summaryrefslogtreecommitdiffstats
path: root/compiler/optimizing/ssa_builder.cc
blob: edfafcdd83c027a9c76e6034fc58d0fa5567bb21 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
/*
 * Copyright (C) 2014 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "ssa_builder.h"

#include "nodes.h"
#include "ssa_type_propagation.h"
#include "ssa_phi_elimination.h"

namespace art {

void SsaBuilder::BuildSsa() {
  // 1) Visit in reverse post order. We need to have all predecessors of a block visited
  // (with the exception of loops) in order to create the right environment for that
  // block. For loops, we create phis whose inputs will be set in 2).
  for (HReversePostOrderIterator it(*GetGraph()); !it.Done(); it.Advance()) {
    VisitBasicBlock(it.Current());
  }

  // 2) Set inputs of loop phis.
  for (size_t i = 0; i < loop_headers_.Size(); i++) {
    HBasicBlock* block = loop_headers_.Get(i);
    for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
      HPhi* phi = it.Current()->AsPhi();
      for (size_t pred = 0; pred < block->GetPredecessors().Size(); pred++) {
        HInstruction* input = ValueOfLocal(block->GetPredecessors().Get(pred), phi->GetRegNumber());
        phi->AddInput(input);
      }
    }
  }

  // 3) Remove dead phis. This will remove phis that are only used by environments:
  // at the DEX level, the type of these phis does not need to be consistent, but
  // our code generator will complain if the inputs of a phi do not have the same
  // type (modulo the special case of `null`).
  SsaDeadPhiElimination dead_phis(GetGraph());
  dead_phis.Run();

  // 4) Propagate types of phis. At this point, phis are typed void in the general
  // case, or float or double when we created a floating-point equivalent. So we
  // need to propagate the types across phis to give them a correct type.
  SsaTypePropagation type_propagation(GetGraph());
  type_propagation.Run();

  // 5) Clear locals.
  // TODO: Move this to a dead code eliminator phase.
  for (HInstructionIterator it(GetGraph()->GetEntryBlock()->GetInstructions());
       !it.Done();
       it.Advance()) {
    HInstruction* current = it.Current();
    if (current->IsLocal()) {
      current->GetBlock()->RemoveInstruction(current);
    }
  }
}

HInstruction* SsaBuilder::ValueOfLocal(HBasicBlock* block, size_t local) {
  return GetLocalsFor(block)->Get(local);
}

void SsaBuilder::VisitBasicBlock(HBasicBlock* block) {
  current_locals_ = GetLocalsFor(block);

  if (block->IsLoopHeader()) {
    // If the block is a loop header, we know we only have visited the pre header
    // because we are visiting in reverse post order. We create phis for all initialized
    // locals from the pre header. Their inputs will be populated at the end of
    // the analysis.
    for (size_t local = 0; local < current_locals_->Size(); local++) {
      HInstruction* incoming = ValueOfLocal(block->GetLoopInformation()->GetPreHeader(), local);
      if (incoming != nullptr) {
        HPhi* phi = new (GetGraph()->GetArena()) HPhi(
            GetGraph()->GetArena(), local, 0, Primitive::kPrimVoid);
        block->AddPhi(phi);
        current_locals_->Put(local, phi);
      }
    }
    // Save the loop header so that the last phase of the analysis knows which
    // blocks need to be updated.
    loop_headers_.Add(block);
  } else if (block->GetPredecessors().Size() > 0) {
    // All predecessors have already been visited because we are visiting in reverse post order.
    // We merge the values of all locals, creating phis if those values differ.
    for (size_t local = 0; local < current_locals_->Size(); local++) {
      bool one_predecessor_has_no_value = false;
      bool is_different = false;
      HInstruction* value = ValueOfLocal(block->GetPredecessors().Get(0), local);

      for (size_t i = 0, e = block->GetPredecessors().Size(); i < e; ++i) {
        HInstruction* current = ValueOfLocal(block->GetPredecessors().Get(i), local);
        if (current == nullptr) {
          one_predecessor_has_no_value = true;
          break;
        } else if (current != value) {
          is_different = true;
        }
      }

      if (one_predecessor_has_no_value) {
        // If one predecessor has no value for this local, we trust the verifier has
        // successfully checked that there is a store dominating any read after this block.
        continue;
      }

      if (is_different) {
        HPhi* phi = new (GetGraph()->GetArena()) HPhi(
            GetGraph()->GetArena(), local, block->GetPredecessors().Size(), Primitive::kPrimVoid);
        for (size_t i = 0; i < block->GetPredecessors().Size(); i++) {
          HInstruction* pred_value = ValueOfLocal(block->GetPredecessors().Get(i), local);
          phi->SetRawInputAt(i, pred_value);
        }
        block->AddPhi(phi);
        value = phi;
      }
      current_locals_->Put(local, value);
    }
  }

  // Visit all instructions. The instructions of interest are:
  // - HLoadLocal: replace them with the current value of the local.
  // - HStoreLocal: update current value of the local and remove the instruction.
  // - Instructions that require an environment: populate their environment
  //   with the current values of the locals.
  for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
    it.Current()->Accept(this);
  }
}

/**
 * Constants in the Dex format are not typed. So the builder types them as
 * integers, but when doing the SSA form, we might realize the constant
 * is used for floating point operations. We create a floating-point equivalent
 * constant to make the operations correctly typed.
 */
static HFloatConstant* GetFloatEquivalent(HIntConstant* constant) {
  // We place the floating point constant next to this constant.
  HFloatConstant* result = constant->GetNext()->AsFloatConstant();
  if (result == nullptr) {
    HGraph* graph = constant->GetBlock()->GetGraph();
    ArenaAllocator* allocator = graph->GetArena();
    result = new (allocator) HFloatConstant(bit_cast<int32_t, float>(constant->GetValue()));
    constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
  } else {
    // If there is already a constant with the expected type, we know it is
    // the floating point equivalent of this constant.
    DCHECK_EQ((bit_cast<float, int32_t>(result->GetValue())), constant->GetValue());
  }
  return result;
}

/**
 * Wide constants in the Dex format are not typed. So the builder types them as
 * longs, but when doing the SSA form, we might realize the constant
 * is used for floating point operations. We create a floating-point equivalent
 * constant to make the operations correctly typed.
 */
static HDoubleConstant* GetDoubleEquivalent(HLongConstant* constant) {
  // We place the floating point constant next to this constant.
  HDoubleConstant* result = constant->GetNext()->AsDoubleConstant();
  if (result == nullptr) {
    HGraph* graph = constant->GetBlock()->GetGraph();
    ArenaAllocator* allocator = graph->GetArena();
    result = new (allocator) HDoubleConstant(bit_cast<int64_t, double>(constant->GetValue()));
    constant->GetBlock()->InsertInstructionBefore(result, constant->GetNext());
  } else {
    // If there is already a constant with the expected type, we know it is
    // the floating point equivalent of this constant.
    DCHECK_EQ((bit_cast<double, int64_t>(result->GetValue())), constant->GetValue());
  }
  return result;
}

/**
 * Because of Dex format, we might end up having the same phi being
 * used for non floating point operations and floating point operations. Because
 * we want the graph to be correctly typed (and thereafter avoid moves between
 * floating point registers and core registers), we need to create a copy of the
 * phi with a floating point type.
 */
static HPhi* GetFloatOrDoubleEquivalentOfPhi(HPhi* phi, Primitive::Type type) {
  // We place the floating point phi next to this phi.
  HInstruction* next = phi->GetNext();
  if (next == nullptr || (next->AsPhi()->GetRegNumber() != phi->GetRegNumber())) {
    ArenaAllocator* allocator = phi->GetBlock()->GetGraph()->GetArena();
    HPhi* new_phi = new (allocator) HPhi(allocator, phi->GetRegNumber(), phi->InputCount(), type);
    for (size_t i = 0, e = phi->InputCount(); i < e; ++i) {
      // Copy the inputs. Note that the graph may not be correctly typed by doing this copy,
      // but the type propagation phase will fix it.
      new_phi->SetRawInputAt(i, phi->InputAt(i));
    }
    phi->GetBlock()->InsertPhiAfter(new_phi, phi);
    return new_phi;
  } else {
    DCHECK_EQ(next->GetType(), type);
    return next->AsPhi();
  }
}

HInstruction* SsaBuilder::GetFloatOrDoubleEquivalent(HInstruction* user,
                                                     HInstruction* value,
                                                     Primitive::Type type) {
  if (value->IsArrayGet()) {
    // The verifier has checked that values in arrays cannot be used for both
    // floating point and non-floating point operations. It is therefore safe to just
    // change the type of the operation.
    value->AsArrayGet()->SetType(type);
    return value;
  } else if (value->IsLongConstant()) {
    return GetDoubleEquivalent(value->AsLongConstant());
  } else if (value->IsIntConstant()) {
    return GetFloatEquivalent(value->AsIntConstant());
  } else if (value->IsPhi()) {
    return GetFloatOrDoubleEquivalentOfPhi(value->AsPhi(), type);
  } else {
    // For other instructions, we assume the verifier has checked that the dex format is correctly
    // typed and the value in a dex register will not be used for both floating point and
    // non-floating point operations. So the only reason an instruction would want a floating
    // point equivalent is for an unused phi that will be removed by the dead phi elimination phase.
    DCHECK(user->IsPhi());
    return value;
  }
}

void SsaBuilder::VisitLoadLocal(HLoadLocal* load) {
  HInstruction* value = current_locals_->Get(load->GetLocal()->GetRegNumber());
  if (load->GetType() != value->GetType()
      && (load->GetType() == Primitive::kPrimFloat || load->GetType() == Primitive::kPrimDouble)) {
    // If the operation requests a specific type, we make sure its input is of that type.
    value = GetFloatOrDoubleEquivalent(load, value, load->GetType());
  }
  load->ReplaceWith(value);
  load->GetBlock()->RemoveInstruction(load);
}

void SsaBuilder::VisitStoreLocal(HStoreLocal* store) {
  current_locals_->Put(store->GetLocal()->GetRegNumber(), store->InputAt(1));
  store->GetBlock()->RemoveInstruction(store);
}

void SsaBuilder::VisitInstruction(HInstruction* instruction) {
  if (!instruction->NeedsEnvironment()) {
    return;
  }
  HEnvironment* environment = new (GetGraph()->GetArena()) HEnvironment(
      GetGraph()->GetArena(), current_locals_->Size());
  environment->Populate(*current_locals_);
  instruction->SetEnvironment(environment);
}

void SsaBuilder::VisitTemporary(HTemporary* temp) {
  // Temporaries are only used by the baseline register allocator.
  temp->GetBlock()->RemoveInstruction(temp);
}

}  // namespace art