summaryrefslogtreecommitdiffstats
path: root/runtime/gc/reference_processor.cc
blob: 498013e5b9fb0e86e7f4748f5dbc6b6bcbc043fe (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "reference_processor.h"

#include "art_field-inl.h"
#include "base/mutex.h"
#include "base/time_utils.h"
#include "base/utils.h"
#include "class_root.h"
#include "collector/garbage_collector.h"
#include "jni/java_vm_ext.h"
#include "mirror/class-inl.h"
#include "mirror/object-inl.h"
#include "mirror/reference-inl.h"
#include "nativehelper/scoped_local_ref.h"
#include "object_callbacks.h"
#include "reflection.h"
#include "scoped_thread_state_change-inl.h"
#include "task_processor.h"
#include "thread_pool.h"
#include "well_known_classes.h"

namespace art {
namespace gc {

static constexpr bool kAsyncReferenceQueueAdd = false;

ReferenceProcessor::ReferenceProcessor()
    : collector_(nullptr),
      preserving_references_(false),
      condition_("reference processor condition", *Locks::reference_processor_lock_) ,
      soft_reference_queue_(Locks::reference_queue_soft_references_lock_),
      weak_reference_queue_(Locks::reference_queue_weak_references_lock_),
      finalizer_reference_queue_(Locks::reference_queue_finalizer_references_lock_),
      phantom_reference_queue_(Locks::reference_queue_phantom_references_lock_),
      cleared_references_(Locks::reference_queue_cleared_references_lock_) {
}

static inline MemberOffset GetSlowPathFlagOffset(ObjPtr<mirror::Class> reference_class)
    REQUIRES_SHARED(Locks::mutator_lock_) {
  DCHECK(reference_class == GetClassRoot<mirror::Reference>());
  // Second static field
  ArtField* field = reference_class->GetStaticField(1);
  DCHECK_STREQ(field->GetName(), "slowPathEnabled");
  return field->GetOffset();
}

static inline void SetSlowPathFlag(bool enabled) REQUIRES_SHARED(Locks::mutator_lock_) {
  ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>();
  MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class);
  reference_class->SetFieldBoolean</* kTransactionActive= */ false, /* kCheckTransaction= */ false>(
      slow_path_offset, enabled ? 1 : 0);
}

void ReferenceProcessor::EnableSlowPath() {
  SetSlowPathFlag(/* enabled= */ true);
}

void ReferenceProcessor::DisableSlowPath(Thread* self) {
  SetSlowPathFlag(/* enabled= */ false);
  condition_.Broadcast(self);
}

bool ReferenceProcessor::SlowPathEnabled() {
  ObjPtr<mirror::Class> reference_class = GetClassRoot<mirror::Reference>();
  MemberOffset slow_path_offset = GetSlowPathFlagOffset(reference_class);
  return reference_class->GetFieldBoolean(slow_path_offset);
}

void ReferenceProcessor::BroadcastForSlowPath(Thread* self) {
  MutexLock mu(self, *Locks::reference_processor_lock_);
  condition_.Broadcast(self);
}

ObjPtr<mirror::Object> ReferenceProcessor::GetReferent(Thread* self,
                                                       ObjPtr<mirror::Reference> reference) {
  if (!kUseReadBarrier || self->GetWeakRefAccessEnabled()) {
    // Under read barrier / concurrent copying collector, it's not safe to call GetReferent() when
    // weak ref access is disabled as the call includes a read barrier which may push a ref onto the
    // mark stack and interfere with termination of marking.
    const ObjPtr<mirror::Object> referent = reference->GetReferent();
    // If the referent is null then it is already cleared, we can just return null since there is no
    // scenario where it becomes non-null during the reference processing phase.
    if (UNLIKELY(!SlowPathEnabled()) || referent == nullptr) {
      return referent;
    }
  }
  MutexLock mu(self, *Locks::reference_processor_lock_);
  while ((!kUseReadBarrier && SlowPathEnabled()) ||
         (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
    ObjPtr<mirror::Object> referent = reference->GetReferent<kWithoutReadBarrier>();
    // If the referent became cleared, return it. Don't need barrier since thread roots can't get
    // updated until after we leave the function due to holding the mutator lock.
    if (referent == nullptr) {
      return nullptr;
    }
    // Try to see if the referent is already marked by using the is_marked_callback. We can return
    // it to the mutator as long as the GC is not preserving references.
    if (LIKELY(collector_ != nullptr)) {
      // If it's null it means not marked, but it could become marked if the referent is reachable
      // by finalizer referents. So we cannot return in this case and must block. Otherwise, we
      // can return it to the mutator as long as the GC is not preserving references, in which
      // case only black nodes can be safely returned. If the GC is preserving references, the
      // mutator could take a white field from a grey or white node and move it somewhere else
      // in the heap causing corruption since this field would get swept.
      // Use the cached referent instead of calling GetReferent since other threads could call
      // Reference.clear() after we did the null check resulting in a null pointer being
      // incorrectly passed to IsMarked. b/33569625
      ObjPtr<mirror::Object> forwarded_ref = collector_->IsMarked(referent.Ptr());
      if (forwarded_ref != nullptr) {
        // Non null means that it is marked.
        if (!preserving_references_ ||
           (LIKELY(!reference->IsFinalizerReferenceInstance()) && reference->IsUnprocessed())) {
          return forwarded_ref;
        }
      }
    }
    // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
    // presence of threads blocking for weak ref access.
    self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
    condition_.WaitHoldingLocks(self);
  }
  return reference->GetReferent();
}

void ReferenceProcessor::StartPreservingReferences(Thread* self) {
  MutexLock mu(self, *Locks::reference_processor_lock_);
  preserving_references_ = true;
}

void ReferenceProcessor::StopPreservingReferences(Thread* self) {
  MutexLock mu(self, *Locks::reference_processor_lock_);
  preserving_references_ = false;
  // We are done preserving references, some people who are blocked may see a marked referent.
  condition_.Broadcast(self);
}

// Process reference class instances and schedule finalizations.
void ReferenceProcessor::ProcessReferences(bool concurrent,
                                           TimingLogger* timings,
                                           bool clear_soft_references,
                                           collector::GarbageCollector* collector) {
  TimingLogger::ScopedTiming t(concurrent ? __FUNCTION__ : "(Paused)ProcessReferences", timings);
  Thread* self = Thread::Current();
  {
    MutexLock mu(self, *Locks::reference_processor_lock_);
    collector_ = collector;
    if (!kUseReadBarrier) {
      CHECK_EQ(SlowPathEnabled(), concurrent) << "Slow path must be enabled iff concurrent";
    } else {
      // Weak ref access is enabled at Zygote compaction by SemiSpace (concurrent == false).
      CHECK_EQ(!self->GetWeakRefAccessEnabled(), concurrent);
    }
  }
  if (kIsDebugBuild && collector->IsTransactionActive()) {
    // In transaction mode, we shouldn't enqueue any Reference to the queues.
    // See DelayReferenceReferent().
    DCHECK(soft_reference_queue_.IsEmpty());
    DCHECK(weak_reference_queue_.IsEmpty());
    DCHECK(finalizer_reference_queue_.IsEmpty());
    DCHECK(phantom_reference_queue_.IsEmpty());
  }
  // Unless required to clear soft references with white references, preserve some white referents.
  if (!clear_soft_references) {
    TimingLogger::ScopedTiming split(concurrent ? "ForwardSoftReferences" :
        "(Paused)ForwardSoftReferences", timings);
    if (concurrent) {
      StartPreservingReferences(self);
    }
    // TODO: Add smarter logic for preserving soft references. The behavior should be a conditional
    // mark if the SoftReference is supposed to be preserved.
    soft_reference_queue_.ForwardSoftReferences(collector);
    collector->ProcessMarkStack();
    if (concurrent) {
      StopPreservingReferences(self);
    }
  }
  // Clear all remaining soft and weak references with white referents.
  soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
  weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
  {
    TimingLogger::ScopedTiming t2(concurrent ? "EnqueueFinalizerReferences" :
        "(Paused)EnqueueFinalizerReferences", timings);
    if (concurrent) {
      StartPreservingReferences(self);
    }
    // Preserve all white objects with finalize methods and schedule them for finalization.
    finalizer_reference_queue_.EnqueueFinalizerReferences(&cleared_references_, collector);
    collector->ProcessMarkStack();
    if (concurrent) {
      StopPreservingReferences(self);
    }
  }
  // Clear all finalizer referent reachable soft and weak references with white referents.
  soft_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
  weak_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
  // Clear all phantom references with white referents.
  phantom_reference_queue_.ClearWhiteReferences(&cleared_references_, collector);
  // At this point all reference queues other than the cleared references should be empty.
  DCHECK(soft_reference_queue_.IsEmpty());
  DCHECK(weak_reference_queue_.IsEmpty());
  DCHECK(finalizer_reference_queue_.IsEmpty());
  DCHECK(phantom_reference_queue_.IsEmpty());
  {
    MutexLock mu(self, *Locks::reference_processor_lock_);
    // Need to always do this since the next GC may be concurrent. Doing this for only concurrent
    // could result in a stale is_marked_callback_ being called before the reference processing
    // starts since there is a small window of time where slow_path_enabled_ is enabled but the
    // callback isn't yet set.
    collector_ = nullptr;
    if (!kUseReadBarrier && concurrent) {
      // Done processing, disable the slow path and broadcast to the waiters.
      DisableSlowPath(self);
    }
  }
}

// Process the "referent" field in a java.lang.ref.Reference.  If the referent has not yet been
// marked, put it on the appropriate list in the heap for later processing.
void ReferenceProcessor::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
                                                ObjPtr<mirror::Reference> ref,
                                                collector::GarbageCollector* collector) {
  // klass can be the class of the old object if the visitor already updated the class of ref.
  DCHECK(klass != nullptr);
  DCHECK(klass->IsTypeOfReferenceClass());
  mirror::HeapReference<mirror::Object>* referent = ref->GetReferentReferenceAddr();
  // do_atomic_update needs to be true because this happens outside of the reference processing
  // phase.
  if (!collector->IsNullOrMarkedHeapReference(referent, /*do_atomic_update=*/true)) {
    if (UNLIKELY(collector->IsTransactionActive())) {
      // In transaction mode, keep the referent alive and avoid any reference processing to avoid the
      // issue of rolling back reference processing.  do_atomic_update needs to be true because this
      // happens outside of the reference processing phase.
      if (!referent->IsNull()) {
        collector->MarkHeapReference(referent, /*do_atomic_update=*/ true);
      }
      return;
    }
    Thread* self = Thread::Current();
    // TODO: Remove these locks, and use atomic stacks for storing references?
    // We need to check that the references haven't already been enqueued since we can end up
    // scanning the same reference multiple times due to dirty cards.
    if (klass->IsSoftReferenceClass()) {
      soft_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
    } else if (klass->IsWeakReferenceClass()) {
      weak_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
    } else if (klass->IsFinalizerReferenceClass()) {
      finalizer_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
    } else if (klass->IsPhantomReferenceClass()) {
      phantom_reference_queue_.AtomicEnqueueIfNotEnqueued(self, ref);
    } else {
      LOG(FATAL) << "Invalid reference type " << klass->PrettyClass() << " " << std::hex
                 << klass->GetAccessFlags();
    }
  }
}

void ReferenceProcessor::UpdateRoots(IsMarkedVisitor* visitor) {
  cleared_references_.UpdateRoots(visitor);
}

class ClearedReferenceTask : public HeapTask {
 public:
  explicit ClearedReferenceTask(jobject cleared_references)
      : HeapTask(NanoTime()), cleared_references_(cleared_references) {
  }
  void Run(Thread* thread) override {
    ScopedObjectAccess soa(thread);
    jvalue args[1];
    args[0].l = cleared_references_;
    InvokeWithJValues(soa, nullptr, WellKnownClasses::java_lang_ref_ReferenceQueue_add, args);
    soa.Env()->DeleteGlobalRef(cleared_references_);
  }

 private:
  const jobject cleared_references_;
};

SelfDeletingTask* ReferenceProcessor::CollectClearedReferences(Thread* self) {
  Locks::mutator_lock_->AssertNotHeld(self);
  // By default we don't actually need to do anything. Just return this no-op task to avoid having
  // to put in ifs.
  std::unique_ptr<SelfDeletingTask> result(new FunctionTask([](Thread*) {}));
  // When a runtime isn't started there are no reference queues to care about so ignore.
  if (!cleared_references_.IsEmpty()) {
    if (LIKELY(Runtime::Current()->IsStarted())) {
      jobject cleared_references;
      {
        ReaderMutexLock mu(self, *Locks::mutator_lock_);
        cleared_references = self->GetJniEnv()->GetVm()->AddGlobalRef(
            self, cleared_references_.GetList());
      }
      if (kAsyncReferenceQueueAdd) {
        // TODO: This can cause RunFinalization to terminate before newly freed objects are
        // finalized since they may not be enqueued by the time RunFinalization starts.
        Runtime::Current()->GetHeap()->GetTaskProcessor()->AddTask(
            self, new ClearedReferenceTask(cleared_references));
      } else {
        result.reset(new ClearedReferenceTask(cleared_references));
      }
    }
    cleared_references_.Clear();
  }
  return result.release();
}

void ReferenceProcessor::ClearReferent(ObjPtr<mirror::Reference> ref) {
  Thread* self = Thread::Current();
  MutexLock mu(self, *Locks::reference_processor_lock_);
  // Need to wait until reference processing is done since IsMarkedHeapReference does not have a
  // CAS. If we do not wait, it can result in the GC un-clearing references due to race conditions.
  // This also handles the race where the referent gets cleared after a null check but before
  // IsMarkedHeapReference is called.
  WaitUntilDoneProcessingReferences(self);
  if (Runtime::Current()->IsActiveTransaction()) {
    ref->ClearReferent<true>();
  } else {
    ref->ClearReferent<false>();
  }
}

void ReferenceProcessor::WaitUntilDoneProcessingReferences(Thread* self) {
  // Wait until we are done processing reference.
  while ((!kUseReadBarrier && SlowPathEnabled()) ||
         (kUseReadBarrier && !self->GetWeakRefAccessEnabled())) {
    // Check and run the empty checkpoint before blocking so the empty checkpoint will work in the
    // presence of threads blocking for weak ref access.
    self->CheckEmptyCheckpointFromWeakRefAccess(Locks::reference_processor_lock_);
    condition_.WaitHoldingLocks(self);
  }
}

bool ReferenceProcessor::MakeCircularListIfUnenqueued(
    ObjPtr<mirror::FinalizerReference> reference) {
  Thread* self = Thread::Current();
  MutexLock mu(self, *Locks::reference_processor_lock_);
  WaitUntilDoneProcessingReferences(self);
  // At this point, since the sentinel of the reference is live, it is guaranteed to not be
  // enqueued if we just finished processing references. Otherwise, we may be doing the main GC
  // phase. Since we are holding the reference processor lock, it guarantees that reference
  // processing can't begin. The GC could have just enqueued the reference one one of the internal
  // GC queues, but since we hold the lock finalizer_reference_queue_ lock it also prevents this
  // race.
  MutexLock mu2(self, *Locks::reference_queue_finalizer_references_lock_);
  if (reference->IsUnprocessed()) {
    CHECK(reference->IsFinalizerReferenceInstance());
    reference->SetPendingNext(reference);
    return true;
  }
  return false;
}

}  // namespace gc
}  // namespace art