summaryrefslogtreecommitdiffstats
path: root/runtime/atomic.h
blob: 87de506a851c316835507fd0edcb895d10df5d76 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/*
 * Copyright (C) 2008 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef ART_RUNTIME_ATOMIC_H_
#define ART_RUNTIME_ATOMIC_H_

#include <stdint.h>
#include <atomic>
#include <limits>
#include <vector>

#include "base/logging.h"
#include "base/macros.h"

namespace art {

class Mutex;

// QuasiAtomic encapsulates two separate facilities that we are
// trying to move away from:  "quasiatomic" 64 bit operations
// and custom memory fences.  For the time being, they remain
// exposed.  Clients should be converted to use either class Atomic
// below whenever possible, and should eventually use C++11 atomics.
// The two facilities that do not have a good C++11 analog are
// ThreadFenceForConstructor and Atomic::*JavaData.
//
// NOTE: Two "quasiatomic" operations on the exact same memory address
// are guaranteed to operate atomically with respect to each other,
// but no guarantees are made about quasiatomic operations mixed with
// non-quasiatomic operations on the same address, nor about
// quasiatomic operations that are performed on partially-overlapping
// memory.
class QuasiAtomic {
#if defined(__mips__) && !defined(__LP64__)
  static constexpr bool kNeedSwapMutexes = true;
#elif defined(__mips__) && defined(__LP64__)
  // TODO - mips64 still need this for Cas64 ???
  static constexpr bool kNeedSwapMutexes = true;
#else
  static constexpr bool kNeedSwapMutexes = false;
#endif

 public:
  static void Startup();

  static void Shutdown();

  // Reads the 64-bit value at "addr" without tearing.
  static int64_t Read64(volatile const int64_t* addr) {
    if (!kNeedSwapMutexes) {
      int64_t value;
#if defined(__LP64__)
      value = *addr;
#else
#if defined(__arm__)
#if defined(__ARM_FEATURE_LPAE)
      // With LPAE support (such as Cortex-A15) then ldrd is defined not to tear.
      __asm__ __volatile__("@ QuasiAtomic::Read64\n"
        "ldrd     %0, %H0, %1"
        : "=r" (value)
        : "m" (*addr));
#else
      // Exclusive loads are defined not to tear, clearing the exclusive state isn't necessary.
      __asm__ __volatile__("@ QuasiAtomic::Read64\n"
        "ldrexd     %0, %H0, %1"
        : "=r" (value)
        : "Q" (*addr));
#endif
#elif defined(__i386__)
  __asm__ __volatile__(
      "movq     %1, %0\n"
      : "=x" (value)
      : "m" (*addr));
#else
      LOG(FATAL) << "Unsupported architecture";
#endif
#endif  // defined(__LP64__)
      return value;
    } else {
      return SwapMutexRead64(addr);
    }
  }

  // Writes to the 64-bit value at "addr" without tearing.
  static void Write64(volatile int64_t* addr, int64_t value) {
    if (!kNeedSwapMutexes) {
#if defined(__LP64__)
      *addr = value;
#else
#if defined(__arm__)
#if defined(__ARM_FEATURE_LPAE)
    // If we know that ARM architecture has LPAE (such as Cortex-A15) strd is defined not to tear.
    __asm__ __volatile__("@ QuasiAtomic::Write64\n"
      "strd     %1, %H1, %0"
      : "=m"(*addr)
      : "r" (value));
#else
    // The write is done as a swap so that the cache-line is in the exclusive state for the store.
    int64_t prev;
    int status;
    do {
      __asm__ __volatile__("@ QuasiAtomic::Write64\n"
        "ldrexd     %0, %H0, %2\n"
        "strexd     %1, %3, %H3, %2"
        : "=&r" (prev), "=&r" (status), "+Q"(*addr)
        : "r" (value)
        : "cc");
      } while (UNLIKELY(status != 0));
#endif
#elif defined(__i386__)
      __asm__ __volatile__(
        "movq     %1, %0"
        : "=m" (*addr)
        : "x" (value));
#else
      LOG(FATAL) << "Unsupported architecture";
#endif
#endif  // defined(__LP64__)
    } else {
      SwapMutexWrite64(addr, value);
    }
  }

  // Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value"
  // and return true. Otherwise, don't swap, and return false.
  // This is fully ordered, i.e. it has C++11 memory_order_seq_cst
  // semantics (assuming all other accesses use a mutex if this one does).
  // This has "strong" semantics; if it fails then it is guaranteed that
  // at some point during the execution of Cas64, *addr was not equal to
  // old_value.
  static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
    if (!kNeedSwapMutexes) {
      return __sync_bool_compare_and_swap(addr, old_value, new_value);
    } else {
      return SwapMutexCas64(old_value, new_value, addr);
    }
  }

  // Does the architecture provide reasonable atomic long operations or do we fall back on mutexes?
  static bool LongAtomicsUseMutexes() {
    return kNeedSwapMutexes;
  }

  static void ThreadFenceAcquire() {
    std::atomic_thread_fence(std::memory_order_acquire);
  }

  static void ThreadFenceRelease() {
    std::atomic_thread_fence(std::memory_order_release);
  }

  static void ThreadFenceForConstructor() {
    #if defined(__aarch64__)
      __asm__ __volatile__("dmb ishst" : : : "memory");
    #else
      std::atomic_thread_fence(std::memory_order_release);
    #endif
  }

  static void ThreadFenceSequentiallyConsistent() {
    std::atomic_thread_fence(std::memory_order_seq_cst);
  }

 private:
  static Mutex* GetSwapMutex(const volatile int64_t* addr);
  static int64_t SwapMutexRead64(volatile const int64_t* addr);
  static void SwapMutexWrite64(volatile int64_t* addr, int64_t val);
  static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr);

  // We stripe across a bunch of different mutexes to reduce contention.
  static constexpr size_t kSwapMutexCount = 32;
  static std::vector<Mutex*>* gSwapMutexes;

  DISALLOW_COPY_AND_ASSIGN(QuasiAtomic);
};

template<typename T>
class PACKED(sizeof(T)) Atomic : public std::atomic<T> {
 public:
  Atomic<T>() : std::atomic<T>(0) { }

  explicit Atomic<T>(T value) : std::atomic<T>(value) { }

  // Load from memory without ordering or synchronization constraints.
  T LoadRelaxed() const {
    return this->load(std::memory_order_relaxed);
  }

  // Word tearing allowed, but may race.
  // TODO: Optimize?
  // There has been some discussion of eventually disallowing word
  // tearing for Java data loads.
  T LoadJavaData() const {
    return this->load(std::memory_order_relaxed);
  }

  // Load from memory with a total ordering.
  // Corresponds exactly to a Java volatile load.
  T LoadSequentiallyConsistent() const {
    return this->load(std::memory_order_seq_cst);
  }

  // Store to memory without ordering or synchronization constraints.
  void StoreRelaxed(T desired) {
    this->store(desired, std::memory_order_relaxed);
  }

  // Word tearing allowed, but may race.
  void StoreJavaData(T desired) {
    this->store(desired, std::memory_order_relaxed);
  }

  // Store to memory with release ordering.
  void StoreRelease(T desired) {
    this->store(desired, std::memory_order_release);
  }

  // Store to memory with a total ordering.
  void StoreSequentiallyConsistent(T desired) {
    this->store(desired, std::memory_order_seq_cst);
  }

  // Atomically replace the value with desired value if it matches the expected value.
  // Participates in total ordering of atomic operations.
  bool CompareExchangeStrongSequentiallyConsistent(T expected_value, T desired_value) {
    return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst);
  }

  // The same, except it may fail spuriously.
  bool CompareExchangeWeakSequentiallyConsistent(T expected_value, T desired_value) {
    return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst);
  }

  // Atomically replace the value with desired value if it matches the expected value. Doesn't
  // imply ordering or synchronization constraints.
  bool CompareExchangeStrongRelaxed(T expected_value, T desired_value) {
    return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed);
  }

  // The same, except it may fail spuriously.
  bool CompareExchangeWeakRelaxed(T expected_value, T desired_value) {
    return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed);
  }

  // Atomically replace the value with desired value if it matches the expected value. Prior writes
  // made to other memory locations by the thread that did the release become visible in this
  // thread.
  bool CompareExchangeWeakAcquire(T expected_value, T desired_value) {
    return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire);
  }

  // Atomically replace the value with desired value if it matches the expected value. prior writes
  // to other memory locations become visible to the threads that do a consume or an acquire on the
  // same location.
  bool CompareExchangeWeakRelease(T expected_value, T desired_value) {
    return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release);
  }

  T FetchAndAddSequentiallyConsistent(const T value) {
    return this->fetch_add(value, std::memory_order_seq_cst);  // Return old_value.
  }

  T FetchAndSubSequentiallyConsistent(const T value) {
    return this->fetch_sub(value, std::memory_order_seq_cst);  // Return old value.
  }

  T FetchAndOrSequentiallyConsistent(const T value) {
    return this->fetch_or(value, std::memory_order_seq_cst);  // Return old_value.
  }

  T FetchAndAndSequentiallyConsistent(const T value) {
    return this->fetch_and(value, std::memory_order_seq_cst);  // Return old_value.
  }

  volatile T* Address() {
    return reinterpret_cast<T*>(this);
  }

  static T MaxValue() {
    return std::numeric_limits<T>::max();
  }
};

typedef Atomic<int32_t> AtomicInteger;

static_assert(sizeof(AtomicInteger) == sizeof(int32_t), "Weird AtomicInteger size");
static_assert(alignof(AtomicInteger) == alignof(int32_t),
              "AtomicInteger alignment differs from that of underlyingtype");
static_assert(sizeof(Atomic<int64_t>) == sizeof(int64_t), "Weird Atomic<int64> size");

// Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit
// architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte
// aligned.
#if defined(__LP64__)
  static_assert(alignof(Atomic<int64_t>) == alignof(int64_t),
                "Atomic<int64> alignment differs from that of underlying type");
#endif

}  // namespace art

#endif  // ART_RUNTIME_ATOMIC_H_