summaryrefslogtreecommitdiffstats
path: root/runtime/native/java_lang_System.cc
blob: 100f5a9b186008b8120c37e6989ef4d1a8cd8b26 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "common_throws.h"
#include "gc/accounting/card_table-inl.h"
#include "jni_internal.h"
#include "mirror/array.h"
#include "mirror/class.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/object_array-inl.h"
#include "scoped_thread_state_change.h"

/*
 * We make guarantees about the atomicity of accesses to primitive
 * variables.  These guarantees also apply to elements of arrays.
 * In particular, 8-bit, 16-bit, and 32-bit accesses must be atomic and
 * must not cause "word tearing".  Accesses to 64-bit array elements must
 * either be atomic or treated as two 32-bit operations.  References are
 * always read and written atomically, regardless of the number of bits
 * used to represent them.
 *
 * We can't rely on standard libc functions like memcpy(3) and memmove(3)
 * in our implementation of System.arraycopy, because they may copy
 * byte-by-byte (either for the full run or for "unaligned" parts at the
 * start or end).  We need to use functions that guarantee 16-bit or 32-bit
 * atomicity as appropriate.
 *
 * System.arraycopy() is heavily used, so having an efficient implementation
 * is important.  The bionic libc provides a platform-optimized memory move
 * function that should be used when possible.  If it's not available,
 * the trivial "reference implementation" versions below can be used until
 * a proper version can be written.
 *
 * For these functions, The caller must guarantee that dst/src are aligned
 * appropriately for the element type, and that n is a multiple of the
 * element size.
 */

/*
 * Works like memmove(), except:
 * - if all arguments are at least 32-bit aligned, we guarantee that we
 *   will use operations that preserve atomicity of 32-bit values
 * - if not, we guarantee atomicity of 16-bit values
 *
 * If all three arguments are not at least 16-bit aligned, the behavior
 * of this function is undefined.  (We could remove this restriction by
 * testing for unaligned values and punting to memmove(), but that's
 * not currently useful.)
 *
 * TODO: add loop for 64-bit alignment
 * TODO: use __builtin_prefetch
 * TODO: write ARM/MIPS/x86 optimized versions
 */
void MemmoveWords(void* dst, const void* src, size_t n) {
  DCHECK_EQ((((uintptr_t) dst | (uintptr_t) src | n) & 0x01), 0U);

  char* d = reinterpret_cast<char*>(dst);
  const char* s = reinterpret_cast<const char*>(src);
  size_t copyCount;

  // If the source and destination pointers are the same, this is
  // an expensive no-op.  Testing for an empty move now allows us
  // to skip a check later.
  if (n == 0 || d == s) {
    return;
  }

  // Determine if the source and destination buffers will overlap if
  // we copy data forward (i.e. *dst++ = *src++).
  //
  // It's okay if the destination buffer starts before the source and
  // there is some overlap, because the reader is always ahead of the
  // writer.
  if (LIKELY((d < s) || ((size_t)(d - s) >= n))) {
    // Copy forward.  We prefer 32-bit loads and stores even for 16-bit
    // data, so sort that out.
    if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) {
      // Not 32-bit aligned.  Two possibilities:
      // (1) Congruent, we can align to 32-bit by copying one 16-bit val
      // (2) Non-congruent, we can do one of:
      //   a. copy whole buffer as a series of 16-bit values
      //   b. load/store 32 bits, using shifts to ensure alignment
      //   c. just copy the as 32-bit values and assume the CPU
      //      will do a reasonable job
      //
      // We're currently using (a), which is suboptimal.
      if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) {
        copyCount = n;
      } else {
        copyCount = 2;
      }
      n -= copyCount;
      copyCount /= sizeof(uint16_t);

      while (copyCount--) {
        *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s);
        d += sizeof(uint16_t);
        s += sizeof(uint16_t);
      }
    }

    // Copy 32-bit aligned words.
    copyCount = n / sizeof(uint32_t);
    while (copyCount--) {
      *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s);
      d += sizeof(uint32_t);
      s += sizeof(uint32_t);
    }

    // Check for leftovers.  Either we finished exactly, or we have one remaining 16-bit chunk.
    if ((n & 0x02) != 0) {
      *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s);
    }
  } else {
    // Copy backward, starting at the end.
    d += n;
    s += n;

    if (((reinterpret_cast<uintptr_t>(d) | reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) {
      // try for 32-bit alignment.
      if (((reinterpret_cast<uintptr_t>(d) ^ reinterpret_cast<uintptr_t>(s)) & 0x03) != 0) {
        copyCount = n;
      } else {
        copyCount = 2;
      }
      n -= copyCount;
      copyCount /= sizeof(uint16_t);

      while (copyCount--) {
        d -= sizeof(uint16_t);
        s -= sizeof(uint16_t);
        *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s);
      }
    }

    // Copy 32-bit aligned words.
    copyCount = n / sizeof(uint32_t);
    while (copyCount--) {
      d -= sizeof(uint32_t);
      s -= sizeof(uint32_t);
      *reinterpret_cast<uint32_t*>(d) = *reinterpret_cast<const uint32_t*>(s);
    }

    // Copy leftovers.
    if ((n & 0x02) != 0) {
      d -= sizeof(uint16_t);
      s -= sizeof(uint16_t);
      *reinterpret_cast<uint16_t*>(d) = *reinterpret_cast<const uint16_t*>(s);
    }
  }
}

#define move16 MemmoveWords
#define move32 MemmoveWords

namespace art {

static void ThrowArrayStoreException_NotAnArray(const char* identifier, mirror::Object* array)
    SHARED_LOCKS_REQUIRED(Locks::mutator_lock_) {
  std::string actualType(PrettyTypeOf(array));
  Thread* self = Thread::Current();
  ThrowLocation throw_location = self->GetCurrentLocationForThrow();
  self->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;",
                           "%s of type %s is not an array", identifier, actualType.c_str());
}

static void System_arraycopy(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) {
  ScopedObjectAccess soa(env);

  // Null pointer checks.
  if (UNLIKELY(javaSrc == NULL)) {
    ThrowNullPointerException(NULL, "src == null");
    return;
  }
  if (UNLIKELY(javaDst == NULL)) {
    ThrowNullPointerException(NULL, "dst == null");
    return;
  }

  // Make sure source and destination are both arrays.
  mirror::Object* srcObject = soa.Decode<mirror::Object*>(javaSrc);
  mirror::Object* dstObject = soa.Decode<mirror::Object*>(javaDst);
  if (UNLIKELY(!srcObject->IsArrayInstance())) {
    ThrowArrayStoreException_NotAnArray("source", srcObject);
    return;
  }
  if (UNLIKELY(!dstObject->IsArrayInstance())) {
    ThrowArrayStoreException_NotAnArray("destination", dstObject);
    return;
  }
  mirror::Array* srcArray = srcObject->AsArray();
  mirror::Array* dstArray = dstObject->AsArray();
  mirror::Class* srcComponentType = srcArray->GetClass()->GetComponentType();
  mirror::Class* dstComponentType = dstArray->GetClass()->GetComponentType();

  // Bounds checking.
  if (UNLIKELY(srcPos < 0 || dstPos < 0 || length < 0 || srcPos > srcArray->GetLength() - length || dstPos > dstArray->GetLength() - length)) {
    ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow();
    soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayIndexOutOfBoundsException;",
                                   "src.length=%d srcPos=%d dst.length=%d dstPos=%d length=%d",
                                   srcArray->GetLength(), srcPos, dstArray->GetLength(), dstPos, length);
    return;
  }

  // Handle primitive arrays.
  if (srcComponentType->IsPrimitive() || dstComponentType->IsPrimitive()) {
    // If one of the arrays holds a primitive type the other array must hold the exact same type.
    if (UNLIKELY(srcComponentType != dstComponentType)) {
      std::string srcType(PrettyTypeOf(srcArray));
      std::string dstType(PrettyTypeOf(dstArray));
      ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow();
      soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;",
                                     "Incompatible types: src=%s, dst=%s",
                                     srcType.c_str(), dstType.c_str());
      return;
    }

    size_t width = srcArray->GetClass()->GetComponentSize();
    uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width));
    const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width));

    switch (width) {
    case 1:
      memmove(dstBytes + dstPos, srcBytes + srcPos, length);
      break;
    case 2:
      move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2);
      break;
    case 4:
      move32(dstBytes + dstPos * 4, srcBytes + srcPos * 4, length * 4);
      break;
    case 8:
      // We don't need to guarantee atomicity of the entire 64-bit word.
      move32(dstBytes + dstPos * 8, srcBytes + srcPos * 8, length * 8);
      break;
    default:
      LOG(FATAL) << "Unknown primitive array type: " << PrettyTypeOf(srcArray);
    }

    return;
  }

  // Neither class is primitive. Are the types trivially compatible?
  const size_t width = sizeof(mirror::Object*);
  uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(width));
  const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(width));
  if (dstArray == srcArray || dstComponentType->IsAssignableFrom(srcComponentType)) {
    // Yes. Bulk copy.
    COMPILE_ASSERT(sizeof(width) == sizeof(uint32_t), move32_assumes_Object_references_are_32_bit);
    move32(dstBytes + dstPos * width, srcBytes + srcPos * width, length * width);
    Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length);
    return;
  }

  // The arrays are not trivially compatible. However, we may still be able to copy some or all of
  // the elements if the source objects are compatible (for example, copying an Object[] to
  // String[], the Objects being copied might actually be Strings).
  // We can't do a bulk move because that would introduce a check-use race condition, so we copy
  // elements one by one.

  // We already dealt with overlapping copies, so we don't need to cope with that case below.
  CHECK_NE(dstArray, srcArray);

  mirror::Object* const * srcObjects =
      reinterpret_cast<mirror::Object* const *>(srcBytes + srcPos * width);
  mirror::Object** dstObjects = reinterpret_cast<mirror::Object**>(dstBytes + dstPos * width);
  mirror::Class* dstClass = dstArray->GetClass()->GetComponentType();

  // We want to avoid redundant IsAssignableFrom checks where possible, so we cache a class that
  // we know is assignable to the destination array's component type.
  mirror::Class* lastAssignableElementClass = dstClass;

  mirror::Object* o = NULL;
  int i = 0;
  for (; i < length; ++i) {
    o = srcObjects[i];
    if (o != NULL) {
      mirror::Class* oClass = o->GetClass();
      if (lastAssignableElementClass == oClass) {
        dstObjects[i] = o;
      } else if (dstClass->IsAssignableFrom(oClass)) {
        lastAssignableElementClass = oClass;
        dstObjects[i] = o;
      } else {
        // Can't put this element into the array.
        break;
      }
    } else {
      dstObjects[i] = NULL;
    }
  }

  Runtime::Current()->GetHeap()->WriteBarrierArray(dstArray, dstPos, length);
  if (UNLIKELY(i != length)) {
    std::string actualSrcType(PrettyTypeOf(o));
    std::string dstType(PrettyTypeOf(dstArray));
    ThrowLocation throw_location = soa.Self()->GetCurrentLocationForThrow();
    soa.Self()->ThrowNewExceptionF(throw_location, "Ljava/lang/ArrayStoreException;",
                                   "source[%d] of type %s cannot be stored in destination array of type %s",
                                   srcPos + i, actualSrcType.c_str(), dstType.c_str());
    return;
  }
}

static void System_arraycopyCharUnchecked(JNIEnv* env, jclass, jobject javaSrc, jint srcPos, jobject javaDst, jint dstPos, jint length) {
  ScopedObjectAccess soa(env);
  DCHECK(javaSrc != NULL);
  DCHECK(javaDst != NULL);
  mirror::Object* srcObject = soa.Decode<mirror::Object*>(javaSrc);
  mirror::Object* dstObject = soa.Decode<mirror::Object*>(javaDst);
  DCHECK(srcObject->IsArrayInstance());
  DCHECK(dstObject->IsArrayInstance());
  mirror::Array* srcArray = srcObject->AsArray();
  mirror::Array* dstArray = dstObject->AsArray();
  DCHECK(srcPos >= 0 && dstPos >= 0 && length >= 0 &&
         srcPos + length <= srcArray->GetLength() && dstPos + length <= dstArray->GetLength());
  DCHECK_EQ(srcArray->GetClass()->GetComponentType(), dstArray->GetClass()->GetComponentType());
  DCHECK(srcArray->GetClass()->GetComponentType()->IsPrimitive());
  DCHECK(dstArray->GetClass()->GetComponentType()->IsPrimitive());
  DCHECK_EQ(srcArray->GetClass()->GetComponentSize(), static_cast<size_t>(2));
  DCHECK_EQ(dstArray->GetClass()->GetComponentSize(), static_cast<size_t>(2));
  uint8_t* dstBytes = reinterpret_cast<uint8_t*>(dstArray->GetRawData(2));
  const uint8_t* srcBytes = reinterpret_cast<const uint8_t*>(srcArray->GetRawData(2));
  move16(dstBytes + dstPos * 2, srcBytes + srcPos * 2, length * 2);
}

static jint System_identityHashCode(JNIEnv* env, jclass, jobject javaObject) {
  ScopedObjectAccess soa(env);
  mirror::Object* o = soa.Decode<mirror::Object*>(javaObject);
  return static_cast<jint>(o->IdentityHashCode());
}

static JNINativeMethod gMethods[] = {
  NATIVE_METHOD(System, arraycopy, "(Ljava/lang/Object;ILjava/lang/Object;II)V"),
  NATIVE_METHOD(System, arraycopyCharUnchecked, "([CI[CII)V"),
  NATIVE_METHOD(System, identityHashCode, "(Ljava/lang/Object;)I"),
};

void register_java_lang_System(JNIEnv* env) {
  REGISTER_NATIVE_METHODS("java/lang/System");
}

}  // namespace art