summaryrefslogtreecommitdiffstats
path: root/runtime/gc/space/large_object_space_test.cc
blob: e17bad8a14129f98829b237c7bef51ff5503a7aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/*
 * Copyright (C) 2011 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "space_test.h"
#include "large_object_space.h"

namespace art {
namespace gc {
namespace space {

class LargeObjectSpaceTest : public SpaceTest {
 public:
  void LargeObjectTest();

  static constexpr size_t kNumThreads = 10;
  static constexpr size_t kNumIterations = 1000;
  void RaceTest();
};


void LargeObjectSpaceTest::LargeObjectTest() {
  size_t rand_seed = 0;
  for (size_t i = 0; i < 2; ++i) {
    LargeObjectSpace* los = nullptr;
    if (i == 0) {
      los = space::LargeObjectMapSpace::Create("large object space");
    } else {
      los = space::FreeListSpace::Create("large object space", nullptr, 128 * MB);
    }

    static const size_t num_allocations = 64;
    static const size_t max_allocation_size = 0x100000;
    std::vector<std::pair<mirror::Object*, size_t>> requests;

    for (size_t phase = 0; phase < 2; ++phase) {
      while (requests.size() < num_allocations) {
        size_t request_size = test_rand(&rand_seed) % max_allocation_size;
        size_t allocation_size = 0;
        mirror::Object* obj = los->Alloc(Thread::Current(), request_size, &allocation_size,
                                         nullptr);
        ASSERT_TRUE(obj != nullptr);
        ASSERT_EQ(allocation_size, los->AllocationSize(obj, nullptr));
        ASSERT_GE(allocation_size, request_size);
        // Fill in our magic value.
        uint8_t magic = (request_size & 0xFF) | 1;
        memset(obj, magic, request_size);
        requests.push_back(std::make_pair(obj, request_size));
      }

      // "Randomly" shuffle the requests.
      for (size_t k = 0; k < 10; ++k) {
        for (size_t j = 0; j < requests.size(); ++j) {
          std::swap(requests[j], requests[test_rand(&rand_seed) % requests.size()]);
        }
      }

      // Free 1 / 2 the allocations the first phase, and all the second phase.
      size_t limit = !phase ? requests.size() / 2 : 0;
      while (requests.size() > limit) {
        mirror::Object* obj = requests.back().first;
        size_t request_size = requests.back().second;
        requests.pop_back();
        uint8_t magic = (request_size & 0xFF) | 1;
        for (size_t k = 0; k < request_size; ++k) {
          ASSERT_EQ(reinterpret_cast<const uint8_t*>(obj)[k], magic);
        }
        ASSERT_GE(los->Free(Thread::Current(), obj), request_size);
      }
    }
    // Test that dump doesn't crash.
    los->Dump(LOG(INFO));

    size_t bytes_allocated = 0;
    // Checks that the coalescing works.
    mirror::Object* obj = los->Alloc(Thread::Current(), 100 * MB, &bytes_allocated, nullptr);
    EXPECT_TRUE(obj != nullptr);
    los->Free(Thread::Current(), obj);

    EXPECT_EQ(0U, los->GetBytesAllocated());
    EXPECT_EQ(0U, los->GetObjectsAllocated());
    delete los;
  }
}

class AllocRaceTask : public Task {
 public:
  AllocRaceTask(size_t id, size_t iterations, size_t size, LargeObjectSpace* los) :
    id_(id), iterations_(iterations), size_(size), los_(los) {}

  void Run(Thread* self) {
    for (size_t i = 0; i < iterations_ ; ++i) {
      size_t alloc_size;
      mirror::Object* ptr = los_->Alloc(self, size_, &alloc_size, nullptr);

      NanoSleep((id_ + 3) * 1000);  // (3+id) mu s

      los_->Free(self, ptr);
    }
  }

  virtual void Finalize() {
    delete this;
  }

 private:
  size_t id_;
  size_t iterations_;
  size_t size_;
  LargeObjectSpace* los_;
};

void LargeObjectSpaceTest::RaceTest() {
  for (size_t los_type = 0; los_type < 2; ++los_type) {
    LargeObjectSpace* los = nullptr;
    if (los_type == 0) {
      los = space::LargeObjectMapSpace::Create("large object space");
    } else {
      los = space::FreeListSpace::Create("large object space", nullptr, 128 * MB);
    }

    Thread* self = Thread::Current();
    ThreadPool thread_pool("Large object space test thread pool", kNumThreads);
    for (size_t i = 0; i < kNumThreads; ++i) {
      thread_pool.AddTask(self, new AllocRaceTask(i, kNumIterations, 16 * KB, los));
    }

    thread_pool.StartWorkers(self);

    thread_pool.Wait(self, true, false);

    delete los;
  }
}

TEST_F(LargeObjectSpaceTest, LargeObjectTest) {
  LargeObjectTest();
}

TEST_F(LargeObjectSpaceTest, RaceTest) {
  RaceTest();
}

}  // namespace space
}  // namespace gc
}  // namespace art