summaryrefslogtreecommitdiffstats
path: root/compiler/optimizing/ssa_liveness_analysis.cc
blob: d41157b8d8b7c8fbd15b46cae393d749db646eb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "ssa_liveness_analysis.h"

#include "base/bit_vector-inl.h"
#include "code_generator.h"
#include "nodes.h"

namespace art {

void SsaLivenessAnalysis::Analyze() {
  LinearizeGraph();
  NumberInstructions();
  ComputeLiveness();
}

static bool IsLoop(HLoopInformation* info) {
  return info != nullptr;
}

static bool InSameLoop(HLoopInformation* first_loop, HLoopInformation* second_loop) {
  return first_loop == second_loop;
}

static bool IsInnerLoop(HLoopInformation* outer, HLoopInformation* inner) {
  return (inner != outer)
      && (inner != nullptr)
      && (outer != nullptr)
      && inner->IsIn(*outer);
}

static void AddToListForLinearization(GrowableArray<HBasicBlock*>* worklist, HBasicBlock* block) {
  size_t insert_at = worklist->Size();
  HLoopInformation* block_loop = block->GetLoopInformation();
  for (; insert_at > 0; --insert_at) {
    HBasicBlock* current = worklist->Get(insert_at - 1);
    HLoopInformation* current_loop = current->GetLoopInformation();
    if (InSameLoop(block_loop, current_loop)
        || !IsLoop(current_loop)
        || IsInnerLoop(current_loop, block_loop)) {
      // The block can be processed immediately.
      break;
    }
  }
  worklist->InsertAt(insert_at, block);
}

void SsaLivenessAnalysis::LinearizeGraph() {
  // Create a reverse post ordering with the following properties:
  // - Blocks in a loop are consecutive,
  // - Back-edge is the last block before loop exits.

  // (1): Record the number of forward predecessors for each block. This is to
  //      ensure the resulting order is reverse post order. We could use the
  //      current reverse post order in the graph, but it would require making
  //      order queries to a GrowableArray, which is not the best data structure
  //      for it.
  GrowableArray<uint32_t> forward_predecessors(graph_.GetArena(), graph_.GetBlocks().Size());
  forward_predecessors.SetSize(graph_.GetBlocks().Size());
  for (size_t i = 0, e = graph_.GetBlocks().Size(); i < e; ++i) {
    HBasicBlock* block = graph_.GetBlocks().Get(i);
    size_t number_of_forward_predecessors = block->GetPredecessors().Size();
    if (block->IsLoopHeader()) {
      // We rely on having simplified the CFG.
      DCHECK_EQ(1u, block->GetLoopInformation()->NumberOfBackEdges());
      number_of_forward_predecessors--;
    }
    forward_predecessors.Put(block->GetBlockId(), number_of_forward_predecessors);
  }

  // (2): Following a worklist approach, first start with the entry block, and
  //      iterate over the successors. When all non-back edge predecessors of a
  //      successor block are visited, the successor block is added in the worklist
  //      following an order that satisfies the requirements to build our linear graph.
  GrowableArray<HBasicBlock*> worklist(graph_.GetArena(), 1);
  worklist.Add(graph_.GetEntryBlock());
  do {
    HBasicBlock* current = worklist.Pop();
    linear_order_.Add(current);
    for (size_t i = 0, e = current->GetSuccessors().Size(); i < e; ++i) {
      HBasicBlock* successor = current->GetSuccessors().Get(i);
      int block_id = successor->GetBlockId();
      size_t number_of_remaining_predecessors = forward_predecessors.Get(block_id);
      if (number_of_remaining_predecessors == 1) {
        AddToListForLinearization(&worklist, successor);
      }
      forward_predecessors.Put(block_id, number_of_remaining_predecessors - 1);
    }
  } while (!worklist.IsEmpty());
}

void SsaLivenessAnalysis::NumberInstructions() {
  int ssa_index = 0;
  size_t lifetime_position = 0;
  // Each instruction gets a lifetime position, and a block gets a lifetime
  // start and end position. Non-phi instructions have a distinct lifetime position than
  // the block they are in. Phi instructions have the lifetime start of their block as
  // lifetime position.
  //
  // Because the register allocator will insert moves in the graph, we need
  // to differentiate between the start and end of an instruction. Adding 2 to
  // the lifetime position for each instruction ensures the start of an
  // instruction is different than the end of the previous instruction.
  HGraphVisitor* location_builder = codegen_->GetLocationBuilder();
  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
    HBasicBlock* block = it.Current();
    block->SetLifetimeStart(lifetime_position);

    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
      HInstruction* current = inst_it.Current();
      current->Accept(location_builder);
      LocationSummary* locations = current->GetLocations();
      if (locations != nullptr && locations->Out().IsValid()) {
        instructions_from_ssa_index_.Add(current);
        current->SetSsaIndex(ssa_index++);
        current->SetLiveInterval(
            LiveInterval::MakeInterval(graph_.GetArena(), current->GetType(), current));
      }
      current->SetLifetimePosition(lifetime_position);
    }
    lifetime_position += 2;

    // Add a null marker to notify we are starting a block.
    instructions_from_lifetime_position_.Add(nullptr);

    for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done();
         inst_it.Advance()) {
      HInstruction* current = inst_it.Current();
      current->Accept(codegen_->GetLocationBuilder());
      LocationSummary* locations = current->GetLocations();
      if (locations != nullptr && locations->Out().IsValid()) {
        instructions_from_ssa_index_.Add(current);
        current->SetSsaIndex(ssa_index++);
        current->SetLiveInterval(
            LiveInterval::MakeInterval(graph_.GetArena(), current->GetType(), current));
      }
      instructions_from_lifetime_position_.Add(current);
      current->SetLifetimePosition(lifetime_position);
      lifetime_position += 2;
    }

    block->SetLifetimeEnd(lifetime_position);
  }
  number_of_ssa_values_ = ssa_index;
}

void SsaLivenessAnalysis::ComputeLiveness() {
  for (HLinearOrderIterator it(*this); !it.Done(); it.Advance()) {
    HBasicBlock* block = it.Current();
    block_infos_.Put(
        block->GetBlockId(),
        new (graph_.GetArena()) BlockInfo(graph_.GetArena(), *block, number_of_ssa_values_));
  }

  // Compute the live ranges, as well as the initial live_in, live_out, and kill sets.
  // This method does not handle backward branches for the sets, therefore live_in
  // and live_out sets are not yet correct.
  ComputeLiveRanges();

  // Do a fixed point calculation to take into account backward branches,
  // that will update live_in of loop headers, and therefore live_out and live_in
  // of blocks in the loop.
  ComputeLiveInAndLiveOutSets();
}

void SsaLivenessAnalysis::ComputeLiveRanges() {
  // Do a post order visit, adding inputs of instructions live in the block where
  // that instruction is defined, and killing instructions that are being visited.
  for (HLinearPostOrderIterator it(*this); !it.Done(); it.Advance()) {
    HBasicBlock* block = it.Current();

    BitVector* kill = GetKillSet(*block);
    BitVector* live_in = GetLiveInSet(*block);

    // Set phi inputs of successors of this block corresponding to this block
    // as live_in.
    for (size_t i = 0, e = block->GetSuccessors().Size(); i < e; ++i) {
      HBasicBlock* successor = block->GetSuccessors().Get(i);
      live_in->Union(GetLiveInSet(*successor));
      size_t phi_input_index = successor->GetPredecessorIndexOf(block);
      for (HInstructionIterator inst_it(successor->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
        HInstruction* phi = inst_it.Current();
        HInstruction* input = phi->InputAt(phi_input_index);
        input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block);
        // A phi input whose last user is the phi dies at the end of the predecessor block,
        // and not at the phi's lifetime position.
        live_in->SetBit(input->GetSsaIndex());
      }
    }

    // Add a range that covers this block to all instructions live_in because of successors.
    // Instructions defined in this block will have their start of the range adjusted.
    for (uint32_t idx : live_in->Indexes()) {
      HInstruction* current = instructions_from_ssa_index_.Get(idx);
      current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd());
    }

    for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done();
         back_it.Advance()) {
      HInstruction* current = back_it.Current();
      if (current->HasSsaIndex()) {
        // Kill the instruction and shorten its interval.
        kill->SetBit(current->GetSsaIndex());
        live_in->ClearBit(current->GetSsaIndex());
        current->GetLiveInterval()->SetFrom(current->GetLifetimePosition());
      }

      // All inputs of an instruction must be live.
      for (size_t i = 0, e = current->InputCount(); i < e; ++i) {
        HInstruction* input = current->InputAt(i);
        // Some instructions 'inline' their inputs, that is they do not need
        // to be materialized.
        if (input->HasSsaIndex()) {
          live_in->SetBit(input->GetSsaIndex());
          input->GetLiveInterval()->AddUse(current, i, false);
        }
      }

      if (current->HasEnvironment()) {
        // All instructions in the environment must be live.
        GrowableArray<HInstruction*>* environment = current->GetEnvironment()->GetVRegs();
        for (size_t i = 0, e = environment->Size(); i < e; ++i) {
          HInstruction* instruction = environment->Get(i);
          if (instruction != nullptr) {
            DCHECK(instruction->HasSsaIndex());
            live_in->SetBit(instruction->GetSsaIndex());
            instruction->GetLiveInterval()->AddUse(current, i, true);
          }
        }
      }
    }

    // Kill phis defined in this block.
    for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) {
      HInstruction* current = inst_it.Current();
      if (current->HasSsaIndex()) {
        kill->SetBit(current->GetSsaIndex());
        live_in->ClearBit(current->GetSsaIndex());
        LiveInterval* interval = current->GetLiveInterval();
        DCHECK((interval->GetFirstRange() == nullptr)
               || (interval->GetStart() == current->GetLifetimePosition()));
        interval->SetFrom(current->GetLifetimePosition());
      }
    }

    if (block->IsLoopHeader()) {
      HBasicBlock* back_edge = block->GetLoopInformation()->GetBackEdges().Get(0);
      // For all live_in instructions at the loop header, we need to create a range
      // that covers the full loop.
      for (uint32_t idx : live_in->Indexes()) {
        HInstruction* current = instructions_from_ssa_index_.Get(idx);
        current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(),
                                                 back_edge->GetLifetimeEnd());
      }
    }
  }
}

void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() {
  bool changed;
  do {
    changed = false;

    for (HPostOrderIterator it(graph_); !it.Done(); it.Advance()) {
      const HBasicBlock& block = *it.Current();

      // The live_in set depends on the kill set (which does not
      // change in this loop), and the live_out set.  If the live_out
      // set does not change, there is no need to update the live_in set.
      if (UpdateLiveOut(block) && UpdateLiveIn(block)) {
        changed = true;
      }
    }
  } while (changed);
}

bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) {
  BitVector* live_out = GetLiveOutSet(block);
  bool changed = false;
  // The live_out set of a block is the union of live_in sets of its successors.
  for (size_t i = 0, e = block.GetSuccessors().Size(); i < e; ++i) {
    HBasicBlock* successor = block.GetSuccessors().Get(i);
    if (live_out->Union(GetLiveInSet(*successor))) {
      changed = true;
    }
  }
  return changed;
}


bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) {
  BitVector* live_out = GetLiveOutSet(block);
  BitVector* kill = GetKillSet(block);
  BitVector* live_in = GetLiveInSet(block);
  // If live_out is updated (because of backward branches), we need to make
  // sure instructions in live_out are also in live_in, unless they are killed
  // by this block.
  return live_in->UnionIfNotIn(live_out, kill);
}

int LiveInterval::FindFirstRegisterHint(size_t* free_until) const {
  if (GetParent() == this && defined_by_ != nullptr) {
    // This is the first interval for the instruction. Try to find
    // a register based on its definition.
    DCHECK_EQ(defined_by_->GetLiveInterval(), this);
    int hint = FindHintAtDefinition();
    if (hint != kNoRegister && free_until[hint] > GetStart()) {
      return hint;
    }
  }

  UsePosition* use = first_use_;
  size_t start = GetStart();
  size_t end = GetEnd();
  while (use != nullptr && use->GetPosition() <= end) {
    size_t use_position = use->GetPosition();
    if (use_position >= start && !use->GetIsEnvironment()) {
      HInstruction* user = use->GetUser();
      size_t input_index = use->GetInputIndex();
      if (user->IsPhi()) {
        // If the phi has a register, try to use the same.
        Location phi_location = user->GetLiveInterval()->ToLocation();
        if (SameRegisterKind(phi_location) && free_until[phi_location.reg()] >= use_position) {
          return phi_location.reg();
        }
        const GrowableArray<HBasicBlock*>& predecessors = user->GetBlock()->GetPredecessors();
        // If the instruction dies at the phi assignment, we can try having the
        // same register.
        if (end == predecessors.Get(input_index)->GetLifetimeEnd()) {
          for (size_t i = 0, e = user->InputCount(); i < e; ++i) {
            if (i == input_index) {
              continue;
            }
            HInstruction* input = user->InputAt(i);
            Location location = input->GetLiveInterval()->GetLocationAt(
                predecessors.Get(i)->GetLifetimeEnd() - 1);
            if (location.IsRegister() && free_until[location.reg()] >= use_position) {
              return location.reg();
            }
          }
        }
      } else {
        // If the instruction is expected in a register, try to use it.
        LocationSummary* locations = user->GetLocations();
        Location expected = locations->InAt(use->GetInputIndex());
        // We use the user's lifetime position - 1 (and not `use_position`) because the
        // register is blocked at the beginning of the user.
        size_t position = user->GetLifetimePosition() - 1;
        if (SameRegisterKind(expected) && free_until[expected.reg()] >= position) {
          return expected.reg();
        }
      }
    }
    use = use->GetNext();
  }

  return kNoRegister;
}

int LiveInterval::FindHintAtDefinition() const {
  if (defined_by_->IsPhi()) {
    // Try to use the same register as one of the inputs.
    const GrowableArray<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors();
    for (size_t i = 0, e = defined_by_->InputCount(); i < e; ++i) {
      HInstruction* input = defined_by_->InputAt(i);
      size_t end = predecessors.Get(i)->GetLifetimeEnd();
      const LiveInterval& input_interval = input->GetLiveInterval()->GetIntervalAt(end - 1);
      if (input_interval.GetEnd() == end) {
        // If the input dies at the end of the predecessor, we know its register can
        // be reused.
        Location input_location = input_interval.ToLocation();
        if (SameRegisterKind(input_location)) {
          return input_location.reg();
        }
      }
    }
  } else {
    LocationSummary* locations = GetDefinedBy()->GetLocations();
    Location out = locations->Out();
    if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) {
      // Try to use the same register as the first input.
      const LiveInterval& input_interval =
          GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetIntervalAt(GetStart() - 1);
      if (input_interval.GetEnd() == GetStart()) {
        // If the input dies at the start of this instruction, we know its register can
        // be reused.
        Location location = input_interval.ToLocation();
        if (SameRegisterKind(location)) {
          return location.reg();
        }
      }
    }
  }
  return kNoRegister;
}

bool LiveInterval::SameRegisterKind(Location other) const {
  return IsFloatingPoint()
      ? other.IsFpuRegister()
      : other.IsRegister();
}

bool LiveInterval::NeedsTwoSpillSlots() const {
  return type_ == Primitive::kPrimLong || type_ == Primitive::kPrimDouble;
}

Location LiveInterval::ToLocation() const {
  DCHECK(!IsHighInterval());
  if (HasRegister()) {
    if (IsFloatingPoint()) {
      if (HasHighInterval()) {
        return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
      } else {
        return Location::FpuRegisterLocation(GetRegister());
      }
    } else {
      if (HasHighInterval()) {
        return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister());
      } else {
        return Location::RegisterLocation(GetRegister());
      }
    }
  } else {
    HInstruction* defined_by = GetParent()->GetDefinedBy();
    if (defined_by->IsConstant()) {
      return defined_by->GetLocations()->Out();
    } else if (GetParent()->HasSpillSlot()) {
      if (NeedsTwoSpillSlots()) {
        return Location::DoubleStackSlot(GetParent()->GetSpillSlot());
      } else {
        return Location::StackSlot(GetParent()->GetSpillSlot());
      }
    } else {
      return Location();
    }
  }
}

Location LiveInterval::GetLocationAt(size_t position) const {
  return GetIntervalAt(position).ToLocation();
}

const LiveInterval& LiveInterval::GetIntervalAt(size_t position) const {
  const LiveInterval* current = this;
  while (!current->Covers(position)) {
    current = current->GetNextSibling();
    DCHECK(current != nullptr);
  }
  return *current;
}

}  // namespace art