ case kFmt22b:
+ case kFmt22s:
+ notHandled = handleFmt22b_Fmt22s(cUnit, mir);
+ break;
+ case kFmt22c:
+ notHandled = handleFmt22c(cUnit, mir);
+ break;
+ case kFmt22cs:
+ notHandled = handleFmt22cs(cUnit, mir);
+ break;
+ case kFmt22t:
+ notHandled = handleFmt22t(cUnit, mir, blockList[i],
+ labelList);
+ break;
+ case kFmt22x:
+ case kFmt32x:
+ notHandled = handleFmt22x_Fmt32x(cUnit, mir);
+ break;
+ case kFmt23x:
+ notHandled = handleFmt23x(cUnit, mir);
+ break;
+ case kFmt31t:
+ notHandled = handleFmt31t(cUnit, mir);
+ break;
+ case kFmt3rc:
+ case kFmt35c:
+ notHandled = handleFmt35c_3rc(cUnit, mir, blockList[i],
+ labelList);
+ break;
+ case kFmt3rms:
+ case kFmt35ms:
+ notHandled = handleFmt35ms_3rms(cUnit, mir,blockList[i],
+ labelList);
+ break;
+ case kFmt3inline:
+ notHandled = handleFmt3inline(cUnit, mir);
+ break;
+ case kFmt3rinline:
+ notHandled = handleFmt3rinline(cUnit, mir);
+ break;
+ case kFmt51l:
+ notHandled = handleFmt51l(cUnit, mir);
+ break;
+ default:
+ notHandled = true;
+ break;
+ }
+ }
+ if (notHandled) {
+ LOGE("%#06x: Opcode 0x%x (%s) / Fmt %d not handled\n",
+ mir->offset,
+ dalvikOpCode, getOpcodeName(dalvikOpCode),
+ dalvikFormat);
+ dvmAbort();
+ break;
+ }
+ }
+
+ if (blockList[i]->blockType == kEntryBlock) {
+ dvmCompilerAppendLIR(cUnit,
+ (LIR *) cUnit->loopAnalysis->branchToBody);
+ dvmCompilerAppendLIR(cUnit,
+ (LIR *) cUnit->loopAnalysis->branchToPCR);
+ }
+
+ if (headLIR) {
+ /*
+ * Eliminate redundant loads/stores and delay stores into later
+ * slots
+ */
+ dvmCompilerApplyLocalOptimizations(cUnit, (LIR *) headLIR,
+ cUnit->lastLIRInsn);
+ }
+
+gen_fallthrough:
+ /*
+ * Check if the block is terminated due to trace length constraint -
+ * insert an unconditional branch to the chaining cell.
+ */
+ if (blockList[i]->needFallThroughBranch) {
+ genUnconditionalBranch(cUnit,
+ &labelList[blockList[i]->fallThrough->id]);
+ }
+
+ }
+
+ /* Handle the chaining cells in predefined order */
+ for (i = 0; i < kChainingCellLast; i++) {
+ size_t j;
+ int *blockIdList = (int *) chainingListByType[i].elemList;
+
+ cUnit->numChainingCells[i] = chainingListByType[i].numUsed;
+
+ /* No chaining cells of this type */
+ if (cUnit->numChainingCells[i] == 0)
+ continue;
+
+ /* Record the first LIR for a new type of chaining cell */
+ cUnit->firstChainingLIR[i] = (LIR *) &labelList[blockIdList[0]];
+
+ for (j = 0; j < chainingListByType[i].numUsed; j++) {
+ int blockId = blockIdList[j];
+
+ /* Align this chaining cell first */
+ newLIR0(cUnit, kArmPseudoPseudoAlign4);
+
+ /* Insert the pseudo chaining instruction */
+ dvmCompilerAppendLIR(cUnit, (LIR *) &labelList[blockId]);
+
+
+ switch (blockList[blockId]->blockType) {
+ case kChainingCellNormal:
+ handleNormalChainingCell(cUnit,
+ blockList[blockId]->startOffset);
+ break;
+ case kChainingCellInvokeSingleton:
+ handleInvokeSingletonChainingCell(cUnit,
+ blockList[blockId]->containingMethod);
+ break;
+ case kChainingCellInvokePredicted:
+ handleInvokePredictedChainingCell(cUnit);
+ break;
+ case kChainingCellHot:
+ handleHotChainingCell(cUnit,
+ blockList[blockId]->startOffset);
+ break;
+#if defined(WITH_SELF_VERIFICATION) || defined(WITH_JIT_TUNING)
+ case kChainingCellBackwardBranch:
+ handleBackwardBranchChainingCell(cUnit,
+ blockList[blockId]->startOffset);
+ break;
+#endif
+ default:
+ LOGE("Bad blocktype %d", blockList[blockId]->blockType);
+ dvmAbort();
+ break;
+ }
+ }
+ }
+
+ /*
+ * Generate the branch to the dvmJitToInterpNoChain entry point at the end
+ * of all chaining cells for the overflow cases.
+ */
+ if (cUnit->switchOverflowPad) {
+ loadConstant(cUnit, r0, (int) cUnit->switchOverflowPad);
+ loadWordDisp(cUnit, rGLUE, offsetof(InterpState,
+ jitToInterpEntries.dvmJitToInterpNoChain), r2);
+ opRegReg(cUnit, kOpAdd, r1, r1);
+ opRegRegReg(cUnit, kOpAdd, r4PC, r0, r1);
+#if defined(EXIT_STATS)
+ loadConstant(cUnit, r0, kSwitchOverflow);
+#endif
+ opReg(cUnit, kOpBlx, r2);
+ }
+
+ dvmCompilerApplyGlobalOptimizations(cUnit);
+}
+
+/* Accept the work and start compiling */
+bool dvmCompilerDoWork(CompilerWorkOrder *work)
+{
+ bool res;
+
+ if (gDvmJit.codeCacheFull) {
+ return false;
+ }
+
+ switch (work->kind) {
+ case kWorkOrderMethod:
+ res = dvmCompileMethod(work->info, &work->result);
+ break;
+ case kWorkOrderTrace:
+ /* Start compilation with maximally allowed trace length */
+ res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result);
+ break;
+ case kWorkOrderTraceDebug: {
+ bool oldPrintMe = gDvmJit.printMe;
+ gDvmJit.printMe = true;
+ /* Start compilation with maximally allowed trace length */
+ res = dvmCompileTrace(work->info, JIT_MAX_TRACE_LEN, &work->result);
+ gDvmJit.printMe = oldPrintMe;;
+ break;
+ }
+ default:
+ res = false;
+ dvmAbort();
+ }
+ return res;
+}
+
+/* Architectural-specific debugging helpers go here */
+void dvmCompilerArchDump(void)
+{
+ /* Print compiled opcode in this VM instance */
+ int i, start, streak;
+ char buf[1024];
+
+ streak = i = 0;
+ buf[0] = 0;
+ while (opcodeCoverage[i] == 0 && i < 256) {
+ i++;
+ }
+ if (i == 256) {
+ return;
+ }
+ for (start = i++, streak = 1; i < 256; i++) {
+ if (opcodeCoverage[i]) {
+ streak++;
+ } else {
+ if (streak == 1) {
+ sprintf(buf+strlen(buf), "%x,", start);
+ } else {
+ sprintf(buf+strlen(buf), "%x-%x,", start, start + streak - 1);
+ }
+ streak = 0;
+ while (opcodeCoverage[i] == 0 && i < 256) {
+ i++;
+ }
+ if (i < 256) {
+ streak = 1;
+ start = i;
+ }
+ }
+ }
+ if (streak) {
+ if (streak == 1) {
+ sprintf(buf+strlen(buf), "%x", start);
+ } else {
+ sprintf(buf+strlen(buf), "%x-%x", start, start + streak - 1);
+ }
+ }
+ if (strlen(buf)) {
+ LOGD("dalvik.vm.jit.op = %s", buf);
+ }
+}
+
+/* Common initialization routine for an architecture family */
+bool dvmCompilerArchInit()
+{
+ int i;
+
+ for (i = 0; i < kArmLast; i++) {
+ if (EncodingMap[i].opCode != i) {
+ LOGE("Encoding order for %s is wrong: expecting %d, seeing %d",
+ EncodingMap[i].name, i, EncodingMap[i].opCode);
+ dvmAbort();
+ }
+ }
+
+ return dvmCompilerArchVariantInit();
+}
+
+void *dvmCompilerGetInterpretTemplate()
+{
+ return (void*) ((int)gDvmJit.codeCache +
+ templateEntryOffsets[TEMPLATE_INTERPRET]);
+}
+
+/* Needed by the ld/st optmizatons */
+ArmLIR* dvmCompilerRegCopyNoInsert(CompilationUnit *cUnit, int rDest, int rSrc)
+{
+ return genRegCopyNoInsert(cUnit, rDest, rSrc);
+}
+
+/* Needed by the register allocator */
+ArmLIR* dvmCompilerRegCopy(CompilationUnit *cUnit, int rDest, int rSrc)
+{
+ return genRegCopy(cUnit, rDest, rSrc);
+}
+
+/* Needed by the register allocator */
+void dvmCompilerRegCopyWide(CompilationUnit *cUnit, int destLo, int destHi,
+ int srcLo, int srcHi)
+{
+ genRegCopyWide(cUnit, destLo, destHi, srcLo, srcHi);
+}
+
+void dvmCompilerFlushRegImpl(CompilationUnit *cUnit, int rBase,
+ int displacement, int rSrc, OpSize size)
+{
+ storeBaseDisp(cUnit, rBase, displacement, rSrc, size);
+}
+
+void dvmCompilerFlushRegWideImpl(CompilationUnit *cUnit, int rBase,
+ int displacement, int rSrcLo, int rSrcHi)
+{
+ storeBaseDispWide(cUnit, rBase, displacement, rSrcLo, rSrcHi);
+}