summaryrefslogtreecommitdiffstats
path: root/compiler/elf_writer_quick.cc
blob: ddee3ba2cc33495535a2fe3863b0879fa71e172c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/*
 * Copyright (C) 2012 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "elf_writer_quick.h"

#include <unordered_map>
#include <unordered_set>

#include "base/casts.h"
#include "base/logging.h"
#include "base/unix_file/fd_file.h"
#include "compiled_method.h"
#include "dex_file-inl.h"
#include "driver/compiler_driver.h"
#include "driver/compiler_options.h"
#include "elf_builder.h"
#include "elf_file.h"
#include "elf_utils.h"
#include "elf_writer_debug.h"
#include "globals.h"
#include "leb128.h"
#include "oat.h"
#include "oat_writer.h"
#include "utils.h"

namespace art {

// .eh_frame and .debug_frame are almost identical.
// Except for some minor formatting differences, the main difference
// is that .eh_frame is allocated within the running program because
// it is used by C++ exception handling (which we do not use so we
// can choose either).  C++ compilers generally tend to use .eh_frame
// because if they need it sometimes, they might as well always use it.
constexpr dwarf::CFIFormat kCFIFormat = dwarf::DW_EH_FRAME_FORMAT;

// The ARM specification defines three special mapping symbols
// $a, $t and $d which mark ARM, Thumb and data ranges respectively.
// These symbols can be used by tools, for example, to pretty
// print instructions correctly.  Objdump will use them if they
// exist, but it will still work well without them.
// However, these extra symbols take space, so let's just generate
// one symbol which marks the whole .text section as code.
constexpr bool kGenerateSingleArmMappingSymbol = true;

template <typename ElfTypes>
bool ElfWriterQuick<ElfTypes>::Create(File* elf_file,
                                      OatWriter* oat_writer,
                                      const std::vector<const DexFile*>& dex_files,
                                      const std::string& android_root,
                                      bool is_host,
                                      const CompilerDriver& driver) {
  ElfWriterQuick elf_writer(driver, elf_file);
  return elf_writer.Write(oat_writer, dex_files, android_root, is_host);
}

template <typename ElfTypes>
static void WriteDebugSymbols(ElfBuilder<ElfTypes>* builder, OatWriter* oat_writer);

// Encode patch locations as LEB128 list of deltas between consecutive addresses.
template <typename ElfTypes>
void ElfWriterQuick<ElfTypes>::EncodeOatPatches(const std::vector<uintptr_t>& locations,
                                                std::vector<uint8_t>* buffer) {
  buffer->reserve(buffer->size() + locations.size() * 2);  // guess 2 bytes per ULEB128.
  uintptr_t address = 0;  // relative to start of section.
  for (uintptr_t location : locations) {
    DCHECK_GE(location, address) << "Patch locations are not in sorted order";
    EncodeUnsignedLeb128(buffer, dchecked_integral_cast<uint32_t>(location - address));
    address = location;
  }
}

class RodataWriter FINAL : public CodeOutput {
 public:
  explicit RodataWriter(OatWriter* oat_writer) : oat_writer_(oat_writer) {}

  bool Write(OutputStream* out) OVERRIDE {
    return oat_writer_->WriteRodata(out);
  }

 private:
  OatWriter* oat_writer_;
};

class TextWriter FINAL : public CodeOutput {
 public:
  explicit TextWriter(OatWriter* oat_writer) : oat_writer_(oat_writer) {}

  bool Write(OutputStream* out) OVERRIDE {
    return oat_writer_->WriteCode(out);
  }

 private:
  OatWriter* oat_writer_;
};

enum PatchResult {
  kAbsoluteAddress,  // Absolute memory location.
  kPointerRelativeAddress,  // Offset relative to the location of the pointer.
  kSectionRelativeAddress,  // Offset relative to start of containing section.
};

// Patch memory addresses within a buffer.
// It assumes that the unpatched addresses are offsets relative to base_address.
// (which generally means method's low_pc relative to the start of .text)
template <typename Elf_Addr, typename Address, PatchResult kPatchResult>
static void Patch(const std::vector<uintptr_t>& patch_locations,
                  Elf_Addr buffer_address, Elf_Addr base_address,
                  std::vector<uint8_t>* buffer) {
  for (uintptr_t location : patch_locations) {
    typedef __attribute__((__aligned__(1))) Address UnalignedAddress;
    auto* to_patch = reinterpret_cast<UnalignedAddress*>(buffer->data() + location);
    switch (kPatchResult) {
      case kAbsoluteAddress:
        *to_patch = (base_address + *to_patch);
        break;
      case kPointerRelativeAddress:
        *to_patch = (base_address + *to_patch) - (buffer_address + location);
        break;
      case kSectionRelativeAddress:
        *to_patch = (base_address + *to_patch) - buffer_address;
        break;
    }
  }
}

template <typename ElfTypes>
bool ElfWriterQuick<ElfTypes>::Write(
    OatWriter* oat_writer,
    const std::vector<const DexFile*>& dex_files_unused ATTRIBUTE_UNUSED,
    const std::string& android_root_unused ATTRIBUTE_UNUSED,
    bool is_host_unused ATTRIBUTE_UNUSED) {
  using Elf_Addr = typename ElfTypes::Addr;
  const InstructionSet isa = compiler_driver_->GetInstructionSet();

  // Setup the builder with the main OAT sections (.rodata .text .bss).
  const size_t rodata_size = oat_writer->GetOatHeader().GetExecutableOffset();
  const size_t text_size = oat_writer->GetSize() - rodata_size;
  const size_t bss_size = oat_writer->GetBssSize();
  RodataWriter rodata_writer(oat_writer);
  TextWriter text_writer(oat_writer);
  std::unique_ptr<ElfBuilder<ElfTypes>> builder(new ElfBuilder<ElfTypes>(
      isa, rodata_size, &rodata_writer, text_size, &text_writer, bss_size));

  // Add debug sections.
  // They are allocated here (in the same scope as the builder),
  // but they are registered with the builder only if they are used.
  using RawSection = typename ElfBuilder<ElfTypes>::RawSection;
  const auto* text = builder->GetText();
  const bool is64bit = Is64BitInstructionSet(isa);
  const int pointer_size = GetInstructionSetPointerSize(isa);
  std::unique_ptr<RawSection> eh_frame(new RawSection(
      ".eh_frame", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, kPageSize, 0,
      is64bit ? Patch<Elf_Addr, uint64_t, kPointerRelativeAddress> :
                Patch<Elf_Addr, uint32_t, kPointerRelativeAddress>,
      text));
  std::unique_ptr<RawSection> eh_frame_hdr(new RawSection(
      ".eh_frame_hdr", SHT_PROGBITS, SHF_ALLOC, nullptr, 0, 4, 0,
      Patch<Elf_Addr, uint32_t, kSectionRelativeAddress>, text));
  std::unique_ptr<RawSection> debug_frame(new RawSection(
      ".debug_frame", SHT_PROGBITS, 0, nullptr, 0, pointer_size, 0,
      is64bit ? Patch<Elf_Addr, uint64_t, kAbsoluteAddress> :
                Patch<Elf_Addr, uint32_t, kAbsoluteAddress>,
      text));
  std::unique_ptr<RawSection> debug_frame_oat_patches(new RawSection(
      ".debug_frame.oat_patches", SHT_OAT_PATCH));
  std::unique_ptr<RawSection> debug_info(new RawSection(
      ".debug_info", SHT_PROGBITS, 0, nullptr, 0, 1, 0,
      Patch<Elf_Addr, uint32_t, kAbsoluteAddress>, text));
  std::unique_ptr<RawSection> debug_info_oat_patches(new RawSection(
      ".debug_info.oat_patches", SHT_OAT_PATCH));
  std::unique_ptr<RawSection> debug_abbrev(new RawSection(
      ".debug_abbrev", SHT_PROGBITS));
  std::unique_ptr<RawSection> debug_str(new RawSection(
      ".debug_str", SHT_PROGBITS));
  std::unique_ptr<RawSection> debug_line(new RawSection(
      ".debug_line", SHT_PROGBITS, 0, nullptr, 0, 1, 0,
      Patch<Elf_Addr, uint32_t, kAbsoluteAddress>, text));
  std::unique_ptr<RawSection> debug_line_oat_patches(new RawSection(
      ".debug_line.oat_patches", SHT_OAT_PATCH));
  if (!oat_writer->GetMethodDebugInfo().empty()) {
    if (compiler_driver_->GetCompilerOptions().GetGenerateDebugInfo()) {
      // Generate CFI (stack unwinding information).
      if (kCFIFormat == dwarf::DW_EH_FRAME_FORMAT) {
        dwarf::WriteCFISection(
            compiler_driver_, oat_writer,
            dwarf::DW_EH_PE_pcrel, kCFIFormat,
            eh_frame->GetBuffer(), eh_frame->GetPatchLocations(),
            eh_frame_hdr->GetBuffer(), eh_frame_hdr->GetPatchLocations());
        builder->RegisterSection(eh_frame.get());
        builder->RegisterSection(eh_frame_hdr.get());
      } else {
        DCHECK(kCFIFormat == dwarf::DW_DEBUG_FRAME_FORMAT);
        dwarf::WriteCFISection(
            compiler_driver_, oat_writer,
            dwarf::DW_EH_PE_absptr, kCFIFormat,
            debug_frame->GetBuffer(), debug_frame->GetPatchLocations(),
            nullptr, nullptr);
        builder->RegisterSection(debug_frame.get());
        EncodeOatPatches(*debug_frame->GetPatchLocations(),
                         debug_frame_oat_patches->GetBuffer());
        builder->RegisterSection(debug_frame_oat_patches.get());
      }
      // Add methods to .symtab.
      WriteDebugSymbols(builder.get(), oat_writer);
      // Generate DWARF .debug_* sections.
      dwarf::WriteDebugSections(
          compiler_driver_, oat_writer,
          debug_info->GetBuffer(), debug_info->GetPatchLocations(),
          debug_abbrev->GetBuffer(),
          debug_str->GetBuffer(),
          debug_line->GetBuffer(), debug_line->GetPatchLocations());
      builder->RegisterSection(debug_info.get());
      EncodeOatPatches(*debug_info->GetPatchLocations(),
                       debug_info_oat_patches->GetBuffer());
      builder->RegisterSection(debug_info_oat_patches.get());
      builder->RegisterSection(debug_abbrev.get());
      builder->RegisterSection(debug_str.get());
      builder->RegisterSection(debug_line.get());
      EncodeOatPatches(*debug_line->GetPatchLocations(),
                       debug_line_oat_patches->GetBuffer());
      builder->RegisterSection(debug_line_oat_patches.get());
    }
  }

  // Add relocation section for .text.
  std::unique_ptr<RawSection> text_oat_patches(new RawSection(
      ".text.oat_patches", SHT_OAT_PATCH));
  if (compiler_driver_->GetCompilerOptions().GetIncludePatchInformation()) {
    // Note that ElfWriter::Fixup will be called regardless and therefore
    // we need to include oat_patches for debug sections unconditionally.
    EncodeOatPatches(oat_writer->GetAbsolutePatchLocations(),
                     text_oat_patches->GetBuffer());
    builder->RegisterSection(text_oat_patches.get());
  }

  return builder->Write(elf_file_);
}

template <typename ElfTypes>
static void WriteDebugSymbols(ElfBuilder<ElfTypes>* builder, OatWriter* oat_writer) {
  const std::vector<OatWriter::DebugInfo>& method_info = oat_writer->GetMethodDebugInfo();
  bool generated_mapping_symbol = false;

  // Find all addresses (low_pc) which contain deduped methods.
  // The first instance of method is not marked deduped_, but the rest is.
  std::unordered_set<uint32_t> deduped_addresses;
  for (auto it = method_info.begin(); it != method_info.end(); ++it) {
    if (it->deduped_) {
      deduped_addresses.insert(it->low_pc_);
    }
  }

  auto* symtab = builder->GetSymtab();
  for (auto it = method_info.begin(); it != method_info.end(); ++it) {
    if (it->deduped_) {
      continue;  // Add symbol only for the first instance.
    }
    std::string name = PrettyMethod(it->dex_method_index_, *it->dex_file_, true);
    if (deduped_addresses.find(it->low_pc_) != deduped_addresses.end()) {
      name += " [DEDUPED]";
    }

    uint32_t low_pc = it->low_pc_;
    // Add in code delta, e.g., thumb bit 0 for Thumb2 code.
    low_pc += it->compiled_method_->CodeDelta();
    symtab->AddSymbol(name, builder->GetText(), low_pc,
                      true, it->high_pc_ - it->low_pc_, STB_GLOBAL, STT_FUNC);

    // Conforming to aaelf, add $t mapping symbol to indicate start of a sequence of thumb2
    // instructions, so that disassembler tools can correctly disassemble.
    // Note that even if we generate just a single mapping symbol, ARM's Streamline
    // requires it to match function symbol.  Just address 0 does not work.
    if (it->compiled_method_->GetInstructionSet() == kThumb2) {
      if (!generated_mapping_symbol || !kGenerateSingleArmMappingSymbol) {
        symtab->AddSymbol("$t", builder->GetText(), it->low_pc_ & ~1, true,
                          0, STB_LOCAL, STT_NOTYPE);
        generated_mapping_symbol = true;
      }
    }
  }
}

// Explicit instantiations
template class ElfWriterQuick<ElfTypes32>;
template class ElfWriterQuick<ElfTypes64>;

}  // namespace art