summaryrefslogtreecommitdiffstats
path: root/runtime/jit/profile_compilation_info.cc
blob: 0b7063d90f62ef8a0c77ddac3cca7dae5ae51424 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
/*
 * Copyright (C) 2015 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "profile_compilation_info.h"

#include "errno.h"
#include <limits.h>
#include <string>
#include <vector>
#include <stdlib.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/uio.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/types.h>
#include <unistd.h>
#include <zlib.h>
#include <base/time_utils.h>

#include "base/arena_allocator.h"
#include "base/dumpable.h"
#include "base/mutex.h"
#include "base/scoped_flock.h"
#include "base/stl_util.h"
#include "base/systrace.h"
#include "base/unix_file/fd_file.h"
#include "jit/profiling_info.h"
#include "os.h"
#include "safe_map.h"
#include "utils.h"
#include "android-base/file.h"

namespace art {

const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' };
// Last profile version: update the multidex separator.
const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '0', '9', '\0' };

static constexpr uint16_t kMaxDexFileKeyLength = PATH_MAX;

// Debug flag to ignore checksums when testing if a method or a class is present in the profile.
// Used to facilitate testing profile guided compilation across a large number of apps
// using the same test profile.
static constexpr bool kDebugIgnoreChecksum = false;

static constexpr uint8_t kIsMissingTypesEncoding = 6;
static constexpr uint8_t kIsMegamorphicEncoding = 7;

static_assert(sizeof(InlineCache::kIndividualCacheSize) == sizeof(uint8_t),
              "InlineCache::kIndividualCacheSize does not have the expect type size");
static_assert(InlineCache::kIndividualCacheSize < kIsMegamorphicEncoding,
              "InlineCache::kIndividualCacheSize is larger than expected");
static_assert(InlineCache::kIndividualCacheSize < kIsMissingTypesEncoding,
              "InlineCache::kIndividualCacheSize is larger than expected");

static bool ChecksumMatch(uint32_t dex_file_checksum, uint32_t checksum) {
  return kDebugIgnoreChecksum || dex_file_checksum == checksum;
}

ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool)
    : default_arena_pool_(),
      arena_(custom_arena_pool),
      info_(arena_.Adapter(kArenaAllocProfile)),
      profile_key_map_(std::less<const std::string>(), arena_.Adapter(kArenaAllocProfile)) {
}

ProfileCompilationInfo::ProfileCompilationInfo()
    : default_arena_pool_(/*use_malloc*/true, /*low_4gb*/false, "ProfileCompilationInfo"),
      arena_(&default_arena_pool_),
      info_(arena_.Adapter(kArenaAllocProfile)),
      profile_key_map_(std::less<const std::string>(), arena_.Adapter(kArenaAllocProfile)) {
}

ProfileCompilationInfo::~ProfileCompilationInfo() {
  VLOG(profiler) << Dumpable<MemStats>(arena_.GetMemStats());
  for (DexFileData* data : info_) {
    delete data;
  }
}

void ProfileCompilationInfo::DexPcData::AddClass(uint16_t dex_profile_idx,
                                                 const dex::TypeIndex& type_idx) {
  if (is_megamorphic || is_missing_types) {
    return;
  }

  // Perform an explicit lookup for the type instead of directly emplacing the
  // element. We do this because emplace() allocates the node before doing the
  // lookup and if it then finds an identical element, it shall deallocate the
  // node. For Arena allocations, that's essentially a leak.
  ClassReference ref(dex_profile_idx, type_idx);
  auto it = classes.find(ref);
  if (it != classes.end()) {
    // The type index exists.
    return;
  }

  // Check if the adding the type will cause the cache to become megamorphic.
  if (classes.size() + 1 >= InlineCache::kIndividualCacheSize) {
    is_megamorphic = true;
    classes.clear();
    return;
  }

  // The type does not exist and the inline cache will not be megamorphic.
  classes.insert(ref);
}

// Transform the actual dex location into relative paths.
// Note: this is OK because we don't store profiles of different apps into the same file.
// Apps with split apks don't cause trouble because each split has a different name and will not
// collide with other entries.
std::string ProfileCompilationInfo::GetProfileDexFileKey(const std::string& dex_location) {
  DCHECK(!dex_location.empty());
  size_t last_sep_index = dex_location.find_last_of('/');
  if (last_sep_index == std::string::npos) {
    return dex_location;
  } else {
    DCHECK(last_sep_index < dex_location.size());
    return dex_location.substr(last_sep_index + 1);
  }
}

bool ProfileCompilationInfo::AddMethodIndex(MethodHotness::Flag flags, const MethodReference& ref) {
  DexFileData* data = GetOrAddDexFileData(ref.dex_file);
  if (data == nullptr) {
    return false;
  }
  data->AddMethod(flags, ref.dex_method_index);
  return true;
}

bool ProfileCompilationInfo::AddMethodIndex(MethodHotness::Flag flags,
                                            const std::string& dex_location,
                                            uint32_t checksum,
                                            uint16_t method_idx,
                                            uint32_t num_method_ids) {
  DexFileData* data = GetOrAddDexFileData(GetProfileDexFileKey(dex_location),
                                          checksum,
                                          num_method_ids);
  if (data == nullptr) {
    return false;
  }
  data->AddMethod(flags, method_idx);
  return true;
}

bool ProfileCompilationInfo::AddMethods(const std::vector<ProfileMethodInfo>& methods) {
  for (const ProfileMethodInfo& method : methods) {
    if (!AddMethod(method)) {
      return false;
    }
  }
  return true;
}

bool ProfileCompilationInfo::AddClasses(const std::set<DexCacheResolvedClasses>& resolved_classes) {
  for (const DexCacheResolvedClasses& dex_cache : resolved_classes) {
    if (!AddResolvedClasses(dex_cache)) {
      return false;
    }
  }
  return true;
}

bool ProfileCompilationInfo::Load(const std::string& filename, bool clear_if_invalid) {
  ScopedTrace trace(__PRETTY_FUNCTION__);
  std::string error;
  int flags = O_RDWR | O_NOFOLLOW | O_CLOEXEC;
  // There's no need to fsync profile data right away. We get many chances
  // to write it again in case something goes wrong. We can rely on a simple
  // close(), no sync, and let to the kernel decide when to write to disk.
  ScopedFlock profile_file = LockedFile::Open(filename.c_str(), flags,
                                              /*block*/false, &error);

  if (profile_file.get() == nullptr) {
    LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
    return false;
  }

  int fd = profile_file->Fd();

  ProfileLoadSatus status = LoadInternal(fd, &error);
  if (status == kProfileLoadSuccess) {
    return true;
  }

  if (clear_if_invalid &&
      ((status == kProfileLoadVersionMismatch) || (status == kProfileLoadBadData))) {
    LOG(WARNING) << "Clearing bad or obsolete profile data from file "
                 << filename << ": " << error;
    if (profile_file->ClearContent()) {
      return true;
    } else {
      PLOG(WARNING) << "Could not clear profile file: " << filename;
      return false;
    }
  }

  LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
  return false;
}

bool ProfileCompilationInfo::Save(const std::string& filename, uint64_t* bytes_written) {
  ScopedTrace trace(__PRETTY_FUNCTION__);
  std::string error;
  int flags = O_WRONLY | O_NOFOLLOW | O_CLOEXEC;
  // There's no need to fsync profile data right away. We get many chances
  // to write it again in case something goes wrong. We can rely on a simple
  // close(), no sync, and let to the kernel decide when to write to disk.
  ScopedFlock profile_file = LockedFile::Open(filename.c_str(), flags,
                                              /*block*/false, &error);
  if (profile_file.get() == nullptr) {
    LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
    return false;
  }

  int fd = profile_file->Fd();

  // We need to clear the data because we don't support appending to the profiles yet.
  if (!profile_file->ClearContent()) {
    PLOG(WARNING) << "Could not clear profile file: " << filename;
    return false;
  }

  // This doesn't need locking because we are trying to lock the file for exclusive
  // access and fail immediately if we can't.
  bool result = Save(fd);
  if (result) {
    int64_t size = GetFileSizeBytes(filename);
    if (size != -1) {
      VLOG(profiler)
        << "Successfully saved profile info to " << filename << " Size: "
        << size;
      if (bytes_written != nullptr) {
        *bytes_written = static_cast<uint64_t>(size);
      }
    }
  } else {
    VLOG(profiler) << "Failed to save profile info to " << filename;
  }
  return result;
}

// Returns true if all the bytes were successfully written to the file descriptor.
static bool WriteBuffer(int fd, const uint8_t* buffer, size_t byte_count) {
  while (byte_count > 0) {
    int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count));
    if (bytes_written == -1) {
      return false;
    }
    byte_count -= bytes_written;  // Reduce the number of remaining bytes.
    buffer += bytes_written;  // Move the buffer forward.
  }
  return true;
}

// Add the string bytes to the buffer.
static void AddStringToBuffer(std::vector<uint8_t>* buffer, const std::string& value) {
  buffer->insert(buffer->end(), value.begin(), value.end());
}

// Insert each byte, from low to high into the buffer.
template <typename T>
static void AddUintToBuffer(std::vector<uint8_t>* buffer, T value) {
  for (size_t i = 0; i < sizeof(T); i++) {
    buffer->push_back((value >> (i * kBitsPerByte)) & 0xff);
  }
}

static constexpr size_t kLineHeaderSize =
    2 * sizeof(uint16_t) +  // class_set.size + dex_location.size
    3 * sizeof(uint32_t);   // method_map.size + checksum + num_method_ids

/**
 * Serialization format:
 *    magic,version,number_of_dex_files,uncompressed_size_of_zipped_data,compressed_data_size,
 *    zipped[dex_location1,number_of_classes1,methods_region_size,dex_location_checksum1
 *        num_method_ids,
 *        method_encoding_11,method_encoding_12...,class_id1,class_id2...
 *        startup/post startup bitmap,
 *    dex_location2,number_of_classes2,methods_region_size,dex_location_checksum2, num_method_ids,
 *        method_encoding_21,method_encoding_22...,,class_id1,class_id2...
 *        startup/post startup bitmap,
 *    .....]
 * The method_encoding is:
 *    method_id,number_of_inline_caches,inline_cache1,inline_cache2...
 * The inline_cache is:
 *    dex_pc,[M|dex_map_size], dex_profile_index,class_id1,class_id2...,dex_profile_index2,...
 *    dex_map_size is the number of dex_indeces that follows.
 *       Classes are grouped per their dex files and the line
 *       `dex_profile_index,class_id1,class_id2...,dex_profile_index2,...` encodes the
 *       mapping from `dex_profile_index` to the set of classes `class_id1,class_id2...`
 *    M stands for megamorphic or missing types and it's encoded as either
 *    the byte kIsMegamorphicEncoding or kIsMissingTypesEncoding.
 *    When present, there will be no class ids following.
 **/
bool ProfileCompilationInfo::Save(int fd) {
  uint64_t start = NanoTime();
  ScopedTrace trace(__PRETTY_FUNCTION__);
  DCHECK_GE(fd, 0);

  // Use a vector wrapper to avoid keeping track of offsets when we add elements.
  std::vector<uint8_t> buffer;
  if (!WriteBuffer(fd, kProfileMagic, sizeof(kProfileMagic))) {
    return false;
  }
  if (!WriteBuffer(fd, kProfileVersion, sizeof(kProfileVersion))) {
    return false;
  }
  DCHECK_LE(info_.size(), std::numeric_limits<uint8_t>::max());
  AddUintToBuffer(&buffer, static_cast<uint8_t>(info_.size()));

  uint32_t required_capacity = 0;
  for (const DexFileData* dex_data_ptr : info_) {
    const DexFileData& dex_data = *dex_data_ptr;
    uint32_t methods_region_size = GetMethodsRegionSize(dex_data);
    required_capacity += kLineHeaderSize +
        dex_data.profile_key.size() +
        sizeof(uint16_t) * dex_data.class_set.size() +
        methods_region_size +
        dex_data.bitmap_storage.size();
  }
  // Allow large profiles for non target builds for the case where we are merging many profiles
  // to generate a boot image profile.
  if (kIsTargetBuild && required_capacity > kProfileSizeErrorThresholdInBytes) {
    LOG(ERROR) << "Profile data size exceeds "
               << std::to_string(kProfileSizeErrorThresholdInBytes)
               << " bytes. Profile will not be written to disk.";
    return false;
  }
  if (required_capacity > kProfileSizeWarningThresholdInBytes) {
    LOG(WARNING) << "Profile data size exceeds "
                 << std::to_string(kProfileSizeWarningThresholdInBytes);
  }
  AddUintToBuffer(&buffer, required_capacity);
  if (!WriteBuffer(fd, buffer.data(), buffer.size())) {
    return false;
  }
  // Make sure that the buffer has enough capacity to avoid repeated resizings
  // while we add data.
  buffer.reserve(required_capacity);
  buffer.clear();

  // Dex files must be written in the order of their profile index. This
  // avoids writing the index in the output file and simplifies the parsing logic.
  for (const DexFileData* dex_data_ptr : info_) {
    const DexFileData& dex_data = *dex_data_ptr;

    // Note that we allow dex files without any methods or classes, so that
    // inline caches can refer valid dex files.

    if (dex_data.profile_key.size() >= kMaxDexFileKeyLength) {
      LOG(WARNING) << "DexFileKey exceeds allocated limit";
      return false;
    }

    uint32_t methods_region_size = GetMethodsRegionSize(dex_data);

    DCHECK_LE(dex_data.profile_key.size(), std::numeric_limits<uint16_t>::max());
    DCHECK_LE(dex_data.class_set.size(), std::numeric_limits<uint16_t>::max());
    // Write profile line header.
    AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.profile_key.size()));
    AddUintToBuffer(&buffer, static_cast<uint16_t>(dex_data.class_set.size()));
    AddUintToBuffer(&buffer, methods_region_size);  // uint32_t
    AddUintToBuffer(&buffer, dex_data.checksum);  // uint32_t
    AddUintToBuffer(&buffer, dex_data.num_method_ids);  // uint32_t

    AddStringToBuffer(&buffer, dex_data.profile_key);

    uint16_t last_method_index = 0;
    for (const auto& method_it : dex_data.method_map) {
      // Store the difference between the method indices. The SafeMap is ordered by
      // method_id, so the difference will always be non negative.
      DCHECK_GE(method_it.first, last_method_index);
      uint16_t diff_with_last_method_index = method_it.first - last_method_index;
      last_method_index = method_it.first;
      AddUintToBuffer(&buffer, diff_with_last_method_index);
      AddInlineCacheToBuffer(&buffer, method_it.second);
    }

    uint16_t last_class_index = 0;
    for (const auto& class_id : dex_data.class_set) {
      // Store the difference between the class indices. The set is ordered by
      // class_id, so the difference will always be non negative.
      DCHECK_GE(class_id.index_, last_class_index);
      uint16_t diff_with_last_class_index = class_id.index_ - last_class_index;
      last_class_index = class_id.index_;
      AddUintToBuffer(&buffer, diff_with_last_class_index);
    }

    buffer.insert(buffer.end(),
                  dex_data.bitmap_storage.begin(),
                  dex_data.bitmap_storage.end());
  }

  uint32_t output_size = 0;
  std::unique_ptr<uint8_t[]> compressed_buffer = DeflateBuffer(buffer.data(),
                                                               required_capacity,
                                                               &output_size);

  buffer.clear();
  AddUintToBuffer(&buffer, output_size);

  if (!WriteBuffer(fd, buffer.data(), buffer.size())) {
    return false;
  }
  if (!WriteBuffer(fd, compressed_buffer.get(), output_size)) {
    return false;
  }
  uint64_t total_time = NanoTime() - start;
  VLOG(profiler) << "Compressed from "
                 << std::to_string(required_capacity)
                 << " to "
                 << std::to_string(output_size);
  VLOG(profiler) << "Time to save profile: " << std::to_string(total_time);
  return true;
}

void ProfileCompilationInfo::AddInlineCacheToBuffer(std::vector<uint8_t>* buffer,
                                                    const InlineCacheMap& inline_cache_map) {
  // Add inline cache map size.
  AddUintToBuffer(buffer, static_cast<uint16_t>(inline_cache_map.size()));
  if (inline_cache_map.size() == 0) {
    return;
  }
  for (const auto& inline_cache_it : inline_cache_map) {
    uint16_t dex_pc = inline_cache_it.first;
    const DexPcData dex_pc_data = inline_cache_it.second;
    const ClassSet& classes = dex_pc_data.classes;

    // Add the dex pc.
    AddUintToBuffer(buffer, dex_pc);

    // Add the megamorphic/missing_types encoding if needed and continue.
    // In either cases we don't add any classes to the profiles and so there's
    // no point to continue.
    // TODO(calin): in case we miss types there is still value to add the
    // rest of the classes. They can be added without bumping the profile version.
    if (dex_pc_data.is_missing_types) {
      DCHECK(!dex_pc_data.is_megamorphic);  // at this point the megamorphic flag should not be set.
      DCHECK_EQ(classes.size(), 0u);
      AddUintToBuffer(buffer, kIsMissingTypesEncoding);
      continue;
    } else if (dex_pc_data.is_megamorphic) {
      DCHECK_EQ(classes.size(), 0u);
      AddUintToBuffer(buffer, kIsMegamorphicEncoding);
      continue;
    }

    DCHECK_LT(classes.size(), InlineCache::kIndividualCacheSize);
    DCHECK_NE(classes.size(), 0u) << "InlineCache contains a dex_pc with 0 classes";

    SafeMap<uint8_t, std::vector<dex::TypeIndex>> dex_to_classes_map;
    // Group the classes by dex. We expect that most of the classes will come from
    // the same dex, so this will be more efficient than encoding the dex index
    // for each class reference.
    GroupClassesByDex(classes, &dex_to_classes_map);
    // Add the dex map size.
    AddUintToBuffer(buffer, static_cast<uint8_t>(dex_to_classes_map.size()));
    for (const auto& dex_it : dex_to_classes_map) {
      uint8_t dex_profile_index = dex_it.first;
      const std::vector<dex::TypeIndex>& dex_classes = dex_it.second;
      // Add the dex profile index.
      AddUintToBuffer(buffer, dex_profile_index);
      // Add the the number of classes for each dex profile index.
      AddUintToBuffer(buffer, static_cast<uint8_t>(dex_classes.size()));
      for (size_t i = 0; i < dex_classes.size(); i++) {
        // Add the type index of the classes.
        AddUintToBuffer(buffer, dex_classes[i].index_);
      }
    }
  }
}

uint32_t ProfileCompilationInfo::GetMethodsRegionSize(const DexFileData& dex_data) {
  // ((uint16_t)method index + (uint16_t)inline cache size) * number of methods
  uint32_t size = 2 * sizeof(uint16_t) * dex_data.method_map.size();
  for (const auto& method_it : dex_data.method_map) {
    const InlineCacheMap& inline_cache = method_it.second;
    size += sizeof(uint16_t) * inline_cache.size();  // dex_pc
    for (const auto& inline_cache_it : inline_cache) {
      const ClassSet& classes = inline_cache_it.second.classes;
      SafeMap<uint8_t, std::vector<dex::TypeIndex>> dex_to_classes_map;
      GroupClassesByDex(classes, &dex_to_classes_map);
      size += sizeof(uint8_t);  // dex_to_classes_map size
      for (const auto& dex_it : dex_to_classes_map) {
        size += sizeof(uint8_t);  // dex profile index
        size += sizeof(uint8_t);  // number of classes
        const std::vector<dex::TypeIndex>& dex_classes = dex_it.second;
        size += sizeof(uint16_t) * dex_classes.size();  // the actual classes
      }
    }
  }
  return size;
}

void ProfileCompilationInfo::GroupClassesByDex(
    const ClassSet& classes,
    /*out*/SafeMap<uint8_t, std::vector<dex::TypeIndex>>* dex_to_classes_map) {
  for (const auto& classes_it : classes) {
    auto dex_it = dex_to_classes_map->FindOrAdd(classes_it.dex_profile_index);
    dex_it->second.push_back(classes_it.type_index);
  }
}

ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData(
    const std::string& profile_key,
    uint32_t checksum,
    uint32_t num_method_ids) {
  const auto profile_index_it = profile_key_map_.FindOrAdd(profile_key, profile_key_map_.size());
  if (profile_key_map_.size() > std::numeric_limits<uint8_t>::max()) {
    // Allow only 255 dex files to be profiled. This allows us to save bytes
    // when encoding. The number is well above what we expect for normal applications.
    if (kIsDebugBuild) {
      LOG(ERROR) << "Exceeded the maximum number of dex files (255). Something went wrong";
    }
    profile_key_map_.erase(profile_key);
    return nullptr;
  }

  uint8_t profile_index = profile_index_it->second;
  if (info_.size() <= profile_index) {
    // This is a new addition. Add it to the info_ array.
    DexFileData* dex_file_data = new (&arena_) DexFileData(
        &arena_,
        profile_key,
        checksum,
        profile_index,
        num_method_ids);
    info_.push_back(dex_file_data);
  }
  DexFileData* result = info_[profile_index];
  // DCHECK that profile info map key is consistent with the one stored in the dex file data.
  // This should always be the case since since the cache map is managed by ProfileCompilationInfo.
  DCHECK_EQ(profile_key, result->profile_key);
  DCHECK_EQ(profile_index, result->profile_index);
  DCHECK_EQ(num_method_ids, result->num_method_ids);

  // Check that the checksum matches.
  // This may different if for example the dex file was updated and we had a record of the old one.
  if (result->checksum != checksum) {
    LOG(WARNING) << "Checksum mismatch for dex " << profile_key;
    return nullptr;
  }
  return result;
}

const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData(
      const std::string& profile_key,
      uint32_t checksum,
      bool verify_checksum) const {
  const auto profile_index_it = profile_key_map_.find(profile_key);
  if (profile_index_it == profile_key_map_.end()) {
    return nullptr;
  }

  uint8_t profile_index = profile_index_it->second;
  const DexFileData* result = info_[profile_index];
  if (verify_checksum && !ChecksumMatch(result->checksum, checksum)) {
    return nullptr;
  }
  DCHECK_EQ(profile_key, result->profile_key);
  DCHECK_EQ(profile_index, result->profile_index);
  return result;
}

bool ProfileCompilationInfo::AddResolvedClasses(const DexCacheResolvedClasses& classes) {
  const std::string dex_location = GetProfileDexFileKey(classes.GetDexLocation());
  const uint32_t checksum = classes.GetLocationChecksum();
  DexFileData* const data = GetOrAddDexFileData(dex_location, checksum, classes.NumMethodIds());
  if (data == nullptr) {
    return false;
  }
  data->class_set.insert(classes.GetClasses().begin(), classes.GetClasses().end());
  return true;
}

bool ProfileCompilationInfo::AddMethod(const std::string& dex_location,
                                       uint32_t dex_checksum,
                                       uint16_t method_index,
                                       uint32_t num_method_ids,
                                       const OfflineProfileMethodInfo& pmi) {
  DexFileData* const data = GetOrAddDexFileData(GetProfileDexFileKey(dex_location),
                                                dex_checksum,
                                                num_method_ids);
  if (data == nullptr) {  // checksum mismatch
    return false;
  }
  // Add the method.
  InlineCacheMap* inline_cache = data->FindOrAddMethod(method_index);

  if (pmi.inline_caches == nullptr) {
    // If we don't have inline caches return success right away.
    return true;
  }
  for (const auto& pmi_inline_cache_it : *pmi.inline_caches) {
    uint16_t pmi_ic_dex_pc = pmi_inline_cache_it.first;
    const DexPcData& pmi_ic_dex_pc_data = pmi_inline_cache_it.second;
    DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, pmi_ic_dex_pc);
    if (dex_pc_data->is_missing_types || dex_pc_data->is_megamorphic) {
      // We are already megamorphic or we are missing types; no point in going forward.
      continue;
    }

    if (pmi_ic_dex_pc_data.is_missing_types) {
      dex_pc_data->SetIsMissingTypes();
      continue;
    }
    if (pmi_ic_dex_pc_data.is_megamorphic) {
      dex_pc_data->SetIsMegamorphic();
      continue;
    }

    for (const ClassReference& class_ref : pmi_ic_dex_pc_data.classes) {
      const DexReference& dex_ref = pmi.dex_references[class_ref.dex_profile_index];
      DexFileData* class_dex_data = GetOrAddDexFileData(
          GetProfileDexFileKey(dex_ref.dex_location),
          dex_ref.dex_checksum,
          dex_ref.num_method_ids);
      if (class_dex_data == nullptr) {  // checksum mismatch
        return false;
      }
      dex_pc_data->AddClass(class_dex_data->profile_index, class_ref.type_index);
    }
  }
  return true;
}

bool ProfileCompilationInfo::AddMethod(const ProfileMethodInfo& pmi) {
  DexFileData* const data = GetOrAddDexFileData(pmi.ref.dex_file);
  if (data == nullptr) {  // checksum mismatch
    return false;
  }
  InlineCacheMap* inline_cache = data->FindOrAddMethod(pmi.ref.dex_method_index);

  for (const ProfileMethodInfo::ProfileInlineCache& cache : pmi.inline_caches) {
    if (cache.is_missing_types) {
      FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMissingTypes();
      continue;
    }
    for (const TypeReference& class_ref : cache.classes) {
      DexFileData* class_dex_data = GetOrAddDexFileData(class_ref.dex_file);
      if (class_dex_data == nullptr) {  // checksum mismatch
        return false;
      }
      DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, cache.dex_pc);
      if (dex_pc_data->is_missing_types) {
        // Don't bother adding classes if we are missing types.
        break;
      }
      dex_pc_data->AddClass(class_dex_data->profile_index, class_ref.type_index);
    }
  }
  return true;
}

bool ProfileCompilationInfo::AddClassIndex(const std::string& dex_location,
                                           uint32_t checksum,
                                           dex::TypeIndex type_idx,
                                           uint32_t num_method_ids) {
  DexFileData* const data = GetOrAddDexFileData(dex_location, checksum, num_method_ids);
  if (data == nullptr) {
    return false;
  }
  data->class_set.insert(type_idx);
  return true;
}

#define READ_UINT(type, buffer, dest, error)            \
  do {                                                  \
    if (!(buffer).ReadUintAndAdvance<type>(&(dest))) {  \
      *(error) = "Could not read "#dest;                \
      return false;                                     \
    }                                                   \
  }                                                     \
  while (false)

bool ProfileCompilationInfo::ReadInlineCache(SafeBuffer& buffer,
                                             uint8_t number_of_dex_files,
                                             /*out*/ InlineCacheMap* inline_cache,
                                             /*out*/ std::string* error) {
  uint16_t inline_cache_size;
  READ_UINT(uint16_t, buffer, inline_cache_size, error);
  for (; inline_cache_size > 0; inline_cache_size--) {
    uint16_t dex_pc;
    uint8_t dex_to_classes_map_size;
    READ_UINT(uint16_t, buffer, dex_pc, error);
    READ_UINT(uint8_t, buffer, dex_to_classes_map_size, error);
    DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, dex_pc);
    if (dex_to_classes_map_size == kIsMissingTypesEncoding) {
      dex_pc_data->SetIsMissingTypes();
      continue;
    }
    if (dex_to_classes_map_size == kIsMegamorphicEncoding) {
      dex_pc_data->SetIsMegamorphic();
      continue;
    }
    for (; dex_to_classes_map_size > 0; dex_to_classes_map_size--) {
      uint8_t dex_profile_index;
      uint8_t dex_classes_size;
      READ_UINT(uint8_t, buffer, dex_profile_index, error);
      READ_UINT(uint8_t, buffer, dex_classes_size, error);
      if (dex_profile_index >= number_of_dex_files) {
        *error = "dex_profile_index out of bounds ";
        *error += std::to_string(dex_profile_index) + " " + std::to_string(number_of_dex_files);
        return false;
      }
      for (; dex_classes_size > 0; dex_classes_size--) {
        uint16_t type_index;
        READ_UINT(uint16_t, buffer, type_index, error);
        dex_pc_data->AddClass(dex_profile_index, dex::TypeIndex(type_index));
      }
    }
  }
  return true;
}

bool ProfileCompilationInfo::ReadMethods(SafeBuffer& buffer,
                                         uint8_t number_of_dex_files,
                                         const ProfileLineHeader& line_header,
                                         /*out*/std::string* error) {
  uint32_t unread_bytes_before_operation = buffer.CountUnreadBytes();
  if (unread_bytes_before_operation < line_header.method_region_size_bytes) {
    *error += "Profile EOF reached prematurely for ReadMethod";
    return kProfileLoadBadData;
  }
  size_t expected_unread_bytes_after_operation = buffer.CountUnreadBytes()
      - line_header.method_region_size_bytes;
  uint16_t last_method_index = 0;
  while (buffer.CountUnreadBytes() > expected_unread_bytes_after_operation) {
    DexFileData* const data = GetOrAddDexFileData(line_header.dex_location,
                                                  line_header.checksum,
                                                  line_header.num_method_ids);
    uint16_t diff_with_last_method_index;
    READ_UINT(uint16_t, buffer, diff_with_last_method_index, error);
    uint16_t method_index = last_method_index + diff_with_last_method_index;
    last_method_index = method_index;
    InlineCacheMap* inline_cache = data->FindOrAddMethod(method_index);
    if (!ReadInlineCache(buffer, number_of_dex_files, inline_cache, error)) {
      return false;
    }
  }
  uint32_t total_bytes_read = unread_bytes_before_operation - buffer.CountUnreadBytes();
  if (total_bytes_read != line_header.method_region_size_bytes) {
    *error += "Profile data inconsistent for ReadMethods";
    return false;
  }
  return true;
}

bool ProfileCompilationInfo::ReadClasses(SafeBuffer& buffer,
                                         const ProfileLineHeader& line_header,
                                         /*out*/std::string* error) {
  size_t unread_bytes_before_op = buffer.CountUnreadBytes();
  if (unread_bytes_before_op < line_header.class_set_size) {
    *error += "Profile EOF reached prematurely for ReadClasses";
    return kProfileLoadBadData;
  }

  uint16_t last_class_index = 0;
  for (uint16_t i = 0; i < line_header.class_set_size; i++) {
    uint16_t diff_with_last_class_index;
    READ_UINT(uint16_t, buffer, diff_with_last_class_index, error);
    uint16_t type_index = last_class_index + diff_with_last_class_index;
    last_class_index = type_index;
    if (!AddClassIndex(line_header.dex_location,
                       line_header.checksum,
                       dex::TypeIndex(type_index),
                       line_header.num_method_ids)) {
      return false;
    }
  }
  size_t total_bytes_read = unread_bytes_before_op - buffer.CountUnreadBytes();
  uint32_t expected_bytes_read = line_header.class_set_size * sizeof(uint16_t);
  if (total_bytes_read != expected_bytes_read) {
    *error += "Profile data inconsistent for ReadClasses";
    return false;
  }
  return true;
}

// Tests for EOF by trying to read 1 byte from the descriptor.
// Returns:
//   0 if the descriptor is at the EOF,
//  -1 if there was an IO error
//   1 if the descriptor has more content to read
static int testEOF(int fd) {
  uint8_t buffer[1];
  return TEMP_FAILURE_RETRY(read(fd, buffer, 1));
}

// Reads an uint value previously written with AddUintToBuffer.
template <typename T>
bool ProfileCompilationInfo::SafeBuffer::ReadUintAndAdvance(/*out*/T* value) {
  static_assert(std::is_unsigned<T>::value, "Type is not unsigned");
  if (ptr_current_ + sizeof(T) > ptr_end_) {
    return false;
  }
  *value = 0;
  for (size_t i = 0; i < sizeof(T); i++) {
    *value += ptr_current_[i] << (i * kBitsPerByte);
  }
  ptr_current_ += sizeof(T);
  return true;
}

bool ProfileCompilationInfo::SafeBuffer::CompareAndAdvance(const uint8_t* data, size_t data_size) {
  if (ptr_current_ + data_size > ptr_end_) {
    return false;
  }
  if (memcmp(ptr_current_, data, data_size) == 0) {
    ptr_current_ += data_size;
    return true;
  }
  return false;
}

ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::SafeBuffer::FillFromFd(
      int fd,
      const std::string& source,
      /*out*/std::string* error) {
  size_t byte_count = (ptr_end_ - ptr_current_) * sizeof(*ptr_current_);
  uint8_t* buffer = ptr_current_;
  while (byte_count > 0) {
    int bytes_read = TEMP_FAILURE_RETRY(read(fd, buffer, byte_count));
    if (bytes_read == 0) {
      *error += "Profile EOF reached prematurely for " + source;
      return kProfileLoadBadData;
    } else if (bytes_read < 0) {
      *error += "Profile IO error for " + source + strerror(errno);
      return kProfileLoadIOError;
    }
    byte_count -= bytes_read;
    buffer += bytes_read;
  }
  return kProfileLoadSuccess;
}

size_t ProfileCompilationInfo::SafeBuffer::CountUnreadBytes() {
  return (ptr_end_ - ptr_current_) * sizeof(*ptr_current_);
}

const uint8_t* ProfileCompilationInfo::SafeBuffer::GetCurrentPtr() {
  return ptr_current_;
}

void ProfileCompilationInfo::SafeBuffer::Advance(size_t data_size) {
  ptr_current_ += data_size;
}

ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileHeader(
      int fd,
      /*out*/uint8_t* number_of_dex_files,
      /*out*/uint32_t* uncompressed_data_size,
      /*out*/uint32_t* compressed_data_size,
      /*out*/std::string* error) {
  // Read magic and version
  const size_t kMagicVersionSize =
    sizeof(kProfileMagic) +
    sizeof(kProfileVersion) +
    sizeof(uint8_t) +  // number of dex files
    sizeof(uint32_t) +  // size of uncompressed profile data
    sizeof(uint32_t);  // size of compressed profile data

  SafeBuffer safe_buffer(kMagicVersionSize);

  ProfileLoadSatus status = safe_buffer.FillFromFd(fd, "ReadProfileHeader", error);
  if (status != kProfileLoadSuccess) {
    return status;
  }

  if (!safe_buffer.CompareAndAdvance(kProfileMagic, sizeof(kProfileMagic))) {
    *error = "Profile missing magic";
    return kProfileLoadVersionMismatch;
  }
  if (!safe_buffer.CompareAndAdvance(kProfileVersion, sizeof(kProfileVersion))) {
    *error = "Profile version mismatch";
    return kProfileLoadVersionMismatch;
  }
  if (!safe_buffer.ReadUintAndAdvance<uint8_t>(number_of_dex_files)) {
    *error = "Cannot read the number of dex files";
    return kProfileLoadBadData;
  }
  if (!safe_buffer.ReadUintAndAdvance<uint32_t>(uncompressed_data_size)) {
    *error = "Cannot read the size of uncompressed data";
    return kProfileLoadBadData;
  }
  if (!safe_buffer.ReadUintAndAdvance<uint32_t>(compressed_data_size)) {
    *error = "Cannot read the size of compressed data";
    return kProfileLoadBadData;
  }
  return kProfileLoadSuccess;
}

bool ProfileCompilationInfo::ReadProfileLineHeaderElements(SafeBuffer& buffer,
                                                           /*out*/uint16_t* dex_location_size,
                                                           /*out*/ProfileLineHeader* line_header,
                                                           /*out*/std::string* error) {
  READ_UINT(uint16_t, buffer, *dex_location_size, error);
  READ_UINT(uint16_t, buffer, line_header->class_set_size, error);
  READ_UINT(uint32_t, buffer, line_header->method_region_size_bytes, error);
  READ_UINT(uint32_t, buffer, line_header->checksum, error);
  READ_UINT(uint32_t, buffer, line_header->num_method_ids, error);
  return true;
}

ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileLineHeader(
    SafeBuffer& buffer,
    /*out*/ProfileLineHeader* line_header,
    /*out*/std::string* error) {
  if (buffer.CountUnreadBytes() < kLineHeaderSize) {
    *error += "Profile EOF reached prematurely for ReadProfileLineHeader";
    return kProfileLoadBadData;
  }

  uint16_t dex_location_size;
  if (!ReadProfileLineHeaderElements(buffer, &dex_location_size, line_header, error)) {
    return kProfileLoadBadData;
  }

  if (dex_location_size == 0 || dex_location_size > kMaxDexFileKeyLength) {
    *error = "DexFileKey has an invalid size: " +
        std::to_string(static_cast<uint32_t>(dex_location_size));
    return kProfileLoadBadData;
  }

  if (buffer.CountUnreadBytes() < dex_location_size) {
    *error += "Profile EOF reached prematurely for ReadProfileHeaderDexLocation";
    return kProfileLoadBadData;
  }
  const uint8_t* base_ptr = buffer.GetCurrentPtr();
  line_header->dex_location.assign(
      reinterpret_cast<const char*>(base_ptr), dex_location_size);
  buffer.Advance(dex_location_size);
  return kProfileLoadSuccess;
}

ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::ReadProfileLine(
      SafeBuffer& buffer,
      uint8_t number_of_dex_files,
      const ProfileLineHeader& line_header,
      /*out*/std::string* error) {
  DexFileData* data = GetOrAddDexFileData(line_header.dex_location,
                                          line_header.checksum,
                                          line_header.num_method_ids);
  if (data == nullptr) {
    *error = "Error when reading profile file line header: checksum mismatch for "
        + line_header.dex_location;
    return kProfileLoadBadData;
  }

  if (!ReadMethods(buffer, number_of_dex_files, line_header, error)) {
    return kProfileLoadBadData;
  }

  if (!ReadClasses(buffer, line_header, error)) {
    return kProfileLoadBadData;
  }

  const size_t bytes = data->bitmap_storage.size();
  if (buffer.CountUnreadBytes() < bytes) {
    *error += "Profile EOF reached prematurely for ReadProfileHeaderDexLocation";
    return kProfileLoadBadData;
  }
  const uint8_t* base_ptr = buffer.GetCurrentPtr();
  std::copy_n(base_ptr, bytes, &data->bitmap_storage[0]);
  buffer.Advance(bytes);
  // Read method bitmap.
  return kProfileLoadSuccess;
}

// TODO(calin): Fix this API. ProfileCompilationInfo::Load should be static and
// return a unique pointer to a ProfileCompilationInfo upon success.
bool ProfileCompilationInfo::Load(int fd) {
  std::string error;
  ProfileLoadSatus status = LoadInternal(fd, &error);

  if (status == kProfileLoadSuccess) {
    return true;
  } else {
    LOG(WARNING) << "Error when reading profile: " << error;
    return false;
  }
}

// TODO(calin): fail fast if the dex checksums don't match.
ProfileCompilationInfo::ProfileLoadSatus ProfileCompilationInfo::LoadInternal(
      int fd, std::string* error) {
  ScopedTrace trace(__PRETTY_FUNCTION__);
  DCHECK_GE(fd, 0);

  if (!IsEmpty()) {
    return kProfileLoadWouldOverwiteData;
  }

  struct stat stat_buffer;
  if (fstat(fd, &stat_buffer) != 0) {
    return kProfileLoadIOError;
  }
  // We allow empty profile files.
  // Profiles may be created by ActivityManager or installd before we manage to
  // process them in the runtime or profman.
  if (stat_buffer.st_size == 0) {
    return kProfileLoadSuccess;
  }
  // Read profile header: magic + version + number_of_dex_files.
  uint8_t number_of_dex_files;
  uint32_t uncompressed_data_size;
  uint32_t compressed_data_size;
  ProfileLoadSatus status = ReadProfileHeader(fd,
                                              &number_of_dex_files,
                                              &uncompressed_data_size,
                                              &compressed_data_size,
                                              error);

  if (status != kProfileLoadSuccess) {
    return status;
  }
  // Allow large profiles for non target builds for the case where we are merging many profiles
  // to generate a boot image profile.
  if (kIsTargetBuild && uncompressed_data_size > kProfileSizeErrorThresholdInBytes) {
    LOG(ERROR) << "Profile data size exceeds "
               << std::to_string(kProfileSizeErrorThresholdInBytes)
               << " bytes";
    return kProfileLoadBadData;
  }
  if (uncompressed_data_size > kProfileSizeWarningThresholdInBytes) {
    LOG(WARNING) << "Profile data size exceeds "
                 << std::to_string(kProfileSizeWarningThresholdInBytes)
                 << " bytes";
  }

  std::unique_ptr<uint8_t[]> compressed_data(new uint8_t[compressed_data_size]);
  bool bytes_read_success =
      android::base::ReadFully(fd, compressed_data.get(), compressed_data_size);

  if (testEOF(fd) != 0) {
    *error += "Unexpected data in the profile file.";
    return kProfileLoadBadData;
  }

  if (!bytes_read_success) {
    *error += "Unable to read compressed profile data";
    return kProfileLoadBadData;
  }

  SafeBuffer uncompressed_data(uncompressed_data_size);

  int ret = InflateBuffer(compressed_data.get(),
                          compressed_data_size,
                          uncompressed_data_size,
                          uncompressed_data.Get());

  if (ret != Z_STREAM_END) {
    *error += "Error reading uncompressed profile data";
    return kProfileLoadBadData;
  }

  for (uint8_t k = 0; k < number_of_dex_files; k++) {
    ProfileLineHeader line_header;

    // First, read the line header to get the amount of data we need to read.
    status = ReadProfileLineHeader(uncompressed_data, &line_header, error);
    if (status != kProfileLoadSuccess) {
      return status;
    }

    // Now read the actual profile line.
    status = ReadProfileLine(uncompressed_data, number_of_dex_files, line_header, error);
    if (status != kProfileLoadSuccess) {
      return status;
    }
  }

  // Check that we read everything and that profiles don't contain junk data.
  if (uncompressed_data.CountUnreadBytes() > 0) {
    *error = "Unexpected content in the profile file";
    return kProfileLoadBadData;
  } else {
    return kProfileLoadSuccess;
  }
}

std::unique_ptr<uint8_t[]> ProfileCompilationInfo::DeflateBuffer(const uint8_t* in_buffer,
                                                                 uint32_t in_size,
                                                                 uint32_t* compressed_data_size) {
  z_stream strm;
  strm.zalloc = Z_NULL;
  strm.zfree = Z_NULL;
  strm.opaque = Z_NULL;
  int ret = deflateInit(&strm, 1);
  if (ret != Z_OK) {
    return nullptr;
  }

  uint32_t out_size = deflateBound(&strm, in_size);

  std::unique_ptr<uint8_t[]> compressed_buffer(new uint8_t[out_size]);
  strm.avail_in = in_size;
  strm.next_in = const_cast<uint8_t*>(in_buffer);
  strm.avail_out = out_size;
  strm.next_out = &compressed_buffer[0];
  ret = deflate(&strm, Z_FINISH);
  if (ret == Z_STREAM_ERROR) {
    return nullptr;
  }
  *compressed_data_size = out_size - strm.avail_out;
  deflateEnd(&strm);
  return compressed_buffer;
}

int ProfileCompilationInfo::InflateBuffer(const uint8_t* in_buffer,
                                          uint32_t in_size,
                                          uint32_t expected_uncompressed_data_size,
                                          uint8_t* out_buffer) {
  z_stream strm;

  /* allocate inflate state */
  strm.zalloc = Z_NULL;
  strm.zfree = Z_NULL;
  strm.opaque = Z_NULL;
  strm.avail_in = in_size;
  strm.next_in = const_cast<uint8_t*>(in_buffer);
  strm.avail_out = expected_uncompressed_data_size;
  strm.next_out = out_buffer;

  int ret;
  inflateInit(&strm);
  ret = inflate(&strm, Z_NO_FLUSH);

  if (strm.avail_in != 0 || strm.avail_out != 0) {
    return Z_DATA_ERROR;
  }
  inflateEnd(&strm);
  return ret;
}

bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other,
                                       bool merge_classes) {
  // First verify that all checksums match. This will avoid adding garbage to
  // the current profile info.
  // Note that the number of elements should be very small, so this should not
  // be a performance issue.
  for (const DexFileData* other_dex_data : other.info_) {
    // verify_checksum is false because we want to differentiate between a missing dex data and
    // a mismatched checksum.
    const DexFileData* dex_data = FindDexData(other_dex_data->profile_key,
                                              0u,
                                              /* verify_checksum */ false);
    if ((dex_data != nullptr) && (dex_data->checksum != other_dex_data->checksum)) {
      LOG(WARNING) << "Checksum mismatch for dex " << other_dex_data->profile_key;
      return false;
    }
  }
  // All checksums match. Import the data.

  // The other profile might have a different indexing of dex files.
  // That is because each dex files gets a 'dex_profile_index' on a first come first served basis.
  // That means that the order in with the methods are added to the profile matters for the
  // actual indices.
  // The reason we cannot rely on the actual multidex index is that a single profile may store
  // data from multiple splits. This means that a profile may contain a classes2.dex from split-A
  // and one from split-B.

  // First, build a mapping from other_dex_profile_index to this_dex_profile_index.
  // This will make sure that the ClassReferences  will point to the correct dex file.
  SafeMap<uint8_t, uint8_t> dex_profile_index_remap;
  for (const DexFileData* other_dex_data : other.info_) {
    const DexFileData* dex_data = GetOrAddDexFileData(other_dex_data->profile_key,
                                                      other_dex_data->checksum,
                                                      other_dex_data->num_method_ids);
    if (dex_data == nullptr) {
      return false;  // Could happen if we exceed the number of allowed dex files.
    }
    dex_profile_index_remap.Put(other_dex_data->profile_index, dex_data->profile_index);
  }

  // Merge the actual profile data.
  for (const DexFileData* other_dex_data : other.info_) {
    DexFileData* dex_data = const_cast<DexFileData*>(FindDexData(other_dex_data->profile_key,
                                                                 other_dex_data->checksum));
    DCHECK(dex_data != nullptr);

    // Merge the classes.
    if (merge_classes) {
      dex_data->class_set.insert(other_dex_data->class_set.begin(),
                                 other_dex_data->class_set.end());
    }

    // Merge the methods and the inline caches.
    for (const auto& other_method_it : other_dex_data->method_map) {
      uint16_t other_method_index = other_method_it.first;
      InlineCacheMap* inline_cache = dex_data->FindOrAddMethod(other_method_index);
      const auto& other_inline_cache = other_method_it.second;
      for (const auto& other_ic_it : other_inline_cache) {
        uint16_t other_dex_pc = other_ic_it.first;
        const ClassSet& other_class_set = other_ic_it.second.classes;
        DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, other_dex_pc);
        if (other_ic_it.second.is_missing_types) {
          dex_pc_data->SetIsMissingTypes();
        } else if (other_ic_it.second.is_megamorphic) {
          dex_pc_data->SetIsMegamorphic();
        } else {
          for (const auto& class_it : other_class_set) {
            dex_pc_data->AddClass(dex_profile_index_remap.Get(
                class_it.dex_profile_index), class_it.type_index);
          }
        }
      }
    }

    // Merge the method bitmaps.
    dex_data->MergeBitmap(*other_dex_data);
  }
  return true;
}

const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData(
    const DexFile* dex_file) const {
  return FindDexData(GetProfileDexFileKey(dex_file->GetLocation()),
                     dex_file->GetLocationChecksum());
}

ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::GetMethodHotness(
    const MethodReference& method_ref) const {
  const DexFileData* dex_data = FindDexData(method_ref.dex_file);
  return dex_data != nullptr
      ? dex_data->GetHotnessInfo(method_ref.dex_method_index)
      : MethodHotness();
}

bool ProfileCompilationInfo::AddMethodHotness(const MethodReference& method_ref,
                                              const MethodHotness& hotness) {
  DexFileData* dex_data = GetOrAddDexFileData(method_ref.dex_file);
  if (dex_data != nullptr) {
    // TODO: Add inline caches.
    dex_data->AddMethod(static_cast<MethodHotness::Flag>(hotness.GetFlags()),
                        method_ref.dex_method_index);
    return true;
  }
  return false;
}

ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::GetMethodHotness(
    const std::string& dex_location,
    uint32_t dex_checksum,
    uint16_t dex_method_index) const {
  const DexFileData* dex_data = FindDexData(GetProfileDexFileKey(dex_location), dex_checksum);
  return dex_data != nullptr ? dex_data->GetHotnessInfo(dex_method_index) : MethodHotness();
}


std::unique_ptr<ProfileCompilationInfo::OfflineProfileMethodInfo> ProfileCompilationInfo::GetMethod(
    const std::string& dex_location,
    uint32_t dex_checksum,
    uint16_t dex_method_index) const {
  MethodHotness hotness(GetMethodHotness(dex_location, dex_checksum, dex_method_index));
  if (!hotness.IsHot()) {
    return nullptr;
  }
  const InlineCacheMap* inline_caches = hotness.GetInlineCacheMap();
  DCHECK(inline_caches != nullptr);
  std::unique_ptr<OfflineProfileMethodInfo> pmi(new OfflineProfileMethodInfo(inline_caches));

  pmi->dex_references.resize(info_.size());
  for (const DexFileData* dex_data : info_) {
    pmi->dex_references[dex_data->profile_index].dex_location = dex_data->profile_key;
    pmi->dex_references[dex_data->profile_index].dex_checksum = dex_data->checksum;
    pmi->dex_references[dex_data->profile_index].num_method_ids = dex_data->num_method_ids;
  }

  return pmi;
}


bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file, dex::TypeIndex type_idx) const {
  const DexFileData* dex_data = FindDexData(&dex_file);
  if (dex_data != nullptr) {
    const ArenaSet<dex::TypeIndex>& classes = dex_data->class_set;
    return classes.find(type_idx) != classes.end();
  }
  return false;
}

uint32_t ProfileCompilationInfo::GetNumberOfMethods() const {
  uint32_t total = 0;
  for (const DexFileData* dex_data : info_) {
    total += dex_data->method_map.size();
  }
  return total;
}

uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const {
  uint32_t total = 0;
  for (const DexFileData* dex_data : info_) {
    total += dex_data->class_set.size();
  }
  return total;
}

// Produce a non-owning vector from a vector.
template<typename T>
const std::vector<T*>* MakeNonOwningVector(const std::vector<std::unique_ptr<T>>* owning_vector) {
  auto non_owning_vector = new std::vector<T*>();
  for (auto& element : *owning_vector) {
    non_owning_vector->push_back(element.get());
  }
  return non_owning_vector;
}

std::string ProfileCompilationInfo::DumpInfo(
    const std::vector<std::unique_ptr<const DexFile>>* dex_files,
    bool print_full_dex_location) const {
  std::unique_ptr<const std::vector<const DexFile*>> non_owning_dex_files(
      MakeNonOwningVector(dex_files));
  return DumpInfo(non_owning_dex_files.get(), print_full_dex_location);
}

std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>* dex_files,
                                             bool print_full_dex_location) const {
  std::ostringstream os;
  if (info_.empty()) {
    return "ProfileInfo: empty";
  }

  os << "ProfileInfo:";

  const std::string kFirstDexFileKeySubstitute = "!classes.dex";

  for (const DexFileData* dex_data : info_) {
    os << "\n";
    if (print_full_dex_location) {
      os << dex_data->profile_key;
    } else {
      // Replace the (empty) multidex suffix of the first key with a substitute for easier reading.
      std::string multidex_suffix = DexFile::GetMultiDexSuffix(dex_data->profile_key);
      os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix);
    }
    os << " [index=" << static_cast<uint32_t>(dex_data->profile_index) << "]";
    const DexFile* dex_file = nullptr;
    if (dex_files != nullptr) {
      for (size_t i = 0; i < dex_files->size(); i++) {
        if (dex_data->profile_key == (*dex_files)[i]->GetLocation()) {
          dex_file = (*dex_files)[i];
        }
      }
    }
    os << "\n\thot methods: ";
    for (const auto& method_it : dex_data->method_map) {
      if (dex_file != nullptr) {
        os << "\n\t\t" << dex_file->PrettyMethod(method_it.first, true);
      } else {
        os << method_it.first;
      }

      os << "[";
      for (const auto& inline_cache_it : method_it.second) {
        os << "{" << std::hex << inline_cache_it.first << std::dec << ":";
        if (inline_cache_it.second.is_missing_types) {
          os << "MT";
        } else if (inline_cache_it.second.is_megamorphic) {
          os << "MM";
        } else {
          for (const ClassReference& class_ref : inline_cache_it.second.classes) {
            os << "(" << static_cast<uint32_t>(class_ref.dex_profile_index)
               << "," << class_ref.type_index.index_ << ")";
          }
        }
        os << "}";
      }
      os << "], ";
    }
    bool startup = true;
    while (true) {
      os << "\n\t" << (startup ? "startup methods: " : "post startup methods: ");
      for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
        MethodHotness hotness_info(dex_data->GetHotnessInfo(method_idx));
        if (startup ? hotness_info.IsStartup() : hotness_info.IsPostStartup()) {
          os << method_idx << ", ";
        }
      }
      if (startup == false) {
        break;
      }
      startup = false;
    }
    os << "\n\tclasses: ";
    for (const auto class_it : dex_data->class_set) {
      if (dex_file != nullptr) {
        os << "\n\t\t" << dex_file->PrettyType(class_it);
      } else {
        os << class_it.index_ << ",";
      }
    }
  }
  return os.str();
}

bool ProfileCompilationInfo::GetClassesAndMethods(
    const DexFile& dex_file,
    /*out*/std::set<dex::TypeIndex>* class_set,
    /*out*/std::set<uint16_t>* hot_method_set,
    /*out*/std::set<uint16_t>* startup_method_set,
    /*out*/std::set<uint16_t>* post_startup_method_method_set) const {
  std::set<std::string> ret;
  const DexFileData* dex_data = FindDexData(&dex_file);
  if (dex_data == nullptr) {
    return false;
  }
  for (const auto& it : dex_data->method_map) {
    hot_method_set->insert(it.first);
  }
  for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
    MethodHotness hotness = dex_data->GetHotnessInfo(method_idx);
    if (hotness.IsStartup()) {
      startup_method_set->insert(method_idx);
    }
    if (hotness.IsPostStartup()) {
      post_startup_method_method_set->insert(method_idx);
    }
  }
  for (const dex::TypeIndex& type_index : dex_data->class_set) {
    class_set->insert(type_index);
  }
  return true;
}

bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) {
  // No need to compare profile_key_map_. That's only a cache for fast search.
  // All the information is already in the info_ vector.
  if (info_.size() != other.info_.size()) {
    return false;
  }
  for (size_t i = 0; i < info_.size(); i++) {
    const DexFileData& dex_data = *info_[i];
    const DexFileData& other_dex_data = *other.info_[i];
    if (!(dex_data == other_dex_data)) {
      return false;
    }
  }
  return true;
}

std::set<DexCacheResolvedClasses> ProfileCompilationInfo::GetResolvedClasses(
    const std::vector<const DexFile*>& dex_files) const {
  std::unordered_map<std::string, const DexFile* > key_to_dex_file;
  for (const DexFile* dex_file : dex_files) {
    key_to_dex_file.emplace(GetProfileDexFileKey(dex_file->GetLocation()), dex_file);
  }
  std::set<DexCacheResolvedClasses> ret;
  for (const DexFileData* dex_data : info_) {
    const auto it = key_to_dex_file.find(dex_data->profile_key);
    if (it != key_to_dex_file.end()) {
      const DexFile* dex_file = it->second;
      const std::string& dex_location = dex_file->GetLocation();
      if (dex_data->checksum != it->second->GetLocationChecksum()) {
        LOG(ERROR) << "Dex checksum mismatch when getting resolved classes from profile for "
            << "location " << dex_location << " (checksum=" << dex_file->GetLocationChecksum()
            << ", profile checksum=" << dex_data->checksum;
        return std::set<DexCacheResolvedClasses>();
      }
      DexCacheResolvedClasses classes(dex_location,
                                      dex_location,
                                      dex_data->checksum,
                                      dex_data->num_method_ids);
      classes.AddClasses(dex_data->class_set.begin(), dex_data->class_set.end());
      ret.insert(classes);
    }
  }
  return ret;
}

// Naive implementation to generate a random profile file suitable for testing.
bool ProfileCompilationInfo::GenerateTestProfile(int fd,
                                                 uint16_t number_of_dex_files,
                                                 uint16_t method_ratio,
                                                 uint16_t class_ratio,
                                                 uint32_t random_seed) {
  const std::string base_dex_location = "base.apk";
  ProfileCompilationInfo info;
  // The limits are defined by the dex specification.
  const uint16_t max_method = std::numeric_limits<uint16_t>::max();
  const uint16_t max_classes = std::numeric_limits<uint16_t>::max();
  uint16_t number_of_methods = max_method * method_ratio / 100;
  uint16_t number_of_classes = max_classes * class_ratio / 100;

  std::srand(random_seed);

  // Make sure we generate more samples with a low index value.
  // This makes it more likely to hit valid method/class indices in small apps.
  const uint16_t kFavorFirstN = 10000;
  const uint16_t kFavorSplit = 2;

  for (uint16_t i = 0; i < number_of_dex_files; i++) {
    std::string dex_location = DexFile::GetMultiDexLocation(i, base_dex_location.c_str());
    std::string profile_key = GetProfileDexFileKey(dex_location);

    for (uint16_t m = 0; m < number_of_methods; m++) {
      uint16_t method_idx = rand() % max_method;
      if (m < (number_of_methods / kFavorSplit)) {
        method_idx %= kFavorFirstN;
      }
      info.AddMethodIndex(MethodHotness::kFlagHot,
                          profile_key,
                          /*method_idx*/ 0,
                          method_idx,
                          max_method);
    }

    for (uint16_t c = 0; c < number_of_classes; c++) {
      uint16_t type_idx = rand() % max_classes;
      if (c < (number_of_classes / kFavorSplit)) {
        type_idx %= kFavorFirstN;
      }
      info.AddClassIndex(profile_key, 0, dex::TypeIndex(type_idx), max_method);
    }
  }
  return info.Save(fd);
}

// Naive implementation to generate a random profile file suitable for testing.
bool ProfileCompilationInfo::GenerateTestProfile(
    int fd,
    std::vector<std::unique_ptr<const DexFile>>& dex_files,
    uint32_t random_seed) {
  std::srand(random_seed);
  ProfileCompilationInfo info;
  for (std::unique_ptr<const DexFile>& dex_file : dex_files) {
    const std::string& location = dex_file->GetLocation();
    uint32_t checksum = dex_file->GetLocationChecksum();
    for (uint32_t i = 0; i < dex_file->NumClassDefs(); ++i) {
      // Randomly add a class from the dex file (with 50% chance).
      if (std::rand() % 2 != 0) {
        info.AddClassIndex(location,
                           checksum,
                           dex_file->GetClassDef(i).class_idx_,
                           dex_file->NumMethodIds());
      }
    }
    for (uint32_t i = 0; i < dex_file->NumMethodIds(); ++i) {
      // Randomly add a method from the dex file (with 50% chance).
      if (std::rand() % 2 != 0) {
        info.AddMethodIndex(MethodHotness::kFlagHot, MethodReference(dex_file.get(), i));
      }
    }
  }
  return info.Save(fd);
}

bool ProfileCompilationInfo::OfflineProfileMethodInfo::operator==(
      const OfflineProfileMethodInfo& other) const {
  if (inline_caches->size() != other.inline_caches->size()) {
    return false;
  }

  // We can't use a simple equality test because we need to match the dex files
  // of the inline caches which might have different profile indexes.
  for (const auto& inline_cache_it : *inline_caches) {
    uint16_t dex_pc = inline_cache_it.first;
    const DexPcData dex_pc_data = inline_cache_it.second;
    const auto& other_it = other.inline_caches->find(dex_pc);
    if (other_it == other.inline_caches->end()) {
      return false;
    }
    const DexPcData& other_dex_pc_data = other_it->second;
    if (dex_pc_data.is_megamorphic != other_dex_pc_data.is_megamorphic ||
        dex_pc_data.is_missing_types != other_dex_pc_data.is_missing_types) {
      return false;
    }
    for (const ClassReference& class_ref : dex_pc_data.classes) {
      bool found = false;
      for (const ClassReference& other_class_ref : other_dex_pc_data.classes) {
        CHECK_LE(class_ref.dex_profile_index, dex_references.size());
        CHECK_LE(other_class_ref.dex_profile_index, other.dex_references.size());
        const DexReference& dex_ref = dex_references[class_ref.dex_profile_index];
        const DexReference& other_dex_ref = other.dex_references[other_class_ref.dex_profile_index];
        if (class_ref.type_index == other_class_ref.type_index &&
            dex_ref == other_dex_ref) {
          found = true;
          break;
        }
      }
      if (!found) {
        return false;
      }
    }
  }
  return true;
}

bool ProfileCompilationInfo::IsEmpty() const {
  DCHECK_EQ(info_.empty(), profile_key_map_.empty());
  return info_.empty();
}

ProfileCompilationInfo::InlineCacheMap*
ProfileCompilationInfo::DexFileData::FindOrAddMethod(uint16_t method_index) {
  return &(method_map.FindOrAdd(
      method_index,
      InlineCacheMap(std::less<uint16_t>(), arena_->Adapter(kArenaAllocProfile)))->second);
}

// Mark a method as executed at least once.
void ProfileCompilationInfo::DexFileData::AddMethod(MethodHotness::Flag flags, size_t index) {
  if ((flags & MethodHotness::kFlagStartup) != 0) {
    method_bitmap.StoreBit(MethodBitIndex(/*startup*/ true, index), /*value*/ true);
  }
  if ((flags & MethodHotness::kFlagPostStartup) != 0) {
    method_bitmap.StoreBit(MethodBitIndex(/*startup*/ false, index), /*value*/ true);
  }
  if ((flags & MethodHotness::kFlagHot) != 0) {
    method_map.FindOrAdd(
        index,
        InlineCacheMap(std::less<uint16_t>(), arena_->Adapter(kArenaAllocProfile)));
  }
}

ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::DexFileData::GetHotnessInfo(
    uint32_t dex_method_index) const {
  MethodHotness ret;
  if (method_bitmap.LoadBit(MethodBitIndex(/*startup*/ true, dex_method_index))) {
    ret.AddFlag(MethodHotness::kFlagStartup);
  }
  if (method_bitmap.LoadBit(MethodBitIndex(/*startup*/ false, dex_method_index))) {
    ret.AddFlag(MethodHotness::kFlagPostStartup);
  }
  auto it = method_map.find(dex_method_index);
  if (it != method_map.end()) {
    ret.SetInlineCacheMap(&it->second);
    ret.AddFlag(MethodHotness::kFlagHot);
  }
  return ret;
}

ProfileCompilationInfo::DexPcData*
ProfileCompilationInfo::FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc) {
  return &(inline_cache->FindOrAdd(dex_pc, DexPcData(&arena_))->second);
}

std::unordered_set<std::string> ProfileCompilationInfo::GetClassDescriptors(
    const std::vector<const DexFile*>& dex_files) {
  std::unordered_set<std::string> ret;
  for (const DexFile* dex_file : dex_files) {
    const DexFileData* data = FindDexData(dex_file);
    if (data != nullptr) {
      for (dex::TypeIndex type_idx : data->class_set) {
        if (!dex_file->IsTypeIndexValid(type_idx)) {
          // Something went bad. The profile is probably corrupted. Abort and return an emtpy set.
          LOG(WARNING) << "Corrupted profile: invalid type index "
              << type_idx.index_ << " in dex " << dex_file->GetLocation();
          return std::unordered_set<std::string>();
        }
        const DexFile::TypeId& type_id = dex_file->GetTypeId(type_idx);
        ret.insert(dex_file->GetTypeDescriptor(type_id));
      }
    } else {
      VLOG(compiler) << "Failed to find profile data for " << dex_file->GetLocation();
    }
  }
  return ret;
}

}  // namespace art